Use Random Selection for Now: Investigation of Few-Shot Selection
Strategies in LLM-based Text Augmentation

Jan Cegin®', Branislav Pecher®!, Jakub Simko', Ivan Srba’,
Maria Bielikova', Peter Brusilovsky*
# Faculty of Information Technology, Brno University of Technology, Brno, Czechia
T Kempelen Institute of Intelligent Technologies, Bratislava, Slovakia
{name. surname} @Xkinit.sk
! University of Pittsburgh, Pittsburgh, USA
peterb@pitt.edu

Abstract

The generative large language models (LLMs)
are increasingly used for data augmentation
tasks, where text samples are paraphrased (or
generated anew) and then used for downstream
model fine-tuning. This is useful, especially
for low-resource settings. For better augmen-
tations, LLMs are prompted with examples
(few-shot scenarios). Yet, the samples are
mostly selected randomly, and a comprehen-
sive overview of the effects of other (more “in-
formed”) sample selection strategies is lack-
ing. In this work, we compare sample selec-
tion strategies existing in the few-shot learning
literature and investigate their effects in LLM-
based textual augmentation in a low-resource
setting. We evaluate this on in-distribution and
out-of-distribution model performance. Results
indicate that while some “informed” selection
strategies increase the performance of models,
especially for out-of-distribution data, it hap-
pens only seldom and with marginal perfor-
mance increases. Unless further advances are
made, a default of random sample selection
remains a good option for augmentation practi-
tioners.

1 Introduction

The emergence of recent large language models
(LLMs) such as GPT-4, Gemini, Llama, and their
wide availability prompted their use in augmen-
tation of textual datasets (Ubani et al., 2023; Dai
et al., 2023; Piedboeuf and Langlais, 2023; Cegin
et al., 2023, 2024a). LLM augmentation has been
used in various domains such as sentiment analy-
sis (Onan, 2023; Piedboeuf and Langlais, 2023),
intent classification (Cegin et al., 2023), news clas-
sification (Piedboeuf and Langlais, 2023; Cegin
et al., 2024a), and health symptoms detection (Dai
et al., 2023). These augmentations are often per-
formed in a low-resource setting with a limited
number of seed samples. In most LLM-based aug-
mentation scenarios, the dataset size is increased

through paraphrasing of original samples or gen-
eration of completely new samples that adhere to
a specified label. This can be done without any
samples provided (zero-shot). Alternatively, one
can include already existing samples as part of the
prompt to better instruct the LLM (few-shot). The
augmented datasets are then used for training down-
stream models, which are usually much smaller
than the prompted LLMs, and thus cheaper and
more suitable for production environments.

Recent studies report better performance for few-
shot LLM-based augmentation, as compared with
zero-shot approaches (Cegin et al., 2024a; Pied-
boeuf and Langlais, 2024). Most existing few-shot
augmentation studies select the samples randomly,
and the potential of using more informed selection
strategies (existing elsewhere in few-shot learning
literature) is under-explored. Furthermore, aug-
mentation studies focus only on paraphrasing and
are evaluated on in-distribution data.

In few-shot learning, the informed sample se-
lection strategies aim to select the most relevant
samples that would lead to better outputs. The
samples can be selected based on their similarity,
diversity, informativeness, or quality (Li and Qiu,
2023; Zhang et al., 2022; Chang and Jia, 2023;
Pecher et al., 2024b). Through these methods,
LLMs can potentially produce better augmenta-
tions in return for the additional computation costs
of the informed sample selection. Literature shows
that the choice of samples for few-shot learning sig-
nificantly influences its outcomes (i.e., sensitivity
of sample selection) (Pecher et al., 2024a; Zhang
et al., 2022; Koksal et al., 2023; Agrawal et al.,
2023). For example, recent studies have investi-
gated the effects of such sample selection strategies
for in-context learning (Zhang et al., 2022; Li and
Qiu, 2023) or LLM alignment (Zhou et al., 2024).
However, for augmentation scenarios, an investiga-
tion of sample selection strategies effects is lacking.

The goal of this paper is to compare existing
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sample selection strategies in few-shot text aug-
mentation for a low-resource setting. This compari-
son is measured by the performance of downstream
models trained on the augmented data. We inves-
tigate the typical paraphrasing scenario, but also
less covered generation of new samples. Along
with more frequent in-distribution (ID), we also
evaluate out-of-distribution (OOD) data. We run
our experiments for various LLMs and tasks. We
identify the best-performing sample selection strat-
egy in each scenario (parameter combination) and
compare it against two baselines: (1) the zero-shot
augmentation and (2) the few-shot augmentation
with random sample selection. We formulate the
following research questions:

RQ1: Considering downstream model perfor-
mance, which sample selection strategy per-
forms the best most consistently? (when
considering both in-distribution and out-of-
distribution setups).

RQ2: Considering downstream model perfor-
mance, when and how often do the best-
performing sample selection strategies out-

perform the baseline strategies?

We compared 8 different sample selection strate-
gies (see 3.1) against 2 baseline strategies (zero-
shot/no-samples strategy and random samples strat-
egy) on 3 different LLMs (Llama-3.1, Mistral-v0.3,
and Gemma-2). We experimented with 8 differ-
ent datasets (for sentiment analysis, news classi-
fication, question topic classification, paraphrase
detection, and natural language inference) with
both in-distribution and out-of-distribution splits
on RoBERTa as our downstream model. We used
a low-resource setting, using only 20 samples per
label. Furthermore, we also investigated the com-
position of the examples from the point of labels
(whether it is more beneficial to include samples
only from the target label being augmented or also
from other labels). We investigated two augmenta-
tion techniques: paraphrasing of samples and gen-
eration of completely new samples. We repeated
the whole process 3 times with different random
seeds, ensuring the robustness of our results.

The most prominent findings are: 1) None of
the existing sample selection strategies is consis-
tently better than the baseline in the majority of
cases for in-distribution, 2) Selecting examples at
random yields the best performance in the majority
of cases and does not require additional overhead,

3) For out-of-distribution, the synthetic samples
dissimilarity selection strategy yields the highest
performance more often than the baseline strate-
gies. It can be considered for uses where overhead
selection costs are not an issue.

2 Related Work: LLM-based Text
Augmentation

Soon after their advent, new LLMs, such as GPT-
4 or Llama, started to be used as data augmen-
tation tools, leveraging their ability to produce a
diversity of texts. The LLM-based augmentation is
typically done through paraphrasing (Cegin et al.,
2024a; Dai et al., 2023; Sen et al., 2023). Less
often, LLMs are used to create semantically new
samples adhering to a given label (Ubani et al.,
2023). LLM-based augmentation has been used
for a variety of augmentation tasks such as auto-
mated scoring (Fang et al., 2023), low-resource
language generation (Ghosh et al., 2023), intent
classification (Sahu et al., 2022), sentiment anal-
ysis (Piedboeuf and Langlais, 2023; Ubani et al.,
2023; Onan, 2023; Yoo et al., 2021), hate speech de-
tection (Sen et al., 2023), news classification (Pied-
boeuf and Langlais, 2023), content recommenda-
tion (Liu et al., 2024), and health symptoms classi-
fications (Dai et al., 2023).

Recent studies have also used few-shot learn-
ing as part of the augmentation by supplying the
LLM with various examples from the dataset in the
prompts. It has been leveraged for named entity
recognition (Ye et al., 2024), classification perfor-
mance (Cegin et al., 2024a) or text summariza-
tion (Sahu and Laradji, 2024). While the perfor-
mance of the few-shot approaches in augmentation
seems to outperform zero-shot ones (where no ex-
amples are used) (Piedboeuf and Langlais, 2024),
the effects of various sample selection strategies
are under-explored, as many studies simply select
the samples randomly. Only one study explored
other strategies (Cegin et al., 2024a), which used a
human-inspired sample selection strategy.

While sample selection strategies have found
their usage in various in-context learning tasks (sig-
nificantly altering the performance of LLMs) and
while some studies already hint at increased per-
formance of few-shot augmentation over zero-shot
augmentation (Cegin et al., 2024a; Piedboeuf and
Langlais, 2024), an investigation of various sample
selection strategies for LLM-based augmentation
methods is completely lacking.
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3 Study Design

To assess which sample selection strategies work
best for LLM-based data augmentation, we per-
formed a comparative study in a low-resource set-
ting. The same basic scenario was used in each
case: given a dataset, 20 seed samples were se-
lected from each label. For each seed sample, a
given LLM “augmented” the samples 5 times. This
was repeated for each sample selection strategy and
type of augmentation technique used (paraphrasing
or creating completely new samples). Next, a down-
stream model was fine-tuned on both sub-sampled
data and augmented samples and then evaluated
on in-distribution and out-of-distribution data. For
in-distribution data, we used the original test splits
of each dataset, while for the out-of-distribution
data, we used test splits from a different dataset
with the same task (e.g. Yelp dataset test split was
used as out-of-distribution data when evaluating
performance on the Tweet Eval dataset for senti-
ment analysis).

This scenario was repeated for all sample se-
lection strategies and baselines for a variety of
parameters (see below). Then, the performance
of the models (measured by F1-macro) was com-
pared for each sample selection strategy to answer
RQI1. This was followed by comparing the best-
performing sample selection strategies against the
best-performing baseline strategy of either zero-
shot (no examples provided) or randomly selected
examples to answer RQ2. We publish all of our
results, the code, and the data used !.

We used a broad range of study parameters to en-
sure the robustness of our results by using both the
baseline strategies and the sample selection strate-
gies in a variety of cases. We include the different
augmentation techniques and example composi-
tions in terms of labels to capture a wide variety of
cases. The whole process was repeated 3 times, and
different seed samples were selected. The study
had the following parameters:

» 8 sample selection strategies (Forgetting with
2 variations, Cartography with 3 variations,
Cosine similarity/dissimilarity and Synthetic
samples dissimilarity) with 2 baseline strate-
gies (zero-shot with no examples provided
and random few-shot with examples selected
randomly),

'Data and code at https://github.com/kinit-sk/
selec-strats-for-aug

* 3 LLMs used as augmenters (LLama-3.1-8B,
Gemma-2-9B and Mistral-v(.3-7B),

8 datasets used (MNLI, QQP, Yelp, Tweet sen-
timent evaluation, AG News, News Topic, Ya-
hoo, Trec),

* 2 types of composition of examples used (ex-
amples used only from the target label or ex-
amples selected from all labels in the dataset),

* 2 augmentation techniques (either paraphras-
ing of existing samples or generation of new
label-adherent samples),

This resulted in 1,300 combinations for which
downstream models were trained and evaluated
repeatedly.

3.1 Sample Selection Strategies

We used the best-performing sample selection
strategies identified by previous studies on sam-
ple selection in in-context learning (Pecher et al.,
2024b; Li and Qiu, 2023; Chang and Jia, 2023;
Toneva et al., 2018; Zhang and Plank, 2021). We
used 5-shots per label for each of the sample se-
lection strategies. Details with an overview of the
strategies together with the costs can be found in
Appendix G.

First, we used the Similarity and Dissimilarity
selections that are currently the most popular se-
lection strategies for in-context learning (An et al.,
2023; Liu et al., 2022; Chang and Jia, 2023). To se-
lect the samples, we calculated the cosine similarity
between the feature representation of the samples
and then selected either the most similar or the
most dissimilar ones. In the case of paraphrasing,
we calculated the similarity of the sample we were
augmenting. In the case of generation, we first
randomly select one sample and then calculate the
similarity of this sample.

Second, we used the Synthetic samples dissim-
ilarity sample selection (Cegin et al., 2024a). To
select the samples, we first use the LLM to gen-
erate a set of synthetic samples and then use the
dissimilarity selection to select the set of examples
from this set. This is different from the Dissimilar-
ity above, as this method uses synthetic data, while
the original uses data from the dataset itself.

Third, we used the Forgetting strategy that se-
lects the samples based on how often they are for-
gotten (Toneva et al., 2018). To select the samples,
we first trained the model on the underlying task for
a fraction of the overall epochs and observed the
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Figure 1: Overview of our methodology. For each dataset and LLM pairing, we randomly sample 20 samples
per label, which are then used to collect up to 5 augmented samples per seed sample. These seeds are used for
fine-tuning with the augmented samples to evaluate each sample selection strategy. This entire process is repeated 3
times with different random seeds. Similar sample selection strategies have the same colour.

training dynamics. For each sample, we calculated
how often the prediction of the model was incor-
rect after it had already been correct in the previous
epoch. Afterwards, these forgotten events are used
to select the samples. We explored two different
settings in our experiments and chose samples ac-
cordingly: 1) Forgetting most, where we selected
the samples that were the most often forgotten; and
2) Forgetting least, where we selected the samples
that were forgotten the least number of times.

Finally, we used the Cartography sample selec-
tion that measures how easy or hard it is to learn the
different samples (Swayamdipta et al., 2020; Zhang
and Plank, 2021). This ease of learning is deter-
mined by training the model on the underlying task
for a fraction of the overall epochs, and looking
at the average confidence/probability of the cor-
rect predictions and the variance of this confidence.
The samples with high confidence and low variance
are considered to be the easy to learn samples. At
the same time, the samples with small confidence
and small to medium variance are considered the
hard to learn ones. The remaining samples are con-
sidered to be ambiguous (medium confidence or
samples with high variance). We explored three
different settings in our experiments. We chose
the samples accordingly: 1) Easy samples, where
we sorted the samples based on confidence and
choose the top 5 samples with highest confidence;
2) Hard samples, where we sorted the samples
based on confidence and choose the bottom 5 sam-
ples (i.e., the lowest confidence samples); 3) Easy
+ Ambiguous, where we first calculated average
confidence, selected the samples whose confidence
is higher than the average, and then randomly sam-
pled from them.

Additionally, we opted against using active learn-
ing methods: as observed by previous works on
classification using ICL (Li and Qiu, 2023; Pecher
et al., 2024c), as well as concurrent work on select-
ing samples for augmentation (Wang et al., 2025),
the active learning strategies perform on par (but
often worse) than the other selection strategies. For
this reason, we have decided to forego the active
learning methods in our experiments, as they often
require more computation resources (due to their
iterative selection of samples).

3.2 Datasets

For a diverse evaluation, we selected 8 datasets
representing tasks of sentiment analysis, news clas-
sification, question topic classification, paraphrase
detection, and natural language inference. We used
the News Category (Misra, 2022; Misra and Grover,
2021) and AG news (Zhang et al., 2015a) for news
classification, Yahoo (Zhang et al., 2015b) and
Trec (Li and Roth, 2002) for question topic classi-
fication, MNLI dataset (Williams et al., 2018) for
natural language inference, Quora Question Pairs
Dataset (QQP) for paraphrase detection (Wang
et al., 2017) and TweetEval (Rosenthal et al., 2017)
and Yelp (Zhang et al., 2015a) for sentiment clas-
sification. All datasets were in English. For the
in-distribution evaluation of models, we used the
test split of each dataset. For out-of-distribution
evaluation for each dataset, we used the test split
of the dataset that is within the same domain,
e.g., we used the test split from Yelp for Tweet-
Eval and vice versa (with the exception of MNLI,
which has its own out-of-distribution test split and
QQP, for which we used the PAWS (Zhang et al.,
2019) dataset as out-of-distribution). While still
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of the same task, we considered these splits out-
of-distribution due to them being collected from
other domains or sources (e.g. sentiment analysis
of Yelp reviews for models trained on tweets). We
only generated/paraphrased hypotheses for MNLI,
given the premise from the dataset. We also only
generated/paraphrased one paraphrase for QQP and
left the others intact. Details about labels used and
preprocessing can be found in Appendix C.

3.3 Evaluation Process

We randomly selected 20 samples per label from
each dataset and repeated this three times with dif-
ferent random seeds. We chose 20 samples per la-
bel as this number of seed samples per label should
yield the highest effect for augmentation (Cegin
et al., 2024b). We then augmented the entire se-
lected subset of the dataset for each combination
of augmentation technique (paraphrasing or gen-
eration), sample selection strategy (including base-
lines), augmenting LLM, and composition of the ex-
amples from the point of labels. We instructed the
LLM to collect 5 new samples per seed sample for
each combination of parameters. Prompt templates,
specific versions of LLMs used, and parameters
used for the LLMs can be found in Appendix D.
We did not check the validity of the collected sam-
ples, as previous works have already shown that
the validity of LLM augmentation methods is quite
high (Cegin et al., 2023, 2024a).

We used RoBERTa-base for fine-tuning and used
the version of the model from Huggingface. The
best working hyperparameters were found via hy-
perparameter search, and these can be found in Ap-
pendix B. We trained each model 10 times per each
random seed and augmentation parameter combi-
nation. The models were trained separately on
the data collected from Llama-3.1, Gemma-2, and
Mistral. Finally, we computed the F1-macro of
all fine-tuned models to allow the comparison of
sample selection strategies between themselves and
against the baseline strategies.

4 Study Results

Our study has multiple parameter dimensions,
which yielded more than 1,300 combinations. We
aggregated the results for each of the used LLMs.
During our analysis, we did not identify any LLM
bias towards one of the sample selection strategies,
as the 3 used LLMs performed similarly.

To keep the comparison of various sample selec-

tion strategies simple, we only compare the best-
performing sample selection strategy combination
on the dataset given the augmentation techniques of
either generation or paraphrasing and composition
of labels in terms of labels. We also use the same
setting for the baseline strategies of zero-shot and
random few-shot. We wish to identify strategies
that provide the best performance most consistently
(in most cases) and outperform the baselines the
most. We analyze the different augmentation tech-
niques and composition of labels and how they
influence the model performance in Appendix F.
We distinguish between the best-performing
sample selection strategy for in-distribution data
and out-of-distribution data for each of the datasets.
To identify the best-performing sample selection
strategy (including the baselines) in these cases, we
compute the mean of the model performance across
all of the random seeds and compare these means.
There were a total of 72 cases for 8 datasets, 3 dif-
ferent LLMs, and 3 different random seeds used.
After identifying the best-performing sample selec-
tion strategy, we statistically tested its distribution
of model performance against the best-performing
baseline strategy (either zero-shot or random few-
shot based on their mean) using Mann-Whitney-U
tests with p=0.05 to measure the number of times
the sample selection strategies are statistically sig-
nificantly better than the best baseline strategy.

4.1 Best Performing Sample Selection
Strategies

The number of times where each sample selection
strategy (including baseline strategies) performed
the best for each dataset for in-distribution (ID)
and out-of-distribution (OOD) data can be found
in Table 1. The comparison excluding baseline
strategies can be found in Appendix E, together
with the performance distributions for each sample
selection strategy and dataset. There is no ap-
parent strategy that performed the best across
all datasets for both in-distribution and OOD
model performance. However, certain sample se-
lection strategies did perform best overall for given
data distributions - the Cartography with easy and
ambiguous samples performed the best most of-
ten from all sample selection strategies (excluding
baseline strategies) for in-distribution data in 11
out of 72 cases (15.28%) and the Synthetic sam-
ples dissimilarity performed the best most often for
OOD data in 23 out of 72 cases (31.94%).

Some of the strategies seem biased for certain
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DATASET—  AGNEWS NTOPIC  YAHOO TREC TEVAL YELP MNLI QQP TOTAL
Strategy ID| OOD || ID |OOD || ID| OOD || ID | OOD || ID | OOD || ID | OOD || ID | OOD || ID | OOD || ID | OOD
Zero-shot 0] 0 0] O 1 0] 2 0 1 0 1 1 1 0 1 20 7
Random 1 0 4 1 1 0 31 0 2 1 4| 0 1 1 0| 0 ||16]| 8
Cos. sim. 0| O 1 3 1 1 1 0 0| O o] O 0| O 1 0 41 4
Cos. dis. 0 1 0] O 0 1 0 1 1 0 0| 2 1 1 0] 0 6] 6
Forget. most 2| 0 1 2 0| 3 0 1 1 1 0| O 0| O 1 0 5 7
Forget. least 2| 3 1 0 0] 0 3] 0 2 1 0 1 0] 0 1 1 91 6
Carto. hard 1 0 0 1 3| 2 0] 0 0| O 1 2 0| O 1 1 6| 6
Carto. e.+amb. 0 1 0| O 2 1 0| 2 2 1 3 1 1 1 3 1 11} 8
Carto. easy 1 0 1 0 1 0 1 1 1 0 1 0 0| 0 1 1 71 2
Synth. dis. 2| 4 1 2 0] 0 1 2 0| 4 0| 2 5] 5 1 4 10| 23

Table 1: No. cases for each sample selection strategy, including baseline strategies, where each strategy performed
the best for each dataset for in-distribution (ID) and out-of-distribution (OOD) data. The last Total column aggregated
all cases for that specific strategy. In total, only the Synthetic samples dissimilarity strategy on out-of-distribution
outperforms the baseline strategies most often, while the random few-shot baseline strategy works best for in-

distribution.

datasets, performing well in those cases. For ex-
ample, the Synthetic samples dissimilarity strategy
is well suited for the MNLI dataset for both in-
distribution and OOD cases.

Considering the sample selection strategies with-
out the baselines, the Cartography eas.+ambig.
samples and Forgetting least strategies perform
best for in-distribution data, with both of them
achieving the best performance in 13 out of 72
cases (18.06%). For OOD comparison of strate-
gies, the best strategy is the Synthetic samples dis.
method in 28 out of 72 cases (38.89%) followed by
the Cartography eas.+ambig. samples strategy in
9 out of 72 cases (12.5%).

We answer the RQ/ as follows: Considering
the sample selection strategies without the base-
line strategies, the most effective sample selection
strategy is Cartography eas.+ambig. samples for
in-distribution and Synthetic samples dis. method
for OOD. However, we also note that in certain
cases, both of these strategies fail to perform as
the best strategy even once (e.g. NewsTopic for
Cartography eas.+ambig. samples and Yahoo for
Synthetic samples dis. method).

4.2 Comparison of Best Sample Selection
Strategies Against Baseline Strategies

We compare the best-identified sample selection
strategies from Section 4.1 against baseline strate-
gies as per Table 1 and also provide aggregated
difference across all cases in mean F1-Macro for
various sample selection strategies against the best-
performing baseline of either random few-shot or
zero-shot in Figure 2.

For in-distribution classifier performance, we

identified as the best-performing sample selec-
tion strategy the Cartography with easy and am-
biguous samples performing best in 11 out of 72
cases (15.28%). The best-performing baseline
on in-distribution data is random few-shot, which
achieved the best performance in 16 out of 72 cases
(22.22%), an increase of 5 cases compared to the
Cartography eas.+ambig. samples strategy. Out of
the 11 cases where the Cartography eas.+ambig.
samples performed best, it was statistically signif-
icantly better than the best baseline strategy in 7
cases (63.63%). The random few-shot baseline also
achieved the best performance in a variety of cases
across all the datasets, which the Cartography
eas.+ambig. samples strategy did not and was out-
performed by the Cartography eas.+ambig. sam-
ples strategy only on the Yahoo and QQP datasets.

For OOD classifier performance, we identified as
the best-performing sample selection strategy the
Synthetic samples dissimilarity, performing best in
23 out of 72 cases (22.22%). The best-performing
baseline on OOD data is random few-shot, which
performed best in 8 out of 72 cases (11.11%), per-
forming worse than the Synthetic samples dis. in
15 cases. Out of the 23 cases where the Synthetic
samples dis. performed best, it was statistically
significantly better than the best baseline strategy
in only 6 out of the 23 cases (26.09%). In compari-
son, the Synthetic samples dis. works well on most
datasets (as it achieves no best cases for NewsTopic
and Yahoo datasets); the same can not be said about
both the baselines: zero-shot strategy achieves no
best cases on two datasets and random few-shot
achieves no best cases on five datasets. However,
these positive occurrences are hindered by only a
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Figure 2: Aggregated difference across all LLMs and random seeds in mean F1-Macro for models trained on various
sample selection strategies against the best-performing baseline of either random few-shot or zero-shot. While some
strategies perform well in certain cases, as per Table 1, they fail to make a positive impact on model performance

against baseline strategies in general.

few cases where the impact on performance is also
statistically significant.

All of the sample selection strategies fail to
make a consistent impact on model performance

over the baselines, as can be seen in Figure 2.

While there are cases where increases are apparent
in both in-distribution and OOD performance (on

the MNLI dataset), the sample selection strategies
fail to outperform consistently the best baseline
of either zero-shot with no examples or randomly
selected samples for few-shot, as the increase in
performance on one random seed is mitigated by
losses of performance on another random seed with
different seed samples.

5539



We answer the RQ?2 as follows: When compar-
ing in-distribution performance, the best baseline
of random few-shot strategy performs better than
the best sample selection strategy of Cartography
eas.+ambig. samples in 5 more cases. Additionally,
the random few-shot strategy works well across
nearly all datasets for in-distribution classifier per-
formance. When comparing OOD classifier per-
formance, the best sample selection strategy of
Synthetic samples dis. method performs better than
the best baseline of random few-shot in 15 more
cases. However, most of these increases are not
statistically significant, and the aggregated model
performance in Figure 2 shows little to no benefit in
most cases. Neither the baselines nor the Synthetic
samples dis. method performs well on all datasets.

4.3 Qualitative Analysis of Generated
Samples

To analyse if certain differences can be captured
by qualitative analysis, we performed a check of
n=100 generated samples for MNLI between the
synthetic dissimilarity methods and random selec-
tion methods for each of the LLMs used. We chose
MNLI as the synthetic dissimilarity method had
the biggest impact on this dataset.

We did not see any emerging patterns or qualita-
tive differences between samples from each selec-
tion strategy. We additionally computed their diver-
sity in terms of unique 3-grams, word vocabulary
and found similar numbers between each method
(e.g. unique 3-grams synthetic dissimilarity = 4480
vs random = 4430).

Our findings are limited by the few samples an-
notated, but they also indicate that the good perfor-
mance of synthetic dissimilarity on MNLI stems
from differences in textual data not easily identifi-
able by human annotators.

5 Discussion

The results of our experiments lead to the following
observations: First, the Cartography eas.+ambig.
samples strategy was best among sample selection
strategies for in-distribution classifier performance.
Such selection strategies seem to influence LLMs
for text generation in similar ways as they do mod-
els fine-tuned on such selected data - they increase
their performance on in-distribution data (Zhang
and Plank, 2021).

Second, the Synthetic samples dis. strategy was
best among sample selection strategies for OOD

model performance. The strategy used in (Cegin
et al., 2024a) was inspired by crowdsourcing (Lar-
son et al., 2020) methods for collecting data for
better OOD performance. This method appears
to force LLMs to create more diverse samples by
leveraging outlier synthetic data as examples, mak-
ing the downstream models more robust.

Third, when comparing the best sample selection
strategies against baseline strategies, the Cartogra-
phy eas.+ambig. samples strategy does not outper-
form the random few-shot selection strategy. Not
only does the random few-shot strategy perform
better more often, but it does so more consistently
across multiple datasets. In contrast, the Cartogra-
phy eas.+ambig. samples strategy fails to perform
best even once for some datasets. This hinders the
applicability of this method, where it is clearly out-
performed in some cases by baseline strategies or
other sample selection strategies.

Fourth, the Synthetic samples dis. strategy out-
performs the baseline strategies for OOD perfor-
mance, but not across all datasets. However, neither
the random few-selection selection strategy nor the
zero-shot approach performs well on all datasets.
This implies that increasing performance across all
OOD cases for all datasets is a difficult problem.
Additionally, the Synthetic samples dis. method is
expensive, as it requires one additional inference
from the LLM to select examples from.

Fifth, as seen in Figure 2, the aggregated increase
of classifier performance when using sample selec-
tion strategies is small or negative, indicating that
sample selection strategies do not work well for all
random seeds. Given the increased costs of using
sample selection strategies, this result favours the
baseline strategies for text augmentation in general.

Sixth, comparing the baseline strategies between
themselves, the random few-shot selection per-
forms the best on in-distribution classifier perfor-
mance. In contrast, the zero-shot strategy only per-
forms well on OOD classifier performance. This
might be due to the LLMs getting biased towards
the examples provided and thus being more likely
to produce augmentations that follow the distribu-
tion of the seed samples more closely. However,
this might not be robust enough for good OOD
classifier performance.

To summarise, while the Synthetic samples dis.
strategy outperforms the baseline strategies for
out-of-distribution classifier performance, the base-
line strategies outperform the sample selection
strategies for in-distribution classifier performance.
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However, any increase in classifier performance
for both in-distribution and out-of-distribution is
marginal and increases costs for collecting text aug-
mentations. While sample selection strategies
work best in some cases, they do not so con-
sistently. This underlines the need for better
sample selection strategies for LLM-based text
augmentation.

6 Conclusion

We compared the effects of prominent sample selec-
tion strategies of few-shot learning for LLM-based
text augmentation scenarios in a low-resource set-
ting. We evaluated the downstream model perfor-
mance on in-distribution and out-of-distribution
data. We compared selection strategies against
2 baseline strategies (random few-shot and zero-
shot). This comparison was done using 3 different
LLMs, 8 different datasets, and 2 augmentation
techniques (paraphrases and new samples).

Our comparison indicates that the baseline strate-
gies outperform sample selection strategies for in-
distribution performance. For out-of-distribution
performance, the Synthetic sample dissimilarity
strategy is best in more cases than the base-
line strategies. However, the improvements are
marginal and are not present in all datasets. Given
the increased computations needed to use these
sample selection strategies and their lacklustre per-
formance, the baseline strategies represent a good
default for few-shot augmentation practitioners.

Limitations

We note several limitations to our work.

First, we only used datasets, augmentation meth-
ods, and LLMs for the English language and did
not investigate cases of multi-lingual text augmen-
tation.

Second, we did not use various patterns of
prompts and followed those used in previous stud-
ies (Cegin et al., 2023; Larson et al., 2020). Dif-
ferent prompts could have effects on the quality of
text augmentations, but they would also radically
increase the size of this study, and thus, we decided
to leave this for future work and focused on the
simplest prompts possible.

Third, we did not use newer LLMs for down-
stream model fine-tuning via PEFT methods (e.g.,
fine-tuning of Llama-3 or Mistral using QLoRA).
While such inclusion would strengthen our findings,
we decided not to use these models as evaluation

of these models is very costly and takes a long time
due to their size, which results in them being mostly
used with a small subset of the testing data (Chang
and Jia, 2023; Li and Qiu, 2023; Gao et al., 2021;
Koksal et al., 2023). This, in return, can lead to
unintentionally cherry-picked results. We see the
usage of such fine-tunings as the extension of our
work left for future work.

Fourth, for the LLM augmentation methods,
we used only Llama-3.1-8B, Mistral-v0.3-7B, and
Gemma-2-9B. We did not use larger models (e.g.,
70B versions) as their increased performance in
text augmentation for model accuracy has been
shown (Cegin et al., 2024a) to be not that signif-
icant when compared to variants of LLMs with
fewer parameters, while the inference costs com-
pared to these smaller models are much higher.

Fifth, we used 5-shots on 20 seeds per label se-
lected on each dataset. While a bigger number of
seeds and shots could have been used, we opted for
smaller numbers to keep the study manageable and
the cost of the study low. In addition, a previous
study (Pecher et al., 2024b) found that sample selec-
tion is more impactful when choosing only a small
set of samples, and using more samples does not
necessarily lead to better results due to the limited
context size of the models. Furthermore, obtaining
larger annotated datasets (e.g., hundreds of sam-
ples per class) is not feasible for many domains
in practice. As such, our findings are beneficial
even for these domains. The exploration of an ad-
ditional number of shots and seeds is an interesting
direction that can be explored in the future.

Sixth, we do not know if any of the 6 datasets
used in this study have been used for training the
LLMs we used for data collection and if this had
any effect on our results and findings. As such, we
do not know how much would be the comparison
of established and newer LLM augmentation meth-
ods different on new, unpublished datasets. This
limitation is part of the recognized possible “LLM
validation crisis”, as described by (Li and Flanigan,
2023).

Seventh, we used only one feature representa-
tion model for the sample selection strategies that
required similarity or dissimilarity of samples, and
the usage of different feature representation mod-
els could alter the performance of these sample
selection strategies.
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A Ethical considerations

Based on a thorough ethical assessment performed
on the basis of intra-institutional ethical guidelines
and checklists tailored to the use of data and al-
gorithms, we see no ethical concerns pertaining
directly to the conduct of this research. Although
the production of new data through LLMs bears
several risks, such as the introduction of biases, the
small size of the produced dataset, sufficient for
experimentation, is, at the same time, insufficient
for any major machine learning endeavours where
such biases could be transferred.

We follow the license terms for all the models
and datasets we used (such as the one required for
the use of the Llama-3.1 model) — all models and
datasets allow their use as part of research.

B Model fine-tuning details

We selected the best hyper-parameters after using
a hyper-parameter search. We used the same batch
size across all datasets using 64 batch size, used

2e-5 learning rate, dropout 0.2, maximum number
of tokens (512) trimmed and padded, and 50 num-
ber of epochs. We used AdamW optimizer in all
cases. We also removed outliers of a model fine-
tuning’s results in some cases where the model’s
results were particularly unstable to account for the
possible instability during training.

C Dataset details

As we did not use all of the dataset labels and sam-
ples in each of the datasets, we list our setup here.
All used datasets are in English language. We ei-
ther aggregated or relabelled the labels we used in
datasets to ensure that datasets from all tasks of
sentiment analysis, news classification, paraphrase
detection, and question topic classification had the
same labels. This made the out-of-distribution eval-
uation much easier.

We used all the labels for the TweetEval dataset,
and for the Yelp dataset, we aggregated and rela-
belled the one star and two stars labels as negative,
the three stars as neutral and the four stars and five
stars labels as positive.

We used all the labels of the AG News dataset
and for the News Topic dataset we aggregated and
relabelled the WORLD NEWS, POLITICS as U.S.
NEWS as World, SCIENCE, TECH as Science and
Technology and additionally also used samples
with labels Sports and Business.

For the Yahoo dataset, we used labels Soci-
ety & Culture, Science & Mathematics, Health,
Education & Reference, Sports, Business & Fi-
We used only some labels of the Trec
dataset and mapped them to the Yahoo dataset
labels in the following way by aggregation and
relabelling: on the Society & Culture label
we mapped the HUM:gr, HUM:ind, NUM:date,
HUM:desc, ENTY:religion labels, on the Science
& Mathematics label we mapped the ENTY:animal,
NUM:volsize, ENTY:plant, NUM:temp labels, on
the Health label we mapped the ENTY:body,
ENTY:dismed labels, on the Education & Refer-
ence label we mapped the ABBR:abb, DESC:def,
DESC:desc labels, on the Sports label we mapped
the ENTY:sport label and on the Business & Fi-
nance label we mapped the ENTY:cremat label.

Finally, we used all the labels in the MNLI
dataset and the QQP dataset.

For the out-of-distribution split of the QQP
dataset, we used the PAWS (Zhang et al., 2019)
dataset, more specifically from the labelled_final

nance.
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subset and test split.

D Prompts and parameters used for
LLM-based augmentation

For all of the LLMs used during augmentation, we
used the same parameters: maximum number of
new tokens set to 1024, sampling enabled, with fop
p setto 1 and temperature set to 1. We used 4-bit
quantization for faster and cheaper inference on
all LLMs and used instruction-tuned versions for
each of the LLMs. Specifically, we used Mistral-
v0.3-7B-instruct 2, Llama-3.1-8B-Instruct * and
Gemma-2-9B-Instruct *. We collected 1 response
and asked the LLMs to produce 5 augmentations
per seed or label of that seed.

We used different prompts for generating new
samples and paraphrasing existing samples. These
prompts were also varied based on the dataset used.

For paraphrasing with few-shot we used this
prompt: You will be given examples from ’task’
dataset, each labelled with a specific category.
Based on the examples, paraphrase a given text
5 times with the ’label’ category. Output each
paraphrased text in the form of a numbered list
separated by new lines. The text: 'text’. Examples:
examples

For paraphrasing with zero-shot, we used this
prompt: You are given a ’task’ dataset. Paraphrase
a given text 5 times with the ’label’ category. Out-
put each generated text in the form of a numbered
list separated by new lines. The text: 'text’

For few-shot paraphrasing of the question topic
classification datasets we used this prompt: You will
be given examples of questions from 'task’ dataset,
each labelled with a specific topic. Based on the
examples of questions, paraphrase a given ques-
tion 5 times with the ’label’ topic. Output each
paraphrased question in the form of a numbered
list separated by new lines. The question: ’text’
Examples: examples

For paraphrasing with zero-shot of the question
topic classification datasets, we used this prompt:
You are given a ’task’ dataset. Paraphrase a given
question 5 times with the ’label’ category. Output
each generated question in the form of a numbered
list separated by new lines. The question: ’text’

Zhttps://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.3

3https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

*https://huggingface.co/google/gemma-2-9b-it

For few-shot paraphrasing of the MNLI dataset,
we used this prompt: You will be given a premise
and hypothesis pair together with their label from
a Natural Language Inference dataset. Based on
the examples, paraphrase 5 times a hypothesis
that ’label’ the given premise. The given premise:
‘premise’. Output each paraphrased hypothesis in
the form of a numbered list separated by new lines.
The hypothesis: ’text’ Examples: examples

For paraphrasing with zero-shot of the MNLI
dataset, we used this prompt: You will be given a
premise from a Natural Language Inference dataset.
Paraphrase 5 times a hypothesis that ’label’ the
given premise. The given premise: 'premise’. Out-
put each paraphrased hypothesis in the form of a
numbered list separated by new lines. The hypothe-
sis: 'text’

For few-shot paraphrasing of the QQP dataset,
we used this prompt: You will be given a question
from a Paraphrase Detection dataset. Based on the
examples, paraphrase 5 times a question. Output
each paraphrased question in the form of a num-
bered list separated by new lines. The question:
‘text’ Examples: examples

For paraphrasing with zero-shot of the QQP
dataset, we used this prompt: You will be given
a question from a Paraphrase Detection dataset.
Output each paraphrased question in the form of a
numbered list separated by new lines. The question:
‘text’

For generating new samples with few-shot we
used this prompt: You will be given examples from
‘task’ dataset, each labelled with a specific category.
Based on the examples, generate 5 new texts that
fit the ’label’ category. Output each generated
question in the form of a numbered list separated
by new lines. Examples: examples

For generating new samples with zero-shot, we
used this prompt: You are given a ’'task’ dataset.
Generate 5 new texts that fit the ’label’ category.
Output each generated question in the form of a
numbered list separated by new lines.

For few-shot generating new samples of the
question topic classification datasets, we used this
prompt: You will be given examples of questions
from the ’task’ dataset, each labeled with a specific
topic. Based on the examples of questions, gener-
ate 5 new questions that fit the ’label’ topic. Output
each generated question in the form of a numbered
list separated by new lines. Examples: examples

For generating new samples with zero-shot of the
question topic classification datasets, we used this
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prompt: You are given a ’task’ dataset. Generate 5
new questions that fit the ’label’ category. Output
each generated question in the form of a numbered
list separated by new lines.

For few-shot generating new samples of the
MNLI dataset, we used this prompt: You will be
given a premise with a label from a Natural Lan-
guage Inference dataset. Based on the examples,
generate 5 new hypotheses that ’label’ the given
premise. The given premise: ’premise’. Output
each generated hypothesis in the form of a num-
bered list separated by new lines. Examples: exam-
ples

For generating new samples with zero-shot of
the MNLI dataset, we used this prompt: You will
be given a premise with a label from a Natural
Language Inference dataset. Generate 5 new hy-
potheses that ’label’ the given premise. The given
premise: 'premise’. Output each generated hypoth-
esis in the form of a numbered list separated by
new lines.

For few-shot generating new samples of the QQP
dataset, we used this prompt: You will be given
a question from a Paraphrase Detection dataset.
Based on the examples, generate 5 new questions
which are ’label’ considering the question. The
given question: 'question’. Output each generated
question in the form of a numbered list separated
by new lines. Examples: examples

For generating new samples with zero-shot of
the QQP dataset, we used this prompt: You will
be given a question from a Paraphrase Detection
dataset. Generate 5 new questions which are ’la-
bel’ considering the question. The given question:
"question’. Output each generated question in the
form of a numbered list separated by new lines.

E Additional Results and Visualisations
for Sample Selection Strategies and
Their Effect on Model Performance

We provide the comparison of all sample selection
strategies between each other without the baselines
in Table 2. Additionally, we also provide boxplot
visualization for the aggregated performance of all
LLMs and random seeds in F1-Macro for mod-
els trained on various sample selection strategies
together with the baselines of either random few-
shot or zero-shot for both in-distribution and out-
of-distribution data in Figures 3 and 4.

F Effects of Composition of Examples
and Augmentation Techniques on
Model Performance

As our study had multiple parameters mentioned
in Section 3, we additionally also report results for
two different parameters used: composition of ex-
amples based on labels (using only examples from
the label under augmentation or using examples
from every label in the dataset) and augmentation
techniques (using either paraphrasing of existing
samples or generation of new samples). We report
results for both parameters in Tables 3 and 4.

Each augmentation technique has the best effect
on performance for either in-distribution or out-of-
distribution as per Table 3. For out-of-distribution
performance, the generation of new samples is
most often used, while for in-distribution perfor-
mance, the paraphrasing of existing samples works
best. Exceptions to this are in the Yelp dataset,
where paraphrasing of existing samples is best for
out-of-distribution performance and generation of
new samples for in-distribution performance.

The difference between composition of examples
based on labels is much smaller than for augmen-
tation techniques, as is shown in Table 4. While
including samples from all labels in the dataset is
better more often, the difference is quite small for
out-of-distribution data. We noticed that for out-of-
distribution performance, including samples from
all labels worked best on question topic classifica-
tion datasets and TweetEval dataset. In contrast,
the other datasets worked better with only exam-
ples from the label under augmentation used. For
in-distribution, only using examples from the target
label generally leads to better downstream model
performance.

G Additional Details About Sample
Selection Strategies

We provide an overview of each sample selection
strategy together with its costs in Table 5.
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DATASET— AGNEWS NTOPIC YAHOO TREC TEVAL YELP MNLI QQP TOTAL

Strategy | ID| 00D || ID | 00D || ID| 00D || ID | 00D || ID | 00D || ID | 0OD || ID | 00D || ID | 00D || ID [ 00D
Cos. sim 0] 0 2] 3 1 2 1 0 0| O 210 0| O 1 0 71 5
Cos. dis. 0 1 1 0 0 1 0 1 1| 0 0| 2 1 1 0| 0 3] 6
Forgettingmost 2 | 0 2] 2 1 3 0 1 1 1 0| O 0| O 1 0 7 7
Forgetting least 3 3 2| 0 0| O 3 0 3 2 1 1 0| O 1 1 13| 7
Carto. hard 1[0 0 1 3] 2 0] O 1[0 1 2 0] 0 1 2 71 7
Carto. easy+amb. 0 1 0 1 2 1 2 2 2 1 3 1 1 1 3 1 13| 9
Carto. easy 1/ 0 1 0 21 0 1 1 1[0 21 0 1 1 1 1 10, 3
Synth. dis. 2| 4 1 2 0| O 2| 4 0| 5 0| 3 6| 6 1| 4 |[12] 28

Table 2: No. cases for each sample selection strategy without baseline strategies, where each strategy performed the
best for each dataset for in-distribution (ID) and out-of-distribution (OOD) data. The last Total column aggregated
all cases for that specific strategy. The Synthetic samples dissimilarity strategy performs best on out-of-distribution
model performance, while the Cosine similarity strategy performs best on in-distribution model performance.

Type of Augmentation Best for ID  Best for OD

Generation 20 (27.78%) 43 (59.72%)
Paraphrasing 52 (72.22%) 29 (40.28%)

Table 3: No. cases where each type of augmentation
performed the best for in-distribution (ID) and out-of-
distribution (OD) data. The generation augmentation
works best for out-of-distribution data, while the para-
phrasing augmentation works best for in-distribution
data.

Composition of Examples Type Best for ID  Best for OD

Only From Label Under Aug. 45 (62.5%) 35 (48.61%)
From All Labels 27 (37.5%) 37 (51.39%)

Table 4: No. cases where each type of composition
of examples type performed the best for in-distribution
(ID) and out-of-distribution (OD) data. While including
examples from all the labels in the dataset works best,
the increase in the number of cases is small.
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Figure 3: Aggregated performance across all LLMs and random seeds in F1-Macro for models trained on various
sample selection strategies together with the baselines of either random few-shot or zero-shot on in-distribution data.
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Figure 4: Aggregated performance across all LLMs and random seeds in F1-Macro for models trained on various
sample selection strategies together with the baselines of either random few-shot or zero-shot on out-of-distribution

data.

5549



STRATEGY

| COST LEVEL | COST CONSIDERATIONS

Cosine similarity

Cosine dissimilarity
Synthetic samples dissimilarity
Forgetting (most)

Forgetting (least)
Cartography (hard)

Cartography (easy)
Cartography (easy+amb.)

Random few-shot (baseline)

Zero-shot (baseline)

Low

Low
High
High

High
Medium-High

Medium-High
Medium-High

Very Low

Lowest

Compute embeddings for all candidate samples and pairwise cosine similarity.
Once embeddings are available, selection is cheap but scales quadratically with
candidate pool size.

Same computation as cosine similarity, but selects least similar examples. Cost
is identical to similarity.

Requires generating a synthetic sample pool via LLM inference (extra API cost
+ latency) and then computing dissimilarities. Most expensive strategy.

Requires partial training of a downstream model to track forgetting events per
sample, then ranking them. High training overhead.

Same as Forgetting (most); cost dominated by partial model training.

Requires partial model training to compute confidence trajectories and variances
for each sample; moderate-to-high computational cost.

Same as above, but selects highest-confidence samples.

Same cost as other cartography variants; selects mix of high-confidence and
medium-variance samples.

Requires only random sampling from the candidate pool, no additional
computation.

No sample selection at all; essentially zero overhead.

Table 5: Computational cost overview of sample selection strategies from Section 3.1. We qualitatively rank the
relative cost level (Lowest—High) and summarise the main sources of overhead for each strategy.
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