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Abstract
Partially Relevant Video Retrieval (PRVR) is
a practical yet challenging task that involves
retrieving videos based on queries relevant to
only specific segments. While existing works
follow the paradigm of developing models to
process unimodal features, powerful pretrained
vision-language models like CLIP remain un-
derexplored in this field. To bridge this gap,
we propose ProPy, a model with systematic
architectural adaption of CLIP specifically de-
signed for PRVR. Drawing insights from the
semantic relevance of multi-granularity events,
ProPy introduces two key innovations: (1)
A Prompt Pyramid structure that organizes
event prompts to capture semantics at multi-
ple granularity levels, and (2) An Ancestor-
Descendant Interaction Mechanism built on
the pyramid that enables dynamic semantic in-
teraction among events. With these designs,
ProPy achieves SOTA performance on three
public datasets, outperforming previous mod-
els by significant margins. Code is available at
https://github.com/BUAAPY/ProPy.

1 Introduction

Partially Relevant Video Retrieval (PRVR) (Dong
et al., 2022; Wang et al., 2024b) is a challenging
task that retrieves videos based on queries relevant
to only specific segments. Unlike traditional Text-
to-Video Retrieval (T2VR) (Gabeur et al., 2020;
Luo et al., 2022), which requires the query to match
the entire video, PRVR better aligns with real-
world scenarios – where long videos often consist
of multiple events, and users may only be inter-
ested in specific segments. This makes PRVR more
practical and promising for real-world applications.

Despite significant progress, most PRVR meth-
ods (Dong et al., 2022; Wang et al., 2024b; Dong
et al., 2023; Jiang et al., 2023; Wang et al., 2024a;
Li et al., 2025) follow the paradigm of develop-
ing models to process extracted unimodal features.

*Corresponding author.

Q1: Thirteen puts down a 
glass of beer she just drank.

Q3: Thirteen is eating dinner at a restaurant with House.

Q2: Thirteen drinks again 
from her glass of beer.
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Figure 1: Intra-segment relations and Inter-segment
relations. The semantic understanding of Q2’s ‘drink
again’ depends on contextual information from previous
segments. Meanwhile, the high-level action ‘eating
dinner’ (relevant to Q3) is composed of lower-level,
intra-segment events that correspond to Q1 and Q2.

While pretrained vision-language models such as
CLIP (Radford et al., 2021) have shown remark-
able success in T2VR (Luo et al., 2022), their po-
tential remains underexplored for PRVR. A recent
work QASIR (Nishimura et al., 2023) introduces
adapters on top of CLIP to process super-image
features. However, this approach does not involve
in-depth structural adaptions, leaving CLIP’s capa-
bilities not fully exploited. To bridge this gap, we
propose a model with systematic architectural adap-
tion of CLIP specifically designed for PRVR. Our
approach builds upon recent prompt-based T2VR
methods (Yang et al., 2024; Zhang et al., 2024;
Liu et al., 2025), which demonstrate both effec-
tiveness and efficiency by aggregating video se-
mantics through an explicit global token. However,
PRVR presents unique challenges: videos must
be modeled as compositions of multiple events
rather than encoded as single vector representa-
tions. A naive extension of T2VR approaches –
treating each segment as an independent sub-video
– fails to capture the rich semantic relationships
between events. Concretely, there are two funda-
mental types of event relationships that are crucial
to model, as illustrated in Figure 1: intra-segment
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relations representing compositional semantics be-
tween events with hierarchical inclusion relation-
ships, and inter-segment relations capturing con-
textual dependencies between temporally distinct
events. The former ones are important in compre-
hending long events (eat dinner) composed of mul-
tiple sub-events (drink), while the latter ones are
crucial in scenes where context semantics are re-
quired (drink again). Modeling these relations and
ensuring semantic interactions of relevant events
are beneficial for a comprehensive video under-
standing (Fei et al., 2024; Yang et al., 2023).

To effectively model the aforementioned event
relations and their semantic interactions, we pro-
pose ProPy (Interactive Prompt Pyramid), a novel
CLIP-based architecture for PRVR. ProPy lever-
ages a set of event prompts focusing on segments
of varying granularity and organizes them into a
Prompt Pyramid based on the lengths and posi-
tions of their segments. This hierarchically struc-
tures a video into multi-granularity events. To ac-
count for the distinction between intra-segment and
inter-segment relations, we design an Ancestor-
Descendant Interaction Mechanism, which facil-
itates direct interactions for intra-segment relations
and indirect interactions for inter-segment relations.
Specifically, an ancestor-descendant relationship
is established between two event prompts when
their governed segments exhibit an inclusion rela-
tionship. Direct interactions are permitted only for
intra-segment events, while inter-segment interac-
tions are conducted indirectly through upper-level
event prompts. With these carefully designed ar-
chitectures and mechanisms, ProPy achieves SOTA
performance on three challenging datasets, demon-
strating the superiority of our method. Overall, our
contributions can be summarized as follows:

• We propose ProPy, a novel solution to the PRVR
task. To the best of our knowledge, ProPy is the
first work that involves systematic architectural
designs on pretrained vision-language models in
the PRVR field.

• Based on the unique characteristics of PRVR, we
design a Prompt Pyramid structure to process
events with varying granularity, and an Ancestor-
Descendant Interaction Mechanism to ensure suf-
ficient semantic interactions for events with intra-
segment and inter-segment relations .

• ProPy achieves SOTA performance with notable
improvements on three public datasets, demon-

strating its effectiveness and superiority.

2 Related Work

Text-to-Video Retrieval focuses on retriev-
ing videos that fully match given textual
queries (Gabeur et al., 2020; Luo et al., 2022; Yang
et al., 2024; Huang et al., 2023). Since the introduc-
tion of pretrained vision-language models (Li et al.,
2022, 2023) like CLIP (Radford et al., 2021) in
the image domain, significant research efforts (Jia
et al., 2022; Deng et al., 2023; Luo et al., 2022;
Yang et al., 2024; Cao et al., 2024; Liu et al.,
2025) have been directed toward adapting these
models for T2VR. Notably, recent prompt-based
methods (Zang et al., 2022; Yang et al., 2024; Liu
et al., 2025; Zhang et al., 2024; Huang et al., 2023)
have demonstrated competitive performance while
maintaining efficiency through the use of only a
small number of prompt tokens.
Partially Relevant Video Retrieval addresses the
task of retrieving videos based on queries relevant
to partial segments (Dong et al., 2022; Wang et al.,
2024b). Current PRVR approaches (Dong et al.,
2022; Wang et al., 2024b; Dong et al., 2023; Cheng
et al., 2024; Jun et al., 2025; Ren et al., 2025;
Li et al., 2025) predominantly adopt the Multiple
Instance Learning (MIL) paradigm (Waqas et al.,
2024), employing coarse-fine two-branch architec-
tures to model multiple events during both training
and inference. While some recent works (Song
et al., 2025; Moon et al., 2025) have incorporated
pretrained vision-language models, they primarily
utilize them for basic feature extraction without
architectural innovations, or source for feature dis-
tillation (Dong et al., 2023; Zhang et al., 2025).
QASIR (Nishimura et al., 2023), the most similar
work to ours, merely introduces adapters on top of
CLIP to process super-image features while leav-
ing the core CLIP layers unchanged. We argue that
such surface-level modifications are insufficient to
fully leverage CLIP’s capabilities for the PRVR
task.

3 Methodology

We formally define the PRVR task: Given a set
of videos V = {V1, V2, ...V|V|}, each video Vi

can be represented as a list of Nf frames: Vi =
{f i

1, f
i
2, ..., f

i
Nf
}. The PRVR task aims to retrieve

videos with queries T i relevant only to certain seg-
ment mi

j : Vi = argmax
V ∈V

P (V |T i), where mi
j ⊆ Vi

is a subset with consecutive frames.
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Q1: Thirteen puts down a 
glass of beer she just drank.

Q3: Thirteen is eating dinner at a restaurant with House.

Thirteen has 

drank before, so 

this is the 

second time she 

drinks.

Thirteen drinks twice 

in dinner.

Indirect 
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Direct 
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Q2 : Thirteen drinks again 
from her glass of beer.

Figure 2: (a): Overview of ProPy. For the visual branch, the event Prompt Pyramid is built upon frame sequence and
visual prompts, then event prompts are updated based on the Ancestor-Descendant (A-D) Interaction mechanism.
Temporal Adapters are adopted for frame features to strengthen temporal semantics. For the textual branch, prefix
and postfix textual prompts are added. We only show 8 frames and a 3-layer pyramid for clarity. (b) Details of
the Ancestor-Descendant Interaction Mechanism. Left: Attention areas of query event prompts. ‘selected prompt’
means the event prompt served as queries during attention operation. Right: Attention mask Me

e of event prompts.
Positions with attention scores are shown in dark blue. (c): An example of direct interactions for intra-segment
semantics and indirect interactions for inter-segment semantics.

3.1 Overview of ProPy

As shown in Figure 2 (a), ProPy deeply integrates
with CLIP’s visual and textual branches. The visual
branch utilizes Ne event prompts E ∈ RNe×dv

(where dv is the ViT dimension) organized in a
Prompt Pyramid to extract multi-granularity seg-
ment features. For the l-th ViT layer, we add Nv

visual prompts (Yang et al., 2024) P v
l ∈ RNv×dv

and a temporal adapter (Pan et al., 2022) Ωl

to extract spatial and temporal information. The
Ancestor-Descendant Interaction Mechanism
updates E based on intra/inter-segment relations.
The textual branch incorporates Nt text prompts

P t
l ∈ RNt×d (where d is the dimension of CLIP)

following DGL (Yang et al., 2024). The model
is trained based on Contrastive Learning (Rad-
ford et al., 2021) and Multiple Instance Learn-
ing (Waqas et al., 2024) paradigms.

3.2 Visual Branch

Prompt Pyramid We first detail the construction
of the proposed Prompt Pyramid. Used notations
are detailed in Table 1. Given a video V with Nf

frames, there are theoretically Nf × (Nf + 1)/2
segments with lengths ranging from 1 to Nf . To
save memory, we empirically set Nf = 2K ,K >
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Notation Meaning
E set of all event prompts
Lk the k-th event prompt layer
ekj the j-th event prompt from Lk
mk

j the segment corresponding to ekj
nk number of event prompts from Lk
ck the number of children of ekj
ok the offset of children between ekj and ekj+1

A(ekj ) the ancestors set of ekj
D(ekj ) the descendants set of ekj
P(ekj ) the parent set of ekj
C(ekj ) the children set of ekj

Table 1: Notations of prompt pyramid

1, and select segments with lengths of 2k(1 ≤ k ≤
K). We then evenly and sparsely sample nk seg-
ments from those of length 2k, and pair them with
hierarchically arranged learnable event prompts:

E = {Lk = {ekj |1 ≤ j ≤ nk}|1 ≤ k ≤ K} (1)

where Lk is the k-th prompt layer containing nk

event prompts sorted by position. ekj corresponds
to segment mk

j of length 2k. In total, there are
Ne =

∑K
k=1 nk event prompts.

A prompt pair (ek1j1 , e
k2
j2
) forms an Ancestor-

Descendant (A-D) relation if their governed seg-
ments satisfy an inclusion relationship, formally:

ek1j1 ∈ A(e
k2
j2
)⇔ ek2j2 ∈ D(e

k1
j1
)

⇔ mk2
j2

⊊ mk1
j1

(2)

Specially, if k1 = k2 + 1, then (ek1j1 , e
k2
j2
) forms

a Parent-Child (P-C) relation, with corresponding
sets denoted as P(ek2j2 ) and C(ek1j1 ). To construct a
symmetrical pyramid, we set the number of chil-
dren ck and the offset of their leftmost children ok
as constants for prompts in the k-th layer, formally:




ck = |C(ekj1)|, 1 ≤ j1 ≤ nk

Lk(j1) = argmin
j2

{ek−1
j2
|ek−1

j2
∈ C(ekj1)}

ok = Lk(j1 + 1)−Lk(j1), 1 ≤ j1 < nk

(3)
where Lk(j1) is an operation to find index of the
leftmost child of ekj1 . ck and ok are subject to the
following constraint:

nk − ck+1

ok+1
+ 1 = nk+1, ok+1 | (nk − ck+1) (4)

This resembles the kernel-stride constraint in
CNN (Li et al., 2021), treating ck+1 as kernel size

and ok+1 as stride, but with two differences: 1) No
padding is applied. 2) ok+1 must divide nk − ck+1

exactly. For the top layer (k = K), the offset oK
is set to 1 (nK−1 = cK , nK = 1). Given the frame
count Nf , the prompt pyramid is uniquely deter-
mined once the hyperparameters H = {(ck, ok)}
are specified. The impact of structure configuration
is discussed in Sec 4.3.
Ancestor-Descendant Interaction Mechanism
Next, we describe the update mechanism for event
prompts in the visual branch. Given a video V
with Nf frames, CLIP first splits and embeds each
frame into sequential features F ∈ RNf×Ns×dv ,
where Ns denotes the sequence length (including
the appended [CLS] token). These features are then
processed by a ViT with N layers. For the l-th ViT
layer, three components participate in the updat-
ing process: the event prompts El ∈ RNe×dv , the
frame features Fl ∈ RNf×Ns×dv and the per-layer
visual prompts P v

l ∈ RNv×dv , which guide the
spatial-temporal attention between event prompts
and frame features.

We update El using ViT’s attention layer while
keeping its weights frozen. For clarity, we first de-
scribe the update process (Figure 2 (b)) for a single
event prompt ekl (from the k-th layer; we omit the
prompt index j for simplicity), then generalize to
parallel computation. The update consists of atten-
tion operations on three components: Firstly, ekl
attends to frames within its governed segments, de-
noted as Fl(e

k
l ) ∈ R2k×Ns×dv , to produce segment

features. Secondly, the prompt directly interacts
with its complete hierarchical context, including
its ancestors, descendants and itself, denoted as
El(e

k
l ):

El(e
k
l ) = A(ekl ) ∪ D(ekl ) ∪ {ekl } (5)

Thirdly, ekl incorporates visual prompts P v
l to cap-

ture spatial-temporal semantics. To preserve the
structure information, we replicate P v

l for n1 times
(n1 is the number of event prompts from the bottom
prompt layer L1), resulting in P̃ v

l ∈ Rn1×Nv×dv .
These augmented visual prompts correspond one-
to-one with the bottom prompt layer L1. Given ekl ,
we first refer to its descendant prompts in L1 (or
itself if l = 1), then incorporate all corresponding
visual prompts, denoted as P̃ v

l (e
k
l ). In this way,

for any prompt pairs with an Ancestor-Descendant
relation, their visual prompts also exhibit an inclu-
sion relation. These components serve as keys and
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values for the attention operation:
{
K/V (ekl ) = [Fl(m

k), El(e
k
l ), P̃

v
l (e

k
l )]

ekl+1 = Attn(ekl ,K(ekl ), V (ekl ))
(6)

where [·, ·, ·] denotes the concatenation operation
on the first dimension, and Fl(m

k), P̃ v
l (e

k
l ) are

flattened into 2d tensor before concatenation. In
practice, we use three attention masks to realize
parallel computation, formally:




Kl = Vl = [Fl, El, P̃
v
l ]

M = [M e
f ,M

e
e ,M

e
v ]

El+1 = Attn(El,Kl, Vl,mask = M)

(7)

where M e
f ∈ RNe×(Nf×Ns), M e

e ∈ RNe×Ne ,
M e

v ∈ RNe×(n1×Nv) are attention masks regarding
frames, event prompts and visual prompts, respec-
tively. A fast construction algorithm for these three
masks is detailed in Appendix B.

Note that an event prompt can only access frames
from its own segments, and other high-level se-
mantics are exchanged only through other event
prompts. This helps to prohibit feature leakage
while preserving semantic interactions. Any two
event prompts are guaranteed to share at least one
common prompt (e.g, the global prompt from the
top layer) for direct interaction, offering an indirect
communication channel to exchange inter-segment
semantics for them, as shown in Figure 2 (c). This
design ensures all event prompts are interconnected,
with closely positioned events maintaining denser
interaction pathways while distant events exhibit
sparser connections, naturally mirroring both intra-
segment and inter-segment relationships.
Frame Feature Update Previous T2VR
works (Yang et al., 2024; Zhang et al., 2024)
incorporate global prompts in frame-wise attention
to capture temporal semantics. However, for
PRVR, we find this approach ineffective, even
underperforming models without frame feature
updates (Section 4.3). We attribute this to the
inherent uncertainty in MIL training that creates
unstable information pathways. Instead, we
adopt a more stable approach using adapters (Pan
et al., 2022) Ωl to mine temporal semantics
directly from frame features, independent of
event prompts. The temporal adapter Ωl is
composed of a down-projection, a 3d-CNN, and an
up-projection. In detail, given the frame features
Fl ∈ RNf×Ns×dv , where Nf is the number of
frames, and Ns = H × W + 1 is the length of

flattened patch tokens with the [CLS] token, the
temporal adapter only operates on patch tokens.
Features are resized to 2d shapes before the CNN,
then back to 1d sequences before the up-projection:





F̃l = Fl[:, 1 :, :] ∈ RNf×(H×W )×dv

F down
l = Downl(F̃l) ∈ RNf×H×W×(dv//2)

F temp
l = CNNl(F

down
l ) ∈ RNf×H×W×(dv//2)

F up
l = Upl(F

temp
l ) ∈ RNf×(H×W )×dv

Fl+1[:, 1 :, :] = [Fl[:, 0, :], Fl[:, 1 :, :] + F up
l ]

(8)
The output event prompts from the last layer

are projected to d dimension to represent multi-
granularity event features, denoted as Ẽ ∈ RNe×d.

3.3 Textual Branch

The textual branch builds upon DGL (Yang et al.,
2024). To enhance multimodal alignment, two pro-
jection layers are utilized to project visual prompts
P v
l to prefix and postfix prompts. These are con-

catenated with word features for updating:
{
P

pre/post
l = fpre/post(P

v
l ) ∈ R(Nt/2)×d

[__, Tl+1, __] = Lt
l([P

t
l,pre, Tl, P

t
l,post])

(9)

where Lt
l is the l-th layer of the textual branch,

P
pre/post
l are prefix and postfix prompts, fpre/post

are projection layers, Tl are input word features.
The query representation T̃ ∈ Rd is obtained from
the features of the last word in the final layer.

3.4 Training Objective

Following the MIL paradigm, the highest similarity
score between the query T̃ and event prompts Ẽ is
selected:

S(T, V ) = max
e
{cos(T̃ , Ẽ)} (10)

The alignment is conducted with pair-wise similar-
ities based on the symmetric InfoNCE loss (Chen
et al., 2020; Radford et al., 2021).

4 Experiments

4.1 Experimental Settings

Datasets We evaluate ProPy on four public
datasets: TVR (Lei et al., 2020), ActivityNet-
Captions (Krishna et al., 2017), Charades-
STA (Gao et al., 2017) and QVHighlights (Lei et al.,
2021). TVR comprises around 21.8K videos, each
paired with 5 descriptions. ActivityNet-Captions
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Table 2: Performance comparison on TVR, ActivityNet Captions and Charades-STA dataset. Rows highlighted in
gray represent original performance of methods leveraging ResNet152 + I3D + Roberta features. The best, second
and third performance are marked in bold, underline and

::::
wave , respectively .

Method TVR ActivityNet Captions Charades-STA
R@1 R@5 R@10 R@100 SumR R@1 R@5 R@10 R@100 SumR R@1 R@5 R@10 R@100 SumR

MS-SL 13.5 32.1 43.4 83.4 172.4 7.1 22.5 34.7 75.8 140.1 1.8 7.1 11.8 47.7 68.4
PEAN 13.5 32.8 44.1 83.9 174.2 7.4 23.0 35.5 75.9 141.8 2.7

::
8.1

:::
13.5 50.3

:::
74.7

GMMFormer 13.9 33.3 44.5 84.9 176.6 8.3 24.9 36.7 76.1 146.0 2.1 7.8 12.5 50.6 72.9
DL-DKD 14.4 34.9 45.8 84.9 179.9 8.0 25.0 37.5 77.1 147.6 - - - - -
Proto 15.4 35.9 47.5 86.4 185.1 7.9 24.9 37.2 77.3 147.4 - - - - -
ARL 15.6 36.3 47.7 86.3 185.9 8.3 24.6 37.4 78.0 148.3 - - - - -
GMMFormer-V2 16.2 37.6 48.8 86.4 189.1 8.9 27.1 40.2 78.7 154.9

::
2.5 8.6 13.9 53.2 78.2

DGL-MIL 17.5 38.2 51.1 87.5 194.3 10.5 26.4 40.5 77.4 154.8 1.4 5.3 9.2 40.6 56.5
MS-SL 17.2 39.1

:::
51.5 87.4 195.2 9.4 26.1 37.9 77.2 150.6 1.3 4.6 8.2 38.5 52.6(↓15.8)

QASIR 19.0 39.9 50.4 87.2 196.5 14.1 32.9
:::
44.5

::::
79.9

::::
171.4 1.9 5.8 10.1 40.0 57.8

GMMFormer 18.4 39.5 50.8
::::
89.2 197.9 9.4 26.4 38.2 76.2 150.2 0.9 4.5 8.0 39.0 52.4(↓20.5)

GMMFormer-V2
:::

19.2
:::

40.1 50.5 90.3
::::
200.1 10.8 28.8 41.1 78.1 158.8 1.3 4.7 9.0 40.4 55.4(↓22.8)

AMDNet 19.7 42.4 54.1 88.9 205.1
:::

12.3
:::

32.5 45.9 82.1 172.8 1.1 4.2 7.2 36.4 48.9
Propy 22.4 45.0 55.9 89.5 212.8 14.9 34.9 47.5 82.7 180.0 2.6 8.7 14.8

::::
50.4 76.5

Table 3: Performance on QVHighlights val split. Rows
highlighted in gray are results with CLIP-B/16 features
adopted from Proto (Moon et al., 2025).

Model R@1 R@5 R@10 R@100 SumR
GMMFormer 18.2 43.7 56.7 92.5 211.1
MS-SL 20.4 46.7 60.7 94.6 222.5
Proto 22.6 48.8 61.3 93.9 226.6
GMMFormer 16.3 39.7 52.3 88.4 196.7
AMDNet 17.1 40.8 52.5 88.4 198.8
GMMFormer-V2 15.6 40.2 53.7 88.5 198.0
MS-SL 17.4 43.4 55.2 88.8 204.8
Propy 37.4 65.6 76.1 96.5 275.5

Table 4: Ablation on pyramid structures.

Nf H = {(ck, ok)} R@5 R@10 R@100
16 {(4,2),(3,2),(3,1)} 8.3 14.1 47.7
16 {(2,1),(3,2),(3,2),(3,1)} 8.5 14.2 48.1
32 {(4,2),(3,2),(3,2),(3,1)} 8.5 14.4 49.3
32 {(2,2),(2,1),(3,2),(3,2),(3,1)} 8.7 14.8 50.4

(referred to as ActivityNet for simplicity) com-
prises around 20K YouTube videos, with an av-
erage duration of 118 seconds and 3.7 descriptions
per video. Charades-STA contains 6.7K videos,
annotated with an average of 2.4 descriptions per
video. QVHighlights is a dataset for moment re-
trieval containing over 10K videos. We follow pre-
vious works (Dong et al., 2022; Moon et al., 2025)
for data partitioning and evaluation metrics.
Implementation Details We select CLIP-B/32 as
the backbone. The dimensions dv, d are set to
768 and 512, respectively. For the default structure
hyperparameter, Nf is set to 32 andH is configured
as {(2, 2), (2, 1), (3, 2), (3, 2), (3, 1)}. Following
DGL (Yang et al., 2024), we use 4 visual prompts
(Nv) and 8 textual prompts (Nt) per layer. The
learning rates are set to 1e-3 for ActivityNet, 9e-4
for QVHighlights, and 8e-4 for TVR and Charades-
STA, with a uniform batch size of 24 across all
datasets. Following (Luo et al., 2022; Yang et al.,
2024), ProPy is trained for 10 epochs using the
AdamW optimizer. All experiments are conducted

Table 5: Ablation study on semantic interaction mecha-
nism of event prompts.

Attention Area Interaction R@5 R@10 R@100
A inter-only 8.1 12.6 49.5
D intra-only 8.4 13.4 48.3
P inter-only 8.5 13.7 49.1
C intra-only 8.3 13.3 47.8

P ∪ C inter-intra 8.6 14.1 49.4
W unstructured 8.7 14.2 48.7
S none 8.3 14.1 48.6

A ∪D inter-intra 8.7 14.8 50.4

on a single NVIDIA RTX 3090 GPU.
Baselines ProPy is the first prompt-based model
built on CLIP for PRVR, and no existing methods
adopt a similar architecture. To ensure a compre-
hensive comparison, we evaluate 3 types of base-
line models. (1) DGL-MIL We adapt our base
framework, DGL (Yang et al., 2024), to fit the
MIL paradigm. Specifically, we expand the num-
ber of global prompts to Ne and use the entire
set for alignment. (2) QASIR (Nishimura et al.,
2023). A CLIP-based model that employs super-
image construction for feature enhancement. (3)
Other PRVR models (Dong et al., 2022, 2023;
Wang et al., 2024a,b; Jiang et al., 2023; Song et al.,
2025; Moon et al., 2025; Cho et al., 2025). We run
prior open-source PRVR models using extracted
CLIP-B/32 features for fair comparison. Addition-
ally, we include their original performance (trained
with ResNet152 (He et al., 2016)+I3D (Carreira
and Zisserman, 2017)+RoBERTa (Liu et al., 2019)
features) as a reference. Further implementation
details are provided in Appendix A.

4.2 Overall Comparison

The performance comparison is shown in Table 2,
3. As shown in Table 2, ProPy significantly out-
performs all baselines on TVR and ActivityNet,
achieving absolute improvents of 7.7% on TVR
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and 7.2% on ActivityNet. These gains can be
partially attributed to CLIP’s well-aligned mul-
timodal features, as evidenced by the improved
performance of other PRVR models when us-
ing CLIP features. However, on Charades-STA,
most PRVR models exhibit degraded performance
with CLIP features, while ProPy remains com-
petitive. This aligns with observations in prior
work (Nishimura et al., 2023), where shorter query
lengths in Charades-STA (averaging 6.2 words, vs.
12.2 for ActivityNet and 13.6 for TVR) lead to in-
sufficient textual supervision (Moon et al., 2025),
demanding deeper video understanding. In this
circumstance, CLIP’s static image features (from
its last layer) underperform dynamic I3D features
from 3D-CNNs. ProPy addresses this limitation
by aggregating semantically rich features from all
CLIP layers and integrated temporal adapters, en-
abling comprehensive video understanding. On the
challenging QVHighlights dataset, ProPy achieves
remarkable gains (Table 3) – even surpassing meth-
ods with CLIP-B/16 (a more powerful backbone
with 16x16 grid size) features – with a 37.4% R@1
score, far exceeding competitors. These results val-
idate ProPy’s superiority and broad applicability.

4.3 Analysis
Unless otherwise specified, the following experi-
ments are based on the Charades-STA dataset.
Pyramid Structure Settings We investigate the
impact of width (Nf ) and depth (number of lay-
ers), as shown in Table 4. Results indicate that
increasing either parameter improves performance
by providing richer information and more event
candidates. However, the memory issue should
also be considered in model design, particularly for
frame feature memory relevant to parameter Nf .
Ancestor-Descendant Interaction Mechanism
We analyze the impact of interaction mechanisms.
We evaluate 7 alternative mechanisms: 1) A at-
tends only to ancestors, missing descendant intra-
segment information; 2) D attends only to de-
scendants, blocking inter-segment communication
guided by ancestors; 3) P attends only to parent
nodes, providing limited inter-segment interaction;
4) C attends only to child nodes, offering partial
intra-segment interaction; 5) P ∪ C combines both
parent and child attention; 6) W attends to all
nodes without structure; and 7) S prohibits any
interaction. The results in Table 5 demonstrate
that: (1) Semantic interactions are essential, as the
non-interactive model S performs poorly; (2) Inter-

Table 6: Ablation study on frame feature updating mech-
anism.

Mechanism R@1 R@5 R@10 R@100 SumR
attn-pyr 1.5 5.9 9.5 37.1 54.0

attn-whole 1.4 6.4 10.4 37.3 55.5
attn-adapter 1.7 6.6 9.8 40.0 58.1

orig 1.9 6.6 11.3 42.5 62.3
adapter 2.6 8.7 14.8 50.4 76.5

Table 7: Ablation study on event prompts from different
layers for MIL learning.

Levels(k) R@1 R@5 R@10 R@100 SumR
{1,2,3} 2.4 8.1 13.0 48.8 72.3
{3,4,5} 2.3 8.0 13.2 48.5 72.0

{1,2,3,4} 2.6 9.0 14.3 49.9 75.8
{2,3,4,5} 2.3 8.3 13.6 49.1 73.3

{1,2,3,4,5} 2.6 8.7 14.8 50.4 76.5

action structure significantly impacts performance,
shown byW’s results; (3) Both intra-segment and
inter-segment interactions are important (A ∪D is
better than A and D, P ∪ C is better than P and C).
(4) The Ancestor-Descendant Interaction Mecha-
nism achieves optimal performance by effectively
integrating both interaction types.
Updating Mechanism of Frame Feature We per-
form studies for the frame feature updating mecha-
nism, evaluating 3 other distinct mechanisms: (1)
orig: vanilla CLIP processing without trainable
components; (2) attn-whole: DGL-style attention
using all event prompts as keys/values; (3) attn-pyr:
constrained attention where frames only interact
with governing event prompts (masked by M e

f );
(4) attn-adapter: enhanced version of (3) with per-
layer adapters. As shown in Table 6, the significant
performance improvement demonstrates the effec-
tiveness of temporal adapters.
Operation on Visual Prompt To validate the op-
eration on visual prompts, we further consider
two alternative operations: (1) no-copy. All event
prompts incorporate Nv visual prompts for updat-
ing. The corresponding attention mask M e

v has
the shape of Ne ×Nv. (2) C(E). Visual prompts
are copied Ne times and assigned to event prompts
in a one-to-one manner. M e

v is in the shape of
Ne× (Ne×Nv). The original design is denoted as
C(L1), which copies visual prompts n1 times. Re-
sults are shown in Table 8, showing that the C(L1)
design achieves the best performance. This design
considers the inclusion relation of event prompts,
preserving beneficial structure information.
Different Levels of Event Prompts We select dif-
ferent levels of event prompts for MIL learning
with the pyramid structure fixed to examine the
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ActivityNet-Captions TVR QVHighlights Charades-STA

Figure 3: TSNE visualizations. Points in red, blue are text features and segment features, respectively.

Query: Beckett opens a book that she is holding and reads it.
 

Query: Beckett hands the book back to Castle after he walks up.
 

4 5 6 7 8 9 10id: 

Figure 4: Left: Retrieval results of ProPy (samples are selected based on the R@1 metric). The attention maps
visualize the scores between selected event prompts and image patches. Right: Attention scores between selected
event prompts (with red borders) and other prompts. Events with the highest scores are marked by orange borders.

Table 8: Ablation study of operations on visual prompts.

Operation R@1 R@5 R@10 R@100 SumR
no-copy 2.2 8.2 13.0 48.8 72.2
C(E) 2.1 8.1 13.3 48.5 72.0
C(L1) 2.6 8.7 14.8 50.4 76.5

Table 9: Ablation on each design. AD, Ω, C(L1) mean
Ancestor-Descendant Interaction, using adapters and
replicating visual prompts n1 times, respectively. Com-
pared operations are disabling event prompt interaction,
vanilla CLIP processing and no replication.

Idx AD Ω C(L1) R@1 R@5 R@10 R@100 SumR
a 1.8 5.8 9.3 38.6 55.5
b ✓ 1.7 6.8 11.0 41.9 61.4
c ✓ 1.5 6.6 10.9 41.5 60.5
d ✓ 1.7 5.6 9.4 39.4 56.1
e ✓ ✓ 2.2 8.2 13.0 48.8 72.2
f ✓ ✓ 1.9 6.6 11.3 42.5 62.3
g ✓ ✓ 2.1 8.3 14.1 48.6 73.1
h ✓ ✓ ✓ 2.6 8.7 14.8 50.4 76.5

roles of different prompt layers. Results in Table
7 show that models with more levels of prompts
in learning are superior to those with fewer levels.
We also find that layers nearer to the bottom (k=1)
contribute more to performance. To uncover the
underlying reason, we conduct a statistical experi-
ment on the distribution of selected events during
learning, shown in Figure 5. It illustrates that ProPy

Table 10: Performance on the ActivityNet dataset in the
Weakly-Supervised VCMR setting. Rows highlighted
in gray represent original performance of methods lever-
aging ResNet152 + I3D + Roberta features.

Method IoU=0.3 IoU=0.5 IoU=0.7
R@10 R@100 R@10 R@100 R@10 R@100

FAWL 11.86 38.98 6.25 21.77 2.88 10.05
JSG 13.27 40.61 8.76 29.98 3.83 15.78
FAWL 23.68 48.02 17.54 43.57 9.35 20.66
JSG 25.62 54.31 19.35 45.15 10.92 26.14
Propy 28.57 57.42 20.81 46.22 12.94 31.85

Table 11: Parameters and inference time (per query)
comparison on Charadest-STA. Matching time refers to
the time for video-text matching process.

Method Parameters(MB) Inference Time(ms)
trainable total matching total

MS-SL 4.85 4.85 0.65 3.05
GMMFormer 12.85 12.85 0.44 1.79

ProPy 7.97 159.24 1.16 20.3

learns in an easy-to-hard manner: it initially pro-
cesses shorter segments then progressively extends
to longer ones, with learned semantics evolving
from low-level to high-level.
Ablation Study We conduct ablation studies on
each design. As shown in Table 9, the Ancestor-
Descendant Mechanism individually contributes
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Figure 5: Length distributions of selected events.

the most. When equipped with adapters, the
model achieves comparable performance with the
Ancestor-Descendant Mechanism or the C(L1)
operation (e and g). This indicates that struc-
tured visual prompts are beneficial for event learn-
ing. The full setting, with temporal adapters,
Ancestor-Descendant Mechanism and structured
visual prompts, achieves the best performance.
Grounding Capability We evaluate ProPy’s
grounding capability under the Weakly-Supervised
Video Corpus Moment Retrieval (Chen et al., 2023)
setting. As shown in Table 10, ProPy achieves
SOTA performance on ActivityNet thanks to the
design of the multi-granularity event pyramid. No-
tably, compared to previous methods (Chen et al.,
2023; Pan et al., 2025), ProPy does not require
complex intra-video losses and time-consuming
NMS (Lin et al., 2018) operations.
Efficiency Comparison As shown in Table 11,
ProPy contains relatively more parameters. How-
ever, most parameters are frozen CLIP weights, and
there are only 5% trainable parameters. Among
these trainable parameters, temporal adapters in-
troduce 7.11M (89%), and prompts only occupy
0.86M (11%). However, as discussed before, in-
corporating these temporal adapters is crucial for
overall performance. ProPy takes longer inference
time, yet most time is spent on feature computa-
tion through CLIP layers. Once the computation
process of features is done, the matching time is
comparable with other models. This indicates that
in real-world retrieval scenarios, ProPy enjoys high
retrieval accuracy without significant increases in
latency.
Qualitative Analysis We visualize the t-SNE clus-
tering results in Figure 3. As observed, the cluster
distributions vary across datasets, reflecting the
differences in their video content and textual an-
notations. For ActivityNet, which primarily fo-
cuses on actions or events, semantically similar

actions are located close to each other, resulting
in a large number of distinct cluster centers. In
TVR, the videos are sourced from 6 different TV
shows, where each show features recurring char-
acters and scenes, leading to roughly 4 to 6 clus-
ters. QVHighlights contains videos from news and
vlogs, with more diverse visual content and tex-
tual descriptions, which results in a more diffuse
distribution without clear cluster centers. As pre-
viously discussed, the Charades-STA dataset con-
tains short textual queries with limited fine-grained
annotations, causing its textual features to collapse
around a few dense centers. Except for the Cha-
rades dataset, the t-SNE plots of the other datasets
generally reveal a reasonable degree of alignment
between the video and textual features in the shared
feature space.

We further illustrate some retrieval results from
TVR in Figure 4. The results show that: (1) ProPy
is able to extract high-quality spatial-temporal se-
mantics, such as‘opens a book’ and ‘hands the book
back’. (2) ProPy ensures sufficient semantic inter-
actions. For example, the latter event ‘hands the
book back to Castel’ requires the previous context
of ‘book’, ‘Castel’, and the visualization shows that
the selected event gives the highest attention to its
parent, which is one of direct information channels
for the former event.

5 Conclusion

We propose ProPy, the first in-depth CLIP-based
model for PRVR. By considering both intra-event
and inter-event relations of video events, we de-
sign an Interactive Prompt Pyramid architecture
to extract multi-granularity event features and an
Ancestor-Descendant Interaction Mechanism to en-
sure sufficient semantic interactions. Extensive
experiments demonstrate the superiority and gener-
alizability of ProPy.

6 Limitations

Though ProPy only requires a small number of
trainable parameters, the memory occupied by
CLIP features cannot be ignored. Furthermore,
the 2k segment sampling strategy and the structure
parametersH are empirical. Future works will in-
clude an adaptive selection method (like (Wang
et al., 2024c)) of video frames and pyramid struc-
tures.
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A More Implementation Details

Following (Yang et al., 2024), videos are com-
pressed first to 3fps and 224 × 224 resolution.
The model is trained using the AdamW optimizer
whose decoupled weight decay is set to 0.2. During
training, a warm-up strategy is adopted followed
by a cosine learning rate policy. For other PRVR
models, we utilize the output sequences from the
last layer of CLIP’s textual branch as text features,
and the [CLS] features from the visual branch’s
last layer as visual features. To make minimal mod-
ifications, the number of frames is set to 128 for
other PRVR models, which is much larger than 32
for ProPy. The training process for baseline PRVR
models also follows the original process, i.e., 100
max epochs with an early stop strategy.
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Figure 6: Mathematical relations of ProPy. For each
layer, indices start from 0. We focus on the prompt with
index 1 and nk − 1 for the k-th layer. The relations of
its leftmost and rightmost descendant are transitive.

B Mask Construction Algorithm

The pyramid structure and attention masks are de-
termined by the frame count Nf and the struc-
ture hyperparameters H = {(ck, ok)} (ck, ok are
the number and offset of children). We provide
one fast algorithm to construct the three attention
masks M e

e , M e
f and M e

v used for the Ancestor-
Descendant Interaction Mechanism. There are two
steps of the algorithm.

Step 1: Cross-layer structure parameters
First, we expand definitions in Equation (3) to
cross-layer structure parameters ck2k1 and ok2k1 be-
tween layer Lk1 and Lk2 (k1 > k2):

ck2k1 = |{ek2j2 |e
k2
j2
∈ D(ek1j1 )}|

L k2
k1

(j1) = argmin
j2

{ek2j2 |e
k2
j2
∈ D(ek1j1 )}

ok2k1 = L k2
k1

(j1 + 1)−L k2
k1

(j1)

(11)

Algorithm 1: Structure parameters
Input: Nf ,H = {(ck, ok)}
Output: H={(k1, k2) : (ck2k1 , o

k2
k1
)}

1 L = [Nf ] // length of each layer
2 K = len(H);
3 for k ← 1 to K do
4 H[(k, k − 1)] = (ck, ok) // from H
5 nk = (L[k − 1]− ck)//ok + 1;
6 L.append(nk);
7 end
8 for k1 ← K to 1 do
9 for k2 ← k1 − 2 to 0 do

10 ck2+1
k1

, ok2+1
k1

= H[(k1, k2 + 1)];
11 ck2k2+1, o

k2
k2+1 = H[(k2 + 1, k2)];

12 ok2k1 = ok2+1
k1

∗ ok2k2+1;
13 ck2k1 = L[k2]− ok2k1 ∗ (L[k1]− 1);
14 H[(k1, k2)] = (ck2k1 , o

k2
k1
);

15 end
16 end
17 return H,L

We treat frame sequence as L0 with length
n0 = Nf for convenience. We calculate ck2k1 and
ok2k1 with Algorithm 1. The core codes are from
line 12 and 13 that update (ck2k1 , o

k2
k1
) in an iterative

manner. Here is a brief proof. We define an addi-
tional operation Rk2

k1
(j) similar in Equation (3) to

find the index of the rightmost descendant of ek1j1 in
Lk2 :

Rk2
k1
(j) = argmax

j2

{ek2j2 |e
k2
j2
∈ D(ek1j1 )} (12)

It is not difficult to find relations:

L k2
k1

(j) = ok2k1 × j

Rk2
k1
(j)−L k2

k1
(j) = ck2k1 − 1

(13)

We obtain L k2
k1

(1) = ok2k1 when j is set to 1.
Furthermore, L and R have a transitive property,
as shown in Figure 6, which leads to:

ok2k1 = L k2
k1

(1) = L k2
k1−1(L

k1−1
k1

(1))

= L k2
k1−1(o

k1−1
k1

) = ok2k1−1 × ok1−1
k1

= ... =

k2+1∏

k=k1

ok−1
k

(14)

Similarly, we leverage the transitive property of
R on events located at the rightmost position of
each layer:
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Rk2
k1
(nk1 − 1) = Rk2

k1−1(R
k1−1
k1

(nk1 − 1))

= Rk2
k1−1(nk1−1 − 1) = ... = nk2 − 1

(15)

Then, by applying equation (13), ck2k1 can be cal-
culated as :

ck2k1 = Rk2
k1
(nk1 − 1)−L k2

k1
(nk1 − 1) + 1

= (nk2 − 1)− ok2k1 × (nk1 − 1) + 1

= nk2 − ok2k1 × (nk1 − 1)

(16)

Equation (14) and (16) are implemented in an
iterative manner in line 12, 13 of Algorithm 1.

Step 2: Mask Construction
Then we construct masks based on these structure
parameters produced in Algorithm 2, filling atten-
tion areas with positive values layer-by-layer. For
the sub-mask Mk2

k1
∈ Rnk1

×nk2 from Lk1 to Lk2 ,
(k1 > k2), the attention scores are filled condition-
ing on relation ek2j2 ∈ D(e

k1
j1
) and positions:

Mk2
k1
[j1][j2] =

{
1 if 0 ≤ j2 − ok2k1 × j1 < ck2k1
0 else

(17)
Mask Mk

k ∈ Rnk×nk on the same layer Lk is
an identity matrix. M̃ e

f is constructed on the

frame layer L0. M̃ e
v is same as the mask on L1.

M̃ e
f , M̃

e
v are further expanded to M e

f ,M
e
v with

shapes RNe×(Nf×Ns),RNe×(n1×Nv).

C More Visualization

We provide additional visualizations in Figure 7
on TVR, Charades-STA, and ActivityNet-Captions.
Notably, events in ActivityNet tend to interact with
high-level event prompts such as the global prompt.
This occurs because many ActivityNet videos re-
volve around a single theme, contain longer textual
annotations, and exhibit more complex dependen-
cies. Consequently, the prompts must interact with
higher-level ancestors to capture contextual infor-
mation across broader temporal spans.

Algorithm 2: Mask Construction
Input: H, L
Output: M e

e , M̃ e
f , M̃ e

v

1 Ne = sum(L[1 :])// prompt number
2 n1 = L[1] // length of L1
3 Nf = L[0] // frame number
4 M = zeros(Ne +Nf , Ne +Nf );
5 for k1 ← K to 0 do
6 for k2 ← k1 to 0 do
7 u1 = sum(L[k1 + 1 :]);
8 v1 = sum(L[k1 :]);
9 u2 = sum(L[k2 + 1 :]);

10 v2 = sum(L[k2 :]);
11 if k1 = k2 then

// same layer
12 Msub = M[u1 : v1, u2 : v2];
13 Msub.fill_diagonal(1)
14 end
15 else
16 ck2k1 , o

k2
k1

= H[(k1, k2)];
17 for i← 0 to L[k1]− 1 do
18 ui = u2 + i ∗ ok2k1 ;
19 vi = ui + ck2k1 ;
20 M[u1 + i][ui : vi] = 1;

// symmetrical
21 M[ui : vi][u1 + i] = 1;
22 end
23 end
24 end
25 end
26 M e

e = M[: Ne][: Ne] // RNe×Ne

27 M̃ e
f = M[: Ne][Ne :] // RNe×Nf

28 M̃ e
v = M[: Ne][Ne − n1 : Ne] // RNe×n1

29 return M e
e , M̃

e
f , M̃

e
v
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Query: George is eating popcorn while he is talking too Derek.

 

Query: Meredith and Derek are having a conversation in a bar.

 

TVR: #96905

TVR: #96909

Query: a person holds a camera up.
 

Query: person takes some pictures.

 

Charades: #GCI2J#enc#3

Charades: #GCI2J#enc#2

Query:  A reporter is standing with two women further behind him and the banner
 
              below him indicates that he's a reporter and his name is ALEX ADEYANJU.
 

ActivityNet: #v_9XmzbuByY_E#enc#0

Query: A close up shot of one of the women begins as she's talking and the banner

             indicates she's a shuffleboard player by the name of FRIEDA GALLAWAY.

 

Query: Now a man is shown talking to a reporter and the banner below indicates that
 
             his name is BILL ROMER and that he's also a shuffleboard player.
 

ActivityNet: #v_9XmzbuByY_E#enc#2

ActivityNet: #v_9XmzbuByY_E#enc#3

Figure 7: More visualization results. Samples are selected based on the R@1 metric. Selected event prompts are
highlighted with red borders. Events with the highest attention scores are marked by orange borders.
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