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Abstract

Large language models (LLMs) have demon-
strated an impressive ability to role-play hu-
mans and replicate complex social dynamics.
However, large-scale LLM-driven simulations
still face significant challenges in high time
and computational costs. We observe that
there exists redundancy in current agent com-
munication: when expressing the same inten-
tion, agents tend to use lengthy and repeti-
tive language, whereas humans naturally pre-
fer concise expressions. To this end, we pro-
pose EcoLANG: Efficient and Effective Agent
Communication Language Induction for Social
Simulation. Inspired by how human language
evolves through interactions, we induce a more
compact language by identifying and preserv-
ing core communicative concepts at the vocab-
ulary level and evolving efficient expression
patterns at the sentence level through natural se-
lection. We apply the induced language in var-
ious social simulations. Experimental results
demonstrate that EcoLANG reduces token con-
sumption by over 20%, enhancing efficiency
without sacrificing simulation accuracy 1.

1 Introduction

Social simulation aims to model how individuals
interact to uncover the dynamics and emergent pat-
terns of complex societies (Squazzoni et al., 2014;
Mou et al., 2024a). The rise of large language
models (LLMs) (Brown et al., 2020; Kojima et al.,
2022; Chen, 2024) has greatly expanded this field,
enabling agents to simulate human behavior at var-
ious levels, from mimicking well-known individu-
als (Argyle et al., 2023; Park et al., 2024) and recon-
structing specific scenarios for task-solving (Hong
et al., 2023; Qian et al., 2024) to modeling large-
scale social dynamics (Mou et al., 2024b; Yang
et al., 2024; Zhang et al., 2025). Recent studies
increasingly focus on large-scale social simulation,
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1Available at https://github.com/xymou/EcoLANG .
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Figure 1: Responses generated by humans and agents
when discussing the MeToo movement. Speakers
are driven by intent when formulating their messages.
While humans tend to favor efficient and concise expres-
sions, agents using natural language (NL) often generate
lengthy, redundant sentences and rely on advanced but
uncommon vocabulary. This can be effectively miti-
gated by our proposed EcoLANG.

where the goal is to capture the emergence of col-
lective behaviors and macro-level trends, rather
than precisely replicating every individual’s word-
ing. Such simulations open up applications in so-
cial governance, information flow, and crisis re-
sponse (Lorig et al., 2021; Piao et al., 2025).

Despite their promise, LLM-based social simu-
lations remain computationally expensive and in-
efficient. Simulating thousands of agents across
millions of interactions requires significant compu-
tational resources and time, posing a major barrier
to real-world deployment (Gao et al., 2024). To
better understand potential inefficiencies, we re-
visit the characteristics of communication in both
human and simulated settings. As shown in Fig-
ure 1, during communication, speakers typically
form an intention, often tied to a topical stance
or claim, and organize it into utterances using a
variety of linguistic expressions (Clark and Bren-
nan, 1991; Levelt, 1993). We observe that agents
tend to express the same intention verbosely, repeti-
tively, or with excessive detail. In contrast, humans
instinctively optimize for concise and intention-
preserving expression, adhering to the principle
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of least effort (Zipf, 2016). This raises a natural
question: can agent communication be made more
efficient by inducing a more compact language that
reduces computational cost while maintaining core
semantic content in social simulation?

In this paper, we introduce EcoLANG: Efficient
and Effective Agent Communication Language In-
duction for Social Simulation. EcoLANG centers
on two foundational pillars of a language system:
a compact vocabulary guided by core communica-
tive concepts, and efficient sentence-level rules
evolved through interaction-driven selection. For
the vocabulary, recognizing that only a limited set
of concepts is pragmatically essential for commu-
nication (Wierzbicka, 1996), we construct a com-
pressed vocabulary by clustering semantically sim-
ilar words and selecting representative, high-utility
terms, thereby reducing the LLM’s decoding space.
Then, we simulate agent dialogues with varying
rule sets and apply evolutionary algorithms to it-
eratively refine these rules, optimizing for both
efficiency and expressiveness. Once the language
is induced, it is deployed in large-scale social sim-
ulations under a transfer setting. As EcoLANG
is derived from general communication behavior
and independent of task-specific architectures, it
(1) reduces redundant content and lowers simu-
lation cost, and (2) preserves agent diversity and
behavioral fidelity across diverse scenarios.

We conduct extensive experiments using the
open-source Llama-3.1-8B-Instruct (Dubey et al.,
2024) model. The language induction process lever-
ages both the Twitter corpus and the synthetic-
persona-chat dataset (Jandaghi et al., 2023). We
then validate the effectiveness of the induced lan-
guage in large-scale social simulations on the
PHEME (Zubiaga et al., 2016) and HiSim (Mou
et al., 2024b) datasets. Experimental results demon-
strate that EcoLANG significantly reduces token
consumption and improves simulation efficiency
without sacrificing accuracy, outperforming base-
line approaches such as structured languages and
conventional agent communication protocols. Our
main contributions are summarized as follows:

• We propose EcoLANG, an efficient and effec-
tive agent language induction framework that
features a concept-driven compact vocabulary
and expression rules evolved through natural
selection in communications.

• We derive a compact, generalizable agent
language using EcoLANG, induced from

the Twitter corpus and synthetic-persona-chat
dataset, and show its generalizability across
diverse downstream social simulation tasks.

• We perform extensive experiments across
different scenarios, demonstrating that
EcoLANG reduces inference costs while
preserving simulation accuracy across
different levels of granularity.

2 Related Work

2.1 LLM-driven Social Simulation
Recently, LLMs have been used to construct agents
to empower social simulations, aiming to reveal
and explain the outcomes of interactions among
numerous agents (Mou et al., 2024a; Zhang et al.,
2025). Despite these advancements, integrating
LLM agents into large-scale simulations remains
costly and computationally inefficient. Existing
efforts to address this challenge generally fall
into two categories: (1) System-level optimization.
Some approaches improve efficiency by employ-
ing open-source models within distributed mecha-
nisms (Pan et al., 2024; Yang et al., 2024), thereby
reducing reliance on commercial APIs. However,
these methods mainly shift the computational bur-
den to the edge without reducing the number of
inferences or response length, thus not fundamen-
tally lowering costs. (2) Agent-level simplification.
Other studies enhance efficiency by simplifying the
modeling of most agents, either through integra-
tion with ABMs (Chopra et al., 2024; Mou et al.,
2024b) or by reusing certain strategies (Yu et al.,
2024). While these methods significantly reduce in-
ference times, they sacrifice diversity and accuracy.
By contrast, our approach reduces redundancy at
the language level, improving efficiency while pre-
serving the core content necessary for simulation.

2.2 Multi-Agent Communication
Before the rise of LLMs, some studies focused
on how multi-agent systems could use language
to cooperate in completing tasks or solving prob-
lems (Havrylov and Titov, 2017; Lazaridou and
Baroni, 2020; Lazaridou et al., 2020), typically de-
veloping effective communication protocols with
task success as a training signal. In current LLM-
driven multi-agent systems, some research has
highlighted the redundancy in communication,
leading to suggestions that agents autonomously
choose structured languages like JSON for com-
munication (Chen et al., 2024a; Marro et al., 2024)
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Figure 2: Overview of the EcoLANG framework. We induce the language through vocabulary compression and
rule evolution in dialogue-intensive scenarios. Then, we enable agents to use this language in social simulations.

or further fine-tune models to improve this com-
munication (Chen et al., 2024b). However, most
existing work focuses on task-solving rather than
social simulation, which more urgently needs to
address the challenges of large-scale simulation.

3 Methodology

3.1 Problem Setup

A language system is built upon two key compo-
nents: vocabulary, the set of words used to express
concepts, and rules, which govern how these words
are combined into meaningful sentences. To enable
efficient communication, our goal is to develop a
shared and streamlined vocabulary V and rule set
P , starting from an existing language such as natu-
ral language. The induced language should allow
agents to convey intentions using simpler, more
accessible terms, e.g., using “need” instead of the
complex “indispensable” in Figure 2, and to adopt
more concise and compact sentences overall.

Human language is shaped and evolved through
use in social interactions, where communication
drives individuals to iteratively refine their linguis-
tic choices (Nowak and Krakauer, 1999), as illus-
trated at the top of Figure 2. This motivates our
induction process: vocabulary compression to re-
tain core communicative concepts, and rule evo-
lution to optimize expression patterns. Together,
these simulate the emergence of an efficient lan-

guage shaped by communicative pressure. Given
this setup, we induce language from vocabulary
(Sec.3.2) and rules (Sec.3.3), and apply it to di-
verse social simulations (Sec. 3.4).

3.2 Vocabulary Compression

The first step in inducing a compact language sys-
tem is defining its fundamental units, i.e., vocab-
ulary. From a pragmatic perspective, effective
communication does not require the full expres-
sivity of natural language but rather depends on
a limited set of core concepts that agents need to
convey (Wittgenstein, 2009). Linguistic theories
such as Zipf’s law (Zipf, 2016) and semantic primi-
tive theory (Wierzbicka, 1996) suggest that a small
number of high-utility concepts dominate everyday
communication. Inspired by this, we aim to distill
a minimal yet expressive vocabulary by identifying
and preserving such semantically central concepts.

To this end, we reinterpret vocabulary compres-
sion as the identification and retention of key com-
municative primitives. We approach this in locat-
ing conceptually coherent word groups by seman-
tic clustering and retaining the most representative
words based on pragmatic criteria, as illustrated in
part I-A of Figure 2.

Semantic Clustering Natural language contains
redundant words that share similar meanings but
differ in style and frequency. To locate the un-
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derlying concepts, we cluster words into semantic
groups. Rather than constructing clusters from
scratch, we leverage WordNet (Miller, 1995) as a
curated semantic hierarchy and assign each word
to its most similar synset using embedding-based
similarity. This approach grounds the vocabulary
in a structured conceptual space while avoiding the
noise of unsupervised clustering.

Intra-Cluster Selection Within each cluster, we
further filter words by assigning a score that bal-
ances two key factors: word frequency and word
length. Frequent words are generally more effec-
tive at conveying intent and are better supported by
the LLM due to their higher training occurrence.
Meanwhile, shorter words are preferred to reduce
the length of generated outputs. To integrate these
considerations, we define the following scoring
function:

R(wi) = λfreqF (wi) + λtoken(1− L(wi)), (1)

where F (wi) and L(wi) denote the percentile
scores of the word’s frequency and token length
respectively. λfreq and λtoken are hyperparame-
ters controlling factors’ relative importance. Given
these scores, we retain the top words within each
cluster according to a predefined retention ratio rw.

Tokenization Although our conceptual analysis
is word-based, LLMs operate on subword tokens.
We therefore map the selected words to their cor-
responding tokens. While these tokens may form
additional words beyond our initial selection, the
overall vocabulary size of LLMs is substantially
reduced. We also preserve model-specific special
tokens necessary for generation integrity.

3.3 Language Rule Evolution

Once the vocabulary, the basic building blocks of
language, is established, the next step is to deter-
mine how these elements are organized: the rule
system. In linguistics, grammar has been described
as a set of simplified structures that evolved through
natural selection to reduce communication ambi-
guity and error (Pinker and Bloom, 1990; Nowak
and Krakauer, 1999). Inspired by this evolutionary
perspective, we frame the construction of language
rules as a search process guided by evolutionary
algorithms (EAs). Our objective is to discover rule
prompts that facilitate both effective and efficient
communication between agents. The overall pro-
cess is depicted in Part I-B of Figure 2.

Initialization The evolutionary process begins
with an initial population of N candidate rule
prompts P = {p1, p2, . . . , pN}. These serve as
guiding instructions for agents’ expressions and
are refined through iterative evolution. To initial-
ize the population, we combine human-designed
prompts with those generated by LLMs, following
the insight that combining the wisdom of humans
and LLMs yields more diverse and high-potential
seeds (Guo et al., 2024). These rules encourage
agents to adopt concise expression styles. More ini-
tialization details are provided in Appendix A.2.1.

Language Using Language evolves through use.
To simulate this, we let agents interact via LLM-
driven dialogues under varying rule prompts. Given
a set of general dialogue scenarios D, we gener-
ate M trajectories τ ji

M

j=1 for each scenario di ∈ D,
where each trajectory is conditioned on a sampled
rule pj ∈ P . These dialogues serve as the observ-
able outcomes of applying specific language rules
in communicative settings.

Selection The quality of each rule is evaluated
based on how well it enables agents to communi-
cate in a way that is both effective and efficient. Un-
like task-oriented multi-agent settings that use task
completion as the primary metric (Lazaridou et al.,
2020), social simulation environment lacks explicit
tasks. Considering that a good language should be
both effective and efficient, we propose the follow-
ing three dimensions: (1) efficiency: How efficient
is the communication (i.e., token usage)? (2) ef-
fectiveness: How well does the agent’s response
reflect its assigned persona? (3) expressiveness:
Does the agent maintain clarity and fluency with-
out becoming overly abstract (Galke et al., 2022)?
Integrating these considerations, we define the fit-
ness of a dialogue trajectory τ ji as follows:

F (τ ji ) = λalignAlign(τ
j
i ) + λeffEff(τ ji )

+ λexpExp(τ ji ),
(2)

where the alignment score Align(τ ji ) and the ex-
pressiveness score Exp(τ ji ) are given by external
judge LLMs, and Eff(τ ji ) is the normalized to-

ken count
#Tokens(τ ji )

maxk({#Tokens(τki )}k)
. λalign, λeff and

λexp are hyperparameters controlling factors’ rela-
tive importance. Finally, we aggregate and average
the fitness scores of all trajectories associated with
each rule to derive that rule’s overall fitness.
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Crossover and Mutation To promote linguis-
tic diversity, we apply standard EA operations:
crossover and mutation. Parent rules are sam-
pled with probabilities proportional to their fitness
scores. Crossover involves merging components
of two parent rules, while mutation is guided by
prompting LLMs to creatively alter existing rules or
synthesize novel variants (Guo et al., 2024). These
operations enable exploration beyond the initial
prompt space.

Update and Iteration We use an elitist strategy
to update the population each generation: the top
N/2 rules are retained directly, while the remaining
N/2 are generated through crossover and mutation.
This ensures both quality preservation and explo-
ration. After several iterations, the rule with the
highest overall fitness is selected as the dominant
rule of the induced language. The full evolution
process is detailed in Algorithm 1.

3.4 Language Utilization in Social Simulation

With the vocabulary and rule system of the new
language established, we enable agents to commu-
nicate in this language by restricting the decoding
range of the underlying LLMs and integrating the
evolved rules into their contextual prompts. This
effectively grounds the language model’s output
space and behavior within the newly constructed
linguistic framework. While it is possible to evolve
and apply the language within the same social sim-
ulation environment, we adopt a transfer setting:
the language is evolved using general multi-turn
dialogue data and then transferred to downstream
social simulation tasks. This decision is motivated
by two key considerations: (1) large-scale social
simulation data is sparse, whereas general dialogue
data offers richer and more intensive communi-
cation, facilitating more efficient language induc-
tion; (2) languages emerge naturally from everyday
conversations, making general dialogues a more
task-agnostic and robust foundation for language
development.

4 Experiment Settings

As mentioned before, we induce and utilize lan-
guage in different scenarios. We filter the vo-
cabulary using a Twitter corpus and acquire rules
from dialogue-intensive scenarios. The language is
then applied to social simulation scenarios, namely
PHEME (Zubiaga et al., 2016) and the Metoo
and Roe events from HiSim (Mou et al., 2024b).

PHEME simulates the propagation and discussion
of potential rumors, while HiSim models the evolu-
tion of opinion dynamics following the release of
triggering news related to social movements.

4.1 Language Induction Settings

Twitter Corpus for Vocabulary Compression
As our vocabulary filtering in Sec.3.2 partially re-
lies on word frequency, we require a corpus to
compute word statistics. While ideally we would
analyze all tweets, this is impractical. Instead, we
collect and analyze tweets related to the topics of
our social simulation scenarios. Therefore, we have
chosen to analyze and gather statistics from exist-
ing tweets relevant to the topics of our social simu-
lation scenarios. Specifically, for PHEME, which
models rumor propagation, we use tweets from
Twitter15(Liu et al., 2015) and Twitter16 (Ma et al.,
2016). For HiSim, we use tweets posted prior to
the simulated events (Maiorana et al., 2020; Chang
et al., 2023; Mou et al., 2024b).

Scenarios for Communication in Rule Evolution
For rule evolution, we use the synthetic-persona-
chat dataset (Jandaghi et al., 2023) to generate di-
alogues between agents adhering to specific lan-
guage rules. This dataset provides a collection of
dialogues between two users with diverse person-
alities, along with their corresponding personality
descriptions. We provide these profiles to LLMs
and instruct them to role-play the corresponding in-
dividuals in conversation, thereby obtain dialogue
trajectories for further selection.

Implementation Details We use Llama-3.1-8B-
Instruct (Dubey et al., 2024) as the agent backbone.
For vocabulary compression, we cluster semanti-
cally similar words and retain representative tokens,
reducing the vocabulary to 25.4% (PHEME) and
37.5% (HiSim) of the original size of the vocab-
ulary of Llama-3.1. For rule evolution, we sim-
ulate agent dialogues on the development set of
the synthetic-persona-chat dataset and apply an
evolutionary algorithm to iteratively refine expres-
sion rules. GPT-4o (Achiam et al., 2023) serves
as the judge to evaluate alignment and expressive-
ness based on reference dialogues. Top-performing
rules are retained and mutated across 5 iterations.
Additional details and hyperparameters are pro-
vided in Appendix A.
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Method
PHEME HiSim

stance↑ belief↑ belief_JS↓ tokenr↓ tokenp↓ tokenc↓ stance↑ content↑ ∆bias ↓ ∆div ↓ tokenr↓ tokenp↓ tokenc↓

Base 66.21 42.44 0.137 2.61K 84.43K 8.44K 70.30 30.23 0.093 0.027 13.02K 1.92M 283.79K
Summary 66.07 41.55 0.133 2.41K 84.27K 8.01K 70.95 32.31 0.089 0.023 10.62K 1.90M 269.73K
AutoForm 63.72 40.50 0.136 2.00K 85.02K 7.69K 69.92 32.04 0.082 0.029 10.66K 1.89M 252.09K

KQML 57.66 42.09 0.130 3.01K 91.10K 9.18K 70.16 32.47 0.093 0.032 12.06K 1.96M 279.17K

Vocab 65.73 44.65 0.131 2.67K 84.78K 8.70K 70.34 30.48 0.086 0.023 11.37K 1.91M 286.41K
Rule 66.86 45.14 0.128 1.98K 82.08K 7.52K 70.63 32.25 0.091 0.027 9.07K 1.84M 242.43K

EcoLANG 66.34 45.50 0.128 2.08K 82.26K 7.70K 70.60 32.57 0.083 0.020 9.80K 1.83M 236.83K

Table 1: Experimental results of different methods. The average results of 3 runs are reported. We report the best
performance in bold format and the second best in underlined format.

4.2 Language Utilization Settings

Datasets From PHEME (Zubiaga et al., 2016),
we collect 196 real-world instances, each involving
2 to 31 users discussing a source tweet, to examine
whether agents can mimic user responses towards
rumors. From HiSim (Mou et al., 2024b), we use
the second events of #Metoo and #Roe movements,
each comprising 1,000 users discussing news re-
lated to the events over time, to examine the opin-
ion dynamics in socially interactive settings.

Metrics For PHEME, we focus on content-
related metrics. We measure consistency between
each agent’s initial stance on the source tweet and
real users’ stances, categorized into four types as
in (Derczynski et al., 2017) and annotated by GPT-
4o-mini. Following (Liu et al., 2024), we also la-
bel each agent’s final belief as belief, disbelief, or
unknown using GPT-4o-mini, and compute belief
consistency and JS divergence (Lin, 1991) between
the simulated and real-world belief distributions.
More details about the experimental setup can be
found in Appendix B.2.

For HiSim, we report stance and content consis-
tency between agents’ initial responses and those
of real users, again using GPT-4o-mini for label-
ing. We also report ∆bias and ∆div. to measure
the difference in average opinion bias and diversity
between simulated and real user groups over time.
More details about the experimental setup can be
found in Appendix B.4.

For both datasets, we evaluate communication
efficiency by reporting the average number of to-
kens in generated tweet responses per scenario (#
tokensr), as well as the total token consumption
per scenario, which includes both prompt tokens (#
tokensp) and completion tokens (# tokensc).

Baselines We compare our method against the
following communication strategies: (1) Base:
standard simulation without any additional rule
prompts; (2) Summary: agents are prompted to

summarize their opinions when responding, as con-
cise expression resembles a summarization task;
(3) AutoForm (Chen et al., 2024a): agents are
prompted to automatically choose a structured for-
mat to respond, such as JSON and logical expres-
sion; (4) KQML (Finin et al., 1994): agents are
prompted to use a traditional agent communica-
tion language KQML; (5) Vocab: a variant of our
method that only compresses the vocabulary of
the LLMs; (6) Rule: a variant of our method that
only applies the evolved communication rules. Be-
sides, we conduct additional experiments integrat-
ing these communication optimization methods
with an ABM-based scalable simulation framework
AgentTorch (Chopra et al., 2024), which clusters
all agents into a small number of archetypes, simu-
lates the actions of these archetypes, and then maps
their responses to the corresponding agents.

Implementation Details Agents are powered by
Llama-3.1-8B-Instruct (Dubey et al., 2024), and
all simulations are conducted within the OASIS
framework (Yang et al., 2024). Each simulation is
run three times, and we report the average results.
We use GPT-4o-mini to label the stance, belief
and content of responses and apply Textblob to
calculate the opinion score. We also compare the
consistency between human and GPT evaluations,
details of which can be found in Appendix B.

5 Experiment Results

5.1 Overall Performance

Table 1 presents the overall results, from which we
make the following observations.
(1) Can reducing communication redundancy
improve simulation efficiency? Nearly all the sim-
plified communication methods obviously reduce
token usage compared to Base. This improvement
in efficiency is not only reflected in tokenr but also
cumulatively transmitted to tokenp and tokenc as
the generated content contributes to subsequent
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Method
PHEME HiSim

CosSim↑ Jaccard↑ word_JS↓ ∆ls↓ ∆lw↓ CosSim↑ Jaccard↑ word_JS↓ ∆ls↓ ∆lw↓

Base 0.662 0.037 0.307 31.63 0.12 0.782 0.067 0.321 13.60 0.15
Summary 0.651 0.039 0.306 29.94 0.10 0.769 0.062 0.320 9.98 0.14
AutoForm 0.662 0.039 0.306 23.63 0.18 0.763 0.061 0.324 5.38 0.15

KQML 0.653 0.035 0.307 32.57 0.16 0.757 0.061 0.321 8.22 0.10

Vocab 0.671 0.039 0.305 30.79 0.06 0.789 0.064 0.320 10.20 0.12
Rule 0.661 0.039 0.299 22.43 0.09 0.774 0.062 0.319 4.25 0.15

EcoLANG 0.661 0.040 0.298 22.33 0.05 0.775 0.065 0.309 3.26 0.13

Table 2: Comparison of semantic similarity and length between agent responses and real user responses. We report
the best performance in bold format and the second best in underlined format.

context via memory mechanisms and social inter-
actoions. Among the approaches, our proposed
Rule and EcoLANG are the most prominent, reduc-
ing generated tokens by over 20%. Appendix B.8
further shows that combining these methods with
AgentTorch, an approach that alters the simulation
paradigm, can further boosts efficiency, with our
method achieving the best. However, AgentTorch
comes at the cost of reduced diversity and accuracy
of agent-generated content, suggesting that such
paradigms should be used with caution.
(2) Does simplifying communication compro-
mise the simulation effectiveness? Some base-
lines such as AutoForm and KQML, despite enhanc-
ing efficiency, reduced the accuracy of the simula-
tion. This may suggest that while these structured
languages can improve the efficiency and effective-
ness of task-solving, they might not be suitable
for social simulation, as humans generally commu-
nicate using natural language. By contrast, ben-
efiting from the considerations of both efficiency
and alignment during the process of language in-
duction, our method is able to enhance efficiency
while maintaining leading simulation accuracy.
(3) Does vocabulary compression enhance per-
formance or efficiency? Vocabulary compres-
sion does not significantly affect token usage, as
changes in individual word lengths do not substan-
tially alter overall sentence lengths. However, sim-
ulations still achieve comparable or even better per-
formance after compression, e.g., in HiSim, sug-
gesting that standard LLM vocabularies may be
redundant for such social simulations. Theoreti-
cally, removing these tokens from LLM’s vocabu-
lary could enhance the model’s inference efficiency
and reduce GPU memory usage.

5.2 Finer-Grained Evaluation of Languages

Although the previous part has discussed the effec-
tiveness of different methods in social simulation,
where relatively macro dimensions are considered,
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Figure 3: (a) Average fitness score change and (b) lan-
guage drift change on synthetic-persona-chat simulated
dialogues across iterations; (c) Performance and token
consumption in HiSim using the best language rules
acquired across iterations.

PHEME HiSim
Ratio # Vocab stance↑ belief↑ Ratio # Vocab stance↑ content↑

0.2 31.5K 63.80 44.16 0.2 48.2K 70.34 30.48
0.4 31.8K 63.13 43.57 0.4 49.3K 70.41 30.09
0.6 32.6K 64.10 44.25 0.6 50.9K 69.64 29.11
0.8 34.0K 65.73 44.65 0.8 52.8K 69.26 29.55

Llama-3.1 128.3K 66.21 42.44 Llama-3.1 128.3K 70.30 30.23

Table 3: Performance of the simulations when using
different vocabularies. Ratio represents the reserving
ratio for each semantic cluster when filtering words. We
at least keep one word for each synonym set.

some may be concerned that language compression
could risk losing fine-grained individual semantics.
To address this, we conduct a more detailed evalua-
tion of agent language. Table 2 reports the seman-
tic and length differences between agent-generated
and real user-generated responses across different
methods. The metrics include sentence embedding
cosine similarity (CosSim), lexical overlap of re-
sponses (Jaccard), JS divergence of word distribu-
tions (word_JS), as well as differences in average
sentence length (∆ls) and word length ((∆lw ) in
tokens. We summarize the key findings as follows:
(1) Word Usage Patterns: Even without lan-
guage compression, i,e., Base, agents’ responses
exhibit low Jaccard similarity with real user
tweets, highlighting the inherent divergence be-
tween LLM-generated and human-written texts.
This gap is likely due to the agents’ limited ac-
cess to personal or contextual knowledge and the
biases introduced by LLMs. Nevertheless, most ap-
proaches maintain comparable semantic similarity
to Base, with our method outperforming others
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Method
PHEME HiSim

stance↑ belief↑ belief_JS↓ tokenr↓ tokenp↓ tokenc↓ stance↑ content↑ ∆bias ↓ ∆div ↓ tokenr↓ tokenp↓ tokenc↓

Qwen 63.35 49.25 0.1426 1.93K 78.21K 7.36K 71.63 26.06 0.1025 0.0246 17.68K 1.81M 214.11K
Qwen w/ Rule 62.95 51.65 0.1475 1.81K 78.36K 7.09K 72.04 26.77 0.0978 0.0255 14.71K 1.77M 188.96K

Mistral 62.98 52.39 0.1529 3.10K 96.94K 11.60K 72.02 31.78 0.1220 0.0536 26.91K 2.36M 416.15K
Mistral w/ Rule 63.84 60.00 0.1484 2.28K 94.76K 10.39K 72.39 32.57 0.0963 0.0352 22.76K 2.29M 358.23K

Table 4: Results of simulations driven by Qwen2.5 and Mistral with and without the evolved rule of Llama3.1.

in preserving meaning.
(2) Response Length Patterns: Agents tend to pro-
duce longer and more complex responses than real
users, who generally favor brevity and simplicity in
social communication. This aligns with the redun-
dancy issues discussed in the introduction section.
Compared to baselines, our method produces
shorter and more concise utterances, which not
only improve communication efficiency but also
better align with the communication habits of
real users in general.

5.3 Tracing the Evolution of Language Rules

To better understand how language rules evolve,
we analyze both the progression of dialogue fit-
ness scores and linguistic shifts across iterations,
as well as their downstream effects on social sim-
ulations. Figures 3(a) and (b) illustrate the trends
observed during the evolution process on synthetic-
persona-chat dialogues. Beyond the fitness scores
defined in Sec 3.3, we also track two additional
metrics: structural drift and semantic drift (Lazari-
dou et al., 2020). Structural drift assesses fluency
and grammaticality relative to natural language,
while semantic drift captures how well the gen-
erated language preserves the literal meaning of
intended targets. Results reveal that as evolution
progresses, language fitness improves overall:
alignment and expressiveness increase, and to-
ken consumption decreases. Simultaneously, both
structural and semantic drift decline, indicating im-
proved language quality despite these metrics not
being directly optimized during training. These im-
provements translate into downstream gains as
well: as shown in Figure 3(c), simulations guided
by the evolved rules demonstrate higher accuracy
and lower token usage. However, after several it-
erations, the fitness score no longer improves, and
the optimal rules provided for the simulation tasks
remain unchanged, suggesting that the evolution
process may have converged.

5.4 Unpacking the Impact of Vocabulary

We further explore the impact of the vocabulary on
the simulation. As shown in Table 3, since it is nec-

essary to ensure that at least one word is retained
for each semantic cluster, changing the retention ra-
tio has a subtle impact on the size of the vocabulary.
Nevertheless, it can be observed that the influence
of vocabulary size on performance exhibits dif-
ferent trends across simulations. For PHEME, a
larger vocabulary is better, possibly because it cov-
ers a more diverse range of topics and discussions,
requiring more words for support. In contrast, for
HiSim, due to the more focused discussion topics
Metoo and Roe, using fewer but more commonly
used words can achieve ideal results.

5.5 Exploring the Transferability of Language
Rules Across Different LLMs

Can the evolved language be used on other mod-
els, or do we need to reacquire the language for
each model? To answer this question, we apply
the acquired language rules to other models, i.e.,
Qwen2.5-7b-Chat (Team, 2024) and Mistral-7b-
Instruct-v0.3 (Jiang et al., 2023). Table 4 show that
the rules evolved on Llama-3.1 can also enable
other models to communicate efficiently, again
demonstrating the transferability of EcoLANG.

5.6 Case Study and Error Analysis
We analyze exemplary instances of both effective
and ineffective communication in Appendix B.9.
Several emergent patterns are observed in the
evolved language: it adopts more compact and
expressive sentence structures, shows a reduced
use of titles and identity labels, and shifts from
surface-level, repetitive event descriptions to more
abstract but in-depth discussions centered around
thematic vocabulary, such as “Justice for Victims”
and “Accountability”. However, sometimes agents
may fail to simplify their expression and disclose
excessive details. This may be the result of the
model’s insufficient ability to follow instructions.
A potential solution is to further fine-tune the mod-
els using the efficient communication dialogues.

6 Conclusion

We introduced EcoLANG, a language induction
framework, designed to acquire efficient and ef-
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fective language for large-scale social simulations.
We derive the language by vocabulary compression
and rule evolution and demonstrate its applicability
across social simulation scenarios. Experiment re-
sults highlight EcoLANG’s ability to reduce infer-
ence costs while maintaining simulation accuracy.

Acknowledgement

The research is supported by National Key R&D
Program of China (Grant No. 2023YFF1204800)
and National Natural Science Foundation of China
(Grant No. 62176058). The project’s computa-
tional resources are supported by CFFF platform
of Fudan University.

Limitations

EcoLANG induces an efficient agent communica-
tion language that improves simulation efficiency
and reduces inference costs while maintaining sim-
ulation accuracy. Despite our careful design, some
limitations still exist.

• Although EcoLANG improves efficiency, the
extent of this improvement is not yet transfor-
mative. This is because we focus on reduc-
ing token generation but do not address the
reduction of the number of inference times.
In the future, we plan to integrate it with hy-
brid frameworks that optimize the number of
inference steps, thereby further enhancing ef-
ficiency and reducing costs to a greater extent.

• Due to the limited available large-scale social
simulation datasets for validation, we have
currently only tested EcoLANG in PHEME
and HiSim, which may raise concerns about
its generalizability. In the future, it will be nec-
essary to advance the construction of bench-
marks for diverse social simulation scenarios.

• Due to the lack of objective and unified eval-
uation frameworks and metrics for existing
LLM-driven social simulations, as compared
to task-solving scenarios, we currently partly
rely on LLMs to get the fitness value during
the selection process, which may introduce
potential bias. We will continue to explore
more reliable evaluation frameworks for so-
cial simulation.

Ethics Statement

This paper aims to evolve an efficient communi-
cation language for social simulation. Like most

work in social simulation, it may raise potential
considerations and we urge the readers to approach
it with caution.

• When employing LLMs for social simulation,
concerns arise regarding the fidelity and in-
terpretability of the results. If not carefully
managed, the risk of bias could exacerbate
real-world problems. However, our experi-
ments demonstrate that EcoLANG does not
amplify incorrect predictions related to misin-
formation (PHEME) or opinion polarization
(HiSim).

• Ensuring the ethical handling of any real-
world datasets, including anonymization and
consent, is crucial. During our social simu-
lations, all user content was anonymized to
minimize privacy risks.

• Although EcoLANG is designed to evolve ef-
ficient language, misuse, such as promoting
uncivil language, could pose risks. There-
fore, strict governance and ethical guidelines
should be implemented.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R
Gubler, Christopher Rytting, and David Wingate.
2023. Out of one, many: Using language mod-
els to simulate human samples. Political Analysis,
31(3):337–351.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Rong-Ching Chang, Ashwin Rao, Qiankun Zhong, Mag-
dalena Wojcieszak, and Kristina Lerman. 2023. #
roeoverturned: Twitter dataset on the abortion rights
controversy. In Proceedings of the International
AAAI Conference on Web and Social Media, vol-
ume 17, pages 997–1005.

Huajun Chen. 2024. Large knowledge model: Perspec-
tives and challenges. Data Intelligence, 6(3):587–
620.

5295

https://doi.org/10.3724/2096-7004.di.2024.0001
https://doi.org/10.3724/2096-7004.di.2024.0001


Weize Chen, Chenfei Yuan, Jiarui Yuan, Yusheng Su,
Chen Qian, Cheng Yang, Ruobing Xie, Zhiyuan Liu,
and Maosong Sun. 2024a. Beyond natural language:
LLMs leveraging alternative formats for enhanced
reasoning and communication. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 10626–10641, Miami, Florida, USA.
Association for Computational Linguistics.

Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. 2024b. Op-
tima: Optimizing effectiveness and efficiency for
llm-based multi-agent system. arXiv preprint
arXiv:2410.08115.

Ayush Chopra, Shashank Kumar, Nurullah Giray-Kuru,
Ramesh Raskar, and Arnau Quera-Bofarull. 2024.
On the limits of agency in agent-based models. arXiv
preprint arXiv:2409.10568.

Herbert H Clark and Susan E Brennan. 1991. Ground-
ing in communication.

Leon Derczynski, Kalina Bontcheva, Maria Liakata,
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. Semeval-2017 task 8: Rumoureval:
Determining rumour veracity and support for ru-
mours. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 69–76.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Tim Finin, Richard Fritzson, Don McKay, and Robin
McEntire. 1994. Kqml as an agent communication
language. In Proceedings of the third international
conference on Information and knowledge manage-
ment, pages 456–463.

Lukas Galke, Yoav Ram, and Limor Raviv. 2022. Emer-
gent communication for understanding human lan-
guage evolution: What’s missing? arXiv preprint
arXiv:2204.10590.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao
Ding, Zhilun Zhou, Fengli Xu, and Yong Li. 2024.
Large language models empowered agent-based mod-
eling and simulation: A survey and perspectives.
Humanities and Social Sciences Communications,
11(1):1–24.

Salvatore Giorgi, Sharath Chandra Guntuku, McKenzie
Himelein-Wachowiak, Amy Kwarteng, Sy Hwang,
Muhammad Rahman, and Brenda Curtis. 2022. Twit-
ter data of the #blacklivesmatter movement and
counter protests: 2013 to 2021.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. 2024. Connecting large language models with
evolutionary algorithms yields powerful prompt opti-
mizers. In The Twelfth International Conference on
Learning Representations.

Serhii Havrylov and Ivan Titov. 2017. Emergence of
language with multi-agent games: Learning to com-
municate with sequences of symbols. Advances in
neural information processing systems, 30.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Pegah Jandaghi, XiangHai Sheng, Xinyi Bai, Jay Pujara,
and Hakim Sidahmed. 2023. Faithful persona-based
conversational dataset generation with large language
models. arXiv preprint arXiv:2312.10007.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Angeliki Lazaridou and Marco Baroni. 2020. Emergent
multi-agent communication in the deep learning era.
arXiv preprint arXiv:2006.02419.

Angeliki Lazaridou, Anna Potapenko, and Olivier Tiele-
man. 2020. Multi-agent communication meets natu-
ral language: Synergies between functional and struc-
tural language learning. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7663–7674.

Willem JM Levelt. 1993. Speaking: From intention to
articulation. MIT press.

Jianhua Lin. 1991. Divergence measures based on the
shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151.

Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui
Fang, and Sameena Shah. 2015. Real-time rumor
debunking on twitter. In Proceedings of the 24th
ACM international on conference on information and
knowledge management, pages 1867–1870.

Yuhan Liu, Xiuying Chen, Xiaoqing Zhang, Xing Gao,
Ji Zhang, and Rui Yan. 2024. From skepticism to
acceptance: simulating the attitude dynamics toward
fake news. In Proceedings of the Thirty-Third Inter-
national Joint Conference on Artificial Intelligence,
IJCAI ’24.

Fabian Lorig, Emil Johansson, and Paul Davidsson.
2021. Agent-based social simulation of the covid-19
pandemic: A systematic review. JASSS: Journal of
Artificial Societies and Social Simulation, 24(3).

5296



Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,
Bernard J Jansen, Kam-Fai Wong, and Meeyoung
Cha. 2016. Detecting rumors from microblogs with
recurrent neural networks.

Zachary Maiorana, Pablo Morales Henry, and Jennifer
Weintraub. 2020. #metoo Digital Media Collection -
Twitter Dataset.

Samuele Marro, Emanuele La Malfa, Jesse Wright, Guo-
hao Li, Nigel Shadbolt, Michael Wooldridge, and
Philip Torr. 2024. A scalable communication pro-
tocol for networks of large language models. arXiv
preprint arXiv:2410.11905.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Xinyi Mou, Xuanwen Ding, Qi He, Liang Wang, Jing-
cong Liang, Xinnong Zhang, Libo Sun, Jiayu Lin, Jie
Zhou, Xuanjing Huang, et al. 2024a. From individual
to society: A survey on social simulation driven by
large language model-based agents. arXiv preprint
arXiv:2412.03563.

Xinyi Mou, Zhongyu Wei, and Xuanjing Huang. 2024b.
Unveiling the truth and facilitating change: Towards
agent-based large-scale social movement simulation.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 4789–4809, Bangkok,
Thailand. Association for Computational Linguistics.

Martin A Nowak and David C Krakauer. 1999. The
evolution of language. Proceedings of the National
Academy of Sciences, 96(14):8028–8033.

Xuchen Pan, Dawei Gao, Yuexiang Xie, Yushuo Chen,
Zhewei Wei, Yaliang Li, Bolin Ding, Ji-Rong Wen,
and Jingren Zhou. 2024. Very large-scale multi-
agent simulation in agentscope. arXiv preprint
arXiv:2407.17789.

Joon Sung Park, Carolyn Q Zou, Aaron Shaw, Ben-
jamin Mako Hill, Carrie Cai, Meredith Ringel Morris,
Robb Willer, Percy Liang, and Michael S Bernstein.
2024. Generative agent simulations of 1,000 people.
arXiv preprint arXiv:2411.10109.

Jinghua Piao, Yuwei Yan, Jun Zhang, Nian Li, Junbo
Yan, Xiaochong Lan, Zhihong Lu, Zhiheng Zheng,
Jing Yi Wang, Di Zhou, et al. 2025. Agentsoci-
ety: Large-scale simulation of llm-driven generative
agents advances understanding of human behaviors
and society. arXiv preprint arXiv:2502.08691.

Steven Pinker and Paul Bloom. 1990. Natural language
and natural selection. Behavioral and brain sciences,
13(4):707–727.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, et al. 2024. Chatdev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15174–15186.

Flaminio Squazzoni, Wander Jager, and Bruce Edmonds.
2014. Social simulation in the social sciences: A
brief overview. Social Science Computer Review,
32(3):279–294.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Anna Wierzbicka. 1996. Semantics: Primes and uni-
versals: Primes and universals. Oxford University
Press, UK.

Ludwig Wittgenstein. 2009. Philosophical investiga-
tions. John Wiley & Sons.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang,
Ziyue Gan, Zhiyu Wang, Zijian Ling, Martin Ma,
Bowen Dong, Prateek Gupta, et al. 2024. Oasis:
Open agents social interaction simulations on one
million agents. In NeurIPS 2024 Workshop on Open-
World Agents.

Yangbin Yu, Qin Zhang, Junyou Li, Qiang Fu, and De-
heng Ye. 2024. Affordable generative agents. arXiv
preprint arXiv:2402.02053.

Xinnong Zhang, Jiayu Lin, Xinyi Mou, Shiyue Yang,
Xiawei Liu, Libo Sun, Hanjia Lyu, Yihang Yang,
Weihong Qi, Yue Chen, Guanying Li, Ling Yan, Yao
Hu, Siming Chen, Yu Wang, Jingxuan Huang, Jiebo
Luo, Shiping Tang, Libo Wu, Baohua Zhou, and
Zhongyu Wei. 2025. Socioverse: A world model
for social simulation powered by llm agents and a
pool of 10 million real-world users. arXiv preprint
arXiv:2504.10157.

George Kingsley Zipf. 2016. Human behavior and the
principle of least effort: An introduction to human
ecology. Ravenio books.

Arkaitz Zubiaga, Geraldine Wong Sak Hoi, Maria Li-
akata, and Rob Procter. 2016. Pheme dataset of ru-
mours and non-rumours.

5297



A Implementation Details of Language
Induction

A.1 Vocabulary Compression
Twitter Corpus for Word Frequency Counting
Since it’s infeasible to get a corpus of all tweets
to count words, we have chosen to analyze and
gather statistics from existing tweets relevant to
the topics of social simulation. Since some tweet
links are no longer accessible, we crawled 41,736
tweets from the Twitter 15 and 16 datasets (Liu
et al., 2015; Ma et al., 2016) and 10,673,881 tweets
from the social movement dataset (Maiorana et al.,
2020; Chang et al., 2023; Giorgi et al., 2022) that
were posted before the simulated events in HiSim
occurred, resulting in 35,211 and 1,662,657 unique
words, respectively.

Semantic Clustering We experimented with
both top-down clustering, which involves assign-
ing words from the corpus to synsets in Word-
Net (Miller, 1995), and bottom-up clustering,
which encodes each word and groups them into
clusters using methods like KMeans or spectral
clustering. We found that the top-down approach
is more controllable and less likely to group unre-
lated words into the same cluster, so we adopted
the former method. Specifically, we first remove
non-English words, and we compute the center
embedding eSj of each synset Sj in WordNet and
calculate the cosine similarity between each candi-
date word wi and the center of every synset. The
word is then assigned to the synset whose center
has the highest similarity.

Due to the fine-grained division of synonym sets
in WordNet, many sets contain only one or two
words. Therefore, we further merge similar sets us-
ing a similarity threshold of 0.8, resulting in 16,545
clusters for PHEME and 47,339 clusters for HiSim.

Intra-Cluster Selection Within each semantic
cluster, we reserve words with the highest scores
calculated by the score function in Eq. 1. With
different reservation ratio rw for each cluster, we
can get vocabularies of different sizes, as shown in
Table 3.

Tokenization To ensure normal generation by
LLMs, in addition to retaining tokens correspond-
ing to the selected words, we also preserve tokens
for the LLM’s special tokens, punctuation, abbrevi-
ations, and emojis.

A.2 Rule Evolution

A.2.1 Initialization
We initialize the language rules by human crafting

and LLM generation. We calculate the information
density of each tweet in the Twitter corpus, and
summarize rules that can reflect the characteristics
of these tweets. For LLMs, we ask GPT-4o how to
issue rule instructions to enable efficient communi-
cation. Specifically, we obtained the following rule
prompts:

Initial Rules for Evolution

1. Please respond concisely.
2. Provide a brief summary of your re-
sponse.
3. Feel free to replace lengthy words or
phrases with hashtags and symbols, like
emojis.
4. Please use simple sentence structures.
5. Please omit unnecessary components
such as subjects or predicate verbs.
6. Try using abbreviations or slang to
shorten your sentences.
7. Identify your main point and communi-
cate it directly without unnecessary details.
8. Avoid repeating ideas and removing un-
necessary filler words.
9. Get to the point quickly and clearly, with-
out over-explaining.
10. Remove words like "very" or "really"
that don’t add value.

A.2.2 Communication
We use the validation set of the synthetic-persona-
chat dataset for communication simulation. We
append the sampled language rule behind the pro-
file of agents in their system prompts. In practice,
we use AutoGen (Wu et al., 2023) to generate dia-
logues between agents, and the system prompt used
is as follows.

Prompt of Agents for Communication

You are {agent_name}. {agent_profile}
{few-shot chat history for initialization}
What will you, {agent_name}, speak next?
{rule}

A.2.3 Selection
For the fitness function in selection value, we set
the hyperparameters λalign = 1, λeff = 0.6 and
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Figure 4: Alignment and expressiveness score distribu-
tion in the first iteration.

λexp = 0.6, learning from previous work (Chen
et al., 2024b). We use the following prompts to
instruct GPT-4o to give the alignment score and
expressiveness score to the dialogues.

Prompt for Alignment Evaluation

Please evaluate whether the agents’ re-
sponses align with the persona reflected in
the reference response.
Please focus on the aspects of content, emo-
tion and atttude, and ignore differences in
language structure, e.g., word choice, sen-
tence length, emoji usage and syntax.
Agent’s response: {simulated_dialog}
Reference response: {reference_dialog}
Please rate on a scale of 1 to 5, with 1 being
most inconsistent and 5 being most like the
persona.
Please write a short reason and strictly fol-
low the JSON format for your response:
{{"reason": <str>, "score": <int>}}

Prompt for Expressiveness Evaluation

Please evaluate whether the agents’ lan-
guage is clear and easy to understand.
Agents’ language: {simulated_dialog}
Please rate on a scale of 1 to 5, with 1 being
most unclear and 5 being most clear.
Please write a short reason and strictly fol-
low the JSON format for your response:
{{"reason": <str>, "score": <int>}}

Figure 4 shows the score distribution of dia-
logues in iteration 1, indicating that the judge
model GPT-4o is capable of assigning differenti-
ated scores. In addition, we sampled 50 dialogues
for human annotation and found that GPT-4o is
more consistent (Cohen’s Kappa: 0.48) with hu-

man judgments than GPT-4o-mini. Therefore, we
chose GPT-4o as the judge model.

A.2.4 Crossover & Mutation
Following Guo et al., we use the following prompts
to conduct crossover and mutation on parent rules.

Prompt for Crossover

Please cross over the following prompts
and generate a new prompt bracketed with
<prompt> and </prompt>.
Prompt 1: {rule_prompt1}
Prompt 2: {rule_prompt2}

Prompt for Mutation

Mutate the prompt and generate a new
prompt bracketed with <prompt> and
</prompt>
Prompt: {rule_prompt}

To clarify how crossover and mutation operate
on rules, we provide the following examples:

• Crossover: The LLM merges two high-
quality parent rules into a single offspring
rule. For example, given “Please avoid re-
peating ideas” and “Try to remove unneces-
sary filler words”, the crossover operation pro-
duces “Avoid repeating ideas and removing
unnecessary filler words”.

• Mutation: The LLM randomly alters the
phrasing of a rule to introduce linguistic diver-
sity. For instance, the rule “Avoid repeating
ideas and removing unnecessary filler words”.
may mutate into “Streamline your writing by
eliminating redundant ideas and trimming ex-
cessive filler words for clarity and impact”.

A.2.5 Update and Iteration
In each iteration, we adopt the elitism strategy of
genetic algorithm to reserve the top-5 rules in cur-
rent population and generate 5 new rules through
crossover and mutation. The overall process for the
evolution can be described in Algorithm 1.

A.2.6 Evolved Rules
Based on the vocabularies of PHEME and HiSim,
we perform rule evolution using the synthetic-
persona-chat dataset. In each iteration, we obtain
the following best rules:
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Algorithm 1 Evolution of the language rules

Require: Initial rules P1 = {p1, p2, . . . , pN},
size of rule population N , a set of scenarios
for dialogue simulation D = {di}, number
of sampled rules for each scenario M , a pre-
defined number of iterations T , fitness function
for each dialogue F , crossover and mutation
operation Opr(·), update strategy Upd(·)

1: for t in 1 to T do
2: Communication: sample and assign rules

to each scenario di and use LLM-driven

agents to generate dialogues
{
τ ji

}M

j=1
in

these scenarios
3: Selection: use the fitness function to evalu-

ate the dialogues sji ← F (τ ji ), and average
the scores of the dialogues based on rules
used to get fitness of each rule

4: Crossover and Mutation: select a cer-
tain number of rules as parent rules
pr1 , . . . , prk ∼ Pt, and generate new rules
based on the parent rules by leveraging
LLMs to perform crossover and mutation
{p′i} ← Opr (pr1 , . . . , prk)

5: Update: update the set of rules Pt+1 ←
Upd(Pt, {p′i})

6: end for
7: return the best rule p∗t at each iteration t

Hyperparameter Value

model Llama-3.1-8B-Instruct
temperature 0
max_tokens 512
num_steps max depth of each (non)rumor

Table 5: Hyperparameters of PHEME Simulation.

Best Rules for PHEME

iter 1: Please use simple sentence struc-
tures.
iter 2: Respond briefly, removing unneces-
sary words.
iter 3: Eliminate repetitive ideas, unneces-
sary fillers, and respond concisely.
iter 4: Eliminate repetitive ideas, unneces-
sary fillers, and respond concisely.
iter 5: Remove redundancy, filler words,
and respond briefly.

Best Rules for HiSim

iter 1: Avoid repeating ideas and removing
unnecessary filler words.
iter 2: Please use simple sentence struc-
tures.
iter 3: Eliminate redundancy, cut filler, and
be concise.
iter 4: Eliminate redundancy, cut filler, and
be concise.
iter 5: Eliminate redundancy, cut filler, and
be concise.

B Implementation Details of Language
Utilization (Social Simulation)

B.1 Implementation Details

All the simulations are conducted in OASIS frame-
work (Yang et al., 2024). We run the simulator
on a Linux server with 8 NVIDIA GeForce RTX
4090 24GB GPU and an Intel(R) Xeon(R) Gold
6226R CPU. We run each simulation three times
and report the average results.

B.2 PHEME Simulation

We initialize the agents with user profiles and net-
work information from the PHEME dataset. We
prompt GPT-4o-mini to write a short description
given each user’s biography on Twitter. For each
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instance in PHEME, we only retain replies with
content for simulation and validation. The action
space prompt for PHEME in OASIS simulation is
as follows, and the hyperparameters are shown in
Table 5. Other parameters and mechanisms are set
to the defaults in OASIS.

Action Space Prompt for PHEME in OASIS

You’re a Twitter user, and I’ll present you
with some posts. After you see the posts,
choose some actions from the following
functions.
Suppose you are a real Twitter user. Please
simulate real behavior.

- do_nothing: Most of the time, you just
don’t feel like reposting or liking a post, and
you just want to look at it. In such cases,
choose this action "do_nothing"
- quote_post: Quote a specified post with
given content.

Arguments:
- "post_id" (integer) - The ID of the post

to be quoted.
- "quote_content" (string) - The content

of the quote. You can ‘quote_post’ when
you want to share a post while adding your
own thoughts or context to it.
{rule_prompt}

B.3 PHEME Evaluation

We include the following metrics to evaluate simu-
lation effectiveness:

• Stance Consistency: we label the stance of
each agent’s and real user’s initial response
towards the source tweet given the tree-like
threads, with the label space being support,
deny, query and comment from (Derczynski
et al., 2017).

• Belief Consistency: Following (Liu et al.,
2024), we label the belief of agents and real
users at the end of simulation. Since we ob-
served that some agents or users did not ex-
plicitly express belief or disbelief, we added
an additional category, unknown, alongside
the existing belief and disbelief labels.

• Belief JS Divergence: we additionally incor-
porated the JS divergence of the belief distri-

bution to assess the effectiveness of the simu-
lation at the group level.

The prompts for stance and belief annotation are
as follows.

Prompt for PHEME Stance Labeling

Given threads discussing a news, please
label the stance of the question tweet on the
source news tweet.

Treads: {threads}
Question tweet: {tweet}

Please choose from the following options:
1. support: the author of the response sup-
ports the veracity of the news.
2. deny: the author of the response denies
the veracity of the news.
3. query: the author of the response asks
for additional evidence in relation to the
veracity of the news.
4. comment: the author of the response
makes their own comment without a clear
contribution to assessing the veracity of the
news.

Please strictly follow the JSON format for
your response:
{{"stance": <str>}}

B.4 HiSim Simulation

Metoo and Roe datasets in HiSim provide profiles
and historical tweets of 1,000 users respectively, as
well as their social networks in Twitter. We use this
information to initialize the agents in the OASIS
platform. To reduce the randomness introduced by
the OASIS platform, we ban the recommendation
systems and only enable agents to get information
from external news and who they are following.
The action space prompt for PHEME in OASIS
simulation is as follows. The hyperparameters are
shown in Table 6. Other parameters and mecha-
nisms, such as the memory mechanism, are set to
the defaults in the OASIS framework.
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Prompt for PHEME Belief Labeling

Please determine whether the author of the
final tweet believes the source news.

Source News:{source_tweet}
Final Tweet:{final_tweet}

If the author does not believe the source
news, questions the AUTHENTICITY of
the source news or queries for more infor-
mation about the AUTHENTICITY of the
news, please label it as disbelief.
If the author expresses opinions or call for
actions under the assumption that the news
is true, please label it as belief.
If the author discusses something unrelated
to the source news, please label it as
unknown. Please label 0 for disbelief, 1 for
belief and 2 for unknown.

Please write a short reason and strictly fol-
low the JSON format for your response:
{{"reason": <str>, "label": <int>}}

Hyperparameter Value

model Llama-3.1-8B-Instruct
temperature 0
max_tokens 512
num_steps 14

Table 6: Hyperparameters of HiSim Simulation.

Dim. Consistency

stance 0.94
belief 0.78

Table 7: Consistency of GPT-4o-mini judging the stance
and belief when taking human evaluations as the ground-
truth reference.

Action Space Prompt for HiSim in OASIS

You’re a Twitter user, and I’ll present you
with some posts. After you see the posts,
choose some actions from the following
functions.
Suppose you are a real Twitter user. Please
simulate real behavior.

- do_nothing: Most of the time, you just
don’t feel like reposting or liking a post, and
you just want to look at it. In such cases,
choose this action "do_nothing"
- create_post: Create a new post with the
given content.

- Arguments: "content" (str): The content
of the post to be created.
- repost: Repost a post.

- Arguments: "post_id" (integer) - The ID
of the post to be reposted. You can ‘repost‘
when you want to spread it.
- quote_post: Quote a specified post with
given content.

- Arguments:
- "post_id" (integer) - The ID of the post

to be quoted.
- "quote_content" (string) - The content

of the quote. You can ‘quote_post‘ when
you want to share a post while adding your
own thoughts or context to it.
{rule_prompt}
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Method stance↑ content↑ ∆bias↓ ∆div↓ tokenr↓ tokenp↓ tokenc↓ CosSim↑ Jaccard↑ word_JS↑

AgentTorch 67.87 31.81 0.098 0.024 2.5K 0.48M 94.34K 0.666 0.058 0.360

w/ Summary 68.28 32.27 0.151 0.032 1.5K 0.48M 88.58K 0.698 0.054 0.366
w/ AutoForm 65.19 32.52 0.092 0.026 1.8K 0.47M 84.09K 0.726 0.065 0.359
w/ KQML 67.64 32.20 0.110 0.018 1.5K 0.49M 88.90K 0.693 0.064 0.361

w/ Vocab 67.61 33.56 0.098 0.013 1.6K 0.47M 91.39K 0.726 0.066 0.359
w/ Rule 67.76 33.35 0.086 0.015 1.3K 0.47M 80.96K 0.735 0.066 0.356
w/ EcoLANG 68.63 33.45 0.099 0.017 1.2K 0.46M 78.03K 0.740 0.066 0.358

Table 8: The results of the communication simplification method combined with AgentTorch on HiSim dataset.
Only 36 prototype agents were used in all experiments. The number of prototypes is determined by the combination
of fundamental attributes such as gender, political inclination, and activity level.

Method GPU memory (avg) RunTime (avg)

Base 19.85GiB 980s
Summary 19.85GiB 924s (-5.7%)
AutoForm 19.85GiB 884s (-9.8%)
KQML 19.85GiB 939s (-4.1%)
Vocab 19.85GiB (18.23GiB*) 878s (-10.4%)
Rule 19.85GiB 865s (-11.7%)
EcoLANG 19.85GiB (18.23GiB*) 850s (-13.2%)

Table 9: Supplementary Efficiency Metrics on HiSim.
*Note that if the original model is deployed with a re-
stricted decoding range, Vocab and EcoLANG consume
the same amount of GPU memory as other methods.
However, if the model’s vocabulary is pruned prior to
deployment, these two methods can achieve lower GPU
memory consumption.

B.5 HiSim Evaluation

For simulation results on HiSim, we follow (Mou
et al., 2024b) to include the following metrics to
evaluate simulation effectiveness:

• Stance Consistency: we classify the initial
response of agents and real users into three
categories: support, neutral and oppose, to-
wards the given target #Metoo movement and
the protection of abortion rights, and compute
the consistency between agents and users.

• Content Consistency: we classify the initial
response of agents and real users into 5 types,
i.e., call for action, sharing of opinion, refer-
ence to a third party, testimony and other.

• ∆bias and ∆div: bias is measured as the de-
viation of the mean attitude from the neutral
attitude, while diversity is quantified as the
standard deviation of attitudes. These metrics
are calculated at each time step and averaged
over time. The differences between the sim-
ulated and real-world measures, denoted as
∆bias and ∆div are reported.

The prompts for stance and content labeling are
borrowed from (Mou et al., 2024b). Notably, we
focus on the macro setting from the original HiSim
paper, which involves continuous, multi-turn inter-
actions to simulate complex social dynamics over
time. However, we did not include HiSim as a
baseline, as it adopts a different agent architecture
based on AgentVerse from our implementation on
OASIS in this paper.

B.6 Evaluation Bias
Since we partially rely on LLMs for evaluation, this
approach may introduce some evaluation bias. To
address this, we sample 100 simulation instances
and instruct two human annotators to label the
stance and belief of the responses, providing them
with the same information as given to GPT. Table 7
shows the consistency between the annotations of
GPT-4o-mini and those of the human annotators.

B.7 Additional Efficiency Analysis
Besides token consumption, additional results on
runtime performance and GPU memory usage are
reported, as shown in Table 9. All the methods
are tested in the same setting, with 8 NVIDIA
GeForce RTX 4090 1017 24GB GPU and an In-
tel(R) Xeon(R) Gold 6226R 1018 CPU. These re-
sults further demonstrate that our method achieves
improved simulation efficiency compared to the
baselines.

B.8 Integration with AgentTorch
The communication simplification methods are or-
thogonal to AgentTorch (Chopra et al., 2024) and
can be combined with it to enhance efficiency fur-
ther. To understand the potential of combining
different communication simplification methods
with this paradigm, we conducted experiments by
integrating different communication simplification
methods with AgentTorch. Since each scenario
in PHEME involves a relatively small number of
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Base Best Language Rule at Iter 1 Best Language Rule at Iter 5

I completely agree with this post! As an 
activist, I believe that intersectionality is 
crucial in understanding the 
complexities of oppression. Let's keep 
the conversation going and work 
towards a more inclusive and equitable 
society! #MeToo #TimesUp #LGBTQ 
#RacialJustice

I completely agree with @user248 that 
we must continue to support the MeToo 
and Time's Up movement and hold our 
leaders accountable. Let's not forget 
about President Trump's past 
endorsement of Roy Moore, who was 
accused of sexual misconduct. We must 
keep pushing for change!

I'm with you! We must stand together 
against sexual violence and demand 
accountability for those who abuse their 
power. #MeToo #TimesUp #JusticeForAll

I'm with you, let's not just stand together, 
but also take action! We need to contact 
our representatives and demand they 
protect our rights. #RoeVsWade 
#AbortionIsHealthcare #WomenRights

I'm with you! We must take action to 
protect our rights and the rights of 
future generations. Let's contact our 
representatives, donate to organizations 
fighting for reproductive rights, and 
spread awareness about this critical 
issue. #AbortionRights #WomenRights 
#TakeAction

I'm so glad @user557 is speaking out 
against this decision! We must keep 
fighting for our reproductive rights and 
stand together against this attack on 
women's bodies. #RoeVsWade 
#AbortionIsHealthcare #WomenRights

… …

…

Figure 5: Case study: responses of agents without any communication optimization and with the best evolved rule
at iteration 1 and 5. In most cases, agents express more concisely while sometimes fail to follow instructions.

agents, further clustering them into a few proto-
types would overly simplify the agent population,
resulting in homogeneous content and limiting the
generation of meaningful responses. Given these
limitations, we determined that AgentTorch is not
a suitable baseline for PHEME and therefore con-
ducted experiments only on HiSim.

The results in Table 8 show that combining all
methods with AgentTorch can further improve sim-
ulation efficiency, reducing token consumption by
up to an additional 80% compared to Table 1.
Among these, our method demonstrates advantages
in both effectiveness and efficiency, highlighting its
robustness. However, integrating with AgentTorch
has some side effects. While using a small number
of agents drastically reduces token usage, it also
compromises the diversity and accuracy of agent
responses, leading to noticeable shortcomings in
content-related metrics, e.g., stance and CosSim,
compared to results in Table 1 and Table 2.

B.9 Case Study
Figure 5 showcases some exemplary instances of
efficient communication and bad cases. Benefiting
from the evolved rule, agents can speak more con-
cisely using words like “I’m with you” to replace “I
completely agree with you”. However, sometimes
the agents may fail to simplify their expression
and disclose excessive details. This may be the
result of the model’s insufficient ability to follow
instructions. A potential solution is to further fine-
tune the models using the efficient communication
dialogues from the language evolution process.
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