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Abstract

In competitive programming task, problem
statements are often embedded within elabo-
rate narrative backgrounds, requiring deep un-
derstanding of the underlying solutions to suc-
cessfully complete the tasks. Current code
generation models primarily focus on token-
level semantic modeling, highly susceptible
to distractions from irrelevant narrative state-
ments. Inspired by RAG, retrieving reference
code with similar solutions may help enhance
model performance on difficult problems. How-
ever, existing retrieval models also emphasize
surface-level semantic similarity, neglecting the
deeper solution-level logical similarities that
are critical in competitive programming. There-
fore, designing ranking models capable of ac-
curately identifying and retrieving problems
and corresponding codes remains an urgent
research problem in competitive code gener-
ation. In this paper, we propose SolveRank, a
solution-aware ranking model empowered by
synthetic data for competitive programming
tasks. Specifically, we leverage the DeepSeek-
R1 model to generate logically equivalent but
differently phrased new problems, verified by
GPT-40 for solution consistency. Then, we
train SolveRank with these as positive samples
and BM25/random-retrieved problems as neg-
atives. During inference, SolveRank retrieves
relevant problems and corresponding code from
the corpus to assist a downstream code gener-
ator. Experiments on the xCodeEval dataset
demonstrate that SolveRank outperforms SOTA
ranking methods in precision and recall met-
rics, and boosts code generation performance
for difficult problems.

1 Introduction

Recent large language models (LLMs) achieve
human-level performance on simple programming
tasks (Zheng et al., 2023; Wang et al., 2025), but
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In a store, there are n gifts, each with a price p,. The
gift prices are [sorted in ascending order. You are given
a budget B and want to buy a set of gifts. Each gift
may be selected at most once. Your goal is to
maximize the total price of the selected gifts without
exceeding the budget.
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! emission level is at most 7.

4

Figure 1: Examples of solution-level logical similar
and semantically similar problems. Problems 1 and
Problems 3 differ in surface descriptions but share the
same algorithm (binary search). Problem 2 has similar
background and vocabulary to Problem 1, yet requires a
different solution approach.

struggle with competitive problems (Li et al., 2022).
This discrepancy arises because simple program-
ming tasks rely on surface-level instruction follow-
ing which can be addressed by aligning with human
preferences, while competitive problem statements
are often embedded within elaborate narrative back-
grounds, demanding deeper understanding of the
underlying solutions to successfully complete the
programming tasks.

Since current code generation models are typi-
cally trained using token-level semantic informa-
tion, they are highly susceptible to being influenced
by the narrative problem statements. As illustrated
in Figure 1, Problems 1 and 2 differ only slightly
in wording but require entirely different solutions:
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Problem 1 is an upper bound search problem in
a sorted array, whereas Problem 2 is a 0/1 Knap-
sack Problem. This semantic similarity can mislead
LLMs into generating incorrect solutions by recall-
ing analogous but inappropriate training examples.
Therefore, current LLMs still face a significant
challenges in solving competitive programming.

Inspired by Retrieval-Augmented Generation
(RAG), reference code that shares the same un-
derlying solution as the current problem may help
LLMs generate correct code in competitive pro-
gramming tasks. As shown in Figure 2, we observe
that for simple problems(<=1400), LLMs can di-
rectly generate correct code without RAG. But for
more challenging problems(>1400), RAG proves
to be highly beneficial. Specifically, for difficult
problems, retrieving reference code improves the
pass@1 rate from 30.00% to 35.84%, highlighting
the effectiveness of RAG in enhancing LLM per-
formance on competitive programming problems.

However, existing retrieval models primarily fo-
cus on surface-level semantic similarity, often re-
trieving problems with similar wording but lacking
deep solution relevance. Downstream performance
analysis shows that solution-aware retrieval models
significantly outperform DPR, achieving a pass@1
of 35.84% vs. 31.67% in Figure 2. Notably, inaccu-
rate retrieval in RAG can mislead code generation
in competitive programming. Therefore, designing
ranking models that can accurately identify and re-
trieve solution-relevant problems remains an urgent
challenge in competitive programming tasks.

In this paper, we propose SolveRank, a solution-
aware retrieval model empowered by synthetic data
for competitive programming tasks. Specifically,
we first leverage the DeepSeek-R1 model to gener-
ate multiple synthetic problem statements for cur-
rent problem that are logically equivalent but differ
in surface phrasing. We then use GPT-40 as a dis-
criminator to verify that the generated problems
indeed share the same solution with the current
problem. Next, we employ contrastive learning
to train SolveRank, using the synthetic problems
as positive samples, and BM25/random-retrieved
real problems as negative. Finally, we apply our
SolveRank model to retrieve solution-relevant prob-
lems and their reference code from the corpus,
which are then provided as context to a downstream
code generation model for difficult problems.

Experiments on the xCodeEval (Khan et al.,
2024) dataset demonstrate that SolveRank signifi-
cantly outperforms existing retrieval models(about
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Figure 2: Comparison results of RAG with differ-
ent ranking methods and without RAG on xCodeEval-
python test set. The x-axis is the difficulty score of
problems and the y-axis is the pass@]1 rate.

406% MRR increment), and improves code gener-
ation performance(about 20% pass@1 increment)
for difficult problems, validating the effectiveness
of SolveRank on competitive code generation.'
The innovations in this paper are as follows:

* We find that RAG is particularly beneficial
for solving difficult problems in competitive
programming, and solution-aware retrievers
outperform semantic-based retrievers.

* We propose a solution-level ranking task fo-
cused on assessing whether candidate solu-
tions truly address the query’s intent over
surface-level language matching, and release
two supporting datasets.

* We introduce SolveRank to retrieve relevant
solutions to help LLMs generate correct code,
significantly improving performance on diffi-
cult problems of competitive programming.

2 Method

The framework of SolveRank consists of three
stages, as illustrated in Figure 3. We use the
DeepSeek-R1 model to generate logically equiv-
alent but differently phrased problems, which are
verified with GPT-4o for consistency. Then, we use
these as positive samples to train SolveRank, with
BM25/random-retrieved problems as negative ones.
During inference, we retrieve relevant problems
and code to assist the downstream code generator.

'Our code and data are available at:

https://github.com/lotus-0216/SolveRank
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Figure 3: Training pipeline for Solution-Aware Retriever SolveRank.

2.1 Task Definition

Let Q = {(g;,c;)}Y, denote a corpus of natural
language programming problems and their corre-
sponding reference codes. Given a target problem
q € Qs> the objective of solution-level rank-
ing task is to retrieve a list of problem-code pairs
Ry = {(r1,c1), ..., ("k,cK)} C Qirain such that
each problem r; is logically equivalent to ¢’. Dur-
ing code generation, the top- K logically equivalent
problem—code pairs {(r;,c;)} ]K:1 are retrieved and
concatenated with the target problem g to create an
input prompt for code generation models.

2.2 Synthetic Data Conduction

Due to the lack of solution-relevant retrieval data,
we construct the training set using synthetic data.
Specifically, for each anchor problem ¢ € Qjin,
we use the DeepSeek-R1 model to generate new
problems P, = {q;" °_,. The prompt (see Ap-
pendix A.1) is crafted to preserve the original solu-
tion logic while encouraging diversity in the prob-
lem background.

To ensure true logical equivalence, we apply
GPT-40 as an automatic verifier. For each gen-
erated variant q;L € P,, GPT-4o0 is prompted to
assess whether Logic(q") = Logic(q), focusing
strictly on algorithm class and solution decomposi-
tion while ignoring superficial narrative or vocabu-
lary differences(see in Appendix A.2).A statistical
comparison of synthetic and original problems is
provided in Appendix 6.

2.3 Solution-Aware Retriever

We adopt a contrastive learning approach to train a
DPR model (Karpukhin et al., 2020). The positive
samples are drawn from the synthetic dataset P,,
while the negative samples N, = {q; }32, consist
of the top-5 retrieved by BM25 and 20 randomly
sampled problems from the training corpus.

We use the InfoNCE loss to encourage the en-
coder to bring logic-equivalent problems closer in
the embedding space while pushing apart logical
distractors. The loss is defined as:

exp (Sim(q,tﬁ))
£=—log (sim<q,q+>) (sim<q,q->) :
exp = + > exp =
g ENy
. (D
sim(q,7) = Eq(q) Ep(r), 2

where 7 is a hyperparameter, Eq(-) and Ep(-)
are query and passage encoders from DPR model.

After that, given a target problem ¢’ and its top-
K retrieved candidates {ry, 7o, ..., 7 }, we verify
whether each r; satisfies logical equivalence with
q with GPT-40 judgment(see in Appendix A.2).

2.4 Retrieval-Augmented Code Generation

Given the top- K problem—code pairs { (7, cj)}jK:1
retained for the target problem ¢’ , we concatenate
the verified examples and the target problem into a
single input, formatted as:

Prompt(q) = Concat ({(71,¢1), ..., (rK,cK)}, q)-

We use large language models to generate
Python code in an autoregressive manner. The
model operates in a zero-shot setting, generating
the code until an end-of-function token is produced
or a maximum length is reached.

3 Experiments

3.1 Experimental Setups

Dataset We use the xCodeEval benchmark for
experiments, which includes competitive program-
ming problems in areas like dynamic programming,
graph traversal, greedy algorithms, and simulation.
The official test set of the NL-Code Retrieval task
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Table 1: Pass@1 (%) for different difficulty levels on
xCodeEval using GPT-3.5(a) and GPT-40(b). D denotes
the official difficulty score.

Method D <1400 1400 < D <2000 D > 2000
No Retrieval 49.77 10.71 5.56
Random 38.29 10.71 5.56
BM25 38.74 14.29 8.33
DPR 45.50 11.90 5.56
ReACC 43.69 13.10 5.56
CodeBERT 41.18 17.86 11.11
SolveRank 40.54 13.10 11.11
()
Method D <1400 1400 < D <2000 D > 2000
No Retrieval 80.18 36.90 13.89
Random 72.52 42.86 11.11
BM25 74.77 45.24 11.11
DPR 78.83 40.48 11.11
ReACC 72.52 38.10 13.04
CodeBERT 74.77 40.48 13.89
SolveRank 77.03 44.05 16.67

(b)

Table 2: Ranking performance by retrieving synthetic
solution-relevant problems from xCodeEval-python.

Method P@l R@l1 P@3 R@3 P@5 R@5 MRR
BM25 0.131 0.026 0.198 0.068 0.240 0.103 0.186
DPR 0.039 0.008 0.059 0.020 0.069 0.030 0.057

ReACC 0.027 0.005 0.064 0.016 0.083 0.024 0.057
CodeBERT 0.096 0.019 0.167 0.048 0.193 0.066 0.147
SolveRank  0.682 0.136 0.808 0.385 0.842 0.593 0.755

is used for evaluation, while the training set serves
as the retrieval corpus. Since the ExecEval plat-
form of xCodeEval only supports problems from
the program_synthesis subset for functional eval-
uation, we filter the NL-Code Retrieval test set to
keep 342 suitable problems.

Baselines We compare SolveRank with three
SOTA ranking methods: BM25 (Robertson
et al., 2009), CodeBERT (Feng et al., 2020) ,
DPR (Karpukhin et al., 2020) and ReACC (Wan
et al., 2022).

Evaluation Metrics We use Pass@]1 as the pri-
mary metric for competition-level code generation,
measuring the proportion of problems where the
top-1 generated code passes all test cases via Exe-
cEval platform. For the solution-level ranking task,
we use Precision(P@K), Recall(R@K) and MRR
to evaluate the model performance.

Implementation Details We use GPT-40 and
GPT-3.5 as the code generation models in zero-
shot inference mode. SolveRank is trained on a
dual-GPU server (NVIDIA RTX A6000) for 10
epochs using a batch size of 4 and a learning rate
of 3 x 107°, under CUDA 12.5.

3.2 Main Results

The study evaluates Pass@1 performance across
three difficulty levels (Easy<=1400, 1400 <
Medium <=2000, and Hard>2000) on the xCodeE-
val dataset using GPT-3.5-turbo and GPT-40, as
shown in Table 1. The results show that for easy
problems, retrieval offers no significant improve-
ment, sometimes even decreasing performance.
This suggests that LLMs can already solve simple
problems effectively without additional guidance.
In contrast, for medium and hard tasks, all the re-
trieval methods enhance performance, indicating
that RAG is helpful for more complex problems.

For easy problems, all retrieval models surpass
the Random baseline, showing they can capture
some relevance. However, compared to the No
Retrieval setting, all methods perform worse, re-
gardless of whether the retrieved examples are se-
mantically similar, logically aligned, or randomly
sampled. This suggests that the base model is al-
ready sufficient to solve simple tasks independently,
and adding reference may introduce distractions
and degrade performance.

For medium problems, SolveRank may perform
worse as its logic-aware retrieval focuses on com-
plex, deep examples, which can introduce un-
necessary abstraction and cognitive load for sim-
pler tasks. A more detailed analysis of this phe-
nomenon will be presented in Section 3.3.But for
hard problems, SolveRank outperforms all other
baselines, especially with GPT-40. SolveRank
yields a Pass@1 of 16.67% with GPT-40 and
11.11% with GPT-3.5, while other methods (e.g.,
DPR, BM25, and ReACC) offer little to no im-
provement compared to no retrieval. These results
show that logic-equivalent examples retrieved by
SolveRank aid in solving complex problems, high-
lighting the importance of structural alignment and
deep solution in retrieval-augmented code gener-
ation.Further evaluation on the APPS dataset is
provided in Appendix D.

We evaluate the ranking performance by compar-
ing SolveRank with SOTA ranking baselines, us-
ing the retrievability of synthetic solution-relevant
problems from the xCodeEval-Python training
dataset as the evaluation criterion. From Table 2,
we can see that SolveRank outperforms all base-
lines, achieving a P@1 of 0.682 and an MRR of
0.755, while BM25, ReACC, and CodeBERT have
much lower MRRs (0.186, 0.057 and 0.147, re-
spectively). BM25 focuses on lexical overlap, lead-
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Table 3: Algorithm distribution across difficulty levels
in xCodeEval.

two pointers
expression parsing
data structures

divide and conquer
flows

fft

trees

graph matchings
meet-in-the-middle
string suffix structures

total 452 241 118

Algorithm Tag <1400 1400-2000 > 2000
implementation 146 26 18
math 91 50 18
brute force 62 25 2
greedy 50 8 4
dp 17 19 18
constructive algorithms 15 29 1
number theory 14 11 4
strings 14 1 0
sortings 11 1 0
binary search 8 5 5
bitmasks 5 6 2
combinatorics 4 12 2
probabilities 4 6 0
shortest paths 2 0 3
graphs 2 4 4
dfs and similar 2 8 3
geometry 1 6 1
games 1 6 6
matrices 1 2 3
1 0 0
1 0 0
0 12 1
0 2 3
0 0 13
0 0 1
0 0 3
0 1 2
0 1 0
0 0 1

ing to irrelevant results, while CodeBERT strug-
gles with solution-level structure. ReACC focuses
on surface semantic similarity through code trans-
formations and API usage, which is less effec-
tive for competitive programming tasks.SolveRank,
through contrastive learning, captures algorithmic
alignment and reasoning logic, making it more ef-
fective for competitive programming.To further il-
lustrate this distinction, a case study is provided in
Appendix B.1.

3.3 Further Analysis

While SolveRank demonstrates strong performance
on difficult problems, we observe that its advantage
is less prominent on medium-difficulty tasks. To
better understand this phenomenon, we conduct a
detailed analysis of algorithm distribution, error
cases, and model behaviors.

As shown in Table 3, easy problems (D < 1400)
are dominated by implementation, math, brute
force, greedy.Medium problems (1400 < D <
2000) are still concentrated on math, implementa-
tion, and brute force.Hard problems (D > 2000)
exhibit a more balanced distribution and contain
many algorithm classes that are rarely present in

Table 4: SolveRank error distribution by problem type.

Algorithm Tag GPT-3.5 GPT-4o

math
implementation
greedy

brute force

dfs and similar
combinatorics
dp

graphs

number theory
dsu
constructive algorithms
binary search
geometry
bitmasks

data structures

O = = = NN W W WA DN WO
O, OONOOONWRARAN

lower levels, such as flows, FFT, trees, graph match-
ings, string suffix structures.

We further examine the cases where SolveRank
fails but at least one semantic retriever (BM25,
DPR, ReACC, or CodeBERT) succeeds. Table 4
shows that most errors occur in math, implemen-
tation, greedy, and brute force categories. This
highlights a limitation of solution-aware retrieval:

For math problems, which are already highly ab-
stract, additional reference problems provide lim-
ited benefit; success depends more on the code
generator’s inherent mathematical reasoning abil-
ity.For implementation and greedy problems, se-
mantic retrievers often identify problems with simi-
lar contexts or scenarios, which can better guide the
generator to simulate processes correctly. In con-
trast, SolveRank excels at identifying deep struc-
tural and algorithmic similarities, which are more
critical in complex, high-difficulty tasks.To illus-
trate this, we analyze a representative medium-level
case in Appendix B.2.

4 Conclusion

In competitive programming, understanding
problem-solving logic is crucial. Current code gen-
eration models focus on surface-level semantics,
which often fail on complex problems. This paper
introduces SolveRank, a solution-aware ranking
model that uses synthetic data to improve code
generation performance. The model outperforms
semantic-based retrievers and introduces a solution-
level ranking task. Future work will explore the
reinforcement learning for ranking improvement.
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Limitations

Our experiments are conducted solely on the
xCodeEval benchmark, which focuses on com-
petitive programming tasks. The generalizability
of our framework to broader code generation do-
mains, such as software engineering tasks or multi-
language corpora, remains to be validated in future.
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A Prompt Design

The following presents the structured prompts used
throughout our framework, including (1) generat-
ing logically equivalent problems, (2) verifying
logical equivalence, and (3) constructing code gen-
eration input.

A.1 Prompt for Logically Equivalent Problem
Generation

If the problems are based on the same core
abstraction (even with different story
settings), answer "Yes". Otherwise, answer
No".

n

Question A:

{{query}}

Question B:
{{retrieved_question}}

Please answer only "Yes” or "No".

A.3 Prompt for Code Generation

You are an algorithm engineer. Given the
following problem: {{description}}

Change the background of the question and
generate exactly 5 new questions that follow
the same logic as the original question,
but with different content and background.

Please follow this strict format:

- Output exactly 5 lines.

- Each line must contain exactly one question.

- Do not add any numbering, bullets, or
explanations.

To encourage diversity:

- Use a variety of domains or themes such as
education, logistics, art, nature,
architecture, healthcare, etc.

- Ensure each question uses a different context
and vocabulary.

Make sure each generated question is
approximately as detailed and long as the
original problem. Include any necessary
conditions, definitions, and examples if
appropriate. Avoid summarizing or
oversimplifying the logic.

A.2 Prompt for Logical Equivalence
Verification

Write a program in {{lang_cluster}} to solve
this programming problem:
Description: {{description}}

{% if retrieved_context %}

Relevant examples (The following examples are
selected based on their similarity to the
current problem in terms of algorithmic
modeling logic and abstraction. They share
comparable modeling structures, core
optimization objectives, or typical solution

strategies. You may ignore the specific
application context or surface narrative -
focus instead on the underlying algorithmic
structure and reasoning process. Use these
examples as guidance to help generate code
that aligns with the intended problem-
solving logic.):

{{retrieved_context}}

{% endif %}

Input Specification: {{input_spec}}
Output Specification: {{output_spec}}

{% for input, output in zip(sample_inputs,
sample_outputs) %}

Sample Input:

{{input}}

Sample Output:

{{output}}

{% endfor %}

Notes: {{notes}}

Take input from {{input_from}} and output to {{
output_to}}.

Provide the {{lang_cluster}} code without any
extra description or tokens. Target code: ||
END-of-SRC]| |

Please determine whether the following two
questions belong to the same category in
terms of modeling logic and algorithmic
abstraction. Focus only on their algorithmic

modeling structure, core optimization
objectives, and typical solution approaches.
Ignore the specific real-world background
or story.

B Case Study

B.1 Comparison of Solution-Aware and BM25
Retrieval

We present a case study in Figure 4 to intuitively
illustrate the advantage of SolveRank in retrieving
logic-equivalent problems beyond surface seman-
tics, compared to the traditional sparse retriever
BM25.
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Cost / Resource
Consumption
Function

Cost / Resource
Consumption
Function

/Query

Several days ago you bought a ne
now you are planning to start a rel
Since'wintersin your region can
you need to decide how tolheat r
house. Your house has n rooms. I
room you can install at most ¢_i
radiators. Each‘radiator can have several
sections, but the cost of the radiator with k
sections is equal to k2 burles. Since rooms can
have different sizes, you calculated that you
need at least sum_i sections in total in the i-th
room. For each/oom calculate the minimum
cost to install/[ most c¢_i‘radiators with total
number of / /ions not less than sum_i.

Resource

Limitations

BM25 Retrieved Resul

A meeting table is represented as a rectangle
whose sides are parallel to the coordinate axes
and whose vertexes are located at the integer
points of the plane. At each integer point which
belongs to the table perimeter there is a chair in
which a general sits.Some points on the plane
contain radiaters for the generals not to freeze
inwinter. Eachradiator is characterized by
the number r_i — the radius of the area this
radiator can heat. That is, if the distance
between some general and the givenradiat

SolveRank Retrieved Result

Did you know you can download more RAM?
There is a shop with n different pieces of
Gftware that increase your RAM. The i-th
RAM increasing software takes a i GB of
memory to run (temporarily, once the program
is done running, you get the RAM back), and
gives you an additional 5 i GB of RAM
(permanently). Each software can only be used
once. Your PC currently has £ GB of RAM.

Note that you can't use a RAM-increasing
software if it takes more GB of RAM to use

is less than or equal to r_i, than the general
feels comfortable and warm. Here distance is
defined as Euclidean distance, so the distance
between points (x1, yl) and (x2, y2) is each

'

than what you cjfrrently have. Since RAM is

the most impoy Ant thing in the world, you
wonder, wha/ 5 the maximum possible amount
of RAM a able?

general who is located outside the‘radi: S
heating area can get sick. Your task is to count
the number of warm blankets you should bring

Resource
Limitations

here.

- /

Figure 4: An example of retrieval results for a logic-intensive query. BM25 retrieves a problem with
similar surface terms such as “winter”, “heat”, and “radiator”, but diverges in algorithmic logic. In
contrast, SolveRank retrieves a structurally distinct problem that shares the same underlying optimization
goal and reasoning pattern, demonstrating its ability to capture logic-level similarity beyond semantics.

In the given example, the target query describes
a resource allocation problem involving heating de-
vices in multiple rooms, where the goal is to install
at most ¢; units in each room to achieve a required
heat level sum,;, while minimizing a quadratic cost.
Although this optimization task is abstract in struc-
ture, BM25 is distracted by overlapping terms such
as “radiator” and “winter” in the training set and
mistakenly retrieves a problem that focuses on grid
coverage via Euclidean distance. The superficial
term match misleads the retriever and results in a
logically unrelated example that could affect sub-
sequent generation.

In contrast, SolveRank retrieves a problem in-
volving tool selection to increase memory under
resource constraints—a task with a completely dif-
ferent surface narrative but an identical optimiza-
tion structure. Both problems share the same logic:
choosing from n items under a bounded constraint
to reach a numeric threshold while minimizing non-
linear cost, which fits a classic dynamic program-
ming pattern. Despite the lack of term overlap,
SolveRank successfully captures this deeper align-
ment.

These results confirm that SolveRank can dis-
tinguish structural similarity from surface noise,
enabling the retrieval of truly helpful exemplars for
code generation, especially when logic alignment
is more important than keyword similarity.

B.2 Medium-difficulty example: tram vs.
polar bear sailing

We analyze a representative medium-level case.
The “tram problem” asks Igor to reach a destina-
tion either by walking or by catching a periodically
running tram, while the “polar bear sailing prob-
lem” requires computing the earliest time to reach
a target under wind-driven movement. Since both
problems belong to the class of time-constrained
shortest reachability, SolveRank considers them
logically similar. However, their structures dif-
fer: the tram problem is 1D with active boarding
choices, whereas the sailing problem is 2D with
passive movement:

The tram problem involves a 1D path with peri-
odic opportunities to board.

The sailing problem involves a 2D grid with
forced movement according to wind direction.

During code generation, GPT-3.5 misapplied this
logic: it failed to model the tram’s periodic arrivals
and instead only compared the initial directions.
This indicates that for medium-level tasks, directly
copying reference examples may mislead weaker
models. As model capability improves, however,
the retrieved logic can be better adapted to the tar-
get problem.

Listing 1: Case study of medium-difficulty task: Tram
vs. Polar Bear Sailing.

Original Question (Tram):

The tram in Berland goes along a straight line
from the point @ to the point s and back,
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passing 1 meter per tl1 seconds in both
directions. It means that the tram is always
in the state of uniform rectilinear motion,
instantly turning around at points x=0 and
x=s.Igor is at the point x1. He should reach
the point x2. Igor passes 1 meter per t2
seconds. Your task is to determine the
minimum time Igor needs to get from the
point x1 to the point x2, if it is known
where the tram is and in what direction it
goes at the moment Igor comes to the point
x1.Igor can enter the tram unlimited number
of times at any moment when his and the tram
’s positions coincide. It is not obligatory
that points in which Igor enter and exit the
tram are integers. Assume that any boarding
and unboarding happens instantly. Igor can
move arbitrary along the line (but not
faster than 1 meter per t2 seconds). He can
also stand at some point for some time.

Reference Question (Polar Bear Sailing):

The polar bears are going fishing. They plan to
sail from (sx,sy) to (ex,ey). However, the
boat can only sail by wind. At each second,
the wind blows in one of these directions:
east, south, west or north. Assume the boat
is currently at (x,y). If the wind blows to
the east, the boat will move to (x+1,y). If
the wind blows to the south, the boat will
move to (x,y-1). If the wind blows to the
west, the boat will move to (x-1,y). If the
wind blows to the north, the boat will move
to (x,y+1). Alternatively, they can hold the

boat by the anchor. In this case, the boat
stays at (x,y). Given the wind direction for
t seconds, what is the earliest time they
sail to (ex,ey)?

C Related Work

C.1 Retrieval-Augmented Code Generation

The RAG paradigm has been increasingly adopted
in natural language to code (NL2Code) gen-
eration. In this setting, the model retrieves
code-related knowledge (e.g., semantically sim-
ilar problems or code snippets) and uses it as
context to generate functionally correct programs.
BM25 (Rosa et al., 2021) is a classical sparse re-
trieval method based on term frequency and in-
verse document frequency (TF-IDF). Despite its
simplicity, BM25 is commonly used as a base-
line due to its high precision for short queries.
CodeBERT-Retrieval (Zhang et al., 2020) lever-
ages the CodeBERT encoder to encode NL-code
pairs, building a bi-encoder retriever to retrieve
semantically similar problems based on cosine sim-
ilarity of embeddings. UniXcoder-Retrieval (Yin
et al., 2021) extends CodeBERT with unified cross-
modal representations, integrating NL, AST, and
code tokens for richer retrieval. It supports both

encoder-only and encoder-decoder settings and
has shown better performance in code-related re-
trieval tasks. ReACC (Wan et al., 2022) pro-
poses retrieval-augmented contrastive training. It
retrieves code snippets as positive contexts during
training, thereby improving generalization on un-
seen NL2Code samples.

These methods have demonstrated improve-
ments on CodeSearchNet (Husain et al., 2019),
CoNalLa (Liu et al., 2019), and HumanEval (Chen
et al., 2021). However, their retrieval strategies are
predominantly based on surface-level similarity,
which overlooks deeper logic algorithms.

C.2 Logical Reasoning in Programming

Logical reasoning is a critical capability for solv-
ing structured programming problems that require
deeper understanding beyond surface-level seman-
tics. Recent works have proposed combining large
language models (LLMs) with symbolic reasoning
systems to address this limitation. Logic-LM (Pan
et al., 2023) enhances the faithfulness of reason-
ing by translating natural language queries into
formal logic representations and solving them us-
ing symbolic solvers. Similarly, DSR-LM (Zhang
et al., 2023) introduces differentiable symbolic rea-
soning modules into LLMs, enabling fine-grained
rule induction and significantly improving perfor-
mance on logic-intensive tasks. In the context of
knowledge-grounded reasoning, LACT (Xia et al.,
2024) applies a logic-aware curriculum tuning strat-
egy to improve the model’s ability to perform
multi-hop and inductive reasoning over knowledge
graphs. This approach highlights the importance
of reasoning difficulty control and progressive
learning in complex code understanding scenarios.
Moreover, coupling LLMs with logic programming
frameworks such as answer set programming has
shown promising generalization capabilities (Yang
et al., 2023). This hybrid paradigm allows models
to abstract structural logic patterns from textual
descriptions and execute them robustly, even in
previously unseen settings.

Existing methods often rely on surface-level sim-
ilarity when retrieving examples for code genera-
tion. In contrast, we propose SolveRank to cap-
ture deeper solution-level similarities, thus offering
more relevant and generalizable retrievals for down-
stream code generation tasks.
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Table 5: Results on the APPS dataset (Pass@1).

Method Pass@1
No Retrieval 24.3%
BM25 26.1%
DPR 24.3%

CodeBERT 25.2%
SolveRank 26.1%

Table 6: Statistical comparison between original and
generated problems.

Metric Original (Avg.) Generated (Avg.) p-value Significance
Prompt Length 275.977 190.867 < 0.001 Significant
Vocabulary Entropy 3.863 3.635 < 0.001 Significant
Sentence Length 26.331 23.667 < 0.001 Significant

D Generalization

We further evaluate SOLVERANK on the APPS
dataset (Hendrycks et al., 2021). As shown in Ta-
ble 5, SOLVERANK achieves the highest Pass@1,
tied with BM25 . A key difference from xCodeE-
val (Table 3) is that APPS problems are generally
shorter, with weaker narrative background and a
direct focus on input—output specifications. In this
setting, semantic retrieval is already sufficient to
capture the key information, so the advantage of
logic-aware retrieval in filtering narrative noise and
aligning solution structures is less apparent.

E Quality of Synthetic Data

To assess the quality of synthetic positives, we com-
pare them with real problems in terms of prompt
length, vocabulary entropy, and average sentence
length. As shown in Table 6, all three metrics differ
significantly (p < 0.001), confirming that gener-
ated problems exhibit diverse phrasing and syntax.
Despite this distributional shift, the generated data
remain logically consistent and suitable for training
solution-level retrieval models.
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