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Abstract

Retrieval-Augmented Generation (RAG) en-
hances large language models by grounding
their outputs in external knowledge. Recent ad-
vances in Graph-based RAG (GRAG) frame-
works, such as GraphRAG, LightRAG, and
HippoRAG2, integrate knowledge graphs into
the retrieval process to improve multi-hop rea-
soning and semantic coherence. While effec-
tive in monolingual settings, these methods
remain underexplored in cross-lingual scenar-
ios and face limitations in semantic granu-
larity and entity alignment. In this work, we
propose MaGiX, the first GRAG framework
tailored for English–Vietnamese cross-lingual
question answering. MaGiX constructs a multi-
granular cross-lingual knowledge graph using
fine-grained attribute descriptions and cross-
synonym edges, and incorporates a custom mul-
tilingual embedding model trained with con-
trastive learning for semantic alignment. Dur-
ing retrieval, MaGiX leverages graph-based rea-
soning and a semantic-aware reranking strat-
egy to enhance cross-lingual relevance. Ex-
periments across five benchmarks show that
MaGiX substantially outperforms prior GRAG
systems in both retrieval accuracy and genera-
tion quality, advancing structured retrieval for
multilingual QA.

1 Introduction

In the rapidly evolving landscape of multilingual
information access, the ability to retrieve and gen-
erate knowledge across languages is increasingly
essential. While large language models (LLMs)
have shown impressive capabilities in reasoning
and generation, they often struggle to integrate new
knowledge efficiently, particularly in multilingual
or low-resource settings (Chirkova et al., 2024;
Wu et al., 2024; Nguyen et al., 2025). Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020)
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frameworks offer a promising solution by allowing
LLMs to ground their outputs in external docu-
ments. However, RAG systems face several chal-
lenges in continuous knowledge acquisition, in-
cluding ensuring high-quality retrieval, effectively
managing long contexts, and seamlessly integrat-
ing newly acquired knowledge (Jiang et al., 2024;
Jin et al., 2024). Besides, traditional RAG sys-
tems depend heavily on dense embedding similar-
ity and often treat documents as flat, unstructured
units—limiting their performance on complex,
multi-hop, or semantically rich queries (Gupta
et al., 2024; Barnett et al., 2024; Tang and Yang,
2024; Gutiérrez et al., 2025).

To address these limitations, recent develop-
ments such as GraphRAG (Edge et al., 2024), Ligh-
tRAG (Guo et al., 2025) and HippoRAG 2 (Gutiér-
rez et al., 2025) have incorporated knowledge
graph (KG) into the retrieval pipeline, enabling the
modeling of semantic relationships between enti-
ties. Collectively, these graph-based RAG (GRAG)
frameworks improve retrieval precision and rea-
soning performance by representing knowledge in
a structured and interconnected form, which al-
lows for more effective extraction of relevant infor-
mation grounded in the contextual and relational
structure of the underlying data. Overall, these
GRAG methodologies generally operate in two
main stages: offline knowledge graph construction
(offline indexing) and online graph-based infer-
ence retrieval (online retrieval). In the offline stage,
unstructured documents are processed (often via an
LLM-based pipeline) to identify key entities and
semantic relations, and these extracted elements
are assembled into a knowledge graph; each entity
node is further enriched with a concise description
and each relation edge with a brief contextual an-
notation to capture their meaning. The indexing
process also includes canonicalization, merging du-
plicate or co-referent entities into unified nodes to
eliminate redundancy and maintain a clean graph
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index. In the online retrieval stage, the user’s query
is encoded or analyzed to identify its key concepts,
which are matched to corresponding seed nodes in
the knowledge graph. The system then traverses
outward from these seed nodes to explore neigh-
boring nodes and retrieve a relevant subgraph. The
candidate documents or chunks linked to this sub-
graph are aggregated and reranked by relevance,
ensuring the most pertinent and contextually con-
nected evidence for answer generation.

Although these approaches show promise of KG
in enhancing RAG systems, they still exhibit sev-
eral limitations. (1) Underexploration in Cross-
Lingual Settings: Most existing GRAG imple-
mentations have seen limited application in cross-
lingual question answering tasks. As a result, the
potential of graph-based approaches in multilin-
gual scenarios remains largely unexplored. (2)
Limitation in Knowledge Graph Construction
GraphRAG and LightRAG typically concatenate
all descriptions of entities and relations extracted
from multiple text chunks into a single representa-
tion, resulting in overly long and ambiguous sum-
maries that hinder fine-grained query matching and
accurate localization of relevant chunks. Further-
more, these frameworks often lack rich synonym
edges and rely on exact string matching for en-
tity deduplication, which is ineffective in cross-
lingual contexts where semantically equivalent en-
tities may appear in different surface forms. While
HippoRAG 2 introduces synonym edges based on
entity name embedding similarity, this method re-
mains limited in multilingual scenarios, as it de-
pends solely on short entity names and fails to lever-
age the richer semantic from contextual descrip-
tions. (3) Limitation in Graph-based Inference
Retrieval Prior GRAG frameworks typically rank
or score candidate text chunks based on the connec-
tivity of retrieved seed nodes within the graph. For
instance, LightRAG prioritizes passages containing
a high number of neighboring entities to the seed
node, while HippoRAG 2 leverages Personalized
PageRank (PPR), which inherently favors nodes
with greater structural connectivity. However, such
approaches may overemphasize co-occurrence pat-
terns and underweight semantic relevance, poten-
tially biasing retrieval toward text chunks that are
densely linked rather than contextually appropri-
ate. This limitation may be further exacerbated in
cross-lingual scenarios, where semantically aligned
entities across languages are often not directly con-
nected or co-located in the same passage, leading

to the misranking for a text chunk and underesti-
mating its relevance level.

In this paper, we present MaGiX —a Multi-
Granular Adaptive Graph Intelligence framework
that is the first to explore Graph-based RAG tech-
niques for English-Vietnamese cross-lingual ques-
tion answering. By addressing these challenges,
MaGiX not only expands the applicability of
GRAG to low-resource languages but also offers
methodological innovations that improve retrieval
accuracy and cross-lingual alignment (comparison
with prior GRAG models shown in Table 5). In
summary, our contributions are as follows:

• Cross-Lingual KG Construction with Cross
Semantic Canonicalization: MaGiX constructs
a cross-lingual knowledge graph by linking
English and Vietnamese entities through fine-
grained attribute descriptions extracted from
diverse text chunks (cross-synonym edge). To
further capture semantic equivalence across lan-
guages, we introduce a custom embedding model
using contrastive learning and bilingual data, out-
performing pretrained embeddings used in prior
systems.

• Granular Graph Reasoning for Retrieval:
Rather than relying on single unified represen-
tations (i.e. concatenated or sumarized descrip-
tion), MaGiX considers all contextual descrip-
tions linked to each entity and relation, improving
text chunk localization. We further enhance re-
trieval by traversing across cross-synonym edges
and provide a custom multi-aspect, semantic-
aware reranking strategy, enabling robust seman-
tic matching in cross-lingual scenarios.

• Empirical Results on Cross-Lingual Bench-
marks: Our comprehensive experiments on five
benchmarks show that MaGiX achieves substan-
tial improvements over existing GRAG frame-
works in both retrieval accuracy and generation
quality, highlighting the effectiveness of our pro-
posed methods across both the offline graph con-
struction and online retrieval stages.

2 Related work

2.1 Graph-based RAG

Recent work has explored integrating knowl-
edge graphs into Retrieval-Augmented Generation
(RAG) to improve structured context retrieval, en-
hance LLM reasoning, and address challenges in
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complex and multi-hop queries where naive RAG
falls short. GraphRAG (Edge et al., 2024) con-
structs hierarchical knowledge graphs by extracting
entities and relations from text and grouping them
into communities, enabling multi-level retrieval
and improving summarization tasks, though at high
computational cost. To address this, LightRAG
(Guo et al., 2025) introduces a more lightweight,
update-friendly framework that embeds graph
structure directly into retrieval. PathRAG (Chen
et al., 2025) further improves coherence by prun-
ing redundant information along relational paths.
Inspired by human memory, HippoRAG (Gutiér-
rez et al., 2024) and HippoRAG 2 (Gutiérrez et al.,
2025) applies Personalized PageRank over knowl-
edge graphs to support continual knowledge inte-
gration, achieving strong results in multi-hop rea-
soning tasks.

2.2 Cross-lingual Information Retrieval
Cross-lingual Information Retrieval (CLIR) tackles
the challenge of retrieving relevant documents writ-
ten in a language different from that of the user’s
query. Traditional CLIR techniques often rely on
machine translation, bilingual dictionaries, or par-
allel corpora to bridge the language gap (Zbib et al.,
2019; Litschko et al., 2021; Shi et al., 2021). How-
ever, these methods frequently suffer from trans-
lation errors and are particularly limited in cov-
erage and quality for low-resource languages. In
response, recent research has shifted toward neural
retrieval models that employ cross-lingual embed-
dings to project text from different languages into a
shared semantic space, allowing for retrieval with-
out explicit translation (Pires et al., 2019; Conneau
et al., 2019; Chen et al., 2024).

For example, Guo et al. (2024) enhance Chi-
nese–English CLIR by guiding large language mod-
els using bilingual dictionaries and comparable
corpora. Similarly, the WACSE framework (Miao
et al., 2024) aligns word-level semantics across
English and low-resource languages such as Taga-
log, Vietnamese, and Swahili using word align-
ment models and translation-based learning objec-
tives. Specifically in the English–Vietnamese set-
ting, Nguyen et al. (2025) improve cross-lingual
retrieval by constructing a bilingual corpus and
training cross-lingual embedding models with aux-
iliary losses and synthetic data.

Despite these advancements, the use of graph-
based retrieval-augmented generation (GRAG) re-
mains largely unexplored in cross-lingual or mul-

tilingual scenarios, particularly for low-resource
language pairs like English and Vietnamese. This
presents a critical opportunity to investigate how
structured knowledge representations can further
enhance semantic alignment and retrieval effective-
ness across languages.

3 Methodology

3.1 Overview

Following previous studies, our method comprises
two main stages: offline KG construction and
online graph-based inference retrieval. The overall
of our methodology is depicted in Figure 1.

Offline KG construction (1) We employ an
LLM to extract triples from raw text chunks, along
with enclosed descriptions for each entity, follow-
ing the approach of the LightRAG framework (Guo
et al., 2025). (2) Each entity node may appear
in multiple text chunks, yielding several context-
specific attribute descriptions. We concatenate
each with the entity name and encode them in-
dependently, producing N attribute embeddings
for N occurrences. This fine-grained representa-
tion addresses limitations in prior work: LightRAG
compresses all descriptions into one, losing de-
tail, while HippoRAG uses only raw entity names
without context. To detect synonyms, we apply a
transformer-based encoder for semantic matching
and introduce cross-synonym edges to link equiv-
alent entities across languages (3.2). Cross-lingual
alignment is further improved through a custom
embedding model with multi-stage training strat-
egy (3.3) that enhances semantic consistency across
languages. (3) To maintain a balance between con-
textual and conceptual information, as emphasized
in HippoRAG 2 (Gutiérrez et al., 2025), we pre-
serve the linkage between graph nodes and edges
and their corresponding raw text chunks, along with
the attribute descriptions of entities and relation-
specific descriptions extracted from those texts.

Online Graph-based Inference Retrieval: (1)
Given an input query, we first encode it into an em-
bedding vector, which is then used to perform se-
mantic search over both attribute node descriptions
and edge descriptions. Based on the highest co-
sine similarity scores, we identify the most relevant
seed nodes and edges, and retrieve their associated
text chunks as candidate contexts. (2) To enhance
retrieval coverage, we expand the candidate set by
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Figure 1: MaGiX architecture overview. The knowledge graph is built from extracted entities, relations, and
attributes, with synonym edges (CR) added via contextual similarity. During retrieval, queries match node attributes
and triple descriptions to identify seed nodes and initial candidates. The candidate set is expanded via CR traversal.
A semantic-aware reranking strategy selects the top-n text chunks for LLM generation.

traversing the graph from seed nodes, leveraging
cross-synonym edge (CR) to identify cousin nodes.
For each cousin node, we select text chunks whose
attribute embeddings are most similar to the query
embedding, thereby increasing matching capacity
by effectively utilizing the graph structure (3.4). (3)
Text chunks are scored based on three score compo-
nents that collectively capture multi-aspect seman-
tic alignment (3.5). For robust cross-lingual match-
ing, a graph-based score boosting mechanism is
applied first, where, for nodes with cross-synonym
relations, the attribute description score is updated
to the maximum cosine similarity score of attribute
descriptions from their cross-lingual cousin nodes
to prioritize synonymous entities. The top-n chunks
are then ranked by their composite scores and se-
lected for LLM generation.

3.2 Cross-lingual Semantic Canonicalization
The construction of a knowledge graph from un-
structured text involves extracting relational triplets
of the form entity-relation-entity from a set of
text chunks. A key challenge in this process is
the canonicalization problem, where LLMs gen-
erate varied representations of the same entity due
to their inherent randomness and linguistic diver-
sity. For instance, the entity referring to the capital
of Vietnam may appear as “Hanoi city,” “Hanoi,”
“Capital Hanoi,” or historical names like “Thang
Long” or “Ke Cho”. Our approach employs a fine-
tuned multilingual embedding model tailored to

the target domain, enabling more effective seman-
tic matching by leveraging contextual attributes
extracted from text chunks to improve synonym
detection.

Given a set of text chunks C = {c1, c2, . . . , cn},
we utilize an LLM to extract a set of relational
triplets T = {(ei, rij , ej)}, where ei, ej ∈ E are
entities, and the relation description rij ∈ R is the
edge connecting them. Each text chunk ck ∈ C may
yield many triplets, and each entity ei extracted
from ck is associated with a contextual attribute
aik, which encapsulates the descriptive context of
ei within ck. Formally, for an entity ei, the set of
contextual attributes is defined as:

Ai = {aik | ei is extracted from ck, ck ∈ C}

To address the canonicalization problem, we en-
code each entity using its name and contextual
attributes to create attribute embeddings. For an
entity ei with name ni and contextual attribute aik,
the attribute embedding is generated by concate-
nating the entity name and attribute, followed by
encoding via a fine-tuned multilingual embedding
model f :

vik = f(ni ∥ aik)

where ∥ denotes string concatenation, vik ∈ Rd is
the d-dimensional embedding vector and the set of
attribute embeddings for ei is:

Vi = {vik | aik ∈ Ai}
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Figure 2: A multi-stage self-supervised pipeline for do-
main adaptation and cross-lingual alignment.

This approach preserves the semantic context of
each text chunk in the embedding space, support-
ing robust entity comparison and improving online
retrieval. To deduplicate entities and identify syn-
onyms, we compute cosine similarity between all
pairs of attribute embeddings from ei and ej .

s(vik,vjl) =
vik · vjl

∥vik∥∥vjl∥
,

∀vik ∈ Vi,vjl ∈ Vj

If there exists any pair (k, l) such that s(vik, vjl) >
τ , where τ ∈ (0, 1) is a predefined threshold, we es-
tablish a cousin relation/synonym edge between ei
and ej . if the entities belong to different languages,
this edge is designated as a cross-synonym con-
nection. The set of cousin relations is:

CR = {(ei, ej) | ∃k, l s.t. s(vik,vjl) > τ}

This relation is represented as an edge in the graph,
facilitating online retrieval of synonymous entities.

3.3 Domain Adaptation and Cross-Lingual
Alignment

To develop a robust embedding model for multilin-
gual and cross-lingual retrieval tasks, we propose

a multi-stage fine-tuning strategy that leverages
synthetic data to enhance domain adaptation and
cross-lingual alignment. The complete fine-tuning
pipeline is depicted in the Figure 2. Further de-
tails on the training objectives for each stage are
provided in Appendix B.

Stage 1: Self-supervised Fine-Tuning for Do-
main Adaptation To enhance domain adaptation,
we adopt the SimCSE (Gao et al., 2021) contrastive
learning framework for unsupervised training on
synthetic English and Vietnamese attribute descrip-
tions generated during graph construction. This
step enables the model to capture domain-specific
semantics in graph-based attributes, yielding em-
beddings optimized for canonicalization.

Stage 2: Supervised Fine-Tuning for Cross-
Lingual Alignment The second stage performs
supervised fine-tuning to align embeddings across
English and Vietnamese for effective cross-lingual
retrieval. The model is trained using in-batch con-
trastive loss with hard negatives, based on five types
of synthetic bilingual query-description pairs, as
illustrated in Figure 2. This setup encourages high
similarity for correct pairs and low similarity for
unrelated ones, enhancing the alignment of entity
and relation embeddings across languages.

3.4 Granularity Retrieval
In the online retrieval phase, our method leverages
the fine-grained attribute embeddings constructed
during the offline phase to enable precise and
contextually relevant retrieval of text chunks. This
section details the granularity retrieval process,
which enhances the explorability and accuracy
of retrieved contexts by incorporating multi-level
semantic matching and graph traversal.

Given a query q, we encode it using the fine-tuned
multilingual model f to obtain the embedding
vq = f(q) ∈ Rd. A semantic search is performed
over attribute embeddings vik of entity nodes and
edge description embeddings vrij , selecting the
top-k most similar items as the seed set S . For each
vik ∈ S , we retrieve the corresponding text chunk
cik containing the attribute aik. Similarly, for each
vrij = f(drij ) ∈ S, where drij is the edge de-
scription, we retrieve the chunk cij containing drij .
These form the initial text chunk candidates.

Cinit = {cik | vik ∈ S} ∪ {cij | vrij ∈ S}.
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To extend explorability, we leverage the graph struc-
ture by traversing cousin relations defined in Sec-
tion 3.2. For each attribute embedding vik in the
top-k set, we identify the corresponding entity node
ei. We then collect all cousin nodes ej such that
(ei, cousin, ej) ∈ CR. For each cousin node ej ,
we compute the cosine similarity between vq and
each attribute embedding vjl ∈ Vj , selecting the at-
tribute embedding with the highest similarity score:

vjl∗ = arg max
vjl∈Vj

s(vq,vjl),

where s(vq,vjl) =
vq · vjl

∥vq∥∥vjl∥
We include the text chunk cjl∗ containing the at-
tribute description ajl∗ associated with vjl∗ . The
set of cousin text chunk candidates is:

Ccousin = {cjl∗ | (ei, ej) ∈ CR,vik ∈ S} (1)

The final set of text chunk candidates is the union
of the initial and cousin candidates:

Ccand = Cinit ∪ Ccousin (2)

3.5 Scoring and Reranking Mechanism
Given the candidate text chunks Ccand, we rank
them using a weighted average of three normalized
components, enhanced by a graph-based boosting
mechanism for cross-lingual alignment.

Scoring Components For each chunk c ∈ Ccand,
we consider three semantic aspects:

• Chunk Similarity (schunk): Cosine similarity be-
tween the query embedding vq and chunk em-
bedding vc = f(c).

• Attribute Similarity (sattr): Average similarity of
top-m entity attribute embeddings vik ∈ S in c
to vq.

• Triple Similarity (striple): Average similarity of
top-m triple embeddings vrij ∈ S in c to vq.

Cross-Lingual Score Boosting To boost sattr, we
incorporate similarities from cross-lingual cousin
nodes via CR:

s′attr(ei) = max
(
{s(vq,vik) | vik ∈ S}
∪ {s(vq,vjl) | vjl ∈ S,
(ei, ej) ∈ CR}

)
.

(3)

The updated sattr(c) is the average of the top-m
boosted s′attr(ei).

Composite Score and Reranking Each score is
min-max normalized:

snorm
x (c) =

sx(c)−min sx
max sx −min sx

,

x ∈ {chunk, attr, triple}.
(4)

Final score:

scomposite(c) =
∑

x∈{chunk, attr, triple}
wxs

norm
x (c) (5)

where wchunk, wattr and wtriple are weighting coef-
ficients used to balance the contribution of each
score component. Top-n ranked chunks form Cfinal
for LLM generation.

4 Experiments

4.1 Experimental Setup
More details on dataset statistics, implementation,
and evaluation metrics are provided in Appendix C.

Datasets. To evaluate our approach on both sim-
ple and multi-hop QA, we use diverse datasets
across domains. For simple QA, we include two
Vietnamese benchmarks: ZaloWikipediaQA (Zalo
AI Team, 2019) (general topics) and ZaloLe-
gal2021 (Zalo AI Team, 2021) (legal domain),
along with two English datasets from HippoRAG
2: 1,000 samples each from NaturalQuestions (NQ)
(Wang et al., 2024) and PopQA (Mallen et al.,
2022), using the December 2021 Wikipedia. For
multi-hop QA, we sample 1,000 queries from
MuSiQue (Trivedi et al., 2022), which requires
reasoning over multiple passages. All datasets are
translated between Vietnamese and English using
Gemini 2.0 Flash (Google DeepMind, 2024) to cre-
ate cross-lingual QA scenarios.

Baselines. We compare our approach against
two categories of baselines: (1) a NaiveRAG
setup using the multilingual dense retriever
BGE-M3 (Chen et al., 2024), and (2) GRAG
methods, including GraphRAG (Edge et al., 2024),
LightRAG (Guo et al., 2025), and HippoRAG 2
(Gutiérrez et al., 2025), all using Gemini 2.0 Flash
(Google DeepMind, 2024) for both knowledge
extraction and reasoning, with BGE-M3 as the
retrieval encoder.

4.2 Main Results
In this section, we evaluate the principal experimen-
tal outcomes for English-Vietnamese cross-lingual
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Simple QA Multi-Hop QA

Retrieval ZaloWikipediaQA ZaloLegal2021 NQ Popqa MuSiQue

vi-en en-vi vi-en en-vi vi-en en-vi vi-en en-vi vi-en en-vi

Dense Retrieval
BGE-M3 76.29 75.92 64.17 61.95 81.62 81.63 45.15 46.22 46.58 44.86

Graph-based Retrieval
GraphRAG - Local 18.24 32.80 18.76 16.06 22.99 19.47 17.12 18.14 17.25 15.44
LightRAG - Local 17.05 27.17 16.61 16.61 23.11 27.71 23.32 26.65 20.30 22.01
LightRAG - Global 40.79 48.01 15.57 15.57 15.54 18.02 14.27 17.52 13.81 10.05
HippoRAG 2 79.27 75.26 66.19 60.23 84.56 84.14 49.45 48.49 55.53 50.98

MaGiX 81.32 85.45 68.02 65.26 87.79 87.27 50.65 50.85 60.37 58.43

Table 1: Vietnamese-to-English (Vi-En) and English-to-Vietnamese (En-Vi) Passage Retrieval Performance (Re-
call@k=10) across four simple QA datasets and one multi-hop QA dataset. In the table, we highlight the best score
in bold and the second-best score with an underline.

Method NQ PopQA MuSiQue
LightRAG 23.11 23.32 20.30

+ Granular Retrieval 78.90 49.10 48.86
+ Cross-Synonym 80.73 49.20 51.21
+ Composite Score 88.58 50.08 56.96
+ Finetune (MaGiX) 87.79 50.65 60.37

Table 2: Ablation: Recall@10 for Vietnamese–to-
English settings on two simple QA datasets (NQ and
PopQA) and one multi-hop QA dataset (MuSiQue).

passage retrieval (Tables 1) and QA (Table 3) tasks,
providing a comprehensive analysis of performance
across diverse datasets.

Performance on Cross-lingual Retrieval: Ta-
ble 3 presents retrieval results across five QA
datasets, covering both simple and multi-hop
queries under cross-lingual settings (vi-en and en-
vi). The results compare our proposed method,
MaGiX, against dense retriever and various GRAG
baselines. MaGiX consistently achieves the best
performance across all scenarios, clearly demon-
strating its effectiveness in cross-lingual retrieval.
For example, on the ZaloWikipediaQA dataset
(en-vi), MaGiX achieves a score of 85.45%, out-
performing both HippoRAG 2 and BGE-M3 by
nearly 10%. On the multi-hop MuSiQue bench-
mark, MaGiX attains scores of 60.37% and 58.43%
for vi-en and en-vi settings, respectively, both sub-
stantially outperforming the second-best baseline,
HippoRAG 2.

Performance on Cross-lingual QA: Table 3
presents the win-rate evaluation results of MaGiX
against four baselines in five evaluation dimensions:
Accuracy, Comprehensiveness, Diversity, Logical-

ity, and Coherence. Judgments are conducted using
Grok-3 and detailed in Appendix C. MaGiX con-
sistently outperforms all baselines across nearly
every metric and dataset, demonstrating strong
generation quality in both simple and multi-hop
cross-lingual QA. For instance, on the multi-hop
MuSiQue dataset, MaGiX outperforms all base-
lines in every evaluation aspect, achieving win rates
exceeding 65%. Similarly, on the simple QA bench-
marks, MaGiX consistently outperforms all base-
lines, achieving high win rates across most evalua-
tion dimensions. These results highlight MaGiX ’s
strengths in generating coherent, contextually rich,
and logically consistent answers across languages
enabled by its fine-grained attribute modeling,
cross-lingual alignment strategies, and semantic-
aware reranking.

4.3 Ablation Study

In this section, we present ablation experiments to
evaluate the effectiveness of each proposed tech-
nique in MaGiX, as well as the contribution of
individual components within the ranking strategy.
Additional experiments and analysis are provided
in Appendix D.

Effectiveness of Key Components in MaGiX:
Table 2 demonstrates that building upon Ligh-
tRAG, the incremental integration of granular re-
trieval, cross-synonym linking, and composite scor-
ing results in consistent performance gains. Adding
granular retrieval—which encodes multiple fine-
grained attribute descriptions per entity—results
in a substantial improvement, particularly for NQ
(from 23.11 to 78.90) and MuSiQue (from 20.30
to 48.86), demonstrating the importance of main-
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ZaloWikipedia ZaloLegal2021 NQ Popqa MuSiQue
NaiveRAG MaGiX NaiveRAG MaGiX NaiveRAG MaGiX NaiveRAG MaGiX NaiveRAG MaGiX

Accuracy 32.60 67.40 38.12 61.88 38.83 61.17 38.12 69.07 32.53 67.47
Comprehensiveness 35.14 64.86 45.16 54.84 46.25 53.75 34.13 65.87 30.36 69.64
Diversity 38.53 61.47 49.84 50.16 50.35 49.65 35.79 64.21 33.47 66.53
Logicality 28.86 71.14 40.47 59.53 35.82 64.18 40.47 72.31 29.84 70.16
Coherence 29.16 70.84 40.00 60.00 34.63 65.37 28.27 71.73 26.49 73.51
Overall 33.70 66.30 41.25 58.75 42.50 57.50 33.33 66.67 31.66 68.34

GraphRAG MaGiX GraphRAG MaGiX GraphRAG MaGiX GraphRAG MaGiX GraphRAG MaGiX
Accuracy 31.70 68.30 23.44 76.56 26.00 74.00 22.57 77.43 28.01 71.99
Comprehensiveness 33.50 66.50 43.91 56.09 54.30 45.70 49.75 50.25 27.86 72.14
Diversity 41.80 58.20 59.94 40.06 66.90 33.10 57.01 42.99 33.87 66.13
Logicality 31.60 68.40 34.69 65.31 35.40 64.60 30.69 69.31 21.56 78.44
Coherence 31.10 68.90 41.88 58.13 39.22 60.78 34.37 65.53 16.83 83.17
Overall 32.60 67.40 34.84 65.16 40.70 59.30 36.44 63.56 23.55 76.45

LightRAG MaGiX LightRAG MaGiX LightRAG MaGiX LightRAG MaGiX LightRAG MaGiX
Accuracy 17.45 82.55 21.25 78.75 25.15 74.85 20.56 79.44 24.10 75.90
Comprehensiveness 55.10 44.90 41.41 58.59 51.90 48.10 39.24 60.76 22.55 77.45
Diversity 67.07 32.93 60.31 39.69 64.10 35.90 47.09 52.91 29.59 70.41
Logicality 34.53 65.47 31.92 68.08 33.20 66.80 25.85 71.15 17.85 82.15
Coherence 41.90 58.10 37.52 62.48 39.24 60.76 26.75 73.25 13.33 86.67
Overall 17.45 82.55 31.09 68.91 40.70 59.30 27.93 72.07 20.14 79.86

HippoRAG 2 MaGiX HippoRAG 2 MaGiX HippoRAG 2 MaGiX HippoRAG 2 MaGiX HippoRAG 2 MaGiX
Accuracy 28.96 71.04 40.69 59.31 32.49 67.51 25.30 74.70 21.23 78.77
Comprehensiveness 13.70 86.30 42.19 57.81 8.50 91.50 11.21 88.79 20.14 79.86
Diversity 18.00 82.00 49.22 50.78 12.00 88.00 14.31 85.69 27.61 72.39
Logicality 21.30 78.70 39.06 60.94 18.34 81.66 15.41 85.49 17.84 82.16
Coherence 11.00 89.00 37.34 62.66 6.70 93.30 7.11 92.89 12.32 87.68
Overall 17.20 82.80 40.00 60.00 13.80 86.20 12.71 87.29 17.23 82.77

Table 3: Performance on Vietnamese-to-English QA across five datasets and five evaluation dimensions, measured by
win rates (%) based on judgments from the Grok-3. Additional results for English-to-Vietnamese QA are provided
in Table 9 in the Appendix.

Composite Score NQ PopQA MuSiQue
Ours 87.79 50.65 60.37

w/o schunk 73.91 47.55 49.91
w/o sattr 87.37 49.70 58.34
w/o striple 85.69 48.50 57.12

Table 4: Ablation study on vi-en CLIR setting, Re-
call@10 on two simple QA datasets (NQ and PopQA)
and one multi-hop QA dataset (MuSiQue), evaluating
the effect of removing individual components from the
Composite Score.

taining contextual semantics at the attribute level.
Cross-synonym edges further strengthen cross-
lingual alignment, while the composite scoring
strategy improves performance across all datasets,
highlighting the benefit of combining multiple se-
mantic signals. The final MaGiX model, enhanced
with fine-tuned embeddings, yields the best results
on MuSiQue and PopQA, though it slightly drops
on NQ, possibly due to the synthetic fine-tuning
data introducing minor noise or fine-tuning favor-
ing complex cross-lingual patterns.

Effectiveness of each Components in Scoring
Mechanism: As described in Section 3.5, we in-
troduce a semantic-aware scoring framework that
considers three key aspects for ranking candidate

text chunks. Table 4 shows that removing any sin-
gle component leads to a significant drop in re-
trieval performance, indicating that each semantic-
aware aspect contributes meaningfully to the effec-
tiveness of the proposed ranking strategy.

5 Conclusion

In this work, we introduced MaGiX, the first
Graph-based RAG framework designed for En-
glish–Vietnamese cross-lingual question answer-
ing. By addressing key limitations in prior GRAG
systems; such as limited multilingual adaptability,
lack of fine-grained entity modeling, and reliance
on shallow graph connectivity, we proposed a multi-
granular architecture that integrates contextual at-
tribute descriptions, cross-synonym reasoning, and
multi-aspect semantic-aware reranking. Our frame-
work leverages a domain-adapted multilingual em-
bedding model and a structured retrieval strategy
to achieve robust semantic alignment across lan-
guages. Extensive experiments on diverse cross-
lingual benchmarks demonstrate that MaGiX sig-
nificantly improves both retrieval and generation
quality. We believe this work lays the foundation
for future research in cross-lingual structured re-
trieval, especially in low-resource and complex
multilingual settings.
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Limitations

While MaGiX demonstrates strong performance
in English–Vietnamese cross-lingual question an-
swering, its current evaluation is limited to this
language pair. Although Vietnamese presents mean-
ingful challenges due to its syntactic differences
and low-resource characteristics, the generalizabil-
ity of our approach to other languages, especially
those with different morphological structures or
less available bilingual data, has not yet been tested
in our scope. In addition, although synthetic data
and bilingual embeddings offer promising results,
their effectiveness may vary across domains or lan-
guages with weak translation models. We leave
a broader multilingual evaluation and further re-
finement of domain adaptation strategies for future
work.

Acknowledgements

This research has been supported by the NSF grant
# 2239570. This research is also supported in part
by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via the HIATUS Pro-
gram contract 2022-22072200003. The views and
conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, of ODNI, IARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmental
purposes, notwithstanding any copyright annota-
tion therein.

References
Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu,

Zach Brannelly, and Mohamed Abdelrazek. 2024.
Seven failure points when engineering a retrieval
augmented generation system. In Proceedings of
the IEEE/ACM 3rd International Conference on AI
Engineering-Software Engineering for AI, pages 194–
199.

Boyu Chen, Zirui Guo, Zidan Yang, Yuluo Chen, Junze
Chen, Zhenghao Liu, Chuan Shi, and Cheng Yang.
2025. Pathrag: Pruning graph-based retrieval aug-
mented generation with relational paths. arXiv
preprint arXiv:2502.14902.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
arXiv preprint arXiv:2402.03216.

Nadezhda Chirkova, David Rau, Hervé Déjean, Thibault
Formal, Stéphane Clinchant, and Vassilina Nikoulina.
2024. Retrieval-augmented generation in multi-
lingual settings. In Proceedings of the 1st Work-
shop on Towards Knowledgeable Language Models
(KnowLLM 2024), pages 177–188.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and
Jonathan Larson. 2024. From local to global: A graph
rag approach to query-focused summarization. arXiv
preprint arXiv:2404.16130.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Google DeepMind. 2024. Gemini 2.0
Flash: Multimodal Large Language Model.
https://developers.googleblog.com/2024/
12/gemini-20-flash-experimental.html.
Accessed: May 16, 2025.

Ping Guo, Yubing Ren, Yue Hu, Yanan Cao, Yunpeng
Li, and Heyan Huang. 2024. Steering large language
models for cross-lingual information retrieval. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 585–596.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao
Huang. 2025. Lightrag: Simple and fast retrieval-
augmented generation. Preprint, arXiv:2410.05779.

Shailja Gupta, Rajesh Ranjan, and Surya Narayan
Singh. 2024. A comprehensive survey of retrieval-
augmented generation (rag): Evolution, current
landscape and future directions. arXiv preprint
arXiv:2410.12837.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michi-
hiro Yasunaga, and Yu Su. 2024. Hipporag: Neu-
robiologically inspired long-term memory for large
language models. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi,
Sizhe Zhou, and Yu Su. 2025. From rag to memory:
Non-parametric continual learning for large language
models. arXiv preprint arXiv:2502.14802.

Ziyan Jiang, Xueguang Ma, and Wenhu Chen. 2024.
Longrag: Enhancing retrieval-augmented genera-
tion with long-context llms. arXiv preprint
arXiv:2406.15319.

5210

https://developers.googleblog.com/2024/12/gemini-20-flash-experimental.html
https://developers.googleblog.com/2024/12/gemini-20-flash-experimental.html
https://arxiv.org/abs/2410.05779
https://arxiv.org/abs/2410.05779


Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O
Arik. 2024. Long-context llms meet rag: Overcoming
challenges for long inputs in rag. arXiv preprint
arXiv:2410.05983.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, and 1 others. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459–
9474.

Robert Litschko, Ivan Vulić, Simone Paolo Ponzetto,
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Appendix
A Comparison between MaGiX and prior GRAG frameworks

GraphRAG/LightRAG HippoRAG 2 MaGiX
Node/edge
description

Concatenated and
Summarization

✗ Fine-grained

CS Edges ✗ ✗ ✓

Finetuning
Embedding Model

✗ ✗ ✓

Node/Edge
retrieval

Unified Description
Retrieval

Triple Retrieval
Granular Description

Retrieval
Extend searching
with CS Edges

✗ ✗ ✓

Passage Ranking
Strategy

Node Structural
Connectivity

Personalize PageRank
Multi-Aspect

Semantic-Aware

Table 5: Comparison of Multi-Step Process between existing GRAG and MaGiX. from Graph Construction to
Graph Inference. In the table, the color Green denotes the Graph Construction stage, the color Orange denotes
Graph Inference stage. Moreover, CS abbreviates for Cross-Synonym.

B Domain Adaptation and Cross-Lingual Alignment

To develop a robust embedding model for multilingual and cross-lingual retrieval tasks, we propose a multi-
stage fine-tuning strategy that leverages synthetic data to enhance domain adaptation and cross-lingual
alignment. The complete fine-tuning pipeline is depicted in the Figure 2.

Stage 1: Self-supervised Fine-Tuning for Domain Adaptation To better adapt to the domain, we
employ the SimCSE (Gao et al., 2021) contrastive learning framework, training on synthetic English-
Vietnamese attribute descriptions generated during graph construction. This stage helps the model capture
domain-specific nuances in graph-derived attributes, producing embeddings well-suited for canonicaliza-
tion.

In the training process, each description di in a batch of size B is encoded twice using different dropout
masks, yielding two embeddings z1i and z2i . The SimCSE loss function maximizes the cosine similarity
between these paired embeddings, while treating the embeddings of other descriptions in the batch as
negative examples. The loss is defined as:

LSimCSE = − 1

2N

N∑

i=1




log
exp(sim(z1i , z

2
i )/t)∑B

j=1 exp(sim(z1i , z
2
j )/t)

+ log
exp(sim(z2i , z

1
i )/t)∑B

j=1 exp(sim(z2i , z
1
j )/t)




(6)

where sim(a, b) = a·b
∥a∥∥b∥ is the cosine similarity, t is the temperature parameter. This loss ensures

that the model learns robust, domain-adapted embeddings for the synthetic descriptions, laying a strong
foundation for cross-lingual tasks.

Stage 2: Supervised Fine-Tuning for Cross-Lingual Alignment The second stage performs supervised
fine-tuning to align embeddings across English and Vietnamese, enabling effective cross-lingual retrieval.
It focuses on matching queries to their corresponding descriptions, with emphasis on cross-lingual pairs
(e.g., English queries and Vietnamese descriptions). To improve cosine similarity between aligned entity
and relation embeddings, English–Vietnamese description pairs are also included. Synthetic training
data is generated from Stage 1 descriptions by creating user-like queries in both languages, forming five
types of training pairs, as illustrated in Figure 2. Each set includes positive and hard negative pairs to
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enhance the model’s discriminative ability. The fine-tuning process trains the model on all five datasets
simultaneously, using an in-batch contrastive loss that incorporates hard negatives to improve alignment
accuracy. For each query qi in a batch of size B, with its positive description di, and a set of hard negatives
{hi,k}Kk=1, the loss is:

Li = − log




exp(sim(qi, di)/t)∑B
j=1 exp(sim(qi, dj)/t)

1

1 +
∑K

k=1 exp(sim(qi, hi,k)/t)


 (7)

where sim(a, b) is the cosine similarity, t is the temperature parameter, and K is the number of hard
negatives per query. The total loss is:

L =
1

B

B∑

i=1

Li (8)

This loss encourages the model to assign high similarity to correct query-description pairs, especially
across languages, while effectively distinguishing them from both in-batch and hard negative examples.

C Additional Experimental Settings

Evaluation Metrics. Following prior work in cross-lingual document retrieval (Gutiérrez et al., 2025;
Nguyen et al., 2025), we use Recall@10 as our evaluation metric for text chunk retrieval. To evaluate
answer quality, inspired by previous approaches (Edge et al., 2024; Guo et al., 2025; Chen et al., 2025),
we utilize LLMs (i.e. Grok-3) as evaluators to assess generated answers in relation to queries and ground
truth documents. Our LLM evaluators examine five key dimensions: Accuracy (factual correctness),
Comprehensiveness (topic coverage depth), Diversity (inclusion of multiple perspectives), Logicality
(logical response to all parts of the question), and Coherence (internal consistency and smooth structure).
For each query, we compare two answers across these five criteria, determining the superior response as
the one that outperforms in more criteria. Win rates are calculated by averaging these results across all
queries. The prompt used for LLM-based evaluation is provided below.

Implementation Details. In our experiments, to set up English-Vietnamese cross-lingual setting, we
first translate all Vietnamese documents and queries to English version and vice versa. By utilizing
Gemini 2.0 Flash (Google DeepMind, 2024) model we translate ZaloWikipediaQA (Zalo AI Team, 2019)
and ZaloLegal2021(Zalo AI Team, 2021) datasets from Vietnamese into English and reverse direction for
the NQ (Wang et al., 2024), PopQA (Mallen et al., 2022), and MuSiQue datasets (Trivedi et al., 2022). We
then construct bilingual knowledge graph based on the documents and their translated documents using a
procedure adapted from LightRAG (Guo et al., 2025), except that we split entity and relation descriptions
which tell specific aspect of entity and relations in a text chunk rather than concatenating them into a
single node summary. To align embeddings across languages, we synthesize queries, keywords, entities,
and relation descriptions from documents to fine-tune the BGE-M3 embedding model (Chen et al.,
2024) with SimCSE (Gao et al., 2021) in two stages. In the unsupervised phase, we apply standard
SimCSE on synthesized entities and relations documents for improving domain adaptation with the
batch samples enforced low intra-batch semantic similarity (< 0.7) to maximize the quality of SimCSE
training. In the supervised stage, we fine-tune on pairs of generated queries with their associated entity or
relation descriptions—both monolingual and cross-lingual. We augment training with hard negatives
selected for low semantic similarity (< 0.7) yet high lexical overlap (above the 75th percentile), where
lexical overlap is measured via BM25 scores computed between each query and all candidate negative
samples. In the knowledge graph construction stage, we define the cross-synonym edges between any
pairs of entities/edges in different language on the graph whenever their embedding similarity exceeds
threshold τ = 0.9. Finally, in the last multi-aspect, semantic-aware passage reranking step, we selected
wchunk = 1.0, wattr = wtriple = 0.3 after conducting parameter sensitivity analysis.
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Dataset Statistics. Below is the detailed information showing the number of queries and documents in
each dataset.

Datasets ZaloWikipediaQA ZaloLegal2021 NQ PopQA MuSiQue
Number of queries 4,399 640 1,000 1,000 1,000
Number of documents 15,957 61,062 9,365 8,676 11,656

Table 6: Details number of queries and documents of different datasets.

Details of hyperparameter. Below, we present the hyperparameter search space used in MaGiX. The
selected values corresponding to the best performance are highlighted in bold.

• τ : {0.75, 0.8, 0.85, 0.9, 0.95}
• top-k :{50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150}
• wchunk : {0.8, 0.85, 0.9, 0.95, 1.0}
• wattr : {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}
• wtriple : {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

Prompt for LLM to judge

You will evaluate two answers to the same question based on five criteria: Accuracy, Comprehen-
siveness, Diversity, Logicality, and Coherence.
- Accuracy: How factually correct is the answer based on the provided context and ground truth?
Does it avoid hallucinations or factual errors?
- Comprehensiveness: How much detail does the answer provide to cover all aspects and details
of the question?
- Diversity: How varied and rich is the answer in providing different perspectives and insights on
the question?
- Logicality: How logically does the answer respond to all parts of the question?
- Coherence: How well does the answer maintain internal logical connections between its parts,
ensuring a smooth and consistent structure?
For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why.
When determining the overall winner, consider the following:
1. Each of the five criteria contributes to the quality of the answer.
2. Consider the relative strengths and weaknesses of each answer across all criteria.
3. The overall winner should generally be the answer that performs better across most criteria.
4. While accuracy is important, also consider the other dimensions that contribute to a comprehen-
sive and useful response.
Here is the question:
{query_text}
Here is the context which supported to answer the question:
{context}
Here are the two answers:
Answer 1:
{answer1}
Answer 2:
{answer2}
Evaluate both answers using the five criteria listed above and provide detailed explanations for
each criterion.
Output your evaluation in the following JSON format and NOTHING ELSE:
{json_format}
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json_format in evaluation prompt

{
"Accuracy": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here, specifically noting any

factual errors or hallucinations in either answer]"↪→

},
"Comprehensiveness": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Diversity": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Logicality": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Coherence": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"

},
"Overall_Winner": {

"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide a balanced explanation considering all five

criteria. Explain how the winning answer performed across the
different dimensions and why its strengths in certain areas make
it the overall better response.]"

↪→

↪→

↪→

}
}

D Additional Experimetal Results

This section supplements the main findings in Section 4 by providing extended evaluations, ablation
studies, and further analysis to validate the effectiveness and generalizability of MaGiX.

Table 9 shows evaluation results for English-to-Vietnamese QA across five datasets and five dimensions,
using Grok-3 win rates. Similar to the Vietnamese-to-English setting, MaGiX consistently outperforms all
baselines across nearly all aspects, demonstrating strong cross-lingual generation quality. Additionally,
Table 7 presents an ablation study for contribution of each proposed components in MaGiX on English-
to-Vietnamese QA, mirroring the setup used for the Vietnamese-to-English setting. Starting from the
LightRAG baseline, each added component—granular retrieval, cross-synonym linking, and composite
scoring—yields significant performance gains across all datasets. Granular retrieval boosts NQ from
27.71 to 77.27, highlighting the importance of fine-grained semantic representation. Cross-synonym
edges further enhance performance, especially on MuSiQue (46.82 to 49.17), by improving cross-lingual
alignment. Composite scoring leads to the highest PopQA result (51.45), while the final MaGiX model,
incorporating fine-tuned embeddings, achieves the best overall performance on NQ (87.27) and MuSiQue
(58.43). Similar to the vi-to-en setting, these results confirm the complementary contributions of each
module and the overall robustness of MaGiX in cross-lingual retrieval.

Table 8 presents a parameter sensitivity analysis of the attribute and triple similarity weights (wattr =
wtriple), while keeping wchunk = 1 fixed. Results on the NQ and MuSiQue development sets show that
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Method NQ PopQA MuSiQue

LightRAG 27.71 26.65 22.01
+ Granular Retrieval 77.27 49.35 46.82
+ Cross-Synonym 77.86 50.29 49.17
+ Composite Score 86.02 51.45 54.22
+ Finetune (MaGiX) 87.27 50.85 58.43

Table 7: Ablation: Recall@10 for English-to-
Vietnamese settings on two simple QA datasets (NQ
and PopQA) and one multi-hop QA dataset (MuSiQue).

wattr & wtriple 0.1 0.15 0.2 0.25 0.3

Avg En-Vi 69.26 69.97 69.86 69.99 69.68
Avg Vi-En 69.23 69.76 69.97 69.68 69.45

Table 8: Average passage Recall@10 in Vietnamese–
English settings and Englis–Vietnamese settings on
the five benchmarks consisting ZaloWikipedia, ZaloLe-
gal2021, PopQA, NQ and MuSiQue, evaluating differ-
ent weights for similarity scores of attributes and triples.
We fix wchunk = 1 and vary wattr = wtriple to reduce the
search space.

ZaloWikipedia ZaloLegal2021 NQ Popqa MuSiQue
NaiveRAG MaGiX NaiveRAG MaGiX NaiveRAG MaGiX NaiveRAG MaGiX NaiveRAG MaGiX

Accuracy 38.15 61.85 31.87 68.12 37.21 62.79 29.64 70.36 30.94 69.06
Comprehensiveness 40.10 59.90 37.50 62.50 43.60 56.40 36.77 63.23 28.13 71.87
Diversity 41.70 58.30 43.73 56.27 47.15 52.85 35.86 64.14 32.59 67.41
Logicality 31.91 68.09 33.28 66.72 35.19 64.81 28.61 71.39 27.40 72.60
Coherence 30.48 69.52 32.81 67.19 33.06 66.94 29.43 70.57 23.01 76.99
Overall 39.60 60.40 33.12 66.88 41.80 58.20 34.07 65.93 30.13 69.87

GraphRAG MaGiX GraphRAG MaGiX GraphRAG MaGiX GraphRAG MaGiX GraphRAG MaGiX
Accuracy 26.05 73.95 26.25 73.75 30.99 60.01 26.06 73.94 30.86 69.14
Comprehensiveness 36.00 64.00 63.28 36.72 70.80 29.20 44.14 55.86 50.25 49.75
Diversity 71.30 28.70 88.91 11.09 81.10 18.90 46.89 53.11 59.06 40.93
Logicality 35.37 64.63 49.06 50.94 56.71 43.29 28.41 71.59 31.16 68.84
Coherence 40.14 58.86 72.03 27.97 47.34 52.66 31.83 68.17 35.30 64.70
Overall 43.70 56.30 56.25 43.75 51.70 48.30 34.93 65.07 35.54 64.46

LightRAG MaGiX LightRAG MaGiX LightRAG MaGiX LightRAG MaGiX LightRAG MaGiX
Accuracy 22.40 77.60 20.00 80.00 29.06 70.94 24.45 75.55 28.01 71.99
Comprehensiveness 57.10 42.90 52.03 47.97 70.00 30.00 43.34 56.66 45.95 54.05
Diversity 68.27 31.73 84.22 15.78 21.20 78.80 49.15 50.85 54.25 45.75
Logicality 31.76 68.24 38.75 61.25 37.70 62.30 29.55 70.45 29.66 70.34
Coherence 36.64 63.36 62.66 37.34 62.30 37.70 32.50 67.50 29.93 70.07
Overall 39.50 60.50 42.66 57.34 49.50 50.50 33.93 66.07 33.63 66.37

HippoRAG 2 MaGiX HippoRAG 2 MaGiX HippoRAG 2 MaGiX HippoRAG 2 MaGiX HippoRAG 2 MaGiX
Accuracy 34.33 65.67 40.69 57.66 23.80 76.20 18.13 81.78 18.79 81.21
Comprehensiveness 11.90 88.10 50.00 50.00 6.10 93.90 26.03 73.97 15.82 84.18
Diversity 17.40 82.60 60.47 39.53 8.10 91.90 41.44 58.56 22.75 77.25
Logicality 18.80 81.20 40.31 59.69 8.40 91.60 40.31 59.69 13.11 86.89
Coherence 6.90 93.10 43.28 56.72 2.90 97.10 23.22 76.78 7.91 92.09
Overall 15.80 84.20 43.75 56.25 8.00 92.00 20.52 79.48 13.71 86.29

Table 9: Performance on English-to-Vietnamese QA across five datasets and five evaluation dimensions, measured
by win rates based on judgments from the Grok-3.

performance remains relatively stable across a moderate range of weight values. The best Recall@10
is observed when wattr = wtriple = 0.25, achieving 69.99 for En–Vi and 69.68 for Vi–En. Performance
slightly drops when the weights are set too low (e.g., 0.1) or too high (e.g., 0.3), indicating that a balanced
contribution of attribute and triple similarity, relative to chunk similarity, is essential. These findings
confirm the effectiveness of incorporating multi-aspect semantic signals in a well-calibrated scoring
function for cross-lingual retrieval.

E Graph Statistics Analysis

In this appendix, we analyze the connectivity of the graph through several statistics. The analysis shows
that our proposed MaGiX method demonstrates a consistent improvement in graph connectivity across
all datasets compared to the baseline, as detailed in Table 10. By maintaining the same number of nodes
while significantly increasing edge counts, MaGiX enhances the Edge-to-Node ratio. Notable examples
include PopQA, where the ratio rises from 0.98 to 1.43 (+0.33), and ZaloLegal, with an increase from 1.85
to 2.25 (+0.40). These improvements, with ∆ edge/node ratios ranging from +0.33 to +0.45, underscore a
substantial boost in connectivity.
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Dataset Method # Nodes # Edges ∆ Edge Edge/Node Ratio ∆ Ratio

ZalowWiki
Baseline 120,981 153,754 - 1.27 -
MaGiX 120,981 192,974 +39,220 1.60 +0.33

ZaloLegal
Baseline 452,319 838,917 - 1.85 -
MaGiX 452,319 1,016,622 +177,705 2.25 +0.40

NQ
Baseline 128,140 155,240 - 1.21 -
MaGiX 128,140 204,482 +49,242 1.60 +0.39

Popqa
Baseline 153,554 151,008 - 0.98 -
MaGiX 153,554 219,350 +68,342 1.43 +0.45

Musique
Baseline 155,901 171,335 - 1.10 -
MaGiX 155,901 227,073 +55,738 1.46 +0.36

Table 10: Comparison of Graph statistics between baseline and MaGiX methods across datasets

Figure 3: Structure of the graph built from small sample data before and after establishing cousin relations.

Additionally, graph visualization of a small sample set before and after creating cousin relations in firgue
3 reveals MaGiX’s strength in forming more intra-entity and cross-lingual semantic connections, fostering
cohesive substructures that enhance retrieval relevance.

F Graph Construction and Inference Time Analysis

To rigorously evaluate the efficiency and scalability of MaGiX, we present comprehensive data on
inference duration, graph construction time, and index dimensions, leveraging the extensive NQ dataset.
Concerning inference time, we applied our method alongside other baseline approaches to knowledge
graphs built from an identical initial set of 19,266 raw text chunks. For graph construction time, we
performed an experiment using 100 documents from the NQ dataset, where each document averages 656
words (approximately 190 tokens).

Method MaGiX GraphRAG LightRAG HippoRAG2

Time (min) 7:40 17:44 8:53 1:46

Table 11: Comparison of Graph Construction Time between MaGiX and other baselines
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Inference Time. As shown in the table 12, MaGiX employs an advanced retrieval framework with
245,000 multi-attribute entity vectors and 19,000 chunk vectors, unlike LightRAG and GraphRAG, which
use only 128,000 entity vectors without chunk-level retrieval. Despite this richer representation, MaGiX
achieves a competitive inference time of 3.77 seconds, outperforming HippoRAG2 (7.38s) and closely
matching LightRAG (2.19s) and GraphRAG (2.09s).

Method Time (s) Entity Vec. Reltion Triplet Vec. Chunk Vec.

LightRAG 2.19 128,140 155,240 -
GraphRAG 2.09 128,140 155,240 -
HippoRAG2 7.38 136,762 231,012 19,266
MaGiX (Our) 3.77 245,460 172,833 19,266

Table 12: Inference Time and Size of the vector databases for retrieval on the NQ Dataset. All methods
construct their knowledge graphs from the same initial pool of 19,266 raw text chunks.

Graph Consutruction Time. For graph construction, the table 11 illustrates that MaGiX takes 7:40
minutes, exceeding HippoRAG2 but surpassing GraphRAG, and aligning with LightRAG, despite
enhanced semantics, as details in . This one-time, parallelizable process optimizes efficiency.

Though incurring modest computational cost over GraphRAG and LightRAG, MaGiX delivers up to 4
times better in retrieval performance (Table 1) and outpaces HippoRAG2 in speed and Recall@10 by
approximately 3%. These findings affirm that MaGiX achieves an optimal equilibrium between scalability
and performance, providing highly competitive inference and construction times alongside exceptional
retrieval accuracy.

G Qualitative Error Analysis and Cases Studies

To better understand MaGiX’s performance, we performed a qualitative error analysis by examining both
successful and unsuccessful cases. We highlight two examples: one where MaGiX greatly outperforms
HippoRAG 2, and another showing a failure case. These examples clarify the system’s strengths and
existing limitations.

Vietnamese Query: Khi nào Elijah xuất hiện lần đầu trong Vampire Diaries?
English Query: When does Elijah first appear in Vampire Diaries?

Method Top-3 Retrieved Documents Answer (Vietnamese) Answer (English)

HippoRAG 2 Doc 1: “Daniel Gillies Daniel Gillies (born 14
March 1976) is a Canadian-born New Zealand ac-
tor. He is best known for his role as Elijah Mikael-
son on the television series "The Vampire Diaries"
. . . “.
Doc 2: “hit The CW drama "The Vampire Diaries"
as Elijah Mikaelson. In 2013, CW created a suc-
cessful spin-off of The Vampire Diaries . . . ”.
Doc 3: “ Klaus (The Vampire Diaries) "Klaus" is
the 19th episode of the second season. . . . Elijah
(Daniel Gillies) wakes up in the Salvatore base-
ment. . . ”

Để trả lời câu hỏi này, chúng ta cần tìm thông tin
về lần xuất hiện đầu tiên của Elijah trong series
The Vampire Diaries ... Tuy nhiên, trong đoạn văn
thứ 4, có đề cập đến một tập có thể là “Klaus” (tập
19 của mùa 2), nơi Elijah (do Daniel Gillies thủ
vai) xuất hiện sau khi Elena rút con dao ra khỏi
người anh ta. Điều này cho thấy Elijah đã xuất
hiện trong mùa 2 của series, nhưng không nêu rõ
tập chính xác anh ta lần đầu xuất hiện ... Trả lời:
Mùa 2.

To answer this question, we need to find informa-
tion about Elijah’s first appearance in the series
The Vampire Diaries ... However, based on the
available information, we can infer that Elijah
first appeared in season 2 of The Vampire Diaries,
although more specific information is needed to
determine the exact episode. Answer: Season 2.

MaGiX Doc 1: “. . . He is portrayed by New Zealand actor
Daniel Gillies Elijah first appears in episode eight
of season two, entitled "Rose". Elijah is brought
into the circle by two vampires named Rose”.
Doc 2: “. . . Niklaus Mikaelson (more commonly
called Klaus) is physically the most powerful im-
mortal supernatural being in "The Vampire Di-
aries" and "The Originals”. . . .”.
Doc 3: “. . . He kidnaps Elena who tells him that
Esther wants to kill them all. . . ”

Giới thiệu về Elijah: Elijah là một nhân vật
trong bộ phim "The Vampire Diaries"và "The
Originals". Ông là một trong những nhân vật
quan trọng trong series này. Xuất hiện lần đầu
của Elijah: Elijah xuất hiện lần đầu trong tập 8
của mùa 2, với tựa đề "Rose". Ông được giới thiệu
như một nhân vật quan trọng trong series và có
mối quan hệ phức tạp với các nhân vật khác.

Introduction to Elijah: Elijah is a character in the
TV series “The Vampire Diaries” and “The Orig-
inals”. He is one of the key characters in these
series. Elijah’s First Appearance: Elijah first ap-
pears in episode 8 of season 2, titled "Rose." He is
introduced as an important character in the series
and has complex relationships with other charac-
ters.

Table 13: Comparison of MaGiX and HippoRAG 2, including top-3 retrieved documents and their answers in Vietnamese and
English.
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Case Study 1: Our method is better than HippoRAG 2. In this use case, MaGiX demonstrates a clear
advantage over HippoRAG 2 by retrieving the exact episode of Elijah’s first appearance in The Vampire
Diaries ("Rose").

Method Query Top-3 Retrieved Documents Groundtruth Documents

MaGiX
Vietnamese Query: “Các quốc gia châu phi bắt
đầu bằng chữ a ?”
English Version: “Which African countries
that begin with the letter a ?”

Doc 1 : "19th century, European countries
colonised almost all of Africa; most present
states in Africa originated from a process of
decolonisation in the 20th century. African na-
tions cooperate through the establishment of
the African Union . . . "
Doc 2: “.. . . In the French version, the letters
were hand-printed in lower case only. Only
56 of the letters in the English version were
listed – omitting the hooktop-z – and two fur-
ther apostrophe-like letters (’ and ’) were in-
cluded. . . ”
Doc 3: “Alphabetical Africa Alphabetical
Africa is a constrained writing experiment by
Walter Abish. It is written in the form of a
novel. . . . . the first chapter contains only words
starting with the letter "a", the second chapter
only words starting with "a" or "b", etc.;. . . ”

“multi-media services: IRIN covers the fol-
lowing countries: AFRICA: Angola, Benin,
Botswana, Burkina Faso, Burundi, Cameroon,
Cape Verde, Central African Republic,
Chad,. . . .”

Table 14: Examples of MaGiX failure queries, top-3 documents retrieved by MaGiX, and ground truth documents.

The table 13 shows that unlike HippoRAG 2, which is swayed by high-connectivity nodes and general
content like actor bios, MaGiX uses multi-granular knowledge representation and semantic-aware rerank-
ing to focus on context-specific mentions of "Elijah," prioritizing attribute similarity over broad graph
connectivity to avoid popularity bias common in traditional GRAG systems.

Case Study 2: Failure Case of MaGiX. We have observed some notable cases that MaGiX fails to
retrieve the correct document and other baseline models also fail.

In the table 14, MaGiX underperforms in this scenario, as entities like “Africa” and “letters” appear
more prominently in unrelated documents, inflating their attribute similarity scores. Meanwhile, the
correct document contains only sparse mentions, causing it to be ranked lower.As a result, This case
illustrates a broader challenge: for queries referencing multiple dispersed entities, systems struggle when
the key evidence is sparse and embedded within long documents, especially when such content is split
across separate chunks during preprocessing.
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