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Abstract

Fact verification on knowledge graphs (KGs)
uses the structured representation of entities
and relations as evidence for validating claims.
Previous methods for KG-based fact verifica-
tion predominantly use natural language infer-
ence (NLI) models to predict entailment be-
tween claims and KG triples, based on implicit
reasoning. We propose Programmatic Graph
Reasoning (PGR), a novel framework that inte-
grates large language models (LLMs) for fact
verification on KGs. PGR explicitly encodes
the reasoning process as a graph reasoning pro-
gram composed of predefined functions to ver-
ify claims step by step. These functions are exe-
cuted sequentially for graph reasoning and final
result prediction. By making the graph reason-
ing process explicit, PGR ensures more precise
and transparent reasoning steps compared to
implicit methods. Experimental results on the
FactKG dataset demonstrate that PGR achieves
state-of-the-art performance with 86.82% ac-
curacy, outperforming all the baseline models.
Further analysis confirms the interpretability
and effectiveness of our method in handling
complex graph reasoning.1

1 Introduction

Fact verification has become an essential task in
natural language processing (NLP) due to the grow-
ing prevalence of misinformation across various
platforms. Fact verification based on knowledge
graphs (KGs) leverages the structured representa-
tion of entities and relationships as evidence to
support or refute claims (Kim et al., 2023b). Ex-
isting approaches typically retrieve relevant triples
from the KG and use them as evidence to verify
the claim. These methods follow an NLI-based
reasoning paradigm, employing natural language
inference (NLI) models (Liu et al., 2019) to predict
the entailment between the evidence and the claim.

1https://github.com/hydragon/PGR

Recent advances in large language models
(LLMs) have demonstrated remarkable capabilities
in natural language understanding and reasoning
(Kojima et al., 2022; Touvron et al., 2023; Achiam
et al., 2023; Yang et al., 2024). Existing meth-
ods (Kim et al., 2023a; Jiang et al., 2023) also
leverage LLMs to improve accuracy in KG-based
fact verification. By utilizing the in-context learn-
ing capabilities of LLMs, these approaches can
achieve high accuracy in few-shot settings. The
reasoning process in these methods resembles NLI
models, where the LLM verifies the claim using an
evidence-claim pair.

The reasoning process for KG-based fact verifi-
cation involves logical reasoning over subgraphs in
the knowledge graph that correspond to the given
claim. This graph reasoning process can be per-
formed step by step, similar to the reasoning ap-
proach used by human fact-checkers (Nakov et al.,
2021). Considering the complexity of graph reason-
ing involving entities, relations, and logical struc-
tures, a programmatic approach can provide an effi-
cient way to manage multi-variable and multi-step
operations, ensuring precise graph reasoning.

We propose a novel approach called Program-
matic Graph Reasoning (PGR), which leverages
the language understanding and programming ca-
pabilities of LLMs for fact verification on KGs. In
this framework, we define the fundamental func-
tions—MATCH, SEARCH, and VERIFY—with clearly
specified input-output formats and functionalities.
PGR consists of two main steps: program genera-
tion and graph reasoning. In program generation, a
graph reasoning program is generated for claim ver-
ification, constructing reasoning steps using the de-
fined functions. In graph reasoning, the program is
executed step by step to predict the final verification
result. Unlike NLI-based methods with implicit
reasoning, PGR explicitly represents the reasoning
process as a structured program. This explicit rep-
resentation not only enhances interpretability but
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Claim : Alfredo Zitarrosa 

was born in a city and the 

leader is called Raul 

Fernando Sendic Rodriguez.

Program Generation

LLM F1 SEARCH(('Alfredo_Zitarrosa', 'born in', 'Unknown'))

Knowledge Graph

F2 SEARCH(('Unknown', 'leader', 'Raúl_Fernando_Sendic_Rodríguez'))

ENTITY_1=['Montevideo']

F3 MATCH((ENTITY_1, 'in', ENTITY_ 2))

F4 VERIFY(RESULT_1)

ENTITY_2=['Uruguay']

[['Montevideo', 'country', 'Uruguay']]

PREDICTED=True[ "Alfredo_Zitarrosa", 

"Raúl_Fernando_Sendic_Rodríguez” ]

Entities

Prompt

Graph Reasoning

RESULT_1=True

Figure 1: Framework of Fact Verification on KG via Programmatic Graph Reasoning.

also ensures more accurate reasoning by leveraging
the clear and well-defined logical structure inherent
in the program, compared to implicit reasoning.

We evaluated our proposed method on the Fac-
tKG dataset (Kim et al., 2023b). The experimental
results show that our approach achieves the state-of-
the-art result across all model evaluations, reaching
86.82% accuracy. In the few-shot model compari-
son, PGR consistently outperforms others, obtain-
ing the highest accuracy across all five claim types
in the dataset, further validating the effectiveness
of the our method. Additionally, we analyzed the
interpretability of PGR and the effectiveness of the
generated programs, underscoring the advantages
of explicit reasoning in enhancing both predictive
performance and explainability.

2 Related Work

Fact-checking with knowledge graphs (KGs) has
emerged as a promising approach to verify the ve-
racity of claims by leveraging structured knowl-
edge. FactKG (Kim et al., 2023b) is a fact verifi-
cation dataset built on DBpedia (Lehmann et al.,
2015), a large-scale general-purpose knowledge
graph. The claims in FactKG are generated based
on the WebNLG corpus (Gardent et al., 2017), with
additional data generation steps to create more di-
verse claims that incorporate more KG triples, re-
quiring complex reasoning for verification. Exist-
ing methods for fact-checking on FactKG include
BERT-based (Devlin et al., 2019) approaches and
GEAR (Zhou et al., 2019), a multi-evidence rea-
soning framework. GEAR has been adapted and
optimized for KG-based fact verification, improv-

ing its performance in FactKG dataset (Kim et al.,
2023b).

The rapid development of large language models
(LLMs) has significantly enhanced both language
understanding and logical reasoning capabilities
(Kojima et al., 2022; Touvron et al., 2023; Achiam
et al., 2023; Yang et al., 2024). The advent of
GPT-4 (Achiam et al., 2023) further extends the
applications of LLMs to a wide range of tasks, in-
cluding those related to reasoning and knowledge
graphs (Pan et al., 2024; Zhu et al., 2024; Choi and
Ferrara, 2024; Wang et al., 2024). Recent research
has explored the use of LLMs in KG-based fact
verification, particularly through few-shot learning
approaches. KG-GPT (Kim et al., 2023a), sim-
ilar to StructGPT (Jiang et al., 2023), integrates
LLMs with few-shot learning for fact verification
on KGs. These methods demonstrate that LLMs
can be effectively applied to KG-based tasks and
show strong reasoning capabilities in few-shot set-
tings, offering new possibilities for improving per-
formance in this domain.

Large language models (LLMs) have demon-
strated remarkable versatility in solving various
tasks including reasoning(Yao et al., 2023) through
in-context learning (Brown et al., 2020), where
only a few prompt examples are required to guide
the model. ProgramFC (Pan et al., 2023) intro-
duces a novel fact-checking approach that lever-
ages LLMs to generate programs for claim verifica-
tion. This method decomposes the verification of
a complex claim into multiple sub-claims, which
are verified independently in a stepwise manner.
Such a multi-step reasoning strategy closely resem-
bles the human fact-checking process (Nakov et al.,
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2021).
In addition to program-based reasoning, the

reasoning performance of LLMs can be signifi-
cantly enhanced through Chain-of-Thought (CoT)
prompting and Knowledge-Grounded Reasoning
(Kojima et al., 2022; Wang et al., 2023; Wang and
Shu, 2023), which enables the model to perform
more accurate multi-step reasoning. Recent re-
searches have shown that decomposing multi-step
reasoning tasks using LLMs not only improves
accuracy but also offers stronger interpretability,
making the verification process more transparent
and comprehensible (Pan et al., 2023).

3 Programmatic Graph Reasoning

This section presents our proposed method, Pro-
grammatic Graph Reasoning(PGR), for fact verifi-
cation on KG, which defines essential functions for
retrieving and validating evidence from a knowl-
edge graph. The methodology focuses on the defi-
nition of functions, the generation of graph reason-
ing programs, and the execution of programs for
accurate fact verification. Figure 1 illustrates the
complete process of the proposed PGR framework
for KG-based fact verification. The PGR frame-
work consists of two main components: 1. Pro-
gram Generation: Given a claim, PGR generates
a structured program composed of graph reason-
ing functions that represent the reasoning process.
2. Graph Reasoning: The generated program is
executed to perform step-by-step graph reasoning,
with each function operating on KG to verify the
claim.

3.1 Problem Definition

We focus on the task of KG-based fact verifica-
tion. Formally, a knowledge graph is defined as
G = (V,E), where V is the set of vertices rep-
resenting entities and E is the set of edges rep-
resenting relationships between entities. Given a
claim C and its associated entities VC ⊂ V in the
knowledge graph G, the goal of fact verification
is to check whether the claim aligns with the fact
information encoded in G.

This verification process can be conceptualized
as identifying a subgraph GC = (VC , EC) within
G that is relevant to the claim and performing graph
reasoning over this subgraph to assess the factuality
of the claim.

We aim to design a predictive model M that
takes the claim C, its associated entities VC , and

the knowledge graph G as inputs and predicts the
label y ∈ {true, false} of the claim:

ŷ =M(C, VC ,G), (1)

where ŷ ∈ {true, false} is the predicted result for
C. The primary challenge lies in effectively lever-
aging the structured information in G and reasoning
over the subgraph GC to ensure accurate predic-
tions.

3.2 PGR Formulation

Our proposed method Programmatic Graph Rea-
soning (PGR) perform multi-step graph reason-
ing for fact verification. The model M is de-
signed as a composition of multiple step functions
{f1, f2, . . . , fn}, where each step function fi be-
longs to a predefined function set and is executed
sequentially according to the program’s flow. The
overall process can be formally expressed as:

M(C, VC ,G) = fn ◦ · · · ◦ f2 ◦ f1(C, VC ,G) (2)

where each fi performs an intermediate reasoning
step, updating the claim graph and accumulating
evidence.

At each step i, the step function fi takes the
current claim graph Gi−1

C and the accumulated ev-
idence set Ei−1 as input and produces an updated
claim graph GiC and an updated evidence set Ei:

fi : (Gi−1
C , Ei−1)→ (GiC , Ei) (3)

where GiC = (V i
C , E

i
C) represents the graph struc-

ture associated with the claim at step i (GiC ⊂ G),
and Ei denotes the accumulated evidence from all
previous steps. For each ej ∈ Ei where j < i,
ej represents the output of function fj , which is
utilized for the final prediction.

The final step function fn is responsible for pre-
dicting the factuality label of the claim based on the
fully constructed graph Gn−1

C and the accumulated
evidence set En−1. This step can be represented as:

fn : (Gn−1
C , En−1)→ {true, false} (4)

By modeling M as a sequence of executable
functions, PGR enables flexible and interpretable
multi-step reasoning over the claim subgraph GC .
Each step refines the graph and evidence set, ul-
timately generating a prediction that reflects the
underlying reasoning process.
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Nice, Agra Airport is located in a 

country, where the leader is not 

Narendra Modi.

Claim

def program():
    entity_1 = SEARCH(('Agra_Airport', 'in', None))
    result_1 = MATCH((entity_1, 'leader', 
'Narendra_Modi'))
    predicted = VERIFY(not result_1)

Program

I believe William Anders and Frank 

Borman were crew members on an 

artificial satellite operated by NASA.

Claim

def program():
    entity_1 = SEARCH(('William_Anders', 'crew 
member', None))
    result_1 = MATCH(('Frank_Borman', 'crew member', 
entity_1))
    result_2 = MATCH(('NASA', 'operate', entity_1))
    predicted = VERIFY(result_1 and result_2)

Program

Steven T Seagle and Duncan 

Rouleau created Baymax which 

appeared in Big Hero 6.

Claim

def program():
    result_1 = MATCH(('Steven_T._Seagle', 'create', 
'Baymax'))
    result_2 = MATCH(('Duncan_Rouleau', 'create', 
'Baymax'))
    result_3 = MATCH(('Baymax', 'appear in', 
'Big_Hero_6_(film)'))
    predicted = VERIFY(result_1 and result_2 and 
result_3)

Program

NegationMulti HopMulti Claim

？？

Graph Graph Graph

Figure 2: Examples of Programs generated by Programmatic Graph Reasoning.

3.3 Graph Reasoning Functions
The process of verifying claims based on KG as evi-
dence can be viewed as identifying a corresponding
subgraph composed of entities and relations from
the KG that align with the claim. This process
involves converting the claim into a subgraph struc-
ture by decomposing it into multiple triple retrieval
tasks. The subgraph is then constructed by linking
these triples based on the relations described in the
claim.

During the subgraph construction, the triple
retrieval can be categorized into two fundamental
operations: retrieving missing entities and match-
ing complete triples. To facilitate graph reasoning,
we define three fundamental functions—MATCH,
SEARCH, and VERIFY:

MATCH

• Input: A complete triplet in form of
(entity, relation, entity), where the entity
may be directly provided in the claim or de-
rived from the output of the SEARCH func-
tion.

• Functionality: Checks whether the specified
triplet exists within the KG.

• Output: Returns True if the triplet is present;
otherwise, returns False.

SEARCH

• Input: A triplet with one None value
for one of the entity, representing a miss-
ing entity (e.g., (entity, relation, None) or
(None, relation, entity)).

• Functionality: Identifies the missing compo-
nent by querying the KG based on the other
specified parts of the triplet.

• Output: Produces a list of potential entity
candidates for the missing component.

VERIFY

• Input: The Boolean results from the MATCH
function.

• Functionality: Validates the claim’s factual
consistency based on the presence or absence
of the triplet in the KG.

• Output: Returns True if the verification con-
firms the claim; otherwise, returns False.

Given a triple (h, r, t), the knowledge graph G,
and the claim sentence C, SEARCH function returns
a set of matching triples Tr ⊆ G whose entity and
relation match the input triple (h, r, t) with one
entity unknown:

SEARCH : ((h, r, t) , G, C ) −→ Tr (5)

MATCH retrieves the best-matching triple τ∗ ∈ G
that supports the input triple based on semantic and
structural alignment:

MATCH : ((h, r, t) , G, C ) −→ τ∗ (6)

As the fundamental functions in our method,
the MATCH and SEARCH are designed to handle var-
ious types of claims for graph reasoning. Follow-
ing the reasoning types of claims defined by Kim
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et al. (2023b), we analyze how these functions
are utilized to address different reasoning require-
ments. The reasoning types include one-hop, con-
junction, existence, multi-hop, and negation, with
each type corresponding to specific combinations
of the graph reasoning functions.

For one-hop and conjunction claims, the reason-
ing process primarily relies on the MATCH function
to match the specific triple or a combination of mul-
tiple triples in the knowledge graph. On the other
hand, existence and multi-hop reasoning involve
both MATCH and SEARCH functions. For example,
existence reasoning validates the presence of an en-
tity or relationship, and multi-hop queries are used
to identify paths spanning multiple relationships.
The negation category is built upon other claim cat-
egories with additional negation logic. Therefore,
for negation claims, the VERIFY function incorpo-
rates appropriate negation operations during the
result evaluation to ensure accurate verification.
The program structure dynamically adjusts to the
reasoning type by incorporating the appropriate
functions and operations.

3.4 Program Generation

With the graph reasoning functions defined, we
generate reasoning programs to conduct graph rea-
soning on fact verification task. Each program
includes a sequence of operations aimed to extract
evidence and finally verify the claim. Specifically,
the program serves two primary roles: Evidence
Retrieval and Claim Verification. The program
utilizes SEARCH and MATCH functions to identify rel-
evant subgraphs from the KG. By executing the
VERIFY function, the program synthesizes the re-
trieved evidence to determine whether the claim is
supported or refuted.

We adopt a prompt-based LLM approach to gen-
erate programs for knowledge graph reasoning.
Given a claim, the LLM is prompted with care-
fully designed examples in a few-shot setting to
generate a program composed of predefined graph
reasoning functions. To improve the correctness
of program generation, we design the prompt with
a structured format consisting of four sequential
components: (1) Task Description, (2) Function
Definition, (3) Examples, and (4) Content for Task
Execution. This structured prompt ensures clar-
ity and consistency, guiding the model to generate
the desired output more effectively. The detailed
prompts can be found in Appendix A

3.5 Program Execution for Graph Reasoning

After generating the program, the graph reason-
ing process is completed by executing each func-
tion in the program. Different functions have dis-
tinct execution strategies, with their input, output,
and functionality clearly defined according to their
specifications.

The SEARCH function identifies the missing entity
in the input triple by querying the knowledge graph.
The MATCH function verifies whether a given triple
exists in the KG. The prompts used in these func-
tions are given in Appendix A. Finally, the VERIFY
function aggregates all intermediate results to per-
form the final logical evaluation of the claim. By
executing all functions in the program, PGR pro-
vides a step-by-step reasoning process, ultimately
predicting the verification result for the claim. The
algorithm details of SEARCH and MATCH are given
in Appendix B.

To provide a more intuitive illustration of pro-
gram execution, Figure 2 presents three examples,
each showing a generated program alongside the
corresponding claim graph structure. These exam-
ples demonstrate how the execution of program
functions aligns with the underlying graph reason-
ing logic:

Multi-claim: In multi-claim example, the corre-
sponding subgraph contains multiple triples, all of
which are fully specified in the claim text. Thus,
each triple can be directly verified using multiple
steps of the MATCH function. The program itera-
tively matches each triplet in the KG, ensuring that
all components of the claim are validated.

Multi-hop: Multi-hop claim requires reasoning
across multiple connected entities in the KG. These
claims include triples with missing entities, which
must be identified before completing the verifica-
tion process. The program uses the SEARCH func-
tion to locate the missing entity in the KG and sub-
sequently applies the MATCH function to validate
the remaining triples.

Negation: Negation claim introduces an addi-
tional layer of complexity due to the presence of
negative logic. The corresponding KG structure
often includes missing entities that must be iden-
tified through the SEARCH function. Once the rele-
vant triples are retrieved, the program applies the
VERIFY function with the ‘not‘ operation to per-
form logical negation.
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Our framework is designed to be modular by
construction, allowing different functions to be se-
lectively composed depending on the task require-
ments. Furthermore, during program execution,
the intermediate outputs of individual functions are
explicitly accessible. This facilitates task-specific
post-processing and enables transparent interpre-
tation of the reasoning path, which is particularly
beneficial in multi-stage or interactive applications.
The modular nature of the framework supports
reuse and extensibility, making it adaptable across
various scenarios. Additional examples illustrating
the modular usage can be found in Appendix E.

4 Experiment

4.1 Dataset

We evaluate the proposed Programmatic Graph
Reasoning (PGR) method using the FACTKG
dataset, a benchmark dataset designed for fact ver-
ification on knowledge graphs (KGs). FACTKG
contains 108,674 claims, each written in natural
language based on factual information from the
DBpedia knowledge graph. Each instance in the
dataset consists of a claim, the corresponding DB-
pedia entities mentioned in the claim, a binary label
indicating whether the claim is True or False, and
a reasoning type.

Our evaluation uses the FACTKG test set with
9,041 claims, including 4,398 labeled as True and
4,643 as False. The set covers diverse reasoning
types: 1,914 one-hop claims, 3,069 multi-claim
(conjunction) claims, 870 existence claims, 1,874
multi-hop claims, and 1,314 negation claims, mak-
ing FACTKG a comprehensive benchmark for fact
checking. Furthermore, we utilize the DBpedia
2015 knowledge graph as the evidence resource
during the verification process. FACTKG allows us
to test the effectiveness of the PGR method on the
graph reasoning task with different claim complex-
ities, ensuring a robust evaluation.

4.2 Baselines

We followed the baseline setup of Kim et al.
(2023b) and categorized the baselines into two
groups: Without Evidence and With Evidence.
Based on training strategies, we further classify
the methods into full-training, zero-shot, and few-
shot settings. The Without Evidence baselines rely
solely on the claim during inference without incor-
porating external evidence for decision-making.

For the Without Evidence baselines, we uti-

lized three transformer-based text classifiers:
BERT(Devlin et al., 2019), BlueBERT(Peng et al.,
2019), and Flan-T5(Raffel et al., 2020; Chung
et al., 2024), with experimental settings and re-
sults consistent with the approach of Kim et al.
(2023b). All three models were trained under the
full-training strategy. Additionally, we included a
12-shot ChatGPT baseline, using the settings and
results of Kim et al. (2023a).

In the With Evidence category, we compared
GEAR, KG-GPT and ProgramFC. GEAR is a
model specifically designed and optimized by Kim
et al. (2023b) for the FactKG task using the full-
training strategy. KG-GPT(Kim et al., 2023a),
on the other hand, leverages LLMs for reason-
ing over knowledge graphs in a few-shot setting,
achieving strong performance in FactKG experi-
ments. The original KG-GPT method employed
the gpt-3.5-turbo-0613 model as the LLM. In
our experiments, we replaced it with the latest
high-performance models—gpt-4o-2024-08-06
(KG-GPT†) and gpt-4o-mini-2024-07-18 (KG-
GPT*)—while keeping other parameters consistent
with the original paper. KG-GPT-d used an open-
source LLM Deepseek-V33. ProgFC refers to the
ProgramFC method(Pan et al., 2023), which has
been adopted to the FACTKG task. We used the
graph extraction method similar to KG-GPT for ev-
idence retrieval in ProgramFC function execution.

4.3 Implementation
We evaluate our proposed method, PGR
(Programmatic Graph Reasoning), using the
gpt-4o-2024-08-062 model to generate pro-
grams from claims. The program generation
process adopts a 12-shot prompting strategy
with carefully selected examples to guide the
LLM. During program execution, the MATCH
and SEARCH functions are implemented using
the same gpt-4o-2024-08-06 model to filter
relevant knowledge graph triples. The prompting
for these operations adopts a 4-shot strategy.
The hyperparameters of LLM are set as follows:
temperature = 0.2 and top-p = 0.1.

To evaluate the impact of LLM perfor-
mance on the PGR method, we also use
gpt-4o-mini-2024-07-182 as the underlying
LLM, referred to as PGR-mini. PGR-d refers to
the variant of our method using DeepSeek-V33, an
open-source LLM, which is employed to evaluate

2https://platform.openai.com/docs/models
3https://www.deepseek.com
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Methods Evi. Strategy 1-Hop Existence Mul. Hop Mul. Claim Nega. Acc.
BERT

w/o

full 69.64 61.84 70.06 63.31 63.62 65.20
BlueBERT full 60.03 59.89 57.79 60.15 58.90 59.93
Flan-T5 0-shot 62.17 55.29 60.67 69.66 55.02 62.70
ChatGPT 12-shot - - - - - 68.48
GEAR

w/

full 83.23 81.61 68.84 77.68 79.41 77.65
ProgFC 12-shot 88.11 64.42 63.13 87.16 57.61 74.62
KG-GPT 12-shot - - - - - 72.68
KG-GPT-d 12-shot 87.34 79.21 62.61 88.08 61.06 77.43
KG-GPT* 12-shot 80.56 63.19 55.84 69.93 59.19 67.04
KG-GPT† 12-shot 90.26 78.22 59.79 81.01 80.97 78.55
PGR-d 12-shot 90.41 89.17 73.14 89.32 78.24 84.18
PGR-mini 12-shot 87.36 78.60 57.82 77.31 57.28 72.62
PGR 12-shot 93.30 93.10 75.96 89.95 81.16 86.82

Table 1: The performance of the models on FACTKG. Models are categorized in Input Type(w/o or w/ Evidence)
and Training Strategy.
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2 hop 3 hop 4 hop

Multi Hop

GPT4o GPT4o-mini Deepseek
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80

90

100

2 hop 3 hop 4 hop

Multi Claim

GPT4o GPT4o-mini Deepseek

Figure 3: Results of Multi Hop and Multi Claim fact
check on 2-hop, 3-hop and 4-hop.

the scalability of our approach. All other parameter
settings remain consistent with the original PGR
configuration. The cost of LLM used in our method
is given in Appendix D.

4.4 Results

Table 1 presents the experimental results compar-
ing the prediction accuracy of all models. Our pro-
posed PGR model outperforms all baseline models,
including both few-shot and full-training settings.
Notably, PGR achieves the highest accuracy in the
few-shot scenario and gets the best performance in
all of the claim categories, which demonstrates that
PGR is highly effective for KG-based reasoning

and fact verification in few-shot settings.

When comparing PGR with KG-GPT† and PGR-
mini with KG-GPT*, all under the same 12-shot
condition and identical model configurations, PGR
consistently achieves significant improvements in
accuracy. Using the same LLM configuration,
gpt-4o-2024-08-06, PGR surpasses KG-GPT†
by 8.27% in overall accuracy. The performance
gains are most notable in the multi-hop claim cat-
egory, showing a 16.17% increase in accuracy.
These results demonstrate that PGR effectively
leverages LLMs for KG-based fact verification, par-
ticularly in complex reasoning tasks.

PGR performs effective graph reasoning in
complex claims. As shown in Table 1, PGR
achieves significant improvements over KG-GPT†
in both multi-hop and multi-claim scenarios, which
involve claims with complex graph structures.
These results indicate that the proposed PGR
method is more effective for complex graph rea-
soning tasks compared to existing baselines. In
Figure 3, we further compare the accuracy of PGR,
PGR-d and PGR-mini across different levels of
graph reasoning complexity. For the multi-hop
and multi-claim types, we categorize the claims
based on the number of associated knowledge
graph triples into 2-hop, 3-hop, and 4-hop cate-
gories, with increasing complexity. The accuracy
of PGR decreases in the most complex 4-hop sce-
nario, while PGR-mini shows consistently lower
accuracy across different complexity levels. PGR
achieves a stable improvement in accuracy for com-
plex graph reasoning across varying levels of com-
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Error Type
PGR PGR-mini

multi claim multi hop negation multi claim multi hop negation
Syntactic error 0% 0% 0% 0% 0% 0%
Variable error 0% 23% 10% 0% 11% 0%
Logical error 52% 26% 27% 93% 34% 39%

—-Graph 45% 17% 22% 91% 34% 36%
—-Verify 7% 9% 5% 2% 0% 3%

Execution error 48% 51% 63% 7% 55% 61%

Table 2: The Error examples of the models PGR and PGR-mini on FactKG.

plexity by enhancing the performance of the under-
lying LLM. We also conduct an experiment on the
MetaQA dataset(Zhang et al., 2018) to verify the
effectiveness of PGR and the results are given in
Appendix E.

4.5 Interpretability
The interpretability of the PGR method is well
demonstrated through the examples of program
generation and corresponding graph structures in
Figure 2. The generated program clearly decom-
poses multiple triples in a claim and connects un-
known entities with other entities in multi-hop rea-
soning through variable passing. In the case of
negation claims, PGR effectively captures the inter-
nal logical relations within the graph structure.

The readability of the generated program and
the transparency of its logical reasoning process
facilitate better understanding and more efficient
error diagnosis.

Furthermore, the error analysis in Table 2 high-
lights that PGR leverages the improved capabilities
of the underlying LLM to generate more accurate
programs. The readability of these programs also
makes it easier to identify specific errors, providing
valuable insights for further optimization and im-
provement. This interpretability not only enhances
the debugging process but also promotes deeper in-
sights into the model’s reasoning behavior, offering
a foundation for future refinements.

4.6 Error analysis
To better analyze how different reasoning stages af-
fect accuracy, we performed an error analysis focus-
ing on three types of claims where PGR exhibited
lower accuracy: multi-claim, multi-hop, and nega-
tion claims. Based on the types of errors observed
during the reasoning process, we categorized them
into four primary classes:

1. Syntactic error occurs when the generated
program contains syntax issues, rendering it unex-

ecutable. 2. Variable error arises from incorrect
parameter variables in function arguments. 3. Log-
ical error refers to incorrect reasoning logic in the
graph structure formed by all functions in the pro-
gram. Logical error can be further divided into
two subcategories: graph error, which results from
incorrect graph structures generated after claim de-
composition, and verify error, which is caused by
incorrect binary value computations in the VERIFY
function. 4. Finally, execution error occurs when
a syntactically and logically correct program fails
during the execution stage, typically due to errors
in KG search and entity matching.

As shown in Table 2, PGR demonstrates a sig-
nificantly lower proportion of logical errors com-
pared to PGR-mini, suggesting that improvements
in LLM performance can enhance the logical cor-
rectness of program generation. Lower count of
variable errors in PGR-mini is primarily a result
of an increased number of logical errors, which
reflects a shift in error types. Most errors in PGR
arise during the execution stage, suggesting that de-
spite the program’s correct logical structure, further
improvements are needed in the function execution
process. Detailed error examples can be found in
Appendix C.

5 Conclusion

In this paper, we propose a novel approach, Pro-
grammatic Graph Reasoning (PGR), for KG-based
reasoning. Experimental results on the FactKG
dataset for KG-based fact verification show that
PGR achieves the highest accuracy among compet-
ing methods. PGR converts the claim verification
process into a step-by-step graph reasoning process
by generating executable programs composed of
fundamental graph reasoning functions. Our ap-
proach effectively handles complex graph reason-
ing tasks while maintaining strong interpretability.

The program generation paradigm offers high
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generalizability. By leveraging LLMs with few-
shot prompting, PGR can perform graph reasoning
tasks with minimal training resources. Unlike NLI
approaches, PGR provides an explicit reasoning
chain in the form of graph-based logic, ensuring a
more interpretable and accurate reasoning process.

PGR introduces a modular design for KG-based
reasoning tasks, offering a promising foundation
for future extensions. The modularity of PGR en-
ables flexible adaptation by reconfiguring the com-
bination of core functions and customizing the han-
dling of intermediate output. In future work, we
plan to explore the applicability of this framework
to more challenging reasoning settings.

Limitations

In our proposed method, the algorithm designed for
program execution is relatively simple and does not
account for more complex scenarios or potential
optimizations. As indicated by the error analysis,
this limitation contributes to execution errors and
needs more improvement. Additionally, the few-
shot learning approach used for program generation
relies on a limited set of examples, which may not
cover all claim types. This can lead to incorrect pro-
gram generation when the LLM misinterprets the
execution logic for certain unseen claim structures,
resulting in errors. Future work could focus on re-
fining and enhancing both the program generation
strategy and the execution functions to improve
robustness and generalization capability, further
boosting the overall accuracy of the method.
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Reasoning Type # In-Context Examples Reasoning Type (Negation) # In-Context Examples
1-hop 2 negation / 1-hop 1
existence 1 negation / existence 0
multi-hop 3 negation / multi-hop 2
multi-claim 3 negation / multi-claim 0

Table 3: Average number of in-context exemplars per reasoning type and its negation counterpart.

entity retrieval or triple matching through two func-
tions: SEARCH and MATCH. The corresponding
execution processes are outlined in Algorithm 1
and Algorithm 2. In the algorithms, function
REL_MATCH and TRI_MATCH will use prompts
in Table 8 and Table 9 to prompt LLMs for search-
ing and matching triples. To handle the interme-
diate function failure, if any intermediate function
(MATCH or SEARCH) fails, the program immedi-
ately ends and determines the claim as refuted.

Algorithm 1: SEARCH

Input: Triple (head, relation, tail), Graph
G, Sentence s

Output: A list of triples matching the
relation

1 if head ̸= None then
2 node← head ;
3 else
4 node← tail ;

5 edges← all relations connected to node in
G ;

6 if relation ∈ edges then
7 return all triples from G where node is

connected via relation ;

8 relation_candidates← all relation types
from node in G ;

9 best_relation← REL_MATCH(s,
10 (head, relation, tail),
11 relation_candidates) ;
12 return all triples from G where node is

connected via best_relation ;

C Error Examples

Figure 4 presents examples of different error types
encountered during the fact verification process
with PGR. These examples illustrate common is-
sues in program generation and execution, cate-
gorized into parameter errors, logical errors, and
execution errors.

Example (a) represents a parameter error, where

Algorithm 2: MATCH

Input: Triple (head, relation, tail), Graph
G, Claim s

Output: A triple in G matching the input
triple

1 triple_candidates← all triples with
relations connecting head and tail in G ;

2 if (head, relation, tail) ∈
triple_candidates then

3 return True ;

4 matched_triple← TRI_MATCH(s,
5 (head, relation, tail),
6 triple_candidates) ;
7 if matched_triple is not None then
8 return True ;

9 return False;

the MATCH function incorrectly takes the pronoun
"He" as an entity in its input, resulting in an execu-
tion failure.

Example (b) demonstrates a logical error involv-
ing an incorrect graph structure. The entities in the
sentence are directly connected, indicating a multi-
claim reasoning type. However, the generated pro-
gram incorrectly applies the SEARCH function twice,
creating a multi-hop structure inconsistent with the
original claim.

Example (c) shows a logical error within the
VERIFY function. Although no negation logic is
present in the claim, the final VERIFY function in-
correctly applies a negation using "not," leading to
an incorrect binary judgment despite the preceding
functions being executed correctly.

Finally, example (d) illustrates an execution er-
ror. The generated program logic and parameters
are correct, and the SEARCH function successfully
identifies the missing entity. However, during the
MATCH step, the correct triple found in the knowl-
edge graph is not recognized as a match, resulting
in a false outcome.

These examples highlight key challenges in pro-
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gram generation and execution, providing insights
for future improvements.

D Cost Analysis

The cost of LLM is a concerning situation in practi-
cal usage. One practical advantage of our approach
lies in its reduced training cost by leveraging LLMs
as few-shot learning methods. However, it is im-
portant to note that the primary computational cost
in LLM-based systems shifts to the inference stage
closely tied to the tokens of input-output sequences.
We give a statistical analysis about the average
LLM cost of the PGR process on fact verification
in Table 4. In our approach, the most cost of LLM
is the usage of input tokens. For the prompt length
limitation of LLM, we control the max length of
input tokens less than 8192 to ensure the correct
execution in program.

Metric Value
Average LLM calls per claim 2.2
Average output tokens per claim 135
Average input tokens per claim 2590

Table 4: LLM usage statistics.

E MetaQA Experiment

We evaluated our PGR framework on the MetaQA
dataset (Zhang et al., 2018), a widely used bench-
mark for multi-hop question answering over knowl-
edge graphs. Specifically, we focus on the MetaQA
3-hop split, which requires reasoning over three
connected triples to answer a single question. This
setting poses significant challenges in multi-hop
reasoning and thus serves as a suitable dataset to
assess the effectiveness and modularity design of
our method.

Given that MetaQA is formulated as a question
answering task, we adapt our framework accord-
ingly. To adapt PGR method on MetaQA task, only
the output of the SEARCH function is used to gener-
ate the final answer. The preceding modules (e.g.,
MATCH) are not used in MetaQA task, as the task
assumes a question mapped to an incomplete triple,
where the answer is derived from completing the
triple through entity retrieval.

Table 5 shows the performance of our method
on the MetaQA 3-hop dataset. As shown, PGR
approach achieves strong performance, demonstrat-
ing its capability to reason over multi-hop QA
tasks and retrieve correct answer entities effectively.

Notably, under the few-shot training setting, our
method outperforms other methods, indicating its
generalizability in low-resource scenarios.

Methods Strategy MetaQA 3-hop
EmbedKGQA full 94.8

NSM full 98.9
UniKGQA full 99.1

KG-GPT 12-shot 94.0
PGR 12-shot 95.8

Table 5: Performance of different models on MetaQA
3-hop dataset. The metric is Hits@1 and methods are
trained in different strategies.

F Entity Extraction and Disambiguation

We extend our framework to enable fact verification
using only the claim sentence as input by incorpo-
rating a lightweight entity extraction and disam-
biguation module. Specifically, few-shot prompt-
ing is employed to extract candidate entity men-
tions from the claim. KG nodes are pre-encoded
using a BERT model, and candidate entities are
also transformed into vectors via BERT-based en-
coding. Cosine similarity is then used to match
candidate mentions with the most relevant KG en-
tities. The disambiguated entities are subsequently
fed into the reasoning module, completing the veri-
fication pipeline.

Although the accuracy of automatically ex-
tracted entities is lower than using gold entities,
our method achieves clear improvements over base-
lines in fact verification. Table 6 compares KG-
GPT and our proposed PGR across different rea-
soning types.

These results indicate that even without gold
entities, our approach remains competitive and
achieves improvements over baselines. With the
integration of entity extraction and disambiguation,
the framework can support a complete and effective
KG-based fact verification pipeline.
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Method 1-hop Existence Multi-hop Multi-claim Negation All
KG-GPT w/ ex. 78.18 68.61 55.64 63.83 67.40 66.14
KG-GPT 90.26 78.22 59.79 81.01 80.97 78.55
PGR w/ ex. 83.51 78.28 60.79 69.07 69.69 71.38
PGR 93.30 93.10 75.96 89.95 81.16 86.82

Table 6: Comparison of KG-GPT and our proposed PGR across reasoning types with entity extraction module(w/
ex.).

He was originally born in British Hong Kong and later 

became a fighter pilot.

Claim

def program():
    result_1 = MATCH(('He', 'born in', 'British_Hong_Kong'))
    result_2 = MATCH(('He', 'became', 'Fighter_pilot'))
    predicted = VERIFY(result_1 and result_2)

Program

a. Variable Error

Baymax's first film appearance was in Big Hero 6. He was 

created by Duncan Rouleau and Steven T Seagle.

Claim

def program():
    entity_1 = SEARCH(('Baymax', 'first film appearance', None))
    result_1 = MATCH((entity_1, 'in', '"Big Hero 6(2014)"'))
    entity_2 = SEARCH(('Duncan_Rouleau', 'create', None))
    result_2 = MATCH(('Steven_T._Seagle', 'create', entity_2))
    predicted = VERIFY(result_1 and result_2)

Program

b. Logical Error (Graph)

Do you know that Al-Taqaddum Air Base serves a city 

which is in Western Christianity?

Claim

def program():
    entity_1 = SEARCH(('Al-Taqaddum_Air_Base', 'serve', None))
    result_1 = MATCH((entity_1, 'in', 'Western_Christianity'))
    predicted = VERIFY(not result_1)

Program

c. Logical Error (Verify)

The ship which is 125.8 metres long has a 2 x MTU 16V 

2000 M60 engine.

Claim

def program():
    entity_1 = SEARCH(('\"125800.0\"', 'length', None))
    result_1 = MATCH((entity_1, 'engine', '\"*2 × MTU 16V 2000 M60\\n*\"'))
    predicted = VERIFY(result_1)

Program

d. Execution Error

Execution

Step 1 : SEARCH ----> entity_1='A-Rosa_Luna’
Step 2 : MATCH([['A-Rosa_Luna', 'shipPower', '"*2 × MTU 16V 2000 
M60\\n*"']]) ----> False

Figure 4: Error examples of PGR.
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Please generate a program for the given sentence.
Use the 3 functions ’MATCH’, ’SEARCH’ and ’VERIFY’ in the program.
1. MATCH:
- Input: A complete triplet (entity, relation, entity), entity is given in the sentence or output of
SEARCH.
- Functionality: Checks if the triplet exists in the graph.
- Output: Returns True if the triplet exists; otherwise, False.

2. SEARCH:
- Input: A triplet with one None value (missing entity).
- Functionality: Identifies the possible missing entity based on the other components.
- Output: A list of possible entities for the missing part.

3. VERIFY:
- Input: The result from the MATCH function (True or False).
- Functionality: Verify the final result.
- Output: Returns True or False.

Examples:
# Abilene, Texas is part of Taylor County, Texas.
# Entities = ["Abilene,_Texas", "Taylor_County,_Texas"]
–>Generated:
def program():
result_1 = MATCH((’Abilene,_Texas’, ’part of’, ’Taylor_County,_Texas’))
predicted = VERIFY(result_1)

# Lake Placid, N.Y. is served by the Adirondack Regional Airport.
# Entities = ["Adirondack_Regional_Airport", "Lake_Placid,_New_York"]
–>Generated:
def program():
result_1 = MATCH((’Adirondack_Regional_Airport’, ’serve’,
’Lake_Placid,_New_York’))
predicted = VERIFY(result_1)

...

# The Ariane 5 was launched from the ELA-3 launchpad at the Guiana Space Centre.
# Entities = ["ELA-3", "Ariane_5", "Guiana_Space_Centre"]
–>Generated:
def program():
result_1 = MATCH((’ELA-3’, ’launch’, ’Ariane_5’))
result_2 = MATCH((’ELA-3’, ’at’, ’Guiana_Space_Centre’))
predicted = VERIFY(result_1 and result_2)

...

Your Task:
# < < < <S> > > >
# Entities = < < < <ENTITIES> > > >
–>Generated:

Table 7: Prompt of Graph Reasoning Program Generation
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Please find the triplet in "Triplet List" that aligns with the "Target Triplet" of "Target Claim".
Output the matched triplets in JSON format.

Examples:
Triplet List : [["William_Anders", "almaMater", ""AFIT, M.S. 1962""]]
Target Claim : An astronaut graduated with an M.S. in 1962 from AFIT, became a member of the
Apollo 8 team and retired on September 1st, 1969.
Target Triplet : ["Unknown", "graduate", ""AFIT, M.S. 1962""]
–>Output : [["William_Anders", "almaMater", ""AFIT, M.S. 1962""]]

Triplet List : [["AZAL_PFK", "capacity", ""3500""], ["AZAL_PFK", "ground", "Arena"], ...]
Target Claim : AZAL PFK is in the league but Qarabag FK are the champions.
Target Triplet : ["AZAL_PFK", "in", "Unknown"]
–>Output : [["AZAL_PFK", "league", "Azerbaijan_Premier_League"]]

Triplet List : [["Alliant_Techsystems", "product", "XM25_CDTE"]]
Target Claim : They also produce the XM25 CDTE and make the ALV X-1.
Target Triplet : ["Unknown", "produce", "XM25_CDTE"]
–>Output : [["Alliant_Techsystems", "product", "XM25_CDTE"]]

Triplet List : [["Military_of_Paraguay", "country", "Paraguay"], ...]
Target Claim : Yes, he was born in Paraguay and died in Asuncion.
Target Triplet : ["Unknown", "born in", "Paraguay"]
–>Output : [["Alfredo_Stroessner", "birthPlace", "Paraguay"], ...]

Your Task:
Triplet List : < < < <LIST> > > >
Target Claim : < < < <CLAIM> > > >
Target Triplet : < < < <TARGET> > > >
–>Output :

Table 8: Prompt of SEARCH function.

5494



Please find the triplet in "Triplet List" that aligns with the "Target Triplet" of "Target Claim".
Output the matched triplets in JSON format.

Examples:
Triplet List : [["Ahmedabad", "country", "India"]]
Target Claim : There is a museum in Ahmedabad, India.
Target Triplet : [["Ahmedabad", "in", "India"]]
–>Output : [["Ahmedabad", "country", "India"]]

Triplet List : [["Alfredo_Zitarrosa", "birthPlace", "Uruguay"], ...]
Target Claim : Alfredo Zitarrosa died in a country led by Tabaré Vázquez.
Target Triplet : [["Alfredo_Zitarrosa", "died in", "Uruguay"]]
–>Output : [["Alfredo_Zitarrosa", "deathPlace", "Uruguay"]]

Triplet List : [["1101_Clematis", "Planet/apoapsis", "5̈.20906E8"̈]]
Target Claim : well it has a mass of 5.7 kilograms and an apoapsis of 520906000.0 km.
Target Triplet : [["1101_Clematis", "apoapsis", "5̈.20906E8"̈]]
–>Output : [["1101_Clematis", "Planet/apoapsis", "5̈.20906E8"̈]]

Triplet List : [["Alfredo_Zitarrosa", "associatedBand", "Ciro_Pérez"], ...]
Target Claim : Alfredo Zitarrosa is related to the musician Ciro Pérez.
Target Triplet : [["Alfredo_Zitarrosa", "related to", "Ciro_Pérez"]]
–>Output : [["Alfredo_Zitarrosa", "associatedBand", "Ciro_Pérez"], ...]

Your Task:
Triplet List : < < < <LIST> > > >
Target Claim : < < < <CLAIM> > > >
Target Triplet : < < < <TARGET> > > >
–>Output :

Table 9: Prompt of MATCH function.
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