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Abstract

Large language models (LLMs) have achieved
remarkable success across various natural lan-
guage processing tasks. However, most LLM
models use traditional tokenizers like BPE
and SentencePiece, which fail to capture the
finer nuances of a morphologically rich lan-
guage like Bangla (Bengali). In this work,
we introduce BanglaByT5, the first byte-
level encoder-decoder model explicitly tailored
for Bangla. Built upon a small variant of
Google’s ByT5 architecture, BanglaByT5 is
pre-trained on a 14GB curated corpus combin-
ing high-quality literary and newspaper arti-
cles. Through zero-shot and supervised eval-
uations across generative and classification
tasks, BanglaByT5 demonstrates competitive
performance, surpassing several multilingual
and larger models. Our findings highlight
the potential of BanglaByT5 as a lightweight
yet powerful tool for Bangla NLP, particularly
in resource-constrained and scalable environ-
ments. BanglaByT5 is publicly available for
download from https://huggingface.co/
Vacaspati/BanglaByT5.

1 Introduction

Large Language Models (LLMs) have redefined
natural language processing (NLP) by achieving
strong results across multiple tasks like machine
translation, question answering, and paraphrasing.
However, these models rely on subword tokeniza-
tion (e.g., BPE, SentencePiece), which fragments
words inconsistently and poses significant chal-
lenges when applied to morphologically rich In-
dian languages like Bangla (Brahma et al., 2025;
Nehrdich et al., 2024). In contrast, byte-level mod-
elling operates directly on raw bytes, enabling mod-
els to handle linguistic variations uniformly across
scripts and domains.

In this paper, we introduce BanglaByT5,
the first monolingual byte-level encoder-decoder

model for Bangla, built on the small ByT5 archi-
tecture and pre-trained on a 14GB balanced corpus
combining VĀCASPATI (literature) (Bhattacharyya
et al., 2023) and IndicCorp (news) corpora (Kak-
wani et al., 2020). BanglaByT5 is evaluated on
classification and generative tasks under zero-shot
and fine-tuned settings. It outperforms similar-size
models like IndicBART and BanglaT5, as well as
BLOOM-1.1B (Scao et al., 2023), and performs
within 5% of GPT2-XL (Radford et al., 2019) de-
spite being 5 times smaller.

Our contributions are as follows:
• We propose BanglaByT5, the first monolingual

byte-level encoder-decoder model for Bangla.
• We conduct extensive evaluation across tasks and

settings, showing competitive or superior perfor-
mance to larger models.

2 Related Work

ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) have achieved strong results on NLU bench-
marks. For generation tasks, decoder-only models
like GPT-2/3 (Radford et al., 2019; Brown et al.,
2020) and encoder-decoder models like T5 (Raf-
fel et al., 2023), and mT5 (Xue et al., 2021)) have
become prominent. ByT5 (Xue et al., 2022), a byte-
level extension of mT5, has shown advantages for
morphologically rich languages. While character-
aware models like CharacterBERT (Boukkouri
et al., 2020) and others (Ling et al., 2015; Chung
et al., 2016; Jozefowicz et al., 2016; Wang et al.,
2019; Wei et al., 2021; Kim et al., 2016) incorpo-
rate subword-free representations, they still rely
on token boundaries. Other efforts (Garcia et al.,
2021; Kudo, 2018) address tokenization challenges
through vocabulary adaptation or randomized sub-
word segmentation. Recent multilingual mod-
els like LLaMA-3 (Grattafiori et al., 2024), Mis-
tral (Jiang et al., 2023), and IndicBART (Dabre
et al., 2022) include Bangla. ByT5 model for mor-
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phologically rich language like Sanskrit (Nehrdich
et al., 2024) has also been adopted. Monolingual
models like BanglaT5 (Bhattacharjee et al., 2023)
and Paramanu (Niyogi and Bhattacharya, 2024) are
available for Bangla.

3 BanglaByT5

In this section, we discuss in detail the various
aspects of our proposed model, BanglaByT5.

3.1 Pretraining Data
We curated a corpus by merging the
VĀCASPATI (Bhattacharyya et al., 2023)
and IndicCorp (Kakwani et al., 2020) (Bangla
subset) corpora for pretraining the BanglaByT5
model. The merged corpus, 14 GB in size, contains
94,70,41,525 words and 7,51,51,084 sentences
with 12.60 words per sentence. Since IndicCorp
is a newspaper dataset with ∼3.8 million articles
and VĀCASPATI is entirely curated from literary
data, we can assure the quality of the merged
corpora, which is essential for training any GenAI
model (Luccioni and Viviano, 2021). We have not
used data from other sources such as websites or
blogs since it was not feasible for us to ascertain
the quality of such data. We have used the
preprocessing steps mentioned in (Bhattacharyya
et al., 2023) (Appx A.1). The preprocessed corpus
is used for the pretaining of BanglaByT5.

3.2 Pretraining Objective
ByT5, an encoder-decoder model, follows the same
training objective as the original T5 model, specif-
ically span corruption denoising task applied at
byte level compared to token or subword level for
T5. In ByT5, a fixed percentage of continuous
byte spans are randomly selected and replaced with
special sentinel tokens. The model is then trained
to reconstruct the original spans, treating this as a
sequence-to-sequence generation task.

3.3 Model Architecture and Hyperparameters
Before the pretraining of the model on the merged
corpus, we trained a byte-level tokenizer with 384
vocabulary size that includes 100 special tokens.
This tokenizer generated 7,53,32,70,552 tokens for
the merged corpus, resulting in a fertility score of
7.96, which is neither too high as Google-byt5-
small (15.02) nor too small as BanglaT5 (1.20).
This tokenizer is used for pretraining BanglaByT5.

We pre-trained the small variant of the Google-
ByT5 model (Xue et al., 2022) with 12 hidden lay-

ers, 6 attention heads, 1472 hidden size, 3584 feed-
forward size with gated-GELU activation (Shazeer,
2020). The model was trained with a batch size of
16 and a gradient accumulation step of 2 for over
3e6 steps, utilizing two A100 40GB GPU instances.
We employed the Adam optimizer (Kingma and Ba,
2017) with a learning rate of 3e-5, a linear warm-up
for the first 500 steps, and a cosine learning rate
scheduler. We train the model with a context size
of 512 (∼5 sentences). The resulting model has
∼300M parameters yielding a token-to-parameter
ratio of ∼25.14.

4 Evaluation

In this section, we explore the efficacy of
BanglaByT5. We adopted a two-fold approach.
First, we asked BanglaByT5 to generate responses
to curated Bangla prompts to evaluate its generative
abilities in the zero-shot setting. Zero-shot evalua-
tion is particularly important because it reveals the
model’s inherent generative ability without reliance
on domain-specific adaptation. Then, we evaluated
the performance of BanglaByT5 on both classifi-
cation and generation-based downstream tasks in
supervised fine-tuning mode.

4.1 Prompt Generation in Zero-Shot Setting

We adopted a two-stage evaluation methodology
to assess the responses generated by BanglaByT5
and competing models. In the first stage, we eval-
uated the model’s responses across four key di-
mensions using LLaMa-3.1-8B (Grattafiori et al.,
2024) and Mistral-7B (Jiang et al., 2023) as LLM-
as-a-Judge (Gu et al., 2025). LLM-as-a-judge is
consistent with human evaluators for Bangla (?),
hence we have used this for our experiments. The
four key metrics used are Fluency, Coherence, Rel-
evance and Creativity (definitions in Appx A.3).
Prompt used for LLM-as-a-judge is shown in Fig-
ure 1 of Appx A.2. Each prompt is run 5 times to
capture the variation in generation by the LLMs
and is graded on a scale of 1 to 10. Table 1 shows
the performance of BanglaByT5 against other mod-
els. From Table 1, it is evident that the generation
ability of BanglaByT5 is comparable to GPT2-XL
(the best performing model) and is better than any
other model even if it is twice (GPT2-Large) or
thrice (BLOOM-1.1B (Scao et al., 2023)) in size.

We further evaluated the generation ability of
BanglaByT5 model by comparing its responses
for the 2000 prompts against the responses by two
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Model Parameters Mistral-7B LLaMA-3.1-8B

Fluency Relevance Coherence Creativity Fluency Relevance Coherence Creativity

mt5-small 240M 1.60± 1.3 2.60± 1.6 2.50± 1.4 1.00± 1.4 2.00± 1.4 2.60± 1.5 2.50± 1.1 2.60± 1.8
mt5-base 580M 6.00± 1.3 6.00± 1.2 6.60± 1.1 4.00± 1.6 6.00± 1.6 6.60± 1.5 6.00± 1.1 4.50± 1.6
mt5-large 1.1B 8.60± 1.1 8.60± 1.3 8.60± 1.2 6.00± 1.4 8.60± 1.4 8.60± 1.5 8.60± 1.1 6.00± 1.6
google-byt5-small 300M 6.60± 0.2 6.60± 0.4 6.30± 0.3 4.00± 0.6 6.60± 0.3 6.60± 0.2 6.00± 0.3 4.00± 0.7
google-byt5-base 580M 7.60± 0.1 7.60± 0.6 7.60± 0.7 5.00± 0.6 7.60± 0.3 7.60± 0.5 7.00± 0.3 5.00± 0.7
google-byt5-large 1.2 B 9.00± 0.2 9.00± 0.4 9.00± 0.3 6.00± 0.6 9.00± 0.3 9.00± 0.2 9.00± 0.3 6.00± 0.7
GPT-2 Medium 355M 8.00± 0.1 7.00± 0.5 6.00± 0.3 6.00± 0.4 8.00± 0.2 7.00± 0.4 6.00± 0.2 6.00± 0.6
GPT-2 Large 774M 9.00± 0.8 9.00± 0.4 8.00± 0.6 6.50± 0.5 9.00± 0.1 8.60± 0.8 8.00± 0.2 6.00± 0.4
GPT-2 XL 1.5B 9.00 ± 0.2 9.00 ± 0.5 9.00 ± 0.5 6.50 ± 0.6 9.00 ± 0.2 9.00 ± 0.5 8.67 ± 0.2 7.00 ± 0.6
BLOOM 560M 7.00± 0.3 6.50± 0.2 6.00± 0.3 4.00± 0.5 6.50± 0.2 6.50± 0.3 7.00± 0.4 4.00± 0.5
BLOOM 1.1B 8.00± 0.3 7.70± 0.2 7.70± 0.3 5.00± 0.5 7.50± 0.2 8.00± 0.3 7.70± 0.4 5.50± 0.5
IndicBART 272M 6.30± 0.4 7.00± 0.2 6.00± 0.3 3.00± 0.5 6.50± 0.1 7.30± 0.3 7.00± 0.4 3.50± 0.5

BanglaT5 240M 1.60± 1.1 3.00± 1.3 2.50± 1.2 1.00± 1.4 2.00± 1.4 3.60± 1.5 2.50± 1.1 2.80± 1.6
Paramanu 334M 6.30± 0.4 7.00± 0.2 6.00± 0.3 3.00± 0.5 6.50± 0.1 7.30± 0.3 7.00± 0.4 3.50± 0.5

BanglaByT5 300M 8.60± 0.2 8.60± 0.4 8.30± 0.3 5.00± 0.6 8.60± 0.3 8.60± 0.2 8.00± 0.3 5.00± 0.7

Table 1: LLM evaluation of Bangla generation using Mistral-7B and LLaMA-3.1-8B as LLM-as-a-Judge

Model Parameters LLaMA-3.1-8B Mistral-7B

BERTScore BLEU METEOR BERTScore BLEU METEOR

MT5-SMALL 300M 49.31± 1.40 1.50± 1.20 1.40± 1.30 48.89± 1.56 1.20± 1.10 1.32± 1.20
MT5-BASE 580M 49.56± 1.60 1.56± 1.40 1.45± 1.30 49.99± 1.78 1.65± 1.42 1.74± 1.30
MT5-LARGE 1.2B 67.03± 1.70 19.29± 1.90 37.37± 1.60 61.66± 1.58 9.90± 1.86 23.22± 1.54
BYT5-SMALL 300M 71.10± 1.50 1.71± 1.30 13.17± 1.65 70.32± 1.42 1.19± 1.23 12.71± 1.56
BYT5-BASE 580M 71.32± 1.50 3.54± 1.60 14.27± 1.55 70.56± 1.45 2.57± 1.35 16.15± 1.58
BYT5-LARGE 1.2B 75.80± 1.60 8.66± 1.80 21.20± 1.63 74.23± 1.55 7.54± 1.70 19.15± 1.56
BLOOM-560M 560M 72.49± 1.40 6.96± 1.50 32.84± 1.68 72.43± 1.45 8.52± 1.56 30.61± 1.52
BLOOM-1B 1.1B 72.63± 1.50 7.23± 1.60 33.45± 1.52 74.68± 1.65 9.46± 1.64 31.50± 1.54
GPT-2 MEDIUM 355M 76.08± 1.60 11.76± 1.70 33.56± 1.64 75.00± 1.54 8.26± 1.52 30.45± 1.44
GPT2-LARGE 774M 80.51± 1.60 31.26± 1.70 50.92± 1.50 80.40± 1.64 30.66± 1.61 49.25± 1.54
GPT2-XL 1.5B 81.69 ± 1.60 32.40 ± 1.80 51.56 ± 1.50 81.29 ± 1.56 31.86 ± 1.60 50.46 ± 1.56
IndicBART 272M 61.81± 1.60 1.86± 1.40 5.40± 1.57 62.58± 1.44 1.86± 1.35 4.75± 1.46

BanglaT5 240M 63.81± 1.60 2.86± 1.45 7.49± 1.57 64.08± 1.42 2.86± 1.30 6.75± 1.40
Paramanu 334M 62.31± 1.40 2.00± 1.72 6.00± 1.56 62.88± 1.45 2.26± 1.38 6.25± 1.45

BanglaByT5 300M 78.21± 1.10 12.41± 1.96 34.08± 1.61 75.84± 1.03 9.06± 1.38 31.63± 1.54

Table 2: Benchmarking the generation ability of BanglaByT5 models in zero-shot setting

widely used reference models LLaMA-3.1-8B and
Mistral-7B. Figure 3 of Appx A.2 shows example
of two such prompts. We further benchmarked
the response generated by BanglaByT5 by com-
paring it with the competing models. Each model
was executed 5 times, and the mean and standard
deviations are shown in Table 2 of Appx A.2.

Table 1 and Table 2 indicate that the generation-
ability of BanglaByT5 is better than models with
twice to thrice its parameter size and is compara-
ble to GPT2-XL, which is five times larger. This
generation ability of BanglaByT5 makes it a suit-
able model for deployment in low-resource settings.
In Section 5, we have discussed the deployment
potential of BanglaByT5 in detail.

4.2 Supervised Fine Tuning
We further investigated the performance
BanglaByT5 on various downstream tasks
and benchmarked it against similar and larger
parameter models on both classification and
generation tasks.

Sentiment Classification: We used the dataset
curated by (Islam et al., 2018), which comprises
3 polarity labels, positive, negative, and neutral,
and is collected from social media comments on
news and videos covering 13 domains, including
politics, education, and agriculture. It consists of
5,709 negative, 6,410 positive, and 3,609 neutral
sentences. For this classification task, we used
macro-F1 as an evaluation metric.

NER: We chose the publicly available Naama-
padam (Mhaske et al., 2023) (Bengali subset) for
this classification task. The dataset consists of
961.7K sentences for training, and 4.9K sentences
have been used for evaluation. The tokens are
tagged into 4 classes: Person (Per), Location (Loc),
Organization (Org), and other (O). We have used
macro-F1 as an evaluation metric for the task.

Machine Translation: Machine Translation
(MT) is one of the most studied generative tasks in
Bangla. For this task, we curated a dataset by merg-
ing the dataset created by Gala et al. (2023) (1,022
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Model Parameters Sentiment NER MT (sacreBLEU) Paraphrasing GEC (GLEU)

mt5-small 240M 62.50 ± 1.35 28.10 ± 1.42 20.10 ± 1.43 32.80 ± 1.56 63.00 ± 1.47
mT5-Base 580M 67.50 ± 1.35 33.10 ± 1.45 23.10 ± 1.43 35.50 ± 1.57 65.00 ± 1.87
ByT5-small 300M 64.60 ± 0.20 30.60 ± 0.55 21.86 ± 0.50 34.28 ± 1.60 63.00 ± 1.45
ByT5-base 580M 67.60 ± 0.20 32.80 ± 0.55 23.86 ± 0.50 35.48 ± 1.60 66.10 ± 1.45
GPT-2 Medium 355M 63.00 ± 1.50 29.00 ± 1.20 22.00 ± 1.50 34.00 ± 1.70 63.00 ± 1.40
GPT-2 Large 774M 67.80 ± 1.44 35.00 ± 1.35 24.20 ± 1.62 36.50 ± 1.60 66.20 ± 1.50
BLOOM 560M 64.90 ± 1.47 31.50 ± 1.39 22.80 ± 1.63 34.60 ± 1.62 63.20 ± 1.55
IndicBART 272M 63.40 ± 1.45 30.80 ± 1.36 22.40 ± 1.60 34.40 ± 1.56 62.50 ± 1.50

BanglaT5 240M 67.80 ± 1.40 33.00 ± 1.30 22.50 ± 1.50 34.80 ± 1.60 64.50 ± 1.50
Paramanu 334M 66.00 ± 1.40 32.20 ± 1.30 21.90 ± 1.40 33.50 ± 1.50 63.70 ± 1.50

BanglaByT5 300M 68.30 ± 0.20 33.60 ± 0.35 24.36 ± 1.50 35.78 ± 1.60 66.27 ± 1.40

Table 3: Comparison of different models on various downstream tasks

sentences) and Costa-jussà et al. (2022) (3,001 sen-
tences) and creating a comprehensive dataset of
4,023 sentences. We used 80% of the data for train-
ing the model and tested on the remaining 20%.
We used the sacreBLEU score as the evaluation
metric for the task.

Paraphrasing: Paraphrasing refers to the
rephrasing of a sentence or passage using different
words and structures while preserving its original
meaning. We used the publicly available paraphras-
ing dataset curated by Akil et al. (2022) for this
task. The dataset consists of 5,763 sentences, of
which 80% is used for training and the remaining
20% for testing. We used the sacreBLEU score as
the evaluation metric for the task.

Grammatical Error Correction: Grammati-
cal Error Detection (GEC) refers to the task of
automatic detection and correction of grammatical
errors in a sentence. It is one of the most impor-
tant generative tasks as it also tests the model’s
understanding of generating semantically correct
sentences. We used the VAIYAKARANA dataset
curated by Bhattacharyya and Bhattacharya (2024).
The dataset consists of 1,11,256 sentences divided
into 12 finer classes. Similar to the other gener-
ative tasks, we have used 80% of the dataset for
training and 20% for testing. We used GLEU as
the evaluation metric for the task.

We compared the performance of BanglaByT5
on the specified downstream tasks against simi-
lar parameter models such as mT5-small, mT5-
base, Google-ByT5-small, Google-ByT5-base,
BanglaT5, IndicBart, Paramanu, GPT2-medium
and GPT2-large. All the pre-trained models are
run for 5-25 epochs on a single instance of Nvidia
A100-46 GB GPU. We have used beam search for
inferencing (using 10 beams) and set the tempera-
ture at 0.7 and the top_k value at 70. The maximum
output length has been set at 512 for all the models.

Table 3 shows the result of all the models on the
downstream tasks based on the evaluation metrics
discussed in this section.

Table 3 shows that BanglaByT5 outperforms all
similar parameter models on generative tasks such
as MT, paraphrasing and GEC while giving com-
parable results on classification tasks like Senti-
ment classification and NER. BanglaByT5 also per-
forms similarly to the GPT2-Large model on all
the generative tasks, outperforming it on classifi-
cation tasks. The results indicate the efficacy of
BanglaByT5 as a generative model for Bangla. Ad-
ditionally, we have benchmarked the performance
of BanglaByT5 against larger models like Google-
byt5-large, mT5-large, GPT2-XL and BLOOM-
1.1B, results of which are shown in Table A1 of
Appx A.4. BanglaByT5 outperforms BLOOM-
1.1B in all tasks and performs within 5% of the
other larger models.

5 Deployability

In this section, we evaluate the scalability of the
BanglaByT5 model under CPU-only and GPU-
accelerated environments to assess its deployment
potential. GPU-scalability reflects how well the
model leverages parallelism for high-throughput or
real-time deployment, while CPU-scalability cap-
tures performance in low-resource environments.
This dual perspective is essential for understand-
ing the potential of deployment in cloud and of-
fline settings. Latency denotes the average time (in
seconds) required to generate an output of a sin-
gle prompt, including tokenization, model forward
pass and decoding. Throughput, on the other hand,
focusses on number of prompts processed per sec-
ond. We also monitor the peak memory usage for
a prompt in both CPU and GPU mode, as this is a
critical consideration for deployment.

To evaluate the deployment potential, we curated
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Batch Latency (sec) Throughput Memory(MB)

1 0.5646 1.77 2216.37
2 0.2692 3.71 2330.37
4 0.1550 6.45 2418.31
8 0.0949 10.54 2582.26
16 0.0855 11.7 2601.56
32 0.0828 12.07 2742.99
64 0.0806 12.41 2743.99

Table 4: CPU-only scalability results for BanglaByT5
across increasing batch sizes

Batch Latency (sec) Throughput GPU-Mem (MB)

1 1.0927 0.92 1166.09
2 0.1592 6.28 1177.29
4 0.1296 7.72 1192.34
8 0.0810 12.34 1238.53
16 0.0439 22.80 1322.05
32 0.0409 24.48 1487.59
64 0.0146 68.26 1812.68

Table 5: GPU scalability results for BanglaByT5 across
increasing batch sizes

a dataset of 200 prompts for the paragraph gener-
ation task with varying word lengths (5-25), with
an average of 9.81 words per prompt, similar to the
average word length found in VĀCASPATI (Bhat-
tacharyya et al., 2023).

Table 4 shows the variation in latency, through-
put and memory required in CPU-only mode with
an increase in batch size. From the table, it is seen
that latency decreases and throughput increases
with an increase in batch size, which is the ideal
scenario. The peak memory usage is ∼2,744 MB
(2.68 GB). Hence, the model can be deployed in an
offline system with as low as 4 GB of RAM.

Table 5 shows the variation in latency and
throughput along with CPU and GPU requirements
in gpu-available mode on the same 200 prompts.
The maximum GPU requirement is ∼1.77 GB. Fur-
ther analysis shows that maximum cpu-requirement
is ∼588 MB when batch size is 1.

Table 4 and Table 5 demonstrate that GPU accel-
eration yields substantial gains in throughput and
reduces latency per sentence, but GPU memory us-
age increases sharply with batch size. In contrast,
CPU-based inference falls behind in throughput but
remains viable for offline deployments, especially
in systems with limited memory.

Byte-level modelling produces more tokens than
subword tokenization, thereby increasing training
and inference time. Large training time is a bottle-
neck for deployment. To evaluate the performance

Metric BanglaT5 BanglaByT5

Params 240M 300M
Avg Latency 27 ms 24 ms
Throughput 37.00 41.70
Peak RAM 250 MB 490 MB
RAM Overhead 30 MB 60 MB

Table 6: Comparison of BanglaByT5 with BanglaT5
after stress testing with 200 sentences

Sentiment GEC

Model Macro-F1 Training Time GLEU Training Time

BanglaT5 25.67 16 mins 41.30 580 mins
BanglaByT5 54.30 18 mins 61.35 660 mins

Table 7: Comparison of BanglaByT5 with BanglaT5 on
downstream tasks

of BanglaByT5 with subword-tokenization (Sen-
tencePiece), we have conducted a stress test with
the same set of 200 sentences used for scalability
experiments on both BanglaT5 and BanglaByT5.
Table 6 shows that the average latency and through-
put of BanglaByT5 are better than that of BanglaT5,
whereas BanglaT5 requires less memory than
BanglaByT5. However, all modern-day devices
generally have 512 MB of RAM, thus facilitating
the deployment of BanglaByT5. On comparing the
SFT time of both BanglaByT5 and BanglaT5 on the
sentiment analysis task, we found that BanglaByT5
requires around 120 minutes for 20 epochs, while
BanglaT5 takes around 100 minutes for the same.
Table 7 shows the performance of BanglaByT5 and
BanglaT5 on two downstream tasks after 3 epochs.
It is evident that even without extensive finetun-
ing due to resource constraints, BanglaByT5 still
outperforms the competing models.

6 Conclusions

We presented BanglaByT5, a byte-level monolin-
gual language model explicitly tailored for morpho-
logically rich languages like Bangla. Through rig-
orous evaluation, we demonstrate that BanglaByT5
surpasses existing Bangla models and matches or
outperforms larger multilingual models in both gen-
eration and classification tasks. Moreover, its scal-
ability in low-resource environments positions it
as a practical and impactful tool for Bangla NLP.
BanglaByT5 is available for download from https:
//huggingface.co/Vacaspati/BanglaByT5.
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7 Limitations

Lack of large quantity of quality data: Bangla
inherently suffers from large quantity of quality
data. We have been able to curate only 14GB of
data, prompting us to use a small variant of google-
ByT5. Our results indicate that a larger variant
pre-trained over a large quality corpus will benefit
Bangla.
Hallucination: Hallucination is an inherent prop-
erty of any LLMs (Xu et al., 2025). Hence, we
cannot always guarantee the factual correctness of
responses generated by BanglaByT5.
Memorization: Similar to hallucination, memo-
rization is also an inherent property of LLMs (Hart-
mann et al., 2023). However, Carlini et al. (2019)
showed that models with <=300M parameters
show minimal memorization. Appx A.5 discusses
the memorization ability of BanglaByT5 in detail.

8 Ethics Statement

The corpus used for pre-training BanglaByT5 is cu-
rated by merging IndicCorp (Kakwani et al., 2020)
and VĀCASPATI (Bhattacharyya et al., 2023). The
authors of VĀCASPATI have provided us with the
corpus, and IndicCorp is publicly available. Hence,
there is no copyright infringement in the curation of
the merged corpus. Since IndicCorp is a newspaper
corpus and VĀCASPATI is a literary corpus, there
are minimal chances of having objectionable and
offensive statements. For Grammar Error Correc-
tion (GEC) work, the authors of VAIYAKARANA

also provided us with the dataset. Hence, there is
no copyright infringement.
Carbon Footprint: We estimate the carbon
emissions incurred during the pretraining of
BanglaByT5 on 2 NVIDIA A100 (40GB) GPUs,
each with a Thermal Design Power (TDP) of 250W,
for 600 training hours. This results in an energy
consumption of approximately 0.25kW × 2 ×
600hours = 300kWh. Assuming an average car-
bon intensity of 0.7 kgCO2/kWh , the total car-
bon emission is estimated as:

300 kWh× 0.7
kgCO2

kWh
= 210 kgCO2

which is significantly lower than the emissions
reported for large-scale models such as GPT2-
XL (Strubell et al., 2019).
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A Appendix

A.1 Data Cleaning

• Cleaning of Unicode characters: Unicode char-
acters “0020” (space), “00a0” (no-break space),
“200c” (zero width non-joiner), “1680” (ogham
space mark), “180e” (mongolian vowel separa-
tor), “202f” (narrow no-break space), “205f”
(medium mathematical space), “3000” (ideo-
graphic space), “2000” (en quad), “200a” (hair
space) are removed from the texts.

• Cleaning of different punctuation marks: Usage
of punctuation marks have also evolved alongside
words in Bangla.In total we have removed all 36
types of Bangla punctuation marks.

A.2 Prompt Generation

Figure 1 shows the prompt use for LLM-as-a-judge
evaluation for BanglaByT5. Figure 2 shows the
number of distribution of words in curated prompts
whereas Figure 3 shows few example prompts used
in Section 4.1 for assessing the zero-shot genera-
tion ability of BanglaByT5. Table A1 shows the
performance of BanglaByT5 with larger models
such as GPT2-XL.
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Model Parameters Sentiment NER MT (sacreBLEU) Paraphrasing GEC (GLEU)

mT5-Large 1.2B 69.60 ± 1.30 35.00 ± 1.40 25.30 ± 1.65 37.73 ± 1.50 69.32 ± 1.40
Google-ByT5-Large 1.2B 70.90 ± 1.40 36.90 ± 1.50 26.35 ± 1.62 38.54 ± 1.50 69.88 ± 1.40
GPT2-XL 1.5B 72.47 ± 1.40 37.30 ± 1.56 28.58 ± 1.72 38.84 ± 1.56 70.83 ± 1.50
BLOOM-1.1B 1.1B 66.00 ± 1.45 31.50 ± 1.35 23.50 ± 1.55 35.60 ± 1.45 65.20 ± 1.53

BanglaByT5 300M 68.30 ± 0.20 33.60 ± 0.35 24.36 ± 1.50 35.78 ± 1.60 66.27 ± 1.40

Table A1: Performance comparison of BanglaByT5 against larger models on 5 Bangla NLP tasks

Figure 1: Prompts used for LLM-as-a-judge evaluation

A.3 Evaluation Metrics for Zero-shot
Evaluation

BanglaByT5 generation ability have been evaluated
using four metrics keeping LLaMa-3.1 (8B) and
Mistral-7B.

• Fluency — It refers to the grammatical correct-
ness and naturalness of the generated language.

• Coherence — Coherence signifies the consis-
tency and structure of multi-turn responses.

• Relevance — Relevance refers to the contextual
alignment with the original prompt.

• Creativity — Creativity is defined as the novelty
and expressiveness of the generated response.

Figure 2: Distribution of prompt length by word

A.4 Benchmarking against Larger Models

In this section we benchmarked BanglaByT5
against larger models like google-ByT5-large,
mT5-large, GPT2-XL and BLOOM-1.1B on
the downstream tasks specified in Sec 4.2.
BanglaByT5 outperforms BLOOM-1.1B on all
tasks and perform with 2-5% of the other models
in spite of being 4-5 times smaller. Table A1 shows
the result of BanglaByT5 and the larger models.

A.5 Memorization

Memorization is an inherent ability of LLMs. In
this section, we evaluated the memorization abil-
ity of BanglaByT5. We curated a canary dataset
mostly with names, locations, numbers and email
IDs, which are more susceptible to memoriza-
tion. We evaluate canary memorization using Exact
Match (EM), i.e., the percentage of generated sen-
tences that exactly match canary sentences. We
finetuned the model for 3 epochs with LoRA on
the canary dataset and tested it on 250 test sen-
tences. We get an EM score of 0.00, which means
the model is not reproducing the canaries verba-
tim, suggesting no direct memorization. We also
evaluated perplexity, the exponential of average
loss over the canary set, indicating how confidently
the model reproduces them. The perplexity of
the model after instruction tuning with the canary
dataset is 47.55 (high), indicating that BanglaByT5
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Figure 3: Examples of prompts used for experiments on generation ability of BanglaByT5

is not memorizing.

A.6 Model HyperParameters
All models were instruction-tuned using the Low-
Rank Adaptation (LoRA) method (Hu et al., 2021),
a parameter-efficient fine-tuning approach for pre-
trained models (Xu et al., 2023). The LoRA hyper-
parameters were set as follows:
• Rank (r): 16
• LoRA alpha (α): 32
• LoRA dropout: 0.05
• Bias: none

For all the models, the following hyperparameter
values have been used for generation:
• temperature = 0.7
• top_k = 50
• num_beams = 10
• max_length = 1800

The default values have been used for all other
hyperparameters.
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