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Abstract

Recent advancements in Retrieval-Augmented
Generation (RAG) have improved large
language models (LLMs) by incorporat-
ing external knowledge at inference time.
Graph-based RAG systems have emerged as
promising approaches, enabling multi-hop
reasoning by organizing retrieved information
into structured graphs. However, when
knowledge graphs are constructed from
unstructured documents using LLMs, they
often suffer from fragmentation—resulting in
disconnected subgraphs that limit inferential
coherence and undermine the advantages
of graph-based retrieval. To address these
limitations, we propose ReGraphRAG, a novel
framework designed to reconstruct and enrich
fragmented knowledge graphs through three
core components: Graph Reorganization,
Perspective Expansion, and Query-aware
Reranking. Experiments on four benchmarks
show that ReGraphRAG outperforms state-of-
the-art baselines, achieving over 80% average
diversity win rate. Ablation studies highlight
the key contributions of graph reorganization
and especially perspective expansion to
performance gains. Our code is available at:
https://github.com/ToBeSuperior/ReGraphRAG

1 Introduction

Recent advances in artificial intelligence (AI), par-
ticularly the emergence and widespread adoption
of large language models (LLMs) (Achiam et al.,
2023; Hagos et al., 2024; Matarazzo and Torlone,
2025), have significantly transformed the landscape
of natural language processing and knowledge-
intensive tasks. While LLMs have demonstrated
impressive capabilities across a wide range of
applications, their reliance on static, pre-trained
knowledge introduces limitations when addressing
queries that require up-to-date, domain-specific,
or contextually nuanced information (Ling et al.,
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Figure 1: Comparison of retrieved subgraphs between
LightRAG (Guo et al., 2024) and ReGraphRAG. (a)
LightRAG retrieve disconnected and fragmented sub-
graphs from the knowledge graph, which limits coherent
reasoning. (b) ReGraphRAG reorganizes the retrieved
fragments into a unified and semantically enriched sub-
graph, enabling improved multi-hop reasoning and con-
textual understanding.

2023). These challenges have spurred the develop-
ment and adoption of Retrieval-Augmented Gener-
ation (RAG) frameworks (Lewis et al., 2020; Gao
et al., 2023b), which enhance the reasoning and
generation capabilities of LLMs by dynamically in-
corporating external information from large-scale
knowledge sources during inference.

Building upon the foundational paradigm of
RAG, graph-based RAG has emerged as a promi-
nent structured extension that organizes retrieved
information into graph structures (Han et al., 2024;
Peng et al., 2024; Zhang et al., 2025). Unlike
conventional RAG methods that treat retrieved
information as independent text chunks, graph-
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based RAG advances this framework by retrieving
and organizing knowledge in the form of graphs,
thereby supporting multi-hop reasoning and im-
proved contextual coherence. Notably, contempo-
rary approaches have moved beyond relying solely
on pre-existing knowledge graphs; instead, they
employ LLMs to construct knowledge graphs di-
rectly from unstructured documents, enabling more
flexible and adaptive knowledge integration (Edge
et al., 2024; Guo et al., 2024). This graph-based re-
trieval and reasoning mechanism not only strength-
ens the logical flow of generated responses but also
contributes significantly to the overall quality and
reliability of LLMs outputs.

Despite the growing interest in graph-based
RAG and the emergence of various methodolog-
ical advancements, significant limitations remain
unaddressed. A key challenge lies in the fragmen-
tation that arises when indexing documents into
knowledge graphs. When LLMs are used to extract
structured information from unstructured text, the
resulting graphs often consist of numerous discon-
nected nodes and isolated components, resulting in
sparse and incoherent structures. This undermines
the core strength of graph-based retrieval—its abil-
ity to support multi-hop reasoning across seman-
tically linked entities. Consequently, as shown in
Figure 1(a), the retrieval process itself becomes
disjointed, diminishing the effectiveness of down-
stream reasoning and generation. To address this
issue, we propose ReGraphRAG, a novel frame-
work that reorganizes retreived fragmented knowl-
edge into connected graphs, thereby enhancing the
comprehensiveness and inferential depth of gener-
ated responses.

ReGraphRAG, a novel framework compris-
ing three key components: Graph Reorganiza-
tion, Perspective Expansion, and Query-aware
Reranking. First, as shown in Figure 1(b), Graph
Reorganization ensures that the retrieved subgraphs
are transformed into a single connected graph
by identifying meaningful shortest paths between
them. This process not only bridges missing con-
nections among disjoint subgraphs but also intro-
duces new edges to support coherent reasoning
flows, thereby enhancing both the logical con-
sistency and inferential strength of the generated
answers. Given that this reorganization guaran-
tees a connected structure, we further enhance the
breadth of retrieved knowledge through Perspec-
tive Expansion, which decomposes the original
query into multiple interpretive angles and gen-

erates sub-queries accordingly. Each sub-query
guides the retrieval of complementary subgraphs
that collectively broaden the semantic coverage.
Finally, all retrieved and reorganized informa-
tion is converted into a structured triplet form (<
nodei, edgeij , nodej >) and subjected to Query-
aware Reranking, which scores and rerank the most
relevant triplets based on their semantic similarity
to the original query.

One of the core contributions of this work is
the introduction of ReGraphRAG, a novel frame-
work that reconstructs knowledge graphs from mul-
tiple interpretive perspectives based on the input
query. This approach enables the generation of
contextually enriched and structurally coherent
graphs that are well-suited for inference-driven an-
swer generation. Experimental evaluations con-
ducted on four benchmark datasets demonstrate
that ReGraphRAG consistently outperforms state-
of-the-art baselines across all four evaluation di-
mensions—comprehensiveness, diversity, empow-
erment, and overall. In particular, the average di-
versity win rate exceeds 80% compared to existing
methods, highlighting the framework’s strong ca-
pacity to capture and integrate semantically diverse
information. Furthermore, ablation studies and in-
depth analyses reveal that both Graph Reorganiza-
tion and Perspective Expansion are key contributors
to performance gains. Notably, Perspective Expan-
sion is shown to produce significant improvements,
underscoring the importance of multi-perspective
reasoning in enhancing the quality of generated
responses.

2 Related Work

2.1 RAG and Graph-based RAG

Despite the rapid advancement and widespread use
of LLMs (Achiam et al., 2023; Grattafiori et al.,
2024), they face key limitations such as outdated
knowledge, hallucinations, and lack of verifiable
outputs (Zhao et al., 2023). To address these is-
sues, retrieval-based knowledge augmentation has
been explored, notably with early models like RAG
using Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020; Lewis et al., 2020).

Existing RAG methods embed documents into
vectors stored in a database (Fan et al., 2024), im-
proving LLM performance to some extent. How-
ever, they still struggle with multi-hop QA, captur-
ing structural relations, and handling ambiguous
queries (Gupta et al., 2024; Das et al., 2025).
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To address these limitations, graph-based RAG
has been proposed, replacing vector databases
with graph-based ones for knowledge augmenta-
tion (Peng et al., 2024; Han et al., 2024; Zhang
et al., 2025). Approaches include using existing
open-domain knowledge graphs (LUO et al., 2024;
Sun et al., 2024) or constructing knowledge graphs
by extracting entities and relations from corpora
via LLMs (Edge et al., 2024; Guo et al., 2024; He
et al., 2024b).

2.2 Knowledge Graph Construction from
Corpus

Knowledge Graph Construction (KGC) has long
been studied, evolving from rule-based and statisti-
cal methods to more efficient machine learning and
deep learning approaches (Kim et al., 2016; Ji et al.,
2021). More recently, LLM-based KGC techniques
that utilize prompt-based or few-shot learning have
been proposed (Hu et al., 2022; Trajanoska et al.,
2023; Pan et al., 2024; Zhang et al., 2024), driven
by LLMs’ improved ability to understand context
and handle long documents.

LLM-based KGC offers high efficiency and
domain adaptability, effectively structuring large
document-based datasets for QA and reasoning
tasks (Peng et al., 2024; Han et al., 2024; Zhang
et al., 2025). Many graph-based RAG studies with
LLM-based KGC (Edge et al., 2024; Guo et al.,
2024; Xu et al., 2025; Chen et al., 2025) show
great improvements on these tasks; however, con-
struction issues —such as missing entities and rela-
tion errors— are not sufficiently addressed, often
resulting in fragmented graphs with disconnected
subgraphs that hinder meaningful structural infer-
ence (Liu and Li, 2020; Pan et al., 2023; Meyer
et al., 2023).

3 Background

Graph-based RAG extends the traditional RAG
framework by replacing or enriching flat text in-
dices with explicit graph structures that capture
entities and their interrelationships. To construct
such graphs from input text documents, LLMs are
employed to recognize and extract entities and the
relationships among them, resulting in an entity
set V and a relationship set E*. Specifically, the
resulting knowledge graph, constructed from tex-
tual data, is denoted as G = (V, E) and consists

*The prompt used for entity and relation extraction is
detailed in Appendix A.1

of k subgraphs. Each node v ∈ V represents an
entity and contains associated information such as
its name, description, and type. Each edge e ∈ E
indicates a semantic relationship between entities,
including metadata such as the source and target
entities and a textual description of the relation. All
nodes and edges are embedded into a vector space
using a pre-trained embedding model, yielding vec-
tor representations Φ(V) and Φ(E), respectively.

Given a query q, the retriever R identifies seman-
tically relevant nodes and edges from the knowl-
edge graph G based on similarity measures. These
retrieved nodes and edges, along with their asso-
ciated metadata, are integrated into a predefined
prompt template P , which, together with q, serves
as input to a LLM. This process can be formally
represented as:

Response(q,G) = LLM(P (q;R(q,G))) (1)

where Response denotes the final answer con-
ditioned on the retrieved results.

In this paper, we focus on reorganizing the frag-
mented granularities retrieved from the graph to
enhance the structural connectivity—one of the
key advantages of the graph-based approach. Fur-
thermore, we aim to integrate multiple interpretive
perspectives to generate responses that are enriched
with diverse and contextually grounded knowledge.

4 Method

As illustrated in Figure 2, ReGraphRAG comprises
three core components: Perspective Expansion
(Section 4.1), which decomposes the input query
into multiple interpretive angles to retrieve diverse
granularities (nodes and edges); Graph Reorgani-
zation (Section 4.2), which reconstructs the frag-
mented subgraphs into a single connected graph
structure; and Query-aware Reranking (Section
4.3), which reorders the retrieved triplets in align-
ment with the query’s semantic intent. Finally,
the reorganized graph is converted into a graph-
oriented prompt (Section 4.4), which serves as the
input to the language model for answer generation.

4.1 Perspective Expansion
Even the simplest questions can typically be ad-
dressed from multiple perspectives. For example,
the question “Is 1 plus 1 equal to 2?” may be an-
swered affirmatively from a mathematical stand-
point, yet a linguistic relativism perspective might
argue that “numbers are symbolic constructs whose
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Figure 2: An overview of the ReGraphRAG framework. Given a user query, the system first performs (a)
Perspective Expansion, generating multiple sub-queries across distinct interpretive angles. Retrieved nodes from
the fragmented knowledge graph are then reorganized via a two-step process of (b) Graph Reorganization: (1)
shortest-path connections between subgraphs, and (2) similarity-based path generation. Finally, (c) Reranking &
Prompting transforms the resulting graph into structured triplets and reranks based on query relevance to construct
the LLM prompt.

interpretation can vary across linguistic systems.”
To implement Perspective Expansion, we utilize
a LLM to decompose the original query into m
distinct interpretive angles, each representing a se-
mantically meaningful subspace of reasoning. For
each perspective, we generate n sub-queries using
chain-of-thought prompting with exemplars. The
prompts used for perspective expansion are detailed
in Appendix A.2.

Rather than using the original query, the retriever
R uses each generated sub-query to retrieve seman-
tically relevant nodes from the knowledge graph.
Specifically, the retrieved nodes corresponding to
each sub-query are represented as individual sub-
graphs S = (V, E). After eliminating duplicate
subgraphs, the collection of subgraphs for a single
perspective is denoted by H = {S1, S2, . . . , Sk},
where each Si = (Vi, Ei).

Consequently, the set {H1, H2, . . . ,Hm} repre-
sents the collection of subgraphs constructed from
the m perspectives. Each Hi corresponds to a frag-
mented, unconnected knowledge graph generated
from the sub-queries of a single perspective. In the
following section, we describe the method for reor-
ganizing these fragmented subgraphs into a unified,
connected graph structure.

4.2 Graph Reorganization

Graph-based RAG systems extract semantically
relevant granularities from a knowledge graph in
response to a given query. However, the extracted
granularities frequently exhibits discontinuities in
informational flow, hindering the effective utiliza-
tion of multi-hop reasoning — one of the key ad-
vantages of graph-based approaches. To address
this limitation, we aim to reorganize these frag-
mented subgraphs into a single, connected graph
structure, thereby enabling the LLM to leverage
the underlying graph topology for more coherent
and logically grounded answer generation.

The subgraph set H , extracted in the previous
section, consists solely of nodes. Due to the frag-
mented knowledge graph, there may be no exist-
ing paths between these nodes, resulting in discon-
nected components. To address this, we reconstruct
a connected graph from the fragmented subgraphs
through a two-step Graph Reorganization pro-
cess.

In the first step, we connect subgraphs that are
already linked through existing paths in the origi-
nal knowledge graph. For each pair of subgraphs,
we apply a Dijkstra-based shortest path algorithm
and prioritize connections in order of increasing
path length. These paths may include intermediary
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nodes that were not retrieved during the initial re-
trieval phase, thereby filling in missing links in the
overall reasoning flow.
Algorithm 1 Graph Reorganization

Require: Graph G = (V, E), list of subgraphs
{S1, . . . ,Sk} where Si = (Vi, Ei)

Ensure: Connected and merged graphR
1: P ← ∅ ▷ Step 1: Merge subgraphs based on

Dijkstra-based shortest path distances
2: for i← 1 to k − 1 do
3: for j ← i+ 1 to k do
4: Vi ← entities of Si, Vj ← entities of
Sj

5: if paths exist between any u ∈ Vi and
v ∈ Vj then

6: p∗ ← shortest path between some
u ∈ Vi and v ∈ Vj using Dijkstra

7: Add (i, j, p∗, |p∗|) to P
8: end if
9: end for

10: end for
11: Sort P by path length ascending
12: for each (i, j, p∗) in P do
13: if Si and Sj are not yet merged then
14: Merge Si and Sj , including nodes and

edges from p∗

15: end if
16: end for

▷ Step 2: Iteratively merge most similar
subgraph pairs based on cosine similarity

17: U ← list of unmerged subgraphs
18: Extract node embeddings Φ(V) from sub-

graphs in U
19: Compute cosine similarity matrix C from Φ(V)
20: while there are disconnected subgraphs in U

do
21: (Si,Sj)← most similar pair in C
22: (u, v)← most similar entity pair between
Si and Sj

23: Add edge (u, v) to G
24: Merge Si and Sj into Sij
25: U ← U \ {Si,Sj} ∪ {Sij}
26: Update C accordingly
27: end while
28: return final connected graphR

In the second step, for subgraphs that remain
disconnected due to the absence of any path, we
establish new edges based on node-level semantic
similarity. Specifically, we extract the node embed-
dings Φ(V) for each subgraph and compute pair-
wise cosine similarity between nodes belonging to

different subgraphs. We then iteratively construct
edges between the most similar node pairs across
different subgraphs. For each selected pair, one
node serves as the source entity and the other as
the target entity; their respective textual descrip-
tions are concatenated to form the description of
the new edge. This step is repeated until the sub-
graph set H is fully merged into a single connected
graph, ensuring the integration of all fragmented
knowledge.

The complete process is detailed in Algorithm
1. As a result, the m connected graphs—each
corresponding to a distinct interpretive perspec-
tive—serve as reorganized knowledge graphs that
facilitate multi-perspective reasoning.

4.3 Query-aware Reranking
Recent studies on prompting in RAG systems
(Liu et al., 2023; He et al., 2024a; Park et al.,
2025) suggest that the placement of critical infor-
mation—particularly at the beginning or end of
the prompt—can significantly influence the perfor-
mance of LLMs. Motivated by this insight, we
rerank the graph structure based on its semantic rel-
evance to the main query, ensuring that the most im-
portant information is positioned effectively within
the prompt.

To preserve the original structure of the extracted
knowledge graph while adapting it for LLM input,
we decompose the graph into a set of triplets in
the form of (< nodei, edgeij , nodej >). Each
edge embedding Φ(E) captures not only the re-
lationship between the source and target entities
but also incorporates their descriptive information.
We then perform query-aware reranking of these
triplets based on the cosine similarity between the
edge embeddings and the main query representa-
tion. This process ensures that graph elements most
semantically aligned with the query are prioritized
during answer generation.

4.4 Prompt Instruction
In graph-based RAG systems, the retrieved granu-
larities must be transformed into textual represen-
tations to serve as input to LLMs. Consequently,
prior works (Edge et al., 2024; Guo et al., 2024)
incorporate all extracted information (e.g., descrip-
tion, chunk, and metadata) directly into the prompt.
However, recent research (Chen et al., 2025) ar-
gues that the primary limitation of graph-based
RAG methods lies not in the insufficiency but in
the redundancy of the retrieved information. To
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Agriculture Legal CS Mix Average Win Rate

Naïve ReGraphRAG Naïve ReGraphRAG Naïve ReGraphRAG Naïve ReGraphRAG Naïve ReGraphRAG

Comprehensiveness 23.2% 76.8% 28.8% 71.2% 18.4% 81.6% 28.5% 71.5% 24.7% 75.3%
Diversity 8.0% 92.0% 4.8% 95.2% 4.0% 96.0% 9.8% 90.2% 6.7% 93.4%
Empowerment 18.4% 81.6% 20.8% 79.2% 13.6% 86.4% 26.8% 73.2% 19.9% 80.1%
Overall 17.6% 82.4% 23.2% 76.8% 13.6% 86.4% 26.0% 74.0% 20.1% 79.9%

HyDE ReGraphRAG HyDE ReGraphRAG HyDE ReGraphRAG HyDE ReGraphRAG HyDE ReGraphRAG

Comprehensiveness 31.2% 68.8% 36.0% 64.0% 32.0% 68.0% 26.8% 73.2% 31.5% 68.5%
Diversity 17.6% 82.4% 15.2% 84.8% 7.2% 92.8% 10.6% 89.4% 12.7% 87.4%
Empowerment 26.4% 73.6% 28.8% 71.2% 26.4% 73.6% 26.0% 74.0% 26.9% 73.1%
Overall 27.2% 72.8% 30.4% 69.6% 25.6% 74.4% 24.4% 75.6% 26.9% 73.1%

GraphRAG ReGraphRAG GraphRAG ReGraphRAG GraphRAG ReGraphRAG GraphRAG ReGraphRAG GraphRAG ReGraphRAG

Comprehensiveness 20.0% 80.0% 35.2% 64.8% 32.0% 68.0% 35.8% 64.2% 30.8% 69.3%
Diversity 10.4% 89.6% 22.4% 77.6% 8.0% 92.0% 19.5% 80.5% 15.1% 84.9%
Empowerment 19.2% 80.8% 32.8% 67.2% 30.4% 69.6% 42.3% 57.7% 31.2% 68.8%
Overall 17.6% 82.4% 33.6% 66.4% 30.4% 69.6% 36.6% 63.4% 29.6% 70.5%

LightRAG ReGraphRAG LightRAG ReGraphRAG LightRAG ReGraphRAG LightRAG ReGraphRAG LightRAG ReGraphRAG

Comprehensiveness 20.0% 80.0% 30.4% 69.6% 23.2% 76.8% 26.8% 73.2% 25.1% 74.9%
Diversity 8.0% 92.0% 6.4% 93.6% 8.0% 92.0% 8.1% 91.9% 7.6% 92.4%
Empowerment 16.8% 83.2% 27.2% 72.8% 17.6% 82.4% 26.8% 73.2% 22.1% 77.9%
Overall 15.2% 84.8% 26.4% 73.6% 17.6% 82.4% 25.2% 74.8% 21.1% 78.9%

Table 1: Pairwise win rates of ReGraphRAG against four strong baselines (NaïveRAG, HyDE, GraphRAG,
LightRAG) across four domains: Agriculture, Legal, Computer Science (CS), and a Mixed domain sampled
from the Ultradomain dataset. Evaluation is conducted along four dimensions: Comprehensiveness, Diversity,
Empowerment, and Overall quality. ReGraphRAG consistently outperforms all baselines, achieving particularly
strong gains in Diversity and Overall scores. The rightmost column reports average win rates across all domains.

address this, we design a prompt that facilitates
chain-of-thought reasoning using only the minimal
necessary information encoded in the knowledge
graph. Specifically, each triplet is formatted as:
[Perspective]: <Node_i> is connected

to <Node_j> with {Edge Description}
relation.

This format explicitly defines the semantic con-
text—denoted by the [Perspective]—in which the
relationship is grounded. Triplets are grouped by
their corresponding perspective, and if a triplet oc-
curs in multiple perspectives, it is included only
once under the unified [Across all] perspective.
This deduplication strategy preserves semantic cov-
erage across the m generated knowledge graphs
while effectively eliminating redundancy.

By compressing the node and edge information
extracted through our Perspective Expansion and
Graph Reorganization procedures, this instruction
format significantly reduces the token length re-
quired for LLM input—resulting in a more efficient
and scalable prompting scheme.

5 Experiments

5.1 Experimental Setup
Baselines: Although numerous graph-based RAG
systems have been recently proposed, we exclude
those lacking publicly available code, as their in-
clusion would hinder fair and reproducible compar-
isons. We evaluate ReGraphRAG against several
strong and widely recognized baseline models, in-
cluding NaiveRAG (Gao et al., 2023b), GraphRAG

(Edge et al., 2024), HyDE (Gao et al., 2023a), and
LightRAG (Guo et al., 2024). Further details re-
garding the selection and exclusion criteria for the
baseline methods are provided in Appendix B.
Datasets and metrics: For a fair comparison, we
apply the evaluation protocol of LightRAG, utiliz-
ing the Ultradomain (Qian et al., 2025), which is
sourced from college textbooks spanning 18 dis-
tinct domains. Our evaluation focuses on three
specific domains—Agriculture, Computer Science,
and Legal—as well as a Mix domain that includes
representative samples from various fields.
We also follow LightRAG’s LLM-based evaluation
method (Zheng et al., 2023; Gu et al., 2024), which
performs pairwise comparison to determine which
of two responses—generated by different RAG sys-
tems—is superior. The language model evaluates
the responses across four dimensions: Compre-
hensiveness, Diversity, Empowerment, and Overall
quality. For each dimension, the win rate is com-
puted based on the number of times a system’s
response is preferred.
A detailed statistical analysis of the dataset is pro-
vided in Appendix C, and further explanations of
the evaluation metrics are presented in Appendix
D.
Implementation Details: To ensure a rigorous
and fair comparison, LightRAG and ReGraphRAG
share the same knowledge graph indexed from the
underlying documents. This setup allows both mod-
els to operate over an identical retrieval space. For
ReGraphRAG, we set the number of perspectives
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Agriculture Legal CS Mix Average Win Rate

w/o P-exp ReGraphRAG w/o P-exp ReGraphRAG w/o P-exp ReGraphRAG w/o P-exp ReGraphRAG w/o P-exp ReGraphRAG

Comprehensiveness 38.4% 61.6% 42.4% 57.6% 41.6% 58.4% 42.4% 57.6% 41.2% 58.8%
Diversity 29.6% 70.4% 33.6% 66.4% 27.2% 72.8% 38.4% 61.6% 32.2% 67.8%
Empowerment 34.4% 65.6% 35.2% 64.8% 40.0% 60.0% 40.0% 60.0% 37.4% 62.6%
Overall 35.2% 64.8% 36.0% 64.0% 40.0% 60.0% 40.8% 59.2% 38.0% 62.0%

w/o Reorg ReGraphRAG w/o Reorg ReGraphRAG w/o Reorg ReGraphRAG w/o Reorg ReGraphRAG w/o Reorg ReGraphRAG

Comprehensiveness 48.8% 51.2% 48.8% 51.2% 46.8% 53.2% 48.0% 52.0% 48.1% 51.9%
Diversity 48.8% 51.2% 48.0% 52.0% 47.6% 52.4% 48.4% 51.6% 48.2% 51.8%
Empowerment 44.8% 55.2% 47.8% 52.2% 43.5% 56.5% 41.8% 58.2% 44.5% 55.5%
Overall 46.4% 53.6% 46.0% 54.0% 45.2% 54.8% 46.4% 53.6% 46.0% 54.0%

w/o Rerank ReGraphRAG w/o Rerank ReGraphRAG w/o Rerank ReGraphRAG w/o Rerank ReGraphRAG w/o Rerank ReGraphRAG

Comprehensiveness 52.0% 48.0% 52.8% 47.2% 52.0% 48.0% 52.0% 48.0% 52.2% 47.8%
Diversity 52.0% 48.0% 56.0% 44.0% 54.4% 45.6% 56.1% 43.9% 54.6% 45.4%
Empowerment 52.8% 47.2% 54.4% 45.6% 52.0% 48.0% 57.7% 42.3% 54.2% 45.8%
Overall 54.4% 45.6% 54.4% 45.6% 52.8% 47.2% 54.5% 45.5% 54.0% 46.0%

Table 2: Ablation study evaluating the contribution of each component in ReGraphRAG: Perspective Expansion
(P-exp), Graph Reorganization (Reorg), and Query-aware Reranking (Rerank). For each domain, we report win rates
of ReGraphRAG and its ablated variants across four dimensions: Comprehensiveness, Diversity, Empowerment,
and Overall. Removing Perspective Expansion leads to the largest performance drop, particularly in Diversity,
highlighting its importance in retrieving semantically rich information. Graph Reorganization also contribute
consistently across domains by enhancing logical coherence and relevance.

m = 4 and generate 3 sub-queries per perspective.
These hyperparameters were selected based on the
point of performance convergence observed in our
analysis (Section 5.5). To ensure a comparable total
number of retrieved granularities with LightRAG,
we extract the top 30 nodes from the knowledge
graph database for each subquery. All RAG sys-
tems are configured with "GPT-4o-mini" as the
language model and "text-embedding-3-small" as
the embedding model for all components, using a
chunk size of 1200 consistently across all datasets.

5.2 Main Results
Table 1 presents the pairwise comparison results be-
tween ReGraphRAG and each baseline across four
distinct domain-specific datasets. Empirically, Re-
GraphRAG demonstrates consistently strong per-
formance across all domains. As shown by the
Average Win Rate, it outperforms all baselines by
a margin exceeding 70%, with particularly notable
gains in the Diversity approaching a 90% win rate.

The remarkably high Diversity score, compared
to Comprehensiveness and Empowerment, under-
scores the strength of the Perspective Expansion
module in retrieving knowledge from varied inter-
pretive angles. However, increasing Diversity alone
can sometimes lead to less coherent or harder-to-
follow responses, which may negatively affect Em-
powerment. This trade-off is effectively mitigated
by the Graph Reorganization component, which in-
tegrates fragmented subgraphs into a coherent and
logically structured graph. By restoring informa-
tion flow and reinforcing reasoning paths, Graph
Reorganization plays a crucial role in preserving
Empowerment while maintaining the benefits of

high Diversity.
To further assess the individual contributions

of each component, we conduct an ablation study,
with detailed results presented in the following sec-
tion.

5.3 Ablation Study
We conduct an ablation study to evaluate the im-
pact of each ReGraphRAG component on answer
generation. Using the same hyperparameters as
the main model, we remove one module at a time
and compare performance pairwise with the full
model (Table 2). P-exp, Reorg, and Rerank denote
Perspective Expansion, Graph Reorganization, and
Query-aware Reranking, respectively.

Removing Perspective Expansion leads to con-
sistent performance drops across all domains and
metrics, with Diversity showing the most signifi-
cant decline (32.3% average win rate), highlighting
its key role in enriching responses with diverse in-
formation. Excluding Graph Reorganization leads
to a notable degradation in Empowerment (44.5%
average win rate), which evaluates how clearly and
coherently the answer is articulated. This suggests
that while the key content remains relatively intact,
the logical structure and clarity of the answer suffer
without this component.

5.4 Discussion
Unexpectedly, the model without Query-aware
Reranking performs better. This may stem from the
graph structure or limitations in prompt tuning. As
our prompts preserve graph form via triplets (sec-
tion 4.4) without deeply modeling multi-hop prior-
ities, reranking effects may be diminished. While
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Figure 3: Win rate of ReGraphRAG compared to
GraphRAG as the number of perspectives increases,
measured across four evaluation dimensions: Compre-
hensiveness, Diversity, Empowerment, and Overall.

reranking is common in graph-based RAG systems
(Glass et al., 2022; Chen et al., 2024; Sun et al.,
2025), its interaction with graph-structured prompt
design remains underexplored—an area we leave
for future work.

5.5 Analysis

In this section, we analyze the performance varia-
tion of ReGraphRAG with respect to the number of
perspectives and sub-queries used during inference.
The evaluation is conducted on the Mix domain
subset of the Ultradomain dataset. For each hy-
perparameter setting, we perform a pairwise com-
parison between the responses generated by Re-
GraphRAG and those of GraphRAG, measuring
relative performance. We vary the number of per-
spectives from 1 to 6 and the number of sub-queries
per perspective from 1 to 4, while keeping all other
hyperparameters consistent with those used in the
main experimental results.

Number of Perspectives: As shown in Figure 3, in-
creasing the number of perspectives generally leads
to performance improvements across all evaluation
criteria. Performance tends to converge around
four perspectives, suggesting that incorporating
multiple perspectives enhances response quality
up to a point, after which marginal gains dimin-
ish. Specifically, ReGraphRAG consistently out-
performs GraphRAG, particularly in terms of diver-
sity. Even with only one perspective, ReGraphRAG
achieves a high diversity win rate (68.8%) due to
the presence of three subqueries, which ensures
that multiple evidence paths are still explored.
As the number of perspectives increases, the com-
prehensiveness and empowerment scores also rise
steadily. This indicates that incorporating diverse

Figure 4: Win rate of ReGraphRAG compared to
GraphRAG as the number of sub-queries per perspec-
tive increases, evaluated across Comprehensiveness, Di-
versity, Empowerment, and Overall dimensions.

interpretive angles allows the model to generate re-
sponses that are both more detailed and more help-
ful for the user. For instance, when answering a
question like “What are the implications of climate
change on agriculture?”, considering perspectives
such as economic impact, ecological transforma-
tion, and food security allows the system to con-
struct a more nuanced and informative answer.
Number of Sub Queries: Figure 4 presents the
changes in win rate as a function of the number of
sub-queries generated per perspective. As the num-
ber of sub-queries increases, we observe a mod-
est improvement in Diversity and Overall scores.
However, a substantial increase in sub-query count
within a single perspective appears to offer dimin-
ishing returns in terms of Comprehensiveness and
Empowerment. This suggests that excessively ex-
panding sub-queries within the same interpretive
angle may introduce redundancy rather than en-
hancing informativeness or clarity. Based on these
findings, we set the number of sub-queries n = 3
in ReGraphRAG, as it yields the highest overall
win rate.

6 Conclusion

In this work, we presented ReGraphRAG, a
novel graph-based RAG framework designed to
address the fragmentation problem inherent in
LLM-generated knowledge graphs. By integrat-
ing three key components—Perspective Expansion,
Graph Reorganization, and Query-aware Rerank-
ing—ReGraphRAG reconstructs and enriches dis-
connected knowledge graphs into coherent and
inference-friendly structures. Our extensive experi-
ments on diverse benchmark domains demonstrate
that ReGraphRAG consistently outperforms strong
baselines in all evaluation dimensions, especially
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achieving substantial gains in diversity and empow-
erment.

Limitations

The effectiveness of the Query-aware Reranking
module remains limited. As observed in our abla-
tion study, removing the reranking step occasion-
ally led to better performance, contrary to expecta-
tions. This outcome implies that the current rerank-
ing strategy—based on cosine similarity between
edge embeddings and query representations—may
not fully capture the multi-hop reasoning potential
afforded by graph-structured information. As also
noted in the ablation analysis (section 5.3), research
focusing on the interplay between graph-structured
prompt design and reranking in graph-based RAG
systems remains scarce. We leave this exploration
as an important direction for future work.

The framework incurs computational overhead
due to its multi-perspective expansion strategy. De-
composing the original query into multiple interpre-
tive angles and generating several sub-queries per
perspective increases both retrieval and inference
time. While this approach enhances diversity and
semantic coverage, it may limit the practicality of
ReGraphRAG in real-time or resource-constrained
environments. Future work may focus on adaptive
perspective selection or budget-aware expansion to
balance performance gains with efficiency.
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A Overview of the used prompts

A.1 Entity and Relationship Extraction Prompt
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A.2 Perspective Expansion Prompt
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A.3 Response Prompt
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A.4 LLM-based Evaluation Prompt
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B Explanation for Baseline

B.1 Selected Baseline

NaiveRAG (Lewis et al., 2020; Gao et al., 2023b)
is the most standard baseline. It separates the cor-
pus into chunks, converts them into embedding
vectors, stores them in the database, and performs
retrieval based on the similarity of the embedding
vectors to the query. Since it is an intuitive and effi-
cient method, it is still the choice of many studies.
HyDE (Gao et al., 2023a) is one of the ad-
vanced versions of NaiveRAG, which follows the
method of generating hypotheses by looking at
the query and then performing retrieval on the
embedding vector database with the hypotheses.
HyDE can be interpreted as an extension of query
expansion method, and it has shown an effec-
tive way to retrieve documents that do not have
relevance labels. The license for HyDE is un-
known, but we denote the source code URL:
https://github.com/texttron/hyde
GraphRAG (Edge et al., 2024) extracts entities
and relationships from the corpus with LLM to
build a database with a graph structure. Then, it
uses Leiden community detection[Leiden] to com-
munity the graph and generates community sum-
maries from leaf-level to higher-level. After that,
the final answer is generated by the map-reduce
step. GraphRAG is released under the MIT Li-
cense.
LightRAG (Guo et al., 2024) is the successor of
GraphRAG. LightRAG builds a framework that is
much more efficient than GraphRAG by using key-
value pair generation and dual-level retrieval in-
stead of summarization after graph indexing. This
is the most direct baseline for comparison with
our work. LightRAG is released under the MIT
License.

B.2 Excepted Baseline

PathRAG (Chen et al., 2025) proposed a method-
ology that applied pruning techniques to retain only
the information that is core to generating answers,
revealing that excessive retrieved information ac-
tually degrades the performance of the generator.
However, we decided to exculde it from the base-
line due to incomplete publicly available code.

NodeRAG (Xu et al., 2025) uses a heteroge-
neous KGC method and unified-level informa-
tion retrieval to achieve higher performance than
GraphRAG, LightRAG, etc. However, we decided
to exculde it from the baseline due to incomplete

Statistics Agriculture CS Legal Mix

Total Documents 12 10 94 61
Total Tokens 1,923,151 2,039,189 4,719,432 602,560
Max Tokens 378,588 433,563 79,095 18,797
Min Tokens 75,907 51,677 31,778 1,848

Table 3: Statistics of the Ultradomain dataset

publicly available code.

C Explanation for Dataset

We used the Ultradomain dataset (Qian et al., 2025),
which has been used in several graph-based RAG
studies, including LightRAG. Ultradomain is a
domain-specific QA benchmark built from college
textbooks. It consists of a total of 20 QA datasets,
and in this study, we chose 4 datasets: Agriculture,
Computer Science, Legal, and Mix, as per Ligh-
tRAG’s method. Among them, the Legal Dataset
consists of legal contracts and requires professional
and structured answers. Ultradomain is released
under the Apache License 2.0. Table 3 shows the
statistical information such as the number of docu-
ments and tokens for each dataset.

D Explanation for Evaluation Metric

There are many methods for LLM evaluations, but
the LLM-as-a-Judge method (Zheng et al., 2023;
Gu et al., 2024), which directly compares two an-
swers, is evaluated as objective and efficient. In
this study, we used the same evaluation metrics of
Comprehensiveness, Diversity, and Empowerment
for fair comparison with Edge et al. (2024) and
Guo et al. (2024). The three metrics can evaluate
the completeness of the answer in different ways,
and LLMs should compare two answers for each
of the three metrics, choose the better answer, and
give reasons. Finally, an overall winner is selected.
The prompt used in the evaluation procedure is
provided in Appendix A.4.

5441



Model Time Cost (sec) Token Cost

Naïve 0.8 3,800
GraphRAG 8.4 360,000
LightRAG 7.2 29,000
ReGraphRAG w/o expansion 4.8 3,700
ReGraphRAG (full) 19.8 18,000

Table 4: Comparison of approximate time cost and
token cost across representative baselines

E Computational Efficiency

As shown in Table 4, GraphRAG achieves effi-
cient response generation through multithreaded
retrieval and generation from multiple communi-
ties, but this strategy incurs extremely high token
costs (360,000 tokens). LightRAG, although faster,
retrieves 1-hop nodes from fragmented graphs and
requires a larger set of nodes and context to com-
pensate for the lack of coherent multi-hop structure.
Despite this, its performance remains limited, as
demonstrated in our main results. In contrast, Re-
GraphRAG without perspective expansion already
achieves lower time and token costs, suggesting
that our graph reorganization strategy can be ap-
plied selectively for efficiency gains. While the
full ReGraphRAG with multi-perspective expan-
sion shows higher time cost (19.8 sec), it is worth
noting that this value reflects a sequential execution
setup. Adopting the same multithreaded parallel
retrieval strategy used by GraphRAG could reduce
time cost to the 4–5 sec range without changing the
algorithm itself. Importantly, even with additional
processing steps, our method requires far fewer
tokens (18,000) compared to GraphRAG and Ligh-
tRAG, indicating a more efficient use of prompt
resources relative to performance.
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F Case Study
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