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Abstract

Large reasoning models (LRMs) excel at solv-
ing complex tasks by leveraging long chain-
of-thought (CoT) reasoning. However, this of-
ten leads to overthinking on simple tasks, re-
sulting in unnecessary computational overhead.
We observe that LRMs inherently possess the
capability for efficient short CoT reasoning,
which can be reliably elicited through prompt
design. To leverage this capability, we propose
ThinkSwitcher, a framework that enables a sin-
gle LRM to dynamically switch between short
and long CoT modes based on task complex-
ity. ThinkSwitcher introduces a lightweight
switching module trained with supervision sig-
nals derived from the relative performance of
each reasoning mode across tasks. Experiments
on multiple reasoning benchmarks show that
ThinkSwitcher reduces computational cost by
20–30% while maintaining high accuracy on
complex tasks. This demonstrates the effec-
tiveness of ThinkSwitcher as a scalable and
efficient solution for unified LRM deployment.

1 Introduction

Large reasoning models (LRMs) (Jaech et al., 2024;
Guo et al., 2025; Google, 2025; Anthropic, 2025)
have demonstrated impressive capabilities in solv-
ing complex tasks. They achieve this through long
chain-of-thought (CoT) processes, which involve
behaviors such as exploration, self-reflection, and
verification (Li et al., 2025; Gandhi et al., 2025;
Zeng et al., 2025). However, this strength can be-
come a drawback: LRMs tend to overthink (Chen
et al., 2024; Sui et al., 2025; Cuadron et al., 2025)
even the simplest problems (e.g., 2+3=?), which
unnecessarily invokes elaborate reasoning for tasks
that require minimal effort. This inefficiency be-
comes especially problematic in high-throughput
applications (Kumar et al., 2025; Qu et al., 2025).
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Question :
Find the largest possible real part of (75 + 117𝑖𝑖)𝑧𝑧 + (96 +
144𝑖𝑖)/𝑧𝑧 where 𝑧𝑧 is a complex number with 𝑧𝑧 = 4.

Long CoT：7591 Tokens
<think>
Okay, the problem asks for the max real part. ... First, 
since 𝑧𝑧 = 4, I'll use 𝑧𝑧 = 4𝑒𝑒𝑖𝑖𝑖𝑖. ... So, substitute. ... The 
real part becomes 324 cos𝜃𝜃 − 432 sin𝜃𝜃... so max is 

3242 + 4322 = 540. 
But wait, is this too simple or did I miss a condition? Let 
me try another way... It also gives 540.
Let me double check the final arithmetic. ... Therefore, 
the answer is indeed 540.
</think>
Given the question. … Therefore, the answer is 540.

Short CoT: 1085 Tokens
<think></think>
We can proceed as follows: 1. Rewrite the expression ... 
2. Expand the expression ... 3. Focus on the real part: ... 
7. Conclusion: ... Therefore, the answer is 540.

Figure 1: Comparison of long and short CoTs generated
using different prompting strategies with Deepseek-R1-
Distill-Qwen-7B. While long CoT reasoning often leads
to overthinking and excessive token consumption due
to elaborate reasoning steps, the short CoT can deliver
comparable accuracy with substantially fewer tokens.

To mitigate this problem, many systems deploy two
separate models: one tailored for complex reason-
ing and another for simpler tasks. While effective,
this dual-model setup incurs additional computa-
tional and memory costs. This raises a fundamental
question: Can a single model achieve both robust
reasoning capabilities and high efficiency?

Inspired by the adaptive nature of human cogni-
tion—such as the System 1 and System 2 frame-
work (Kahneman, 2003, 2011; Hua and Zhang,
2022)—we investigate enabling a single powerful
reasoning model to operate in two distinct modes:
its native long CoT mode for complex problems
and an efficient short CoT mode for simpler tasks.
Recent works such as Gemini-2.5-Pro (Google,
2025), Qwen3 (Yang et al., 2025), and Llama-
Nemotron (Bercovich et al., 2025) have also ex-
plored dual-mode systems. However, these ap-
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proaches often lack public implementation details
(Google, 2025) or depend on post-training with cu-
rated long and short CoT data (Yang et al., 2025;
Bercovich et al., 2025), and typically require man-
ual mode selection based on user inputs. In contrast,
we propose a lightweight and adaptive alternative:
a switcher module that automatically selects the ap-
propriate reasoning mode based on task complexity,
without backbone changes or large-scale training.

Our investigation reveals a key insight, echoed
by Ma et al. (2025): advanced LRMs already pos-
sess a latent capability for concise and effective
short CoT reasoning. Figure 1 illustrates a case
where long CoT reasoning results in excessive to-
ken consumption, while short CoT achieves an
accurate answer with substantially fewer tokens.
Notably, we find that the short CoT capability
can be reliably activated by appending an empty
thinking block (e.g., <think></think>) after the
user instruction—a phenomenon also observed in
Qwen3 (Yang et al., 2025). This simple prompt-
based intervention requires no changes to the model
itself. Beyond this empirical finding, we offer a the-
oretical explanation of this latent behavior and its
supporting mechanisms, detailed in Appendix C.

Building on these observations, we propose the
ThinkSwitcher framework, which enables a sin-
gle LRM to adaptively switch between long and
short CoT modes. To support this capability, a
lightweight switcher module is employed to predict
the reasoning mode likely to yield optimal perfor-
mance for a given query. The switcher is trained
using self-supervised signals derived from the back-
bone model’s own performance when executing
both reasoning modes. This eliminates the need for
external annotation or extensive post-training.

Our experiments show that ThinkSwitcher no-
ticeably reduces average token usage across various
benchmarks while maintaining high accuracy on
complex reasoning tasks by retaining long CoT
where necessary. For example, on simpler datasets
such as GSM8K (Cobbe et al., 2021), it reduces in-
ference tokens by around 30% with a performance
loss of less than 1%. On more challenging datasets
like AIME (MAA, 2025), ThinkSwitcher achieves
token reductions of 38%, with only approximately
a 2% decline in performance. Overall, it con-
sistently lowers computational costs by 20–30%
across benchmarks while retaining highly competi-
tive accuracy. These results validate our approach
to unifying strong reasoning capabilities with effi-
cient resource usage in a single model deployment.

2 Related work

Large Reasoning Models Large reasoning mod-
els (LRMs), such as OpenAI-o1 (Jaech et al.,
2024), DeepSeek-R1 (Guo et al., 2025), and
QwQ (QwenTeam, 2025), are designed to emu-
late System-2 reasoning (Li et al., 2025). These
LRMs have demonstrated state-of-the-art perfor-
mance on challenging tasks in mathematics (Cobbe
et al., 2021; Hendrycks et al., 2021) and cod-
ing (Chen et al., 2021; Codeforces, 2025). These
models are typically trained via reinforcement
learning (RL) algorithms (Schulman et al., 2017;
Shao et al., 2024) to elicit long chain-of-thought
(CoT) reasoning. However, their tendency to over-
think (Chen et al., 2024) even on simple ques-
tions results in substantial computational ineffi-
ciencies and restricts their practicality in high-
throughput scenarios. Several dual-system models
have been introduced to mitigate this, including
Claude-3.7-Sonnet (Anthropic, 2025), Gemini-2.5-
Pro (Google, 2025), Qwen3 (Yang et al., 2025), and
Llama-Nemetron (Bercovich et al., 2025). These
models offer both long and short CoT modes, al-
lowing users to choose between deep reasoning and
quick answers depending on themselves. Among
these, approaches from Yang et al. (2025) and
Bercovich et al. (2025) implement this dual-mode
capability through post-training on carefully cu-
rated mixtures of long and short CoT datasets.

Nonetheless, most of these models rely on man-
ual mode selection, and lack the ability to automat-
ically adapt the reasoning depth based on the input
query. In contrast, we propose a lightweight mech-
anism that allows a single model to dynamically
switch between short and long CoT modes. This en-
ables both efficiency and strong reasoning without
modifying weights or requiring post-training.

Efficient Reasoning Extensive research has fo-
cused on reducing inference overhead and im-
proving reasoning efficiency (Sui et al., 2025).
Among these methods, Kimi-k1.5 (Team et al.,
2025) and O1-pruner (Luo et al., 2025) introduce
length-controlled reward functions in reinforce-
ment learning to reduce CoT reasoning length. Al-
ternatively, methods such as DAST (Shen et al.,
2025), C3oT (Kang et al., 2024), and TokenSkip
(Xia et al., 2025) train LRMs to generate compact
CoTs by constructing datasets with varying reason-
ing lengths and applying post-training techniques
like SFT, DPO (Rafailov et al., 2023), or SimPO
(Meng et al., 2024). Nevertheless, both strategies
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Figure 2: Comparison of long CoT and induced short CoT on the MATH500. “R1” denotes DeepSeek-R1-Distill
series. Left: Accuracy comparison between long CoT and short CoT. Right: Average token usage for each
reasoning mode, which demonstrates substantial token reductions with short CoT. Our approach of inducing short
CoT consistently achieves substantial token savings while maintaining competitive accuracy across diverse LRMs.

necessitate additional LRM training, which intro-
duces significant computational costs. A distinct
direction involves prompt-guided strategies, such
as CoD (Xu et al., 2025) and CCoT (Renze and Gu-
ven, 2024), which guide models to directly produce
concise reasoning without fine-tuning. However,
these methods lack the ability to dynamically adapt
reasoning depth to question complexity, leading to
performance degradation on challenging tasks (Xu
et al., 2025). Another line of work on LLM-routing,
such as RouteLLM (Ong et al., 2025), employs a
router to distribute user questions across special-
ized LLMs. This approach assigns questions to the
most suitable model to reduce average inference
costs. While effective, it requires the simultaneous
deployment of multiple LLMs. In contrast, our
method achieves efficient reasoning with a single
LRM, avoiding both significant fine-tuning costs
and multi-model deployment complexities. This
orthogonal approach dynamically adjusts reason-
ing depth and strikes an effective balance between
deployment overhead and system performance.

3 Observations

Large reasoning models (LRMs) such as DeepSeek-
R1 (Guo et al., 2025), Sky-T1-32B (Team, 2025),
and Qwen3 (Yang et al., 2025) commonly em-
ploy structured generation formats to tackle com-
plex reasoning tasks. A notable characteristic of
these models is the use of special tokens, typically
<think> and </think>, which explicitly separate
the model’s intermediate reasoning process from
the final answer. The content after the </think>
token provides a concise summary of the preceding
reasoning and presents the final response.

3.1 Inducing Short CoT in LRMs
Our central observation is that the reasoning be-
havior of these models can be substantially influ-
enced by manipulating the content placed within
the <think> and </think> delimiters. In partic-
ular, we find that minimal or suggestive prompts
within the <think> block can effectively steer the
model toward generating much shorter chains of
thought—termed short CoT—thereby countering
its default tendency toward verbose reasoning.

For instance, prompts such as:

• <think>This problem appears straightfor-
ward.</think> (hinting at low complexity)

• <think></think> (no explicit reasoning)

consistently lead to more concise reasoning out-
puts compared to the model’s standard behavior.
This finding suggests that the reasoning trajectories
of LRMs are highly prompt-sensitive and can be
guided in depth and length through carefully de-
signed prompts, even without explicitly instructing
the model to generate shorter outputs.

3.2 Performance of Induced Short CoT
To evaluate the utility of prompt-induced short CoT
as an efficient reasoning strategy, we conduct a
series of experiments across multiple reasoning
models. We focus on two key questions:

(1) To what extent does short CoT reduce compu-
tational cost?

(2) How much reasoning performance is pre-
served relative to long CoT?

As shown in Figure 2, our method consistently
yields significantly shorter outputs across all mod-
els, including DeepSeek-R1-Distill (7B, 14B, and
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Figure 3: Dynamic mode selection during infer-
ence. Given a question embedding from the LRM,
ThinkSwitcher dynamically chooses between short and
long CoT reasoning based on estimated task difficulty.

32B), Sky-T1-32B, and Qwen3-8B. Additional fig-
ures illustrating these trends on other benchmarks
are provided in Appendix A. This reduction in out-
put length implies improved computational effi-
ciency, potentially lowering FLOPs, reducing mem-
ory usage, and accelerating inference.

While short CoT shows a moderate drop in accu-
racy on particularly complex problems, it remains
competitive across most cases and retains strong
problem-solving capability. These results indicate
that short CoT can serve as an efficient default rea-
soning mode, with long CoT invoked only when
necessary. Furthermore, theoretical analysis of the
mechanisms underlying short CoT induction is pro-
vided in Appendix C, offering a deeper explanation
that extends the observations made in this section.

4 Methodology
To strike an effective balance between reasoning
performance and computational efficiency, we pro-
pose ThinkSwitcher which dynamically switches
between short and long chain-of-thought reasoning
modes based on the input. Figure 3 illustrates the
overall workflow of this framework.

4.1 Data Construction

Training ThinkSwitcher requires reliable, fine-
grained supervision signals that reflect the rela-
tive effectiveness of short and long CoT reasoning
for each input question. To this end, we adopt
a multi-sample evaluation strategy and construct
continuous regression targets based on empirical
pass rates, rather than relying on unstable single-
response outcomes or coarse binary labels. The
data construction process is as follows:

Step 1: Prompting. For each query q ∈ Dtrain,
we construct two prompts corresponding to short

CoT (SC) and long CoT (LC) reasoning modes,
denoted by m ∈ {SC,LC}. The specific prompt
templates are provided in Appendix B.

Step 2: Sampling. For each query, we generate
k responses under both reasoning modes:

Rm(q) =
{
r(i)m (q) ∼ π(· | q)

}k

i=1
. (1)

Step 3: Evaluation. Each response is checked for
correctness. The empirical pass rate is:

Pm(q) =
1

k

k∑

i=1

I
[
r(i)m (q) is correct

]
. (2)

Step 4: Labeling. The pass rate serves as the
regression target for supervising the mode switcher:

ym(q) = Pm(q). (3)

The resulting training data takes the form
(xq, ySC(q), yLC(q)), where xq is the query embed-
ding and ySC(q), yLC(q) ∈ [0, 1] denote the empiri-
cal pass rates under short and long CoT modes.

4.2 Decision Rule for Switching
ThinkSwitcher is implemented as a lightweight re-
gressor that predicts the expected pass rates for
short and long CoTs given a query q. It is trained
using the supervision targets ySC(q) and yLC(q)
defined in Section 4.1. The input is the query em-
bedding xq extracted from the reasoning model.

At inference time, the switcher takes xq as input
and produces two scalar predictions:

[ŷSC(q), ŷLC(q)] = fϕ(xq), (4)

which correspond to the estimated pass rates under
short and long CoT prompting, respectively. The
final decision is made by comparing the difference
between them against a tunable threshold τ :

m(q) =

{
LC, if ŷLC(q)− ŷSC(q) ≥ τ,

SC, otherwise.
(5)

This means the long CoT pathway is selected when
its predicted advantage over short CoT exceeds the
threshold τ ; otherwise, the short CoT pathway is
used, as formalized in Equation (5).

4.3 Margin-Aware Training Objective
We design a margin-aware objective to enhance
the switcher’s decision quality. A core component
of this objective is the mean squared error (MSE),
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where MSE(ŷ, y) denotes the squared difference
(ŷ−y)2 between a prediction ŷ and its target y. The
initial loss term, LMSE, applies this to the predicted
and target pass rates for both reasoning modes:

LMSE =
1

2
(MSE(ŷSC, ySC) + MSE(ŷLC, yLC)) .

(6)
However, since the switching decision depends

on the predicted margin ŷLC − ŷSC (Equation (5)),
this objective alone does not directly supervise the
decision signal. To address this, we introduce a
margin loss (Lmargin) that penalizes the error in the
predicted difference:

Lmargin = MSE (ŷLC − ŷSC, yLC − ySC) . (7)

The final training objective is the sum of the
standard MSE loss and the margin loss (Lswitch):

Lswitch = LMSE + λmargin · Lmargin, (8)

where λmargin is a tunable hyperparameter control-
ling the weight of margin supervision.

This formulation enhances decision supervision
by directly aligning the training objective with the
switcher’s routing mechanism. In practice, it re-
sults in more consistent pathway selection and im-
proved overall performance. The impact of the mar-
gin loss Lmargin is further examined in Section 6.3.

5 Experiments

5.1 Experimental Setup

Models We evaluate our ThinkSwitcher frame-
work on three open-source reasoning models from
the DeepSeek-R1 series: DeepSeek-R1-Distill-
Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and
DeepSeek-R1-Distill-Qwen-14B. These models
are distilled versions of DeepSeek-R1 and fine-
tuned from Qwen2.5-Math-1.5B, Qwen2.5-Math-
7B, and Qwen2.5-14B respectively. All three ex-
hibit strong performance on complex reasoning
tasks for their respective scales and serve as repre-
sentative backbones for our evaluation.

Training Data To train ThinkSwitcher, we con-
struct a comprehensive and representative dataset
by aggregating the training sets of several well-
established math benchmarks, spanning a wide
range of reasoning difficulties. Specifically, our
training data combines several sources: we use the
training splits from MATH (Hendrycks et al., 2021)
and GSM8K (Cobbe et al., 2021). The data also

includes the historical AIME problems from 1983
to 2023 (MAA, 2025; Di Zhang, 2025). Finally, a
subset from Omni-MATH (Gao et al., 2025) is in-
corporated, which consists of approximately 3,900
problems obtained by excluding the Omni-MATH-
500 test set used for evaluation. There is no over-
lap between the data used to train ThinkSwitcher
and any of the test sets used in our experiments.
Detailed training hyperparameters and implemen-
tation specifics are provided in Appendix D.

Evaluation We evaluate ThinkSwitcher on a di-
verse set of datasets spanning three difficulty lev-
els: (1) Basic, represented by GSM8K (Cobbe
et al., 2021); (2) Intermediate, using MATH-500,
a subset of MATH (Hendrycks et al., 2021); and
(3) Competition, including AIME (MAA, 2025),
LiveAoPSBench (Mahdavi et al., 2025), Omni-
MATH-500 (Gao et al., 2025), and the math subset
of OlympiadBench (He et al., 2024). Detailed de-
scriptions are provided in Appendix E.

Baselines We compare the performance of
ThinkSwitcher against four baselines, each repre-
senting a distinct reasoning strategy. SC-Only ap-
plies our prompting method to induce short CoT
on all problems. This method prioritizes efficiency
at the expense of reasoning performance on more
complex tasks. LC-Only reflects the default be-
havior of LRMs, which follows long CoT without
intervention and typically achieves higher accuracy
on complex tasks. The Random switcher selects
between short and long CoT prompts for each in-
put based on predefined probabilities; specifically,
“Random (x/y)” indicates that the long CoT mode
is selected with a probability of x%, and the short
CoT mode with a probability of y%. This serves as
a stochastic control to assess whether the learned
switcher offers improvements over naive selection.
Finally, we include a BERT-based switcher. For
this baseline, we trained a classifier based on an ad-
vanced BERT variant, ModernBERT-base (Warner
et al., 2024). This classifier, trained on the same
data as ThinkSwitcher, learns to select the reason-
ing mode likely to yield a higher pass rate and
exemplifies a conventional routing method.

Efficiency Metrics We measure computational
cost as the average number of tokens generated
per question. For ThinkSwitcher, this depends on
the reasoning path (SC or LC) selected at each
question, while for static baselines it reflects the
token usage of the fixed prompting strategy.
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Method GSM8K MATH500 AIME24 AIME25 LiveAoPS OmniMATH OlymBench Avg.

Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok. Acc. Tok.

DeepSeek-R1-Distill-Qwen-1.5B

SC-Only 71.7 246 68.2 880 12.5 4124 14.2 3808 35.0 2028 28.3 1949 32.7 1805 37.5 2120
LC-Only 85.5 2335 83.2 4907 28.3 12275 29.2 11235 46.5 10195 37.4 10613 43.7 9251 50.5 8687
Random (50/50) 78.7 1281 76.5 2821 18.3 8913 22.5 7187 40.3 6055 33.3 6224 38.5 5663 44.0 5449
Random (25/75) 82.2 1812 80.5 3838 24.6 10517 25.0 10186 42.9 8273 35.1 8265 40.9 7468 47.3 7194
Random (10/90) 84.5 2124 82.4 4465 25.4 11534 25.8 10780 44.7 9560 36.9 9582 42.9 8616 49.0 8094

BERT 80.6 1424 80.1 3743 18.8 6872 25.0 6438 40.4 4534 31.5 3995 38.4 3766 45.0 4396
ThinkSwitcher 84.7 2114 82.4 4544 23.3 8192 28.3 6689 43.9 7010 35.3 6238 43.1 5831 48.7 5803

DeepSeek-R1-Distill-Qwen-7B

SC-Only 87.5 257 78.9 617 20.8 1781 18.3 1548 39.4 1171 35.6 1135 41.2 1044 46.0 1079
LC-Only 93.0 1672 91.7 3828 51.7 10884 39.2 11214 64.3 8592 54.1 9399 58.5 7728 64.6 7617
Random (50/50) 90.4 962 84.9 2244 39.6 6687 23.3 4620 52.8 5137 44.9 4948 50.5 4244 55.2 4120
Random (25/75) 91.7 1340 87.6 2963 45.0 9445 25.8 7733 57.9 6989 49.0 6985 55.2 5973 58.9 5918
Random (10/90) 92.6 1536 90.4 3509 47.5 10274 30.8 9169 61.9 7964 51.7 8396 57.3 7073 61.8 6846

BERT 87.9 314 89.5 2686 45.4 9985 39.2 11214 57.5 5797 50.0 7129 55.4 5024 60.7 6021
ThinkSwitcher 92.5 1389 91.3 3495 48.3 7936 37.5 6955 61.6 6571 51.2 6345 57.0 5147 62.8 5405

DeepSeek-R1-Distill-Qwen-14B

SC-Only 90.7 248 76.9 672 18.3 2420 18.3 1593 43.6 1404 34.5 1386 40.4 1269 46.1 1284
LC-Only 95.3 1512 92.8 3644 61.7 9887 42.5 11081 68.5 7843 59.2 8619 60.0 7097 68.6 7098
Random (50/50) 93.1 894 84.3 2066 42.1 5316 24.2 5866 55.7 4619 47.3 5157 50.2 4068 56.7 3998
Random (25/75) 94.2 1213 88.1 2809 49.2 6764 30.0 6459 62.3 6270 53.7 7018 56.0 5563 61.9 5157
Random (10/90) 95.1 1395 90.9 3262 53.8 9044 40.0 9353 66.8 7304 56.6 7903 58.4 6530 65.9 6399

BERT 91.3 303 88.3 2445 57.1 9568 42.5 11081 63.5 6199 55.1 7018 57.6 5269 65.0 5983
ThinkSwitcher 94.3 1042 92.7 3572 60.4 8044 42.5 10065 65.8 6018 54.9 5828 57.6 4651 66.9 5603

Table 1: Performance of ThinkSwitcher and baseline methods across three model sizes (1.5B, 7B, and 14B) in the
DeepSeek-R1-Distill-Qwen series, evaluated on diverse math benchmarks. ‘Avg.” shows macro-averaged accuracy
and token counts across the seven benchmarks. Bold numbers indicate performance surpassing the BERT baseline

To evaluate the overall trade-off performance,
we use the AUC-AC to quantify how well
ThinkSwitcher maintains accuracy across its spec-
trum of token efficiencies, and its normalized vari-
ant nAUC-AC to measure the advantage gained
by ThinkSwitcher’s adaptive mechanism over a lin-
ear interpolation between SC-Only and LC-Only
performance points. Detailed definitions of these
metrics are provided in Appendix F.

5.2 Overall Results

To assess the effectiveness of ThinkSwitcher, we
evaluate its performance across the three previously
detailed model scales, analyzing the trade-off be-
tween reasoning performance and computational
efficiency. For the main results presented in Table 1,
decision thresholds (τ ) were selected to achieve a
favorable balance between accuracy and efficiency;
specifically, τ is 0.04 for the 1.5B model, 0.05 for
the 7B model, and 0.03 for the 14B model. We
identify several key insights from these results.

First, ThinkSwitcher achieves a consistent bal-
ance between reasoning accuracy and computa-
tional cost. Compared to the default LC-Only strat-
egy, which applies full long-form reasoning for
every input, ThinkSwitcher reduces the average

number of generated tokens by over 20% while
incurring only a slight drop of 1–2% in average
accuracy. This supports our core hypothesis that a
single model can reason adaptively without relying
on costly, always-on deep CoT processing.

In addition, we also compare ThinkSwitcher
against a BERT-based switcher, a conventional
classification approach widely used for decision
routing. While BERT achieves lower token usage
on the 1.5B model, it consistently underperforms
ThinkSwitcher in both accuracy and efficiency on
the larger models. Even on the 1.5B setting, this
token saving comes at the cost of a substantial drop
in accuracy, limiting its practical utility. In contrast,
ThinkSwitcher delivers stronger performance with
fewer parameters and consistently achieves lower
token consumption across all model scales, making
it a more robust and deployable solution.

Finally, we observe that smaller models benefit
disproportionately from adaptive switching. For ex-
ample, on the 1.5B model, ThinkSwitcher reduces
token usage by more than 30% while maintaining
robust accuracy. This suggests that weaker models
are more prone to over-elaboration and thus stand
to gain more from selective short-form reasoning.
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Figure 4: Trade-off between average accuracy and cost (measured by average output tokens) for the three DeepSeek-
R1-Distill-Qwen model sizes. Each point on the ThinkSwitcher curves corresponds to a different τ value.

6 Analyses
To gain a deeper understanding of the behavior
and effectiveness of ThinkSwitcher, we conduct
in-depth analyses. These include evaluating cross
domain generalization (Sec 6.1), examining deci-
sion dynamics (Sec 6.2), quantifying the impact
of different training objectives (Sec 6.3), evaluat-
ing key design components (Sec 6.4), and assess-
ing the computational efficiency of the switching
mechanism (Sec 6.5). Unless otherwise specified,
experiments in this section use the DeepSeek-R1-
Distill-Qwen-7B model, selected for its favorable
trade-off between efficiency and generality.

6.1 Cross-Domain Generalization

To examine whether ThinkSwitcher generalizes be-
yond mathematics, we evaluate it without any re-
training on two additional domains: (i) scientific
question answering (GPQA (Rein et al., 2024)) and
(ii) code generation (LiveCodeBench (Jain et al.,
2025)). The switcher used here is the same model
trained solely on mathematics data in Sec 5; thus
the evaluation setting constitutes a zero-shot cross-
domain transfer scenario.

Method GPQA LiveCode

Acc. Tok. Acc. Tok.

Long CoT 48.0 5653 45.4 8050
Short CoT 32.5 598 26.0 665
ThinkSwitcher 45.9 4487 43.5 6635

Table 2: Zero-shot cross-domain performance of
ThinkSwitcher (DeepSeek-R1-Distill-Qwen-7B) on
GPQA and LiveCodeBench.

As shown in Table 2, ThinkSwitcher preserves
most of the Long CoT accuracy while reducing
token usage. On GPQA, accuracy decreases 2.1%,
accompanied by a 20.6% reduction in tokens. On
LiveCodeBench, ThinkSwitcher incurs a 1.9%
accuracy drop while reducing tokens by 17.6%.

These results mirror the behavior observed in math-
ematics: the adaptive selection recovers most of
the performance loss from naive short reasoning
while retaining a appreciable efficiency gain.

The switcher was never exposed to code or QA
instances during training, yet it produces useful
routing decisions in these domains. This suggests
that the learned decision function captures gener-
alizable signals correlated with problem difficulty
rather than overfitting to mathematical surface pat-
terns.

6.2 Scaling the Trade-off

In this section, we evaluate the balance between
accuracy and cost of ThinkSwitcher across three
model scales: DeepSeek-R1-Distill-Qwen-1.5B,
7B, and 14B. For each model, we plot average ac-
curacy against average token cost by systematically
sweeping the decision threshold τ . The resulting
trade-off curves are presented in Figure 4.

Across all model sizes, ThinkSwitcher consis-
tently outperforms the random baseline, demon-
strating its ability to dynamically select appropri-
ate reasoning modes to balance performance and
computational cost. Compared to fixed prompt-
ing strategies (SC-only and LC-only), it achieves a
stronger Pareto frontier by delivering better accu-
racy–cost trade-offs across operating points.

The accuracy–cost curves reveal a notable trend:
smaller models exhibit trade-off curves positioned
closer to the top-left corner, indicating a more favor-
able balance between performance and efficiency.
This observation aligns with discussions in Sec-
tion 5.2, where it was noted that these smaller mod-
els (e.g., 1.5B) tend to generate significantly longer
responses under LC-only prompting, resulting in
higher average token costs. Such behavior suggests
that weaker models rely more heavily on extended
reasoning to arrive at correct answers and are thus
more sensitive to the choice of prompting strategy.
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Consequently, ThinkSwitcher achieves greater cost
savings in these settings by selectively avoiding
unnecessarily long reasoning paths.

These findings demonstrate that ThinkSwitcher
provides a practical and scalable solution for cost-
aware reasoning across models of varying capacity.

6.3 Effectiveness of the Switcher Loss
As detailed in Section 4.3, our final training objec-
tive incorporates a differential loss term, Lmargin,
which explicitly supervises the predicted perfor-
mance gap between CoT reasoning pathways. This
additional supervision is critical for improving the
quality of switcher decisions, as the routing mech-
anism is defined by Equation (5) and depends di-
rectly on the predicted margin ŷLC − ŷSC.

To examine its impact, we conducted an ablation
study by varying the weight λmargin in the combined
loss defined in Equation (8). For the metric, we use
normalized AUC-AC (nAUC-AC), which reflects
the overall cost–accuracy trade-off relative to a
linear baseline. The results are shown in Table 3.

Margin Loss Weight (λmargin) nAUC-AC

0 (No Margin Loss) 167
1 (Moderate Weight) 199
2 (High Weight) 166

Table 3: Effect of margin loss weight (λmargin) on down-
stream task performance, measured by nAUC-AC.

The results show that incorporating margin su-
pervision with a moderate weight (λmargin = 1)
yields the best overall performance. This confirms
the utility of explicitly aligning the training objec-
tive with the decision criterion. However, overly
emphasizing the margin term (λmargin = 2) de-
grades performance, suggesting that maintaining
a balance between absolute accuracy and margin
accuracy is essential for reliable switching.

6.4 Impact of Pass Rate Estimation Quality
The switcher is trained using pass rates estimated
over k sampled responses per pathway (SC and
LC) for each training instance. To assess how
the estimation quality of these supervisory sig-
nals affects downstream performance, we vary
k ∈ {1, 2, 4, 8, 16} during the training data con-
struction phase and evaluate the resulting switchers
within the full ThinkSwitcher framework. Results
are shown in Figure 5, measured by nAUC-AC.

We observe a clear upward trend in performance
as k increases: nAUC-AC improves from approx-
imately 174 at k = 1 to around 199 at k = 8,

174 176

185

199 200

Figure 5: Performance with different values of k used
to estimate pass rates in training data construction.

indicating that higher-quality pass rate estimates
provide more reliable training signals and lead to
more effective switching policies. However, this
trend saturates beyond k = 8, as increasing to
k = 16 yields only marginal improvement. This
suggests diminishing returns, where further reduc-
ing the variance of the pass rate estimates no longer
translates to meaningful performance gains. We
therefore adopt k = 8 in our main experiments, as
it provides a favorable trade-off between supervi-
sion fidelity and the computational overhead of con-
structing the training dataset. This setting ensures
stable switcher performance without incurring the
high cost of excessive sampling.

6.5 Computational Efficiency of Switching
To assess the practical efficiency of the proposed
switching mechanism, we analyze its impact on
inference-time computational cost across different
model scales. This evaluation is crucial to ensure
that the efficiency gains brought by adaptive rea-
soning are not offset by the additional overhead
introduced by the switcher module.

Metric 1.5B 7B 14B

Switcher Params 2.89M 4.98M 6.56M
Switcher FLOPs 5.77M 9.97M 13.11M

LLM FLOPs (LC-Only) 26.06T 106.64T 198.74T
LLM FLOPs (TS) 17.41T 75.67T 156.88T

Table 4: Per-query computational costs across model
scales. “Switcher Params” and “Switcher FLOPs” de-
note the size and compute overhead of the switching
module. “LLM FLOPs (LC-Only)” refers to decoding
cost under long CoT reasoning, while “LLM FLOPs
(TS)” reflects the decoding cost with ThinkSwitcher.

As shown in Table 4, the switcher module intro-
duces negligible overhead: its per-query compute
cost consistently remains in the range of millions
of FLOPs, which is insignificant compared to the
trillions required for LLM decoding. Although the
number of switcher parameters varies slightly with
model scale, this variation is solely attributed to
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differences in the hidden state dimensionality of
the underlying LRMs, which only affects the input
layer of the switcher. The rest of the switcher ar-
chitecture remains fixed, ensuring the module stays
lightweight and suitable for practical deployment.

More importantly, switching enables substantial
reductions in overall decoding cost. Compared to
the LC-Only baseline, which always applies long-
form reasoning, adaptive switching reduces LLM
decoding FLOPs by 20–30% across all model sizes.
These savings arise from dynamically selecting
shorter reasoning paths for simpler queries, thereby
improving efficiency without compromising per-
formance. Collectively, these findings validate our
switching-based approach as a practical and scal-
able solution for cost-aware reasoning.

7 Conclusion
While large reasoning models (LRMs) excel at
complex tasks, they often default to unnecessar-
ily long chain-of-thought (CoT) reasoning even for
simple problems and lead to significant computa-
tional overhead. We introduced ThinkSwitcher,
a lightweight and adaptive framework that ad-
dresses this overthinking tendency by dynami-
cally selecting between short and long CoT modes
based on task complexity. ThinkSwitcher har-
nesses the model’s latent ability for concise rea-
soning—elicited via prompt design—and inte-
grates a self-supervised switcher module to auto-
mate mode selection without modifying the back-
bone architecture or requiring additional train-
ing. Experiments across diverse benchmarks show
that ThinkSwitcher reduces computational cost by
20–30% while preserving strong performance on
complex tasks. These findings highlight adaptive
reasoning control as a scalable and effective ap-
proach to mitigating overthinking in LRMs and
supporting efficient unified deployment.

Limitations

While our method demonstrates strong empirical
performance, it still has several limitations. First,
while the ThinkSwitcher framework demonstrates
strong results on mathematical reasoning bench-
marks, its applicability to other complex reason-
ing tasks such as agent has not yet been explored.
Second, due to computational constraints, our ex-
periments are limited to models with up to 14B
parameters. Nonetheless, the method is inherently
scalable, and we expect it to extend effectively to
larger or architecturally diverse models, which we

leave for future investigation.
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A Induced Short CoT Performs on
Challenging Tasks

This section extends the analysis in Section 3.2
by evaluating the performance of induced short
CoT reasoning on additional two high-difficulty
benchmarks: AIME24 and AIME25.

As shown in Figures 6 and 7, induced short CoT
consistently yields substantial reductions in token
usage on these high-difficulty AIME benchmarks.
Aligning with our observations in the main pa-
per, while short CoT exhibits an accuracy drop
on such particularly complex problems, it still re-
tains problem-solving capabilities. These AIME
results therefore confirm that the significant effi-
ciency benefits of short CoT induction extend to
competition-level tasks. This reinforces its utility
as an efficient reasoning mode, particularly when
long CoT can be strategically invoked for instances
requiring maximum performance.
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Figure 6: Comparison of long CoT and induced short CoT on the AIME24.
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Figure 7: Comparison of long CoT and induced short CoT on the AIME25.

B Templates for Short and Long CoT

This section presents the prompt templates used
to induce long and short CoT reasoning modes
from LRMs. Each template contains a placeholder
{question} for inserting the input query and in-
cludes instructions for the model to reason step by
step, with the final answer enclosed in \boxed{}.

Short CoT Template

User: {question}
Please reason step by step, and put your final 
answer within \boxed{}
Assistant: <think></think>

Long CoT Template

User: {question}
Please reason step by step, and put your final 
answer within \boxed{}
Assistant:

Figure 8: Long and short CoT prompt template.

As shown in Figure 8, two templates differ only

in the inclusion of an empty <think> block in the
short CoT version, which reliably triggers concise
reasoning behavior. As discussed in Section 3.1,
this minimal intervention is sufficient to suppress
unnecessary elaboration and induce efficient CoT
responses without modifying the model itself.

C Mechanism Behind Short CoT
Induction

What enables simple prompts to reliably induce
short chains of thought in LRMs? We hypothe-
size that this behavior arises from the suppression
or bypassing of the elaborate reasoning processes
and stylistic conventions instilled during reasoning-
specific fine-tuning. When such patterns are de-
activated or inhibited, the model appears to revert
to a generation mode that more closely resembles
its pre-finetuning behavior, favoring concise and
direct outputs over elaborated reasoning.

To investigate this hypothesis, we conducted a
semantic similarity analysis across three categories
of outputs on the MATH500 benchmark (Lightman
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et al., 2024). We used the all-mpnet-base-v2
model1 to compute sentence embeddings for
the reasoning outputs generated under different
prompting conditions, and calculated cosine simi-
larity between the following categories:

1. ISC (Induced Short CoT): Responses gener-
ated by DeepSeek-R1-Distill-Qwen-7B using
our short CoT induction strategy.

2. LCS (Long CoT Summary): The final sum-
mary portion generated after the </think>
token in DeepSeek-R1-Distill-Qwen-7B’s de-
fault long CoT setting, typically containing the
conclusion or final answer.

3. OC (Original CoT): Natural CoT responses
generated by Qwen2.5-Math-7B (the base
model for DeepSeek-R1-Distill-Qwen-7B),
which is optimized for short CoT reasoning.

Pairwise Comparison Cosine Similarity

ISC vs. OC 0.926
ISC vs. LCS 0.919
LCS vs. OC 0.916

Table 5: Cosine similarity between response embed-
dings from ISC, LCS, and OC categories.

The cosine similarity scores are reported in Ta-
ble 5. Based on these values, we observe the fol-
lowing ranking:

Sm(ISC, OC) > Sm(ISC, LCS) > Sm(LCS, OC)

This ranking supports our suppression-and-
reversion hypothesis. ISC responses exhibit greater
semantic similarity to OC outputs from the general-
purpose reasoning model than to LCS segments
produced by the LRM under its long-form reason-
ing mode. This suggests that short CoT prompting
may suppress fine-tuned long-form reasoning pat-
terns, allowing the model to revert to a more con-
cise reasoning style latent in earlier training. These
results highlight the flexible behavioral priors re-
tained by LRMs, which can be selectively activated
or suppressed through external prompts.

D Implementation Details

The switcher module is a Multi-Layer Perceptron
(MLP) consisting of 5 linear layers with hidden

1https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

dimensions [1024, 768, 512, 256, 2]. The archi-
tecture utilizes Rectified Linear Unit (ReLU) ac-
tivation functions (Agarap, 2019), Batch Normal-
ization (Ioffe and Szegedy, 2015), and Dropout
(Srivastava et al., 2014).

For training the switcher, the AdamW optimizer
(Loshchilov and Hutter, 2019) was employed. Hy-
perparameter optimization was performed using
Ray Tune (Liaw et al., 2018). The learning rate
was selected through a search over a log-uniform
distribution in the range [1× 10−5, 1× 10−2]. The
batch size was chosen from the set {16, 32, 64,
128}. The dropout rate was explored over a uniform
distribution in the interval [0.0, 0.5]. Training was
conducted for a maximum of 50 epochs, employing
an early stopping strategy based on validation set
performance; the model from the best-performing
epoch was retained.

The vLLM library (Kwon et al., 2023) was uti-
lized to accelerate the sampling of responses from
the backbone LRM for data construction. Evalu-
ation of downstream task performance, which in-
formed both the generation of switcher training la-
bels and the final assessment of the ThinkSwitcher
framework, was conducted using a customized eval-
uation framework from the Qwen2.5-math GitHub
repository 2.

All experiments were conducted on a computing
setup equipped with 4x NVIDIA RTX 4090 GPUs.

E Datasets Details

This section describes the evaluation datasets used
to assess the performance and generalization of
ThinkSwitcher across varying levels of difficulty.

GSM8K (Cobbe et al., 2021) A dataset of ap-
proximately 8,500 high-quality and linguistically
diverse grade school math word problems. These
problems typically require 2 to 8 steps to solve,
and their solutions are written by human problem-
solvers, primarily testing multi-step reasoning abil-
ities. The problems cover various arithmetic op-
erations and fundamental concepts taught at the
elementary school level.

MATH (Hendrycks et al., 2021) Comprises
12,500 challenging mathematics problems, with
topics including Algebra, Number Theory, Count-
ing & Probability, and Geometry, representing a
wide range of difficulties up to the high school

2https://github.com/QwenLM/Qwen2.5-Math
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level. For our evaluation, we utilize a subset of 500
problems, referred to as MATH-500.

AIME (MAA, 2025) A significant component of
the American Mathematics Competitions (AMC)
program, positioned in difficulty between the AMC
10/12 and the USAMO (United States of America
Mathematical Olympiad). It typically consists of
15 problems to be solved in 3 hours, with answers
being integers from 0 to 999. These problems de-
mand deeper mathematical knowledge and creative
problem-solving strategies. The AIME dataset used
in this evaluation includes problems from the most
recent AIME2024 and AIME2025 to cover the lat-
est competition content and challenge levels.

LiveAoPSBench (Mahdavi et al., 2025) A
dataset of real-time, competition-level mathematics
problems collected from online Olympiad mathe-
matics communities, such as the Art of Problem
Solving (AoPS) forums. These problems are of-
ten proposed by community members or originate
from recent minor competitions, possessing strong
timeliness and challenge. The subset of LiveAoPS-
Bench used in this evaluation specifically refers to
problems that appeared between August 2024 and
December 2024, reflecting current trends and the
high difficulty of Olympiad mathematics.

Omni-MATH (Gao et al., 2025) A compre-
hensive benchmark of Olympiad-level mathemat-
ics problems designed for universal LLM evalua-
tion. It meticulously curates problems from diverse
sources such as national/international Olympiads,
training materials, and online forums, covering
algebra, geometry, number theory, and combina-
torics. Omni-MATH emphasizes problem diversity,
fine-grained difficulty scaling, and depth, testing
sophisticated reasoning and insight on complex,
non-standard tasks. For our evaluation, we utilize a
subset of 500 problems from this dataset, referred
to as Omni-MATH-500.

OlympiadBench (math subset) (He et al., 2024)
A challenging, multilingual benchmark designed to
evaluate advanced scientific problem-solving in lan-
guage models, encompassing disciplines like math-
ematics and physics. We utilize its mathematics
subset, which comprises Olympiad-level problems
sourced from prestigious international and national
competitions, often structured as progressive tasks
with interlinked sub-questions. These problems,
provided with step-by-step solutions, demand deep
conceptual understanding and innovative multi-step

reasoning, rigorously testing mathematical capabil-
ities at a high difficulty ceiling.

F AUC-AC and nAUC-AC: Metrics for
Reasoning Efficiency

To systematically evaluate the trade-off between
reasoning accuracy and computational cost, we
adopt two metrics: the Area Under the Accu-
racy–Cost Curve (AUC-AC) and its normalized
counterpart, nAUC-AC. These metrics quantify
how effectively a model balances performance and
efficiency across varying output lengths.

Let ATS(t) denote the accuracy achieved at an
average token cost t. This function is empirically
constructed by sweeping the decision threshold τ
to obtain a set of operating points {(T (τi), A(τi))}.
Let TSC and TLC denote the average output tokens
of the SC-Only and LC-Only baselines, respec-
tively. The AUC-AC is then defined as the integral
of ATS(t) over the interval [TSC , TLC ]:

AUC-AC =

∫ TLC

TSC

ATS(t) dt. (9)

A higher AUC-AC indicates better overall effi-
ciency, reflecting the model’s ability to maintain
strong performance under stricter token budgets.

To assess the relative efficiency gain over static
baselines, we define the Normalized AUC-AC
(nAUC-AC), which measures the gain over a linear
interpolation baseline. This baseline corresponds
to the linear interpolation between (TSC , ASC)
and (TLC , ALC), representing the expected perfor-
mance of strategies that use a fixed probability to
mix SC-Only and LC-Only modes. The area under
this baseline, denoted AUC-ACLB, corresponds to
the area of the trapezoid:

AUC-ACLB =
ASC +ALC

2
· (TLC −TSC). (10)

The nAUC-AC is computed as the absolute gain
over this linear reference:

nAUC-AC = AUC-ACTS − AUC-ACLB. (11)

This difference captures the extent to which the
model’s reasoning efficiency exceeds what can be
achieved by linear mixtures of static strategies.

G Per-Benchmark Trade-off Results

This section complements the aggregated analy-
sis in Section 6.2 by providing a dataset-level
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breakdown of the accuracy–efficiency trade-offs.
While Figure 4 summarizes average performance
across all benchmarks and model scales, Figures 9
and 10 present disaggregated trade-off curves for
each of the seven benchmark datasets: GSM8K,
MATH500, AIME24, AIME25, LiveAoPS, Omni-
MATH, and OlymBench.

These disaggregated curves highlight how the
effectiveness of ThinkSwitcher varies across task
difficulties, offering further insight into when and
where dynamic reasoning provides efficiency gains.
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(a) Trade-off curve for GSM8K.
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(b) Trade-off curve for MATH500.
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(c) Trade-off curve for AIME24.
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(d) Trade-off curve for AIME25.

Figure 9: Trade-off between average accuracy and cost for ThinkSwitcher across various datasets (Part 1 of 2).
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(a) Trade-off curve for LiveAoPS-Bench.
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(b) Trade-off curve for Omni-MATH-500.
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Figure 10: Trade-off between average accuracy and cost for ThinkSwitcher across various datasets (Part 2 of 2).
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