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Abstract

Multi-hop reasoning with reinforcement learn-
ing has proven effective in discovering infer-
ence paths in incomplete knowledge graphs.
However, a major challenge remains: spurious
paths (incorrect reasoning paths that acciden-
tally lead to correct answers) often arise due
to reward mechanisms that prioritize final re-
sults over reasoning quality. While existing
approaches attempt to mitigate this issue using
external rules, they often neglect the internal
semantic consistency between the target triple
and the intermediate triples along the reasoning
path. In this paper, we propose a novel frame-
work, Semantic Consistency Enhanced Rein-
forcement Learning (SCE), which incorporates
semantic consistency into the reward function
to guide multi-hop reasoning. Experimental re-
sults demonstrate that SCE outperforms strong
baseline methods and facilitates the discovery
of more interpretable reasoning paths. 1

1 Introduction

Knowledge Graphs (KGs) are structured collec-
tions of factual triples (Kok and Domingos, 2007;
Dettmers et al., 2018; Chen et al., 2020) that have
been widely applied in downstream natural lan-
guage processing (NLP) tasks, such as recommen-
dation systems (Guo et al., 2020; Wang et al., 2019;
Cao et al., 2019) and question answering (Yasunaga
et al., 2021; Huang et al., 2019). However, the in-
herent incompleteness of most KGs, due to miss-
ing facts, limits their effectiveness in these applica-
tions (Ji et al., 2021). Knowledge Graph Reasoning
(KGR) has emerged as a promising solution to infer
missing information.

Embedding-based methods (Bordes et al., 2013;
Dettmers et al., 2018) aim to learn vector represen-
tations of entities and relations, capturing implicit
relationships in high-dimensional spaces. While
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Figure 1: Two reasoning paths for the query; (a) is a
reasonable path, while (b) is a spurious path.

these approaches yield strong performance in link
prediction tasks, they lack interpretability, which is
crucial for understanding model decisions (Hilde-
brandt et al., 2020). To address this issue, rule-
based methods (Yang et al., 2017; Cheng et al.,
2022) have been proposed to mine logical rules
(Guo et al., 2016; Meilicke et al., 2018), offering
improved explainability. However, they often suf-
fer from poor generalization and high computa-
tional cost (Zhang et al., 2022b).

Multi-hop Reasoning Methods (MRMs) (Lin
et al., 2018; Wan and Du, 2021; Zhang et al., 2022a;
Drance et al., 2023; Zhu et al., 2023), which in-
corporate reinforcement learning (RL), strike a
balance between performance and interpretability.
These methods model knowledge inference as a
sequential decision-making process. For instance,
given a query (Tom, educatedAt, ?), a reasoning
agent may correctly reach the answer MIT via a
semantically coherent path (a) in Figure 1. How-
ever, the same answer could also be reached via
an unrelated path (b), if the reward is based solely
on the final answer. This issue—where incorrect
reasoning leads to correct answers—is known as
the spurious path problem, a persistent challenge
in MRMs (Lin et al., 2018; Lv et al., 2021). This
stems from reward functions that focus on factual
accuracy while overlooking the semantic plausibil-
ity of the reasoning path (Das et al., 2017).

Several methods have been proposed to miti-
gate this issue, including action dropout (Lin et al.,
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2018), high-quality rule mining (Lei et al., 2020),
and spuriousness metrics (Jiang et al., 2023). How-
ever, these approaches typically rely on external
rules and fail to leverage the internal semantic con-
sistency among triples within a reasoning path.

In this work, we propose a novel solution cen-
tered on enhancing the semantic consistency of rea-
soning paths. As illustrated in Figure 1, the triples
in path (a)—(Tom, student of, Mary) and
(Mary, works at, MIT)—are more semantically
aligned with the target triple (Tom, educatedAt,
MIT) than those in path (b)—(Tom, is friends
with, Jerry) and (Jerry, visits, MIT). This
semantic consistency is influenced by both the rela-
tions and the entities involved. We define semantic
consistency functions to measure such consistency
and incorporate them into the learning process.
Our contributions are summarized as follows:

1. We design relation and entity semantic con-
sistency functions to quantify the consistency
between intermediate and target triples.

2. We integrate the semantic consistency score
into the reward function, enabling the agent to
prioritize more interpretable reasoning paths.

3. Experimental results demonstrate that our
method not only surpasses strong baselines in
performance but also significantly improves
interpretability and training efficiency.

2 Related Work

Embedding-based methods such as TransE (Bor-
des et al., 2013), TransR (Lin et al., 2015), and
ComplEx (Trouillon et al., 2016) have been widely
adopted due to their efficiency and strong predic-
tive performance. These methods predict miss-
ing triples in KGs by embedding entities and rela-
tions into low-dimensional vector spaces, utilizing
similarity or distance between embedding vectors.
However, the lack of interpretability in these ap-
proaches hinders their practical applications.

To address this limitation, several hybrid ap-
proaches have emerged that aim to combine the
strengths of embedding-based models with in-
terpretable reasoning techniques. For instance,
RLogic (Cheng et al., 2022) learns predicate em-
beddings while incorporating recursive logical
rules to enhance reasoning capability. The Multi-
Hop method (Lin et al., 2018) employs pre-trained
embeddings to generate soft rewards, alleviating
issues of sparse supervision and false negatives in
reinforcement learning-based multi-hop reasoning.

RF2 (Liu et al., 2022) constructs a dynamic reason-
ing framework grounded on TransE embeddings
to further boost performance. Similarly, PT-MH
(Drance et al., 2023) leverages pre-trained embed-
dings to represent entities and relations, thereby
improving reasoning accuracy.

In parallel, many researchers have explored the
incorporation of external rules to improve the per-
formance of interpretable methods. For example,
ChatRule (Luo et al., 2023) takes advantage of the
semantic understanding capabilities of large lan-
guage models to efficiently extract logical rules
and perform reasoning. RARL (Hou et al., 2021)
incorporates high-quality rules as prior knowledge,
guiding the model to select more reasonable reason-
ing paths. PS-Agent (Jiang et al., 2023) introduces
the Path Spuriousness (PS) metric to quantify the
reliability of a reasoning path and integrates it into
the reward function to steer the agent toward more
reasonable paths.

While these approaches significantly improve
reasoning accuracy and interpretability by lever-
aging external signals, they often overlook the in-
ternal semantic consistency between triples. This
omission results in the persistent generation of spu-
rious paths (paths that are logically weak but yield
correct answers) undermining the transparency of
the reasoning process (Lv et al., 2021). Although
prior work, such as action dropout in Multi-Hop
(Lin et al., 2018), rule-based filtering in RARL
(Hou et al., 2021), and the use of PS metrics in
PS-Agent (Jiang et al., 2023), have attempted to
alleviate this issue, their reliance on external re-
sources remains a limitation.

In contrast, our work focuses on the semantic
consistency between triples, emphasizing internal
consistency in the reasoning process. By model-
ing and leveraging the semantic consistency be-
tween intermediate and target triples, our method
encourages the discovery of more interpretable and
semantically grounded reasoning paths.

3 Preliminaries

In this section, we review the definition of the multi-
hop reasoning problem (§3.1) and introduce the
formulation of reinforcement learning (§3.2).

3.1 Problem Definition

We denote a knowledge graph G as a directed graph,
G = {(es, r, eo) | es, eo ∈ E , r ∈ R}, where E is
the set of entities, andR is the set of relations. Each
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Figure 2: The reasoning process of Semantic Consistency Enhanced Reinforcement Learning framework. (1)
Path-Finding (Top part): the agent selects actions based on the current state until reasoning terminates. (2) Path-
Reasoning (Bottom part): Calculating the reasonable reward for a complete reasoning path.

triple (es, r, eo) in G represents a fact. Embedding
vectors are indicated with an arrow (e.g., e⃗, r⃗).

For the knowledge graph reasoning task, we fol-
low the definition from previous work (Lin et al.,
2018). Given a triple (es, rq, eo), where rq ∈ R is
the query relation, we consider the query formed by
removing the tail entity, denoted as (es, rq, ?). The
objective is to perform an efficient search on G to
find one or more target entities eo (in cases where
the query relation rq corresponds to a one-to-many
relationship, multiple correct entities eo may exist)
that satisfy the relation (es, rq, eo) but are missing
in G due to incompleteness.

During the reasoning process, the agent may
explore multiple reasoning paths starting from the
source entity es, each potentially leading to a differ-
ent correct target entity eo. Formally, a reasoning
path is defined as:

es
r1−→ e1

r2−→ e2 . . .
rT−1−→ eT−1

rT−→ eT (1)

where eT is the final entity in the reasoning
path. If eT = eo, the reasoning result is con-
sidered correct. We define the sequence of rela-
tions traversed in the reasoning path as the relation
path, denoted by rp = [r1, r2, . . . , rT ], and the se-
quence of entities as the entity path, denoted by
ep = [es, e1, . . . , eT ].

3.2 Reinforcement Learning Formulation
The search process of knowledge graph reason-
ing can be modeled as a Markov Decision Process
(MDP) (Puterman, 2014; Silver et al., 2016; Sutton
and Barto, 2018). The agent starts from the source
entity es, sequentially selects the outgoing edge of
the current entity, and eventually stops at the target
entity eo. Specifically, the MDP consists of the
following key elements:

States. The state at step t is st = (et, rq, ht) ∈
S, which consists of the entity et visited at step t,
the query relation rq, and the history path ht.

Actions. The action space At ∈ A at step t is
At = {(r′t, e′t) | (et, r′t, e′t) ∈ G}, where (r′t, e

′
t)

are the outgoing relation edges and corresponding
entities of et. Additionally, we add a self-loop edge
to each At to realize "stop".

Transition. The state transition function
T = S × A → S is defined as T (st,At) =
T (et, es, rq,At). Specifically, after the agent takes
action at+1 = (r′t, e

′
t), the state will transition from

st = (et, rq, ht) to st+1 = (e′t, rq, ht+1).
Rewards. For the binary reward Rb, if the agent

obtains the correct result, i.e., eT = eo, the reward
is 1; otherwise, it is 0. The formula is as follows:

Rb(ST ) = I(eT = eo) (2)

Policy. The search policy of the agent is param-
eterized by the state, query, and historical search
paths (Lin et al., 2018). We use embeddings to
represent each entity and relation in G and encode
the history paths ht using a GRU:

h0 = GRU(0, a0) (3)

ht = GRU(ht−1, at−1), t > 0 (4)

where h0 represents the initial path, and a0 =
[r0; es] is composed of the initial relation r0 and
entity es.

The parameterized policy network can be repre-
sented as:

πθ(at+1 | st) = σ(At ×W2ReLU(W1s⃗t)) (5)

where σ is the softmax operation, s⃗t is the con-
catenated embedding of (e⃗t, r⃗q, h⃗t).
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Optimization. Train the policy network by max-
imizing the expected reward of queries in G:

J(θ) = E(es,r,eo)∈G [Ea1,...,aT∼πθ
[R(sT | es, r)]]

(6)
where sT represents the final state and the reward
R represents the complete reward function, which
is defined in Section 4.3 Equation (22).

We use the REINFORCE algorithm (Williams,
1992) to solve this optimization problem. By
traversing all the triples (es, r, eo) in G, we update
the parameters θ using the following equation:

∇θJ(θ) ≈
T∑

t=1

Rt∇θ log πθ(at | st) (7)

θ′ = θ +∇θJ(θ) (8)

where ∇θJ(θ) is the policy gradient obtained us-
ing the REINFORCE approximation, and gradient
ascent is used to update the parameter θ.

4 Methodology

Building on the observations presented in the in-
troduction section, that reasonable multi-hop rea-
soning paths often exhibit strong semantic consis-
tency among triples, we propose a semantic con-
sistency framework (SC) to quantitatively evaluate
this consistency. The proposed framework con-
sists of two complementary components: Relation
Consistency and Entity Consistency.

Specifically, a reasoning path es
r1−→ e1

r2−→
e2 . . .

rT−1−→ eT−1
rT−→ eT is decomposed into a re-

lation path rp = [r1, r2, . . . , rT ] and an entity path
ep = [es, e1, . . . , eT ]. We compute relation and
entity consistency scores for each component and
fuse them into a unified semantic consistency score.
This score is incorporated into the reward function
to encourage the agent to select more semantically
coherent paths, thereby enhancing both the inter-
pretability and reliability of multi-hop reasoning.

4.1 Relation Consistency
For the same query, there may be several reasoning
paths, but the relation paths rp in these paths are not
the same. The consistency of different rp with rq
also varies, and paths composed of low consistency
rp are more likely to have low interpretability. To
improve the interpretability of paths, we propose
Relation Consistency (RC), which emphasizes the
consistency of rp with rq during path reasoning.
RC consists of Local Relation Similarity (LRS)
and Global Relation Closeness (GRC).

Local Relation Similarity (LRS). The Local
Relation Similarity LRS(rj , rq) quantifies the se-
mantic similarity between an intermediate relation
rj ∈ rp and the query relation rq. It is computed
using the normalized cosine similarity:

LRS(rj , rq) =
cos(r⃗j , r⃗q) + 1

2
(9)

To make the query relation embedding r⃗q
context-aware, we dynamically refine it by incor-
porating information from the full relation path rq:

r⃗q ← r⃗q +Wr · r⃗q (10)

where r⃗q denotes concatenation of all relation em-
beddings in the path, and Wr is a learnable transfor-
mation matrix. This update allows r⃗q to fuse path
information, for more accurate relation similarity
estimation across different reasoning paths. All
LRS values are normalized to [0, 1] to ensure sta-
bility when incorporated into the reward function.

Global Relation Closeness (GRC). Inspired by
the TransE series of models (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015), which represent
one-hop relations as e⃗s+ r⃗ ≈ e⃗o, our objective is to
minimize the embedding distance ∥e⃗s + r⃗q − e⃗o∥2.
Extending this formulation to multi-hop reasoning,
we require each selected relation to progressively
reduce the distance to the target entity.

Formally, we define the distance at step j as:

Drj = ∥e⃗s + r⃗j − e⃗o∥2 (11)

where e⃗s, e⃗o, and r⃗j are the embedding vectors of
the source entity, target entity, and the j-th rela-
tion in the reasoning path, respectively. To ensure
progressive closeness, we expect:

Drj > Drj+1 , ∀j ∈ [1, T − 1]

Let Cnt↓(rp) denote the number of steps where
the distance decreases and Cnt↑(rp) the number
where it increases. Then the global relation close-
ness is defined as:

GRC(rp) =
Cnt↓(rp)

Cnt↓(rp) + Cnt↑(rp)
(12)

Finally, we compute the relation semantic consis-
tency by combining local and global components:

RC((rj , rq), rp) = α1 · LRS(rj , rq)

+ (1− α1) ·GRC(rp) (13)

where α1 ∈ [0, 1] is a weighting coefficient bal-
ancing local similarity and global consistency.
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4.2 Entity Consistency
Since a reasoning path consists of both a relation
path and an entity path, enhancing only relation-
level consistency is insufficient to ensure overall
semantic consistency. Therefore, we introduce En-
tity Consistency (EC), which captures the seman-
tic consistency between the intermediate entities
and the target entity eT . EC is composed of two
components: Local Entity Similarity (LES) and
Global Entity Closeness (GEC).

Local Entity Similarity (LES). The
LES(ej , eT ) measures the semantic similar-
ity between an intermediate entity ej ∈ ep and the
final entity eT :

LES(ej , eT ) =
cos(e⃗j , e⃗T ) + 1

2
, j ∈ [1, T −1]

(14)
To make the representation of eT path-aware, we

refine it using the full entity path ep:

e⃗T ← e⃗T +We · e⃗p (15)

where We is a learnable weight matrix and e⃗p is
the concatenation of all relation embeddings in ep.

Global Entity Closeness (GEC). Similar to
GRC, we define a distance-based constraint to en-
force global alignment. Each entity in the path
should move closer to the target, i.e.,

Dej > Dej+1 , ∀j ∈ [1, T − 1]

where
Dej = ∥e⃗s + r⃗q − e⃗j∥2 (16)

Let Cnt↓(ep) and Cnt↑(ep) denote the number
of decreasing and increasing distances, respectively.
The global entity closeness is defined as:

GEC(ep) =
Cnt↓(ep)

Cnt↓(ep) + Cnt↑(ep)
(17)

Entity Consistency. The overall entity-level con-
sistency score is computed as a weighted sum:

EC((ej , eT ), ep) = α2 · LES(ej , eT )

+ (1− α2) ·GEC(ep) (18)

Finally, we fuse relation and entity consistency
to compute the overall semantic consistency of the
reasoning path:

SC = β ·RC + (1− β) · EC (19)

where β ∈ [0, 1] is a weighting coefficient balanc-
ing relation and entity consistency.

Dataset Ent. Rel. Triples Degree
train valid test mean max

UMLS 135 46 5,216 652 611 76 266
Kinship 104 25 8,544 1,068 1074 161 184

FB15k-237 14,541 237 272,115 17,535 20,466 37 2560
WN18RR 40,943 11 86,835 3,034 3,134 4 924
WD15K 15,812 179 159,037 8,727 8,761 20 618

Table 1: Basic parameters of the benchmark datasets.

4.3 Reasonable Reward
The binary reward Rb provides a signal only when
the agent identifies the correct target entity, result-
ing in sparse feedback and impeding effective learn-
ing. This issue is particularly pronounced in one-
to-many scenarios in knowledge graphs, where a
source entity es may correspond to multiple valid
target entities eo. Some of these candidates, de-
noted as eT , may be semantically correct but are
not labeled as ground truth. Ignoring such entities
can hinder the model’s generalization capability.

To address this, we leverage a pre-trained embed-
ding model (ConvE (Dettmers et al., 2018)) to as-
sign soft rewards. Specifically, we compute a plau-
sibility score f(es, rq, eT ) that estimates the likeli-
hood of the triple (es, rq, eT ) being valid. This soft
reward is integrated with the binary reward to form
an accuracy reward Ra:

Ra(sT ) = Rb(sT ) + (1−Rb(sT )) · f(es, rq, eT )
(20)

Furthermore, to encourage the agent to select
more interpretable reasoning paths, we incorporate
the semantic consistency score SC(rt, et), which
captures both relation and entity consistency. The
resulting reasonable reward Rr is defined as:

Rr(rt, et) = Ra(sT ) · SC(rt, et) (21)

This design ensures that path interpretability is
emphasized especially when the predicted result is
correct (Jiang et al., 2023).

We then combine the accuracy reward and the
reasonable reward to compute the final reward R:

R((rt, et), sT ) = Ra(sT ) +Rr(rt, et) (22)

5 Experiments

We introduce the benchmark datasets, baseline
models, hyperparameters, and evaluation proto-
col (§5.1). We compare our model with baselines
(§5.2), analyze its interpretability (§5.3), evaluate
performance across different relation types (§5.4),
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and assess runtime efficiency relative to external
rule-based methods (§5.5). We conclude with case
studies that qualitatively demonstrate the effective-
ness of our approach (§5.6).

5.1 Experiment Setup

5.1.1 Datasets
We conducted experiments on five widely used
knowledge graph datasets: (1) UMLS (Kok and
Domingos, 2007), (2) Kinship (Lin et al., 2018), (3)
FB15k-237 (Toutanova et al., 2015), (4) WN18RR
(Dettmers et al., 2018), and (5) WD15K (Lv et al.,
2021). Table 1 summarizes key dataset statistics.

5.1.2 Baseline Models
We compare our method against the following base-
lines: (1) Multi-hop reasoning models: MIN-
ERVA (Das et al., 2017), Multi-Hop (Lin et al.,
2018), RARL (Hou et al., 2021), RF2 (Liu et al.,
2022), PT-MH (Drance et al., 2023), PS-Agent
(Jiang et al., 2023), and LMH-KGR (Liu et al.,
2024). (2) Ablation models: SCE denotes our
complete model. SCE(w/o ent) removes the entity
semantic consistency module, while SCE(w/o rel)
removes the relation semantic consistency module.

5.1.3 Hyperparameters
Our model largely follows the hyperparameter set-
tings used in (Lin et al., 2018). For all models that
involve reward shaping, we adopt ConvE embed-
dings. Both relation and entity embeddings are
set to 200 dimensions, with options for using pre-
trained or randomly initialized embeddings. The
GRU-based path encoder uses three hidden layers,
each with 200-dimensional embeddings. Detailed
hyperparameter settings see Appendix B.

5.1.4 Evaluation Protocol
Performance Metrics. Each test triple
(es, rq, eo) is converted into a query of the form
(es, rq, ?). During reasoning, any triples involving
rq or its inverse r−1

q are removed to prevent data
leakage. The model outputs a ranked list of
candidate target entities. We use the following
metrics to comprehensively evaluate the methods:

Hit@K: The percentage of test queries for which
the correct entity eo appears in the top K ranked
candidates. MRR: The average value of 1/Rankeo ,
where Rankeo is the rank of the correct answer.

Interpretability Metrics. Following (Lv et al.,
2021), we adopt the following metrics:

Model PR LI GI

Baseline
Models

NeuralLP 10.2 80.4 8.2
Multi-Hop 81.5 9.4 7.7

PT-MH 80.1 3.2 2.6
PS-Agent 88.1 9.5 8.4

Ablation
Models

SCE 89.8 10.8 9.7
SCE(w/o ent) 88.2 10.8 9.5
SCE(w/o rel) 88.7 10.9 9.6

Table 2: Interpretability metrics on WD15K. And met-
rics PR, LI, and GI are multiplied by 100.

(1) Path Recall (PR): Measures the fraction of
queries for which at least one reasoning path exists:

PR =

∑
(es,rq ,eo)∈Test Cnt(es, rq, eo)

|Test| (23)

where Cnt(es, rq, eo) = 1 if a valid path exists
from es to eo, and 0 otherwise.

(2) Local Interpretability (LI): The average
interpretability score of the highest-confidence rea-
soning paths:

LI =

∑
(es,rq ,eo)∈Test Cnt(es, rq, eo) · S(p)∑

(es,rq ,eo)∈Test Cnt(es, rq, eo)
(24)

where S(p) is the human-assigned interpretability
score of the path p, ranging from 0 to 1.

(3) Global Interpretability (GI): Combines
coverage and quality:

GI = PR× LI (25)

5.2 Model Comparison

Table 3 reports the performance of baseline mod-
els (top) and our proposed and ablation models
(bottom). SCE consistently achieves the best per-
formance across UMLS, FB15K-237, WN18RR,
and WD15K, with improvements over the base-
line of up to 5.5% in Hit@1 and 4.2% in MRR.

While primarily designed to enhance the inter-
pretability of reasoning paths, our approach also
leads to improved accuracy. The incorporation of
semantic consistency promotes better generaliza-
tion and facilitates the identification of reasoning
paths that are both interpretable and correct.

Ablation results confirm that both relation
and entity semantic consistency contribute to
performance. Removing either component leads
to a performance drop. Notably, SCE(w/o ent),
which relies solely on relation consistency, still
outperforms most baselines on denser datasets such
as UMLS and Kinship, underscoring the robustness
of our design.
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Model UMLS Kinship FB15K-237 WN18RR WD15K
@1 @10 MRR @1 @10 MRR @1 @10 MRR @1 @10 MRR @1 @10 MRR

MINERVA∗ 72.8 96.8 82.5 60.5 92.4 72.0 21.7 45.6 29.3 41.3 51.3 44.8 37.5 51.6 42.6
Multi-Hop 90.2 99.1 94.2 77.5 98.6 86.0 32.7 56.4 40.7 42.1 51.7 45.0 41.1 67.9 51.2

RARL∗ 76.2 95.6 84.2 61.3 94.4 73.3 28.4 49.7 35.8 40.0 51.7 44.6 - - -
RF2∗ 89.6 98.5 93.3 80.1 98.3 84.4 29.8 53.5 38.6 39.9 52.7 46.4 - - -

PT-MH 89.0 98.8 93.4 76.9 97.9 84.8 31.1 57.2 39.9 44.1 52.8 46.8 39.6 65.7 48.5
PS-Agent 89.0 98.6 93.0 76.7 97.6 85.3 32.2 57.3 40.9 41.9 51.1 45.0 42.6 68.5 51.5

LMH-KGR∗ 91.8 99.5 95.0 79.7 98.2 87.0 32.6 56.7 40.8 42.2 51.9 41.5 - - -

SCE 92.7 99.5 95.4 78.7 98.7 86.4 32.8 58.2 41.4 44.5 53.7 47.4 43.1 68.6 51.8
SCE(w/o ent) 92.4 98.8 95.1 78.3 98.4 86.3 31.9 57.4 40.5 43.5 53.3 46.9 41.3 65.8 49.9
SCE(w/o rel) 92.3 99.1 95.3 75.9 97.7 84.8 32.1 57.2 40.3 43.1 53.2 46.5 42.9 68.2 51.7

Table 3: Query answering performance of mulit-hop reasoning methods (upper part) and our ablation models (lower
part). ∗ denotes that we quoted the experimental results from other papers. SCE (w/o ent) and (w/o rel) refer to
models with the relation and entity semantic consistency modules removed, respectively.

Dataset 1-to-N 1-to-1

% SCE w/o global w/o local % SCE w/o global w/o local

UMLS 99.1 72.1 71.4 (-0.7) 71.6 (-0.5) 0.9 89.1 83.3 (-5.8) 85.7 (-3.4)
Kinship 100 73.7 71.2 (-2.5) 74.1 (+0.4) 0 - - -

FB15K-237 76.6 28.1 27.4 (-0.7) 27.8 (-0.3) 23.4 72.3 71.5 (-0.8) 72.1 (-0.2)
WN18RR 52.8 66.2 66.0 (-0.2) 66.5 (+0.5) 47.2 23.7 22.0 (-1.7) 22.2 (-1.5)
WD15K 50.2 38.7 37.1 (-1.6) 37.5 (-1.2) 49.8 63.3 61.8 (-1.5) 63.0 (-0.3)

Table 4: Performance variations of local similarity and global closeness under one-to-many (1-to-N) and one-to-one
(1-to-1) relations. The % columns is the percentage of each relation type found in the corresponding dataset.

5.3 Path Interpretability Evaluation

We follow the evaluation protocol proposed by Lv
et al. (Lv et al., 2021) and assess interpretability
on the WD15K dataset, which provides path-level
interpretability annotations. We report Precision
Recall (PR), Local Interpretability (LI), and Global
Interpretability (GI) for all models.

As shown in Table 2, SCE achieves the highest
PR (90.0), indicating broad path coverage. Neu-
ralLP achieves the highest LI (80.4) due to its use
of symbolic rules, but its PR is limited (10.2), re-
sulting in a low GI. SCE obtains the highest GI
(9.7), demonstrating superior global interpretabil-
ity. PS-Agent achieves a GI of 8.4, highlighting
the benefit of rule-based enhancements, though at
increased computational cost (Section 5.5).

Ablation results (Table 2, bottom) show that
while SCE(w/o ent) and SCE(w/o rel) still achieve
relatively high LI (10.9 and 10.8), SCE (the full
model) yields the best GI, confirming the comple-
mentary nature of relation and entity consistency.

We further conduct a quantitative analysis to
validate that semantic consistency effectively dis-
tinguishes between paths of varying interpretability.
Results show a strong alignment between seman-
tic consistency scores and human annotations

(detailed results are provided in Appendix A).

5.4 Reasoning with Complex Relations

To isolate the effects of local similarity and global
closeness, we introduce two ablation variants:
SCE(w/o local) and SCE(w/o global), each re-
moving one subcomponent of the consistency mod-
ule. We evaluate their performance under different
relation types, including one-to-one (1-to-1) and
one-to-many (1-to-N), following the categorization
by Lin et al. (Lin et al., 2018).

Table 4 shows that both components contribute
to modeling relational complexity. Their joint us-
age consistently outperforms the ablations, high-
lighting the complementary nature of local and
global consistency in multi-hop reasoning.

5.5 Runtime Comparison

We compare the average runtime of PS-Agent,
which relies on external rules, with that of SCE,
which incorporates internal semantic consistency.
Multi-Hop serves as the baseline for reference.

Table 5 reports the average runtime per epoch
for all three models. PS-Agent incurs substantial
overhead due to the use of external rules, with run-
time increasing significantly as dataset size grows.
On WD15K, its overhead reaches 1329%, while on
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Methods UMLS Kinship FB15K-237 WN18RR WD15K

Multi-Hop 23 29 1817 304 956
PS-Agent 81(↑ 252%) 200(↑ 589%) 10404(↑ 472%) 608(↑ 100%) 13663(↑ 1329%)

SCE 25(↑ 9%) 34(↑ 17%) 1967(↑ 8%) 357(↑ 17%) 1120(↑ 17%)

Table 5: Runtime comparison (in seconds) between the PS-Agent (used external rules) and the SCE (used internal
consistency) using Multi-hop as the baseline.

Query : (European Union, diplomatic relation, Bangladesh) Score RC EC SC

1 European Union
member of−1−→ Hungary

share border with−→ Slovakia
diplomatic relation−1

−→ Bangladesh 0.0 0.59 0.46 0.53

2 European Union
continent−→ SouthAmerica

part of−1−→ V enezuela
diplomatic relation−1

−→ Bangladesh 0.5 0.79 0.57 0.68

3 European Union
member of−1−→ Greece

found by−1

−→ United Nations
member of−1−→ Bangladesh 0.5 0.57 0.87 0.72

4 European Union
has part−→ Austria

diplomatic relation−1

−→ Pakistan
diplomatic relation−→ Bangladesh 1.0 0.99 0.93 0.96

Table 6: Different reasoning paths for the same query, along with the corresponding human-annotated interpretability
score (Score), relation consistency score (RC), entity consistency score (EC), and semantic consistency score (SC).

WN18RR it still exceeds 100%. In contrast, SCE
introduces only a 13% overhead, demonstrating
that internal consistency offers a more efficient
alternative without compromising performance.

5.6 Case Study

We analyze four reasoning paths corresponding
to the same query, each with a different human-
annotated interpretability score (Lv et al., 2021).
For each path, we report the relation consistency
(RC), entity consistency (EC), and semantic con-
sistency (SC) scores computed by our model.

As shown in Table 6, RC and EC do not always
align with human judgments. For example, paths
1 and 2 exhibit similar RC scores, which may mis-
leadingly suggest that path 1 (score = 0.0) is more
interpretable than path 3 (score = 0.5). This high-
lights the limitations of using local or global con-
sistency in isolation. In contrast, SC increases con-
sistently with interpretability scores, validating its
effectiveness in capturing path-level semantics and
explaining the superior performance of SCE.

To further support this, we visualize rules (Ta-
ble 8) with interpretability scores of 0.0, 0.5, and
1.0 from the WD15K dataset. The processing flow
of this figure is as follows: (1) Randomly select
three rules with interpretability scores of 0.0, 0.5,
and 1.0 (under the same query rq) from the WD15K
dataset. (2) Represent these rules using pre-trained
ConvE embeddings. (3) Finally, use PCA (Mar-
tinez and Kak, 2001) to downscale the embeddings
and plot their distribution in 2D space.

As shown in Figure 3, (a), (b), and (c) correspond
to interpretability scores of 0.0, 0.5, and 1.0, respec-
tively. In the 0.0 case, the distance between each
relation ri ∈ rp and the query relation rq is larger

Score = 0.0 Score = 0.5 Score = 1.0(a) (b) (c)

Figure 3: 2D visualization of the three rules with differ-
ent interpretability scores.

than in the higher-scoring cases, highlighting the
effectiveness of local similarity in capturing path
quality. As the interpretability score increases, ri
progressively moves closer to rq, indicating more
coherent reasoning steps. This observation sup-
ports the notion that higher-scoring paths exhibit
stronger semantic alignment and better progres-
sion toward the target entity, which is consistent
with the principles of semantic consistency.

6 Conclusion

We propose Semantic Consistency Enhanced Rein-
forcement Learning, a multi-hop reasoning frame-
work that enhances the interpretability of reasoning
paths. SCE models semantic consistency between
triples by decomposing it into two complementary
components: relation consistency and entity con-
sistency. These components are integrated into a
unified consistency score, which serves as the basis
for a reward function that guides the agent toward
more semantically coherent reasoning paths.

Extensive experiments demonstrate that SCE im-
proves both triple prediction accuracy and path in-
terpretability, while maintaining significantly lower
computational overhead compared to methods rely-
ing on external rules.
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Limitations

Although we have demonstrated the effectiveness
of the Semantic Consistency Enhanced Reinforce-
ment Learning (SCE) framework, there are still
several limitations:

1. Reliance on Pre-Trained Embeddings: Sim-
ilar to previous path-based methods, SCE re-
lies on pre-trained embeddings for certain op-
erations, which may limit its adaptability in
cases where such embeddings are not avail-
able or do not fit well with the given domain.

2. Hyperparameter Tuning: SCE depends
on several important hyperparameters, such
as the weights related to semantic consis-
tency (e.g., α1, α2, and β). The choice of
these hyperparameters significantly impacts
the model’s performance and requires adjust-
ment based on different datasets. The process
of hyperparameter optimization may involve
extensive experimentation and tuning, thus
increasing the complexity and difficulty of ap-
plying the model.

3. Partial Solution to Spurious Path Problem:
While SCE reduces the occurrence of spuri-
ous paths, it does not entirely eliminate them.
More effective solutions need to be developed
in the future to address the spurious path prob-
lem comprehensively.
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A Quantitative Analysis to Validate the
Enhancement of Inference Path
Interpretability with SCE

To analyze the relationship between path inter-
pretability and semantic consistency, we selected
6000 inference paths from the WD15K dataset with
interpretability scores of 0.0, 0.5, and 1.0, respec-
tively, and calculated local relation similarity (local-
rel), global relation closeness (global-rel), local
entity similarity (local-ent), and global entity simi-
larity (global-ent) for each path. We then counted
the number of these scores within different value
ranges. As shown in Figure 4 and 5, higher inter-
pretability scores generally correspond to a greater
number of high and medium scores across these
indicators. Specifically, for local-rel, global-rel,
and local-ent, paths with an interpretability score
of 1.0 have significantly more entries in the higher
value ranges. Although for global-ent, lower inter-
pretability scores show a higher frequency of high
values, the overall strong correlation between the
indicators and interpretability scores underscores
the positive impact of semantic consistency on path
interpretability.

Next, we analyzed the average scores of these
paths. The dashed lines in Figure 4 represent the
mean scores of different levels of interpretability
for the corresponding metrics. From the figure,
it is evident that for the local-rel and global-rel
metrics, interpretable paths (with a score of 1.0)
can be clearly distinguished from non-interpretable
(with a score of 0.0) and weakly interpretable paths
(with a score of 0.5), which helps in identifying
interpretable paths. However, this distinction dis-
appears under the local-ent and global-ent metrics.
This indicates that relying solely on relation se-
mantic consistency or entity semantic consistency
is not sufficient to effectively distinguish between
interpretable and non-interpretable paths.

However, the semantic consistency we propose
does not rely solely on either relation semantic
consistency or entity semantic consistency. By con-
sidering both types of consistency together, we
can more effectively distinguish paths with vary-
ing levels of interpretability, compared to using
them individually. As shown in Figure 5, there
is a significant difference in the average semantic
consistency scores between paths with an inter-
pretability score of 1.0 and those with scores of 0.5
and 0.0. This suggests that evaluating the seman-
tic consistency across triples can more accurately

differentiate highly interpretable paths.

B Hyperparameters

To achieve better semantic consistency during the
fusion process, we introduce three tunable weights.
We perform a grid search over the candidate list
[0.1, 0.3, 0.5, 0.7, 0.9] for each weight,
systematically exploring all possible combinations
to identify the optimal configuration. The final
selected weight settings are summarized in Table
7.

C Training Process

To further understand the impact of each module on
performance, we plotted the changes in the MRR
indicator. As shown in Figure 6, the performance
of the ablation model on the validation set closely
mirrors its performance on the test set, with the
full SCE consistently outperforming the other two
models at final convergence.
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Figure 4: The count of local relation similarity (local-rel), global relation closeness (global-rel), local entity similarity
(local-ent), and global entity similarity (global-ent) across different value ranges for varying interpretability scores.
−− is mean value.

Figure 5: The count of semantic consistency score across different value ranges for varying interpretability scores.
The dashed line represents the average semantic consistency score for paths with different interpretability scores.
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UMLS Kinship FB15K-237 WN18RR WD15K
α1 0.3 0.5 0.7 0.1 0.3
α2 0.1 0.1 0.5 0.3 0.3
β 0.7 0.7 0.3 0.5 0.3

Table 7: Hyperparameters for semantic consistency.

Figure 6: MRR changes in the validation set during the training of our ablation models.

rq = cast member(X,Y ) score

1 producer(X,A1) ∧ spouse(A1, Y ) 0.0
2 present in work(X,A1) ∧ characters−1(A1, A2) ∧ notable work−1(A2, Y ) 0.5
3 production company(X,A1) ∧ executive producer−1(A1, A2) ∧ cast member(A2, Y ) 1.0

Table 8: Rules for "2D visualization of three rules".
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