
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 5155–5173
November 4-9, 2025 ©2025 Association for Computational Linguistics

WEBCOT: Enhancing Web Agent Reasoning by Reconstructing
Chain-of-Thought in Reflection, Branching, and Rollback

Minda Hu♣♠* , Tianqing Fang♠∗, Jianshu Zhang♥, Junyu Ma♠, Zhisong Zhang♠,
Jingyan Zhou♣, Hongming Zhang♠, Haitao Mi♠, Dong Yu♠, Irwin King♣
♣Chinese University of Hong Kong, ♠Tencent AI Lab, ♥Wuhan University

{mindahu21, king}@cse.cuhk.edu.hk, tianqfang@tencent.com

Abstract

Web agents powered by Large Language Mod-
els (LLMs) show promise for next-generation
AI, but their limited reasoning in uncertain, dy-
namic web environments hinders robust deploy-
ment. In this paper, we identify key reason-
ing skills essential for effective web agents,
i.e., reflection & lookahead, branching, and
rollback, and curate trajectory data that ex-
emplifies these abilities by reconstructing the
agent’s (inference-time) reasoning algorithms
into chain-of-thought rationales. We conduct
experiments in the agent self-improving bench-
mark, OpenWebVoyager, and demonstrate that
distilling salient reasoning patterns into the
backbone LLM via simple fine-tuning can sub-
stantially enhance its performance. Our ap-
proach yields significant improvements across
multiple benchmarks, including WebVoyager,
Mind2web-live, and SimpleQA (web search),
highlighting the potential of targeted reasoning
skill enhancement for web agents.

1 Introduction

The rise of large language models (LLMs) has
sparked significant interest in developing intelli-
gent agents capable of interacting with the web
through a browser, commonly referred to as web
agents (Yao et al., 2023; Monica.Im, 2025; Liang
et al., 2025). However, despite recent advance-
ments, even the best-performing web agents still
lag far behind human performance—even when
compared to users unfamiliar with a website’s struc-
ture or functionality (Zhang et al., 2024b; Mialon
et al., 2024; Song et al., 2025). This performance
gap is primarily attributed to the limited reasoning
abilities of current language models when applied
to web agent workflows.

Despite recent advances in Large Reasoning
Models (LRM, e.g., DeepSeek-R1; DeepSeek-AI

*Equal Contribution

ℎ!, 𝑎!

ℎ!
(#), 𝑎!

(#)

ℎ!
(%), 𝑎!

(%)

ℎ!
(&), 𝑎!

(&)
…

Scoring

ℎ!
('), 𝑎!

(')

ℎ!(#,
𝑎!(# ℎ!, 𝑎!

𝐹𝑎𝑖𝑙𝑒𝑑/
𝑆𝑡𝑢𝑐𝑘

restart

Branching

Reflection & Lookahead

ℎ!, 𝑎!
ℎ!)#,
𝑎!)#

Rollback

ℎ!(#,
𝑎!(#

ℎ!, 𝑎! ℎ!, 𝑎!

goback ⚠

CoT: A possible action
is 𝑎! , which leads to
the result of <result>.
After that, I can
perform …, and the
expected result is
<result>, which will
finish the task.

CoT: The action of __
will lead to an irrelevant
page. Go back and try a
different action.

CoT: Possible action:
𝑎!
(#) , Simulated output:

<result1>, Score: <score1>
Possible action: 𝑎!

(%) ,
Simulated output: <res-
ult2>, Score <score2>
Thus, __ has the
highest score and we
should perform __.

Agent Inference-time Reasoning Algorithm Reconstructed
Chain-of-thought

Verbalize to
Lookahead plan

The action with
highest score

Figure 1: Overview of our framework. We leverage a
language model to translate inference-time processes,
i.e., reflection and look-ahead, branching, and rollback,
into natural language chain-of-thoughts, which are then
used to train the agent language model.

et al., 2025, QwQ; Qwen, 2025), these models pri-
marily focus on arithmetic reasoning and are prone
to overthinking and generating unnecessarily com-
plex solutions for agent tasks (Cuadron et al., 2025;
Kumar et al., 2025; Su et al., 2025). While di-
rectly applying Reinforcement Learning (RL) in
agentic environments (Qi et al., 2025; Li et al.,
2025; Liu et al., 2025; Singh et al., 2025; Wei
et al., 2025) is a viable alternative, the resulting
reasoning abilities are often unpredictable and lack
structured priors. Moreover, these approaches incur
prohibitively high costs (Xu et al., 2025; Dang and
Ngo, 2025) when conducting real-world rollouts.
Additionally, they often focus on static and deter-
ministic environments such as WebArena (Zhou
et al., 2024), whereas applying them to stochas-
tic real-world open-domain web environments can
be problematic due to the randomness inherent in

5155

rollouts. In contrast, distilling specific reasoning
patterns into agents (Chen et al., 2024; Zhao et al.,
2024; Hu et al., 2025) combines the adaptability of
learned policies with the interpretability and task-
aware heuristics of curated reasoning, mitigating
both the overthinking problem and the exploration
burden of pure RL.

In this paper, we carefully examine and design
the specific reasoning abilities required for effec-
tive web agents, and sample corresponding agent
trajectories to conduct Supervised Fine-Tuning
(SFT) on LLMs. In particular, we focus on three
key components: (1) reflection & lookahead, the
ability to reflect on previous failures and conjure
precise long-horizon plans. (2) branching, the abil-
ity to sample multiple possible actions and have
accurate awareness of the possible outcomes, se-
lecting the most promising one; and (3) rollback,
the ability to validate error, roll back to a previ-
ous state, and self-correct the agent’s mistake. To
study these abilities, we implement representative
algorithms for each component: a novel reflection-
and-lookahead module, WebDreamer (Gu et al.,
2024) for branching, and AgentRollback (Zhang
et al., 2025c) for rollback. Simple illustrations of
the three abilities are shown in Figure 1. For reflec-
tion and look-ahead, we analyze failed trajectories
or redundant steps, distill the corrected trajectories
after reflecting on errors, into key planning steps,
and further refine them into structured chain-of-
thought rationales using an LLM. For branching,
we sample multiple actions and select the best one
using an LLM, and then paraphrase this selection
process into a paragraph of rationale. For rollback,
we reference a successful trajectory and sample an
intermediate state to intentionally generate incor-
rect branches, thereby constructing a goback action
along with its corresponding rationale.

To validate the effectiveness of the proposed
method, experiments are conducted following the
settings in the web agent self-improvement bench-
mark, OpenWebVoyager (He et al., 2024b). Specifi-
cally, we use LLAMA-3.3 (Dubey et al., 2024; 70B)
as the backbone LLM for sampling web agent tra-
jectories, and employ GPT-4o to perform rationale
paraphrasing and action selection in reflection &
look-ahead, branching, and rollback. The collected
trajectories are then used to fine-tune LLAMA-3.3
as our final agent model. Our results demonstrate
that distilling these reasoning patterns into LLM
chain-of-thought yields significant performance
gains across multiple benchmarks, such as Web-

Voyager (He et al., 2024a), Mind2Web-Live (Pan
et al., 2024), and SimpleQA (Wei et al., 2024). The
approach substantially outperforms rejection sam-
pling baselines and even exceeds distillation from
more capable LRM like QwQ-32B (Qwen, 2025).
Overall, our research1 underscores the importance
of explicitly defining and instilling effective think-
ing and reasoning patterns for agent tasks.

2 Related Works

Web Agents. Leveraging advanced backbone
LLMs (Dubey et al., 2024; Jia et al., 2024; Ope-
nAI, 2023; Anthropic, 2025), web agents demon-
strate proficiency in interacting effectively with
diverse web environments, solving various tasks
within specialized frameworks (Yao et al., 2023;
Zhang et al., 2024a; Fang et al., 2025b). Recent re-
search increasingly explore data-driven methodolo-
gies (Pahuja et al., 2025; Sun et al., 2025; Xu et al.,
2024; Trabucco et al., 2025) to further enhance
the performance of open-source models in web-
based tasks. Additionally, several studies focus
on equipping agents with self-improvement mech-
anisms (Fang et al., 2025a; Aksitov et al., 2023;
Patel et al., 2024; Zhang et al., 2025c), enabling
models to iteratively refine their strategies through
bootstrapped learning. To more comprehensively
evaluate and promote advancements in web agent
capabilities, numerous benchmarks are proposed to
assessing performance across diverse web-related
tasks (Yao et al., 2022; Zhou et al., 2024; He et al.,
2024a; Wu et al., 2025a; Zhang et al., 2024b).

Agents with Reasoning. Integrating advanced
reasoning mechanisms into agents has garnered
substantial attention, significantly enhancing their
performance. Earlier frameworks , such as Re-
Act (Yao et al., 2023), SeRTS (Hu et al., 2024),
and Reflexion (Shinn et al., 2023), introduce it-
erative reasoning-action loops to improve agent
decision-making. Leveraging extended test-time
scaling (TTS), recent models like OpenAI-o1 (Ope-
nAI et al., 2024), Qwen-QwQ (Qwen, 2025), and
DeepSeek-R1 (DeepSeek-AI et al., 2025) have
demonstrated remarkable performance improve-
ments through explicit chain-of-thought reason-
ing (Wei et al., 2022). Several studies, including
WebThinker (Li et al., 2025), LAMs (Zhang et al.,
2025b), and Agent-Reasoning (Wu et al., 2025b),

1Information related to WebCoT dataset and code imple-
mentations can be found in https://github.com/Tencent/
SelfEvolvingAgent.

5156

https://github.com/Tencent/SelfEvolvingAgent
https://github.com/Tencent/SelfEvolvingAgent

have further showcased that TTS can elevate the
performance ceiling for agents. Similar to the ob-
servations in Meta Ability (Hu et al., 2025) that
RL is difficult to control and “aha” behaviors re-
main unpredictable, both TTS and Reinforcement
Learning alone struggle to equip agents with our
targeted capabilities such as reflection, branching,
and rollback. To address this limitation, we pro-
pose WEBCOT, a method that leverages carefully
curated chains of thought exemplifying essential
reasoning skills, thereby facilitating improved rea-
soning ability in web agents.

3 Preliminary

This section formalizes the web agent task and
presents the foundational components of our agent
optimization framework.

3.1 Problem Formulation
The web agent task is modeled as a Partially Ob-
servable Markov Decision Process (POMDP), de-
fined by (S,A,O, T ,R). State (S) represents the
state of the web environment, with st at step t. Ac-
tion (A) includes atomic web operations such as
click, type, goback, scroll, and stop (He et al.,
2024a). Observation (O) captures visible elements
of the environment, with ot = Ω(st), where Ω ex-
tracts content like accessibility trees. Transition
(T) advances the state st deterministically based
on browser operations. Reward (R) provides eval-
uations on the agent trajectories.

The agent processes a natural language query
q requiring multi-step interactions in a web envi-
ronment. The agent’s policy π(ot, q) → at gen-
erates actions at based on the query q and the
current observation ot, forming a trajectory τ =
{(o1, a1), . . . , (ot, at)}. Rewards are computed us-
ing a self-assessment function r̂(τ, q) ∈ [0, 1].

For web navigation, given a query q and target
website w, the environment is initialized, and the
first observation o1 is obtained. Following Cogni-
tive Kernel (Zhang et al., 2024a), the accessibil-
ity tree represents ot. A Large Language Model
(LLM), parameterized by θ, serves as the policy
network, generating Chain-of-Thought reasoning
ht and actions at:

(ht, at) ∼ πθ(· | I, q, o1:t, h1:t−1, a1:t−1), (1)

where I denotes system instructions. The environ-
ment evolves based on:

st+1 = T (st, at), ot+1 = Ω(st+1), (2)

producing a trajectory τ = {(oi, hi, ai)}Ti=1, where
T is the total number of steps.

3.2 Optimization
We adopt a self-improvement optimization frame-
work as in OpenWebVoyager (He et al., 2024b). We
introduce the backbone agent foundation model, de-
noted as M, along with its corresponding policy
function, πM. The model M is used to sample
actions based on a given input query q, which are
subsequently utilized to collect web navigation tra-
jectories. As the core of the Cognitive Kernel, M
enables interactions with the web environment. To
inform its decisions, the agent observes the past m
steps of interaction, represented as webpage acces-
sibility trees.

For each query q ∈ Q, the set of all queries, a
trajectory τi is sampled from the policy πθM(τ |
I, q). To mitigate performance degradation caused
by excessively long contexts, we clip the trajectory
history ct when t− 1 > k, retaining only the most
recent k observations. Thoughts and actions are
preserved, as they contain compressed information
about the history:

c
clip
t =

(
h1, a1, h2, a2, . . . , ht−k, at−k,

ot−k+1, ht−k+1, at−k+1, . . . , ot−1

)
,

(1)

such that the new actions are generated with the
following function:

(ht, at) ∼ πθM(· | I, q, cclip
t). (2)

For a train set with collected trajectories D =
{(q′i, τ ′i)}ti=1, we aim to maximize the following
objective function:

J (θ) = E(q′,τ ′)∼D

[
T∑

t=1

(
log πθ(at | q, cclip′

t , ht)

+ log πθ(ht | q, cclip′
t)

)]
,

to refine the training data, a rejection sampling
dataset Drej is constructed by filtering and retaining
only trajectories that satisfy an automatic evalua-
tion metric r(τ, q).

4 WEBCOT

In this section, we introduce the details of the WE-
BCOT reasoning patterns, reflection & lookahead,
branching, and rollback, and how to perform cu-
mulative training on top of the OpenWebVoyager
self-improvement framework. An overview of the
pipeline is shown in Figure 2.

5157

𝑜! 𝑜"
…

Intermediate failure

𝑜! = 𝑜"

ℎ"#$,
𝑎"#$

Reflect

Trajectory Sampling using Agent Reasoning Algorithm

𝑜"#$
ℎ",
𝑎"

ℎ!,
𝑎!

… ℎ%,
𝑎%

𝑜%
ℎ!&$,
𝑎!&$

𝑜!&$

remove looprefined trajectory refined trajectory

CoT Verbalization at step 𝒕

ℎ'
($)

𝑎'
($)

ℎ'
(*),
𝑎'
(*)

ℎ'
(+)

𝑎'
(+)

… Scoring

ℎ'
(,)

𝑎'
(,)

Branching

𝑜'&$

ℎ'&$
𝑎'&$

𝑜'
ℎ'#$
($)

𝑎'#$
($)

ℎ'#$
(*) ,
𝑎'#$
(*)

ℎ'#$
(+)

𝑎'#$
(+)

… Scoring

ℎ'#$
(,)

𝑎'#$
(,)

𝑜'#$

…
…

ℎ'
($)

𝑎'
($)

ℎ'
(*),
𝑎'
(*)

ℎ'
(+)

𝑎'
(+)

simulated
output

𝑜'
($)

ℎ'
𝑎'

ℎ'#$
𝑎'#$

ℎ'&$
𝑎'&$

⚠

…
ℎ-
𝑎% Successful!

Sampling a
failed trajectory

𝑜!&$

ℎ'
($)

𝑎'
($)

failed
…

Succ-
essful!

Rollback

Reflection & Lookahead

𝑜'
(*)

𝑜'
(+)

Scoring
function

𝑠($)

𝑠(*)

𝑠(+)

… … …

Possible Step:
𝑎'
$, 𝑎'

(*),… , 𝑎'
(+)

Simulated Output:
𝑜'
($), 𝑜'

(*),… , 𝑜'
(+)

Critic Evaluation:
𝑠($), 𝑠(*),… , 𝑠(+)

ℎ'.

ℎ'/
𝑎'/

ℎ'
𝑎'

ℎ'#$
𝑎'#$ …… goback

ℎ'0

𝑎$ 𝑎'&$

𝑜'&$𝑜$
𝑎'

𝑜'
𝑎'#$

𝑜'#$
𝑎%

𝑜%
… …

history
𝑎'

future
ℎ'1

history future correct steps Refined Lookahead
CoT for time step 𝑡

Last Observation: 𝑜!&$
Current Observation:	𝑜′2
Generating the rationale of going back

Refined Branching CoT for time step 𝑡

Refined Rollback CoT for time step 𝑡

Figure 2: Overview of the components in WEBCOT. In Reflection & Lookahead, intermediate failures are identified
and removed. Verbalized lookahead planning rationales (hL

t) are then used as a reconstructed chain-of-thought
to perform reflection. In Branching, the process of sampling and scoring alternative actions is verbalized as a
chain-of-thought (hB

t). In Rollback, trajectories that require returning to a previous successful state are deliberately
constructed, and the rationale for rollback is distilled as hR

t .

4.1 Reflection & Lookahead

We start by identifying trajectories in D by de-
tecting intermediate failures. Then, we generate
Chain-of-thought such that the agent can reflect
from previous mistakes and make better look-ahead
planning (Zhang et al., 2025a).

We identify intermediate errors by detecting tra-
jectory loops, which emerge when either failed
actions or logical inconsistencies produce repeated
observations across different time steps. For-
mally, we denote such trajectories as τ loop =
{(ot, ht, at)}Tt=1, where exists oi = oj and i < j,
forming a loop.

First, we refine the trajectory by removing the
redundant sequences between oi and oj . Then,
we re-generate chain-of-thoughts in the refined tra-
jectory to guide the agent LLM toward improved
reflection and look-ahead planning. Specifically,
we verbalize the refined successful trajectory to
an abstract plan using GPT-4o-mini2 to replace
the original chain-of-thoughts {ht}Tt=1. At a cur-
rent time step tc, a plan is generated by refining
the trajectory history τt<tc , current observation
otc , current action atc , and future trajectory τt>tc

2We find that GPT-4o-mini is capable enough for the sim-
ple job of verbalization

. The detailed prompt template in Table 7 in the
Appendix. The original chain-of-thought htc is
then replaced with the generated Lookahead plan-
ning guidance hLtc to enhance the agent’s planning
ability. The resulting new trajectory are denoted
as τL = {(oi, hLt , at)}T−|i−j|+1

t=1 , where hLt is the
newly verbalized chain-of-thought.

We denote the resulting refined trajectories as
DL, indicating that they contain chain-of-thoughts
which both reflect on previous errors and incorpo-
rate Lookahead planning as part of their rationale.

4.2 Branching

The second reasoning enhancement, branching, fo-
cuses on the ability to sample several possible ac-
tions and determine the best one leading to success.
Tree search-based planning with real-world inter-
actions often incurs high computational costs and
risks irreversible actions, whereas simple Model
Predictive Control (MPC) can serve as an effi-
cient and effective substitute (WebDreamer; Gu
et al., 2024). We use a similar implementation as
in WebDreamer, to simulate possible future states
for each action sampled over a finite horizon us-
ing a function sim(o, a). Then, we score the ac-
tions with a scoring function score(sim(ot, a

(i)
t)),

5158

and execute the action aI with the highest score
I = argmaxi score(sim(ot, a

(i)
t)). The process

repeats after observing new states, allowing the
agent to adapt dynamically while minimizing un-
necessary interactions. In detail, at a time step t, we
generate k candidate actions {(h(i)t , a

(i)
t)}ki=1 for a

given observation ot, simulate two-step future pre-
diction for each action, and select the action with
the highest score to execute. The scoring function
and simulation function are all based on GPT-4o.
We leave the detailed prompts to Appendix B.

Despite its strengths, this approach still incurs
significant inference overhead. We aim to condense
the sophisticated multi-turn prompting pipeline into
a single chain-of-thought paragraph, thereby en-
hancing the agent’s branching ability. We begin
by sampling new trajectories on the original set
of query using WebDreamer, resulting in trajec-
tories τB = {(ot, hBt , aBt)}Tt=1. We then refine
the reasoning chain-of-thoughts {hBt }Tt=1 by fol-
lowing the template in Table 12, verbalizing the
action sampling and selection process as natural
language rationale. Finally, we collect all τB to
obtain the set of trajectories that were successfully
executed using WebDreamer, representing the abil-
ity to perform Branching. We denote this set as
DB = {(q, τB)}.

4.3 Rollback

Rollback introduces a complementary mechanism
to further enhance the reasoning and decision-
making capabilities of M by enabling it to vali-
date errors, roll back to a previous state, and self-
correct its mistakes (Zhang et al., 2025c). This
approach differs from Reflection & Lookahead in
that we explicitly focus on going back to a previ-
ous state, whereas Reflection & Lookahead is more
concerned with refining erroneous trajectories.

The core idea behind rollback is to equip M
with the ability to dynamically evaluate the valid-
ity of its actions and their consequences at each
step of the trajectory. When the outcome of an ac-
tion deviates from M’s plans or expectations, the
model identifies the erroneous action at and the
corresponding state ot where the trajectory began
to diverge. Subsequently, it rolls back to an ear-
lier valid state ot−1 and re-initiates the reasoning
process from that point onward. Such mechanisms
are particularly useful in tasks where irreversible
errors can significantly impact the overall perfor-
mance, such as web-based navigation or multi-step

reasoning tasks.
To implement Rollback, we first randomly

sample a successful trajectory, denoted as τR,
from the set of collected successful trajectories in
D,DL, and DB . Next, we randomly select n states,
{(oj , hj , aj)}nj=1, from the sampled trajectory τR.
For each observation oj , we generate an alternative
thought h′j and action a′j , ensuring that a′j ̸= aj .
This is achieved using the prompt provided in Ta-
ble 13. We then roll out the corresponding outcome
o′j+1 in a real web navigation environment, ensur-
ing that o′j+1 ̸= oj+1, such that there is a high
chance that the new observation will lead to failure.
If the rollout actually lead to failure, we then regard
the optimal strategy for o′j+1 as reverting to the pre-
vious observation oj using the goback action. Once
o′j+1 is determined as the state that requires goback,
we construct the corresponding thought h′j+1 using
the prompt specified in Table 15. Consequently,
we create new rollback trajectories in the form:
τR

′
= {· · · , (oj , hj , a′j), (o′j+1, h

′
j+1, goback)}.

These rollback trajectories are then aggregated into
the rollback training set DR = {(q, τR′

)}.

4.4 Cumulative Training

Instead of directly finetuning on all the trajec-
tories sampled by the reasoning algorithms, we
adopt a cumulative training strategy (Bengio et al.,
2009) to improve learning effectiveness and pre-
vent overthinking. The basic idea is that if a query
can be successfully executed through simple self-
exploration, there is no need to apply more com-
plex thinking. Starting from the baseline training
dataset Drej acquired by simple rejection sampling,
we progressively append new trajectories that are
successfully executed by the three reasoning algo-
rithms but fail during self-exploration. Based on
the execution difficulty, we tested three variations
of data mixing:
(1) Reflection & Lookahead:

Dc
L = Drej ∪

{
(q, τ) ∈ DL

∣∣ q /∈ Qrej
}

(2) Reflection & Lookahead + Branching:
Dc

B = Dc
L ∪ {(q, τ) ∈ DB | q /∈ Qc

L}
(3) WEBCOT: Reflection & Lookahead +
Branching + Rollback:
Dc

R = Dc
B ∪ {(q, τ) ∈ DR | q /∈ Qc

B}

5 Experiments

5.1 Setup

We use the web agent module of the Cognitive
Kernel (Zhang et al., 2024a) framework to conduct

5159

Method
WebVoyager M2W SimQA

Apple ArXiv BBC
Cour-
sera

ESPN
Git
Hub

Google
Map

HF Wolfram
Alpha

Avg. Acc. Acc.

GPT-4O-MINI 23.26 34.88 28.57 37.21 22.72 31.82 29.27 24.39 34.88 29.63 17.0 54.0
QWQ-32B 27.91 11.63 38.10 38.10 29.55 17.07 48.78 20.93 52.17 31.69 15.1 27.0
GPT-4O 30.23 20.93 28.57 51.16 30.95 38.64 24.39 29.27 56.52 34.54 18.8 61.0

LLAMA-3.3-70B 18.60 23.26 23.81 23.81 15.91 26.83 31.71 30.23 28.26 24.68 5.7 25.0
+ REJ. SAMPLING 34.88 6.98 24.39 38.10 22.73 34.15 48.78 19.05 36.96 29.50 7.5 33.0
+ QWQ DISTILL 32.56 20.93 23.81 40.48 29.55 34.15 31.71 25.58 36.96 30.65 18.9 52.0
+ WEBCOT 39.53 27.91 30.95 59.52 38.64 43.90 46.34 27.91 54.35 41.04 20.8 56.0

Table 1: Performance comparison across WebVoyager, Mind2Web-Live (M2W), and SimpleQA (SimQA). The
highest values are bolded, and the second highest is underlined. WEBCOT shows significant improvements,
with LLAMA-3.3-70B + WEBCOT outperforming GPT-4O, despite the latter’s stronger foundational capacity.
Furthermore, LLAMA-3.3-70B + WEBCOT surpasses + QWQ DISTILL by 10.4% on WebVoyager, highlighting
our approach’s effectiveness in web-specific reasoning tasks.

experiments. In this setup, the state space S encom-
passes the entire Internet, facilitated by Playwright.
The action space consists of primitive browser op-
erations, including type, click, scroll, goback,
stop, and restart. The observation at time step
t, ot, corresponds to the accessibility tree of visi-
ble components in the virtual browser—effectively
simulating the perceptual experience of a human
navigating the web. The transition function T ex-
ecutes the selected atomic browser actions based
on the current webpage state, updates the webpage
state, and propagates changes to the next observa-
tion ot+1. Execution errors (e.g., navigation time-
outs) are captured and relayed back to the reasoning
module for appropriate handling, continuing until
the task is completed or a predefined step limit is
reached.

For task evaluation, we define a reward func-
tion R that mitigates issues with potential false
negatives in human-annotated step-wise compar-
isons (Pan et al., 2024). Specifically, we em-
ploy GPT-4o for end-to-end task completion as-
sessment, following the methodology of He et al.
(2024a). This evaluation strategy is designed to
accommodate the inherent variability in task trajec-
tories, where multiple distinct action sequences can
achieve the same objective. GPT-4o is provided
the complete task trajectory and the original query
q, and it outputs a binary score (0 or 1) indicat-
ing whether the task has been completed. Detailed
prompts are presented in Table 11.

For all of our experiments, the agent leverages
Llama-3.3-70B as the backbone foundation model
M. We only use the training queries of OpenWeb-
Voyager (He et al., 2024b) for trajectory collection

and agent finetuning. During rejection sampling,
Llama-3.3-70B itself is used to evaluate whether
the task has been successfully completed or not.
More details regarding the agent system, includ-
ing definitions of the atomic operations, system
prompts, are detailed in Appendix A.

We evaluate the agent on three live web naviga-
tion benchmarks: WebVoyager (He et al., 2024a),
Mind2Web-Live (Pan et al., 2024), and Sim-
pleQA (Wei et al., 2024). These benchmarks re-
quire the web agent to interact with real-world
web environments to complete a variety of tasks.
To ensure experimental consistency, we filter out
websites that are inaccessible due to geographical
restrictions or IP blocks within our experimental
setup (details in Appendix H).

5.2 Baselines

In our experiments, we select four models as base-
lines for vanilla inference: GPT-4o-mini, GPT-4o,
the advanced reasoning model QwQ-32B , and
Llama-3.3-70b-Instruct . Additionally, we compare
three data generation approaches for fine-tuning
Llama-3.3-70b-Instruct: (i) Rejection Sampling
(Rej. Sampling), (ii) successful trajectories sam-
pled by QWQ-32B (QwQ Distill), and (iii) the
WEBCOT data proposed in our work for training.

5.3 Main Results

Table 1 presents the performance comparison be-
tween our method, WEBCOT, and various base-
lines using the LLAMA-3.3-70B model across
three benchmarks: WebVoyager, Mind2Web-
Live (M2W), and SimpleQA (SimQA). The re-
sults clearly demonstrate that WEBCOT achieves

5160

Method
WebVoyager M2W SimQA

Apple ArXiv BBC
Cour-
sera

ESPN
Git
Hub

Google
Map

HF Wolfram
Alpha

Avg. Acc. Acc.

LLAMA-3.3 18.60 23.26 23.81 23.81 15.91 26.83 31.71 30.23 28.26 24.68 5.7 25.0
+ Dc

L 30.23 9.30 38.10 42.86 20.45 46.34 31.71 25.58 42.22 31.77 17.0 49.0
+ Dc

B 37.21 18.60 30.95 40.48 36.36 34.15 32.50 34.88 43.48 34.38 15.1 52.0
+ WEBCOT 39.53 27.91 30.95 59.52 38.64 43.90 46.34 27.91 54.35 41.04 20.8 56.0

Table 2: Ablation study results on WebVoyager subtasks, M2W, and SimQA. The highest values are bolded, and the
second highest values are underlined. Dc

L, Dc
B , and WEBCOT are detailed in Section 4.4. The results highlight the

effectiveness of incorporating different reasoning components, with WEBCOT showing the best performance across
3 benchmarks.

substantial improvements across all benchmarks.
Specifically, the accuracy on WebVoyager in-
creases by 16.5 points (a 66.8% relative improve-
ment). Similarly, it achieves gains of 15.1 points
(264.9%) and 31 points (124.0%) on M2W and
SimQA, respectively.

Notably, the capability of WEBCOT even
surpasses that of GPT-4O, which has signifi-
cantly stronger foundational capacity compared to
LLAMA-3.3-70B (Achiam et al., 2023; Grattafiori
et al., 2024). These results underscore the potential
of our approach in developing highly efficient and
capable web agents.

Compared to the baseline QWQ DISTILL, the
systematically designed CoT in WEBCOT demon-
strates clear superiority. Unlike traditional reason-
ing models, which are primarily optimized for do-
mains like mathematics and coding, WEBCOT is
specifically tailored to excel in reasoning chains
for web-based tasks. This specialization makes it a
more effective solution for navigating and reason-
ing within web environments. Notably, WEBCOT
outperforms QWQ DISTILL by 10.4 points on We-
bVoyager, highlighting its ability to better harness
the potential of LLMs.

5.4 Analysis

5.4.1 Effects of Different Reasoning Ability
Table 2 presents the performance improvements
achieved by incorporating the training datasets cre-
ated from each reasoning component: Reflection &
Lookahead, Branching, and Rollback. The dataset
DR demonstrates a significant enhancement in the
reasoning capabilities of LLMs.

When comparing the use of Dc
L alone with the

combined dataset Dc
B , we observe a discernible

improvement across most benchmarks. This high-
lights the importance of instilling branching rea-
soning into LLMs. Furthermore, adding DR to Dc

B

yields even greater performance gains, highlight-
ing the value of equipping LLMs with robust error
validation capabilities to enable more efficient task
completion within limited attempts.

Method WebVoyager M2W SimQA

+ Dc
L 31.77 17.0 49.0

VANILLA COT 31.43 11.3 47.0

+ Dc
B 34.38 15.1 52.0

VANILLA COT 28.01 20.8 48.0

Table 3: Ablation study on the effect of verbalizing new
reasoning chain-of-thought versus using the original
self-generated chain-of-thought (Vanilla CoT). Using
the newly verbalized CoT will lead to more improve-
ments in general.

5.4.2 Effects of Rationale Verbalization
In Reflection & Lookahead and Branching, newly
successful queries are executed and their corre-
sponding trajectories are added to the training set.
In WEBCOT, we further verbalize lookahead plan-
ning and action selection as natural language ra-
tionales. To assess the impact of rationale verbal-
ization, we conduct an ablation study: we com-
pare finetuning the model with the new trajectories
using either the original self-generated chain-of-
thought or the WEBCOT rationales, to determine
which contributes more to performance improve-
ments. Specifically, we replaced all refined reason-
ing processes in Dc

L and Dc
B with their original,

self-generated versions. Based on the LLAMA-3.3-
70B checkpoint, we fine-tuned two corresponding
variants of VANILLA COT. The results are shown
in Table 3.

For Dc
L , the performance degradation in its

corresponding VANILLA COT variant is relatively
small on the WebVoyager benchmark. This indi-
cates that the trajectory refinement in DL plays a

5161

5 0 5
0

10

20
Co

un
t

Figure 3: Distribution of ∆Li. Including rollback mech-
anisms would lead to a reduced number of steps, indi-
cating an improved action generation ability.

critical role in boosting performance. However, the
significant performance drops on M2W and SimQA
further underscore the importance of reasoning pro-
cess refinement in improving overall LLM abilities.

For the combined dataset Dc
B , the impact of re-

moving reasoning refinement is even more pro-
nounced. The performance gap is substantial, with
improvements of 6.4 points on WebVoyager bench-
mark and 4.0 points on SimQA. These results em-
phasize the necessity of refining the reasoning pro-
cess to maximize the model’s performance.

5.4.3 Effects of Rollback on Task Efficiency
We evaluate the effect of rollback reasoning by
comparing the task completion efficiency of agents
fine-tuned with Dc

B (Reflection & Lookahead +
Branching) and Dc

R (Reflection & Lookahead +
Branching + Rollback). To ensure a fair compari-
son, we identify 97 queries from the WebVoyager
benchmark that both agents successfully completed
(out of 428 total queries).

For each query, we measure the trajectory length
(i.e., the number of steps to complete the task) for
both agents. To focus on differences, we exclude
queries where the trajectory lengths are identical,
leaving 59 cases. For each of these, we calculate
the trajectory length difference as:

∆Li = |τBi | − |τRi |, (3)

where |τBi | and |τRi | are the trajectory lengths for
agents fine-tuned with Dc

B and Dc
R, respectively. A

negative ∆Li means the Dc
R agent required fewer

steps. Figure 3 shows the distribution plot of ∆Li.
On average, ∆̄Li = −0.23, and the median is
∆̃Li = −1.0. These results indicate that the agent
fine-tuned with Dc

R consistently completes tasks
with fewer steps compared to the agent fine-tuned
with Dc

B . This highlights the efficiency improve-
ment introduced by Rollback reasoning, demon-
strating its ability to reduce unnecessary attempts

Method WebVoyager M2W SimQA

+ Dc
L 31.77 17.0 49.0

+ D̂c
L 19.22 9.4 49.0

Table 4: Ablation on the effect of cumulative training.
We fine-tune the LLM on D̂c

L, which applies look-ahead
planning CoT to all input queries rather than only the
flawed ones, and find that this leads to degraded perfor-
mance.

0 2000 4000 6000 8000
0

50

100

150

Co
un

t

webdreamer
branching

Figure 4: Distribution of generated token number per
query for WebDreamer (branching) and WEBCOT. A
significantly smaller number of reasoning tokens is re-
quired for our method.

and optimize task execution.

5.4.4 Effects of Cumulative Training

To validate our design choice of Cumulative Train-
ing, we conduct the following experiment: we con-
struct a variant dataset, D̂c

L, by refining all rea-
soning processes h in trajectories—both with and
without loops—from Drej . In contrast, Dc

L adheres
to the cumulative training principle outlined in Sec-
tion 4.4, refining h only in trajectories with loops
while leaving those without loops unchanged. The
results, shown in Table 4, demonstrate a significant
performance drop across nearly all benchmarks
when using D̂c

L. Furthermore, hallucination be-
havior is frequently observed in the trajectories
of LLAMA-3.3 fine-tuned by D̂c

L (detailed in the
Appendix F). These findings further validate the
effectiveness of our proposed design.

5.4.5 Token Efficiency of WEBCOT

Figure 4 shows the distribution of tokens gener-
ated per query for WEBCOT and WebDreamer on
the WebVoyager test set. WebCoT uses signifi-
cantly fewer tokens (mean: 422.2, median: 332.0)
compared to WebDreamer (mean: 2665.6, me-
dian: 1580.0), highlighting WebCoT’s efficiency
and lower computational overhead. These results
demonstrate that WebCoT achieves strong perfor-
mance with reduced resource requirements.

5162

6 Conclusion

We presented WEBCOT, a framework that en-
hances the reasoning ability of LLMs for web-
based agent tasks through reflection & lookahead,
branching, and rollback. By curating and fine-
tuning reasoning trajectories, WEBCOT can im-
prove the efficiency and task completion accuracy
by a large margin. Our experiments across bench-
marks such as WebVoyager, Mind2Web-Live, and
SimpleQA show significant performance gains over
baselines, including GPT-4o and QwQ-32B. These
results highlight the value of targeted reasoning
ability enhancements in bridging the gap between
human and machine web agents.

Limitations

Our work focuses on enhancing web agent rea-
soning through explicit reflection, branching, and
rollback mechanisms, but it does not include a
comparison with Reinforcement Learning (RL)-
based approaches. This omission is primarily due
to the challenges associated with real-world web
interactions, which are time-intensive and compu-
tationally expensive to simulate. Furthermore, real-
world web environment rollouts are inherently non-
deterministic, with variations in website behavior,
latency, and accessibility affecting the outcome of
RL experiments. These factors make direct com-
parisons with RL approaches infeasible within the
scope of this study. Future work could explore hy-
brid methods that combine our structured reasoning
framework with RL to further enhance web agent
performance.

Ethics Statement

This study was conducted in strict adherence to
community ethical guidelines. The web agent
datasets and benchmarks utilized in our research
are documented as being safe, free from discrimina-
tion, personally identifiable information, and other
potentially harmful content. Additionally, we took
great care in curating our instructions to the LLMs,
ensuring that tasks were strictly confined to web
navigation and excluded any activities that could
raise ethical concerns.

Acknowledgement

Two authors (i.e., Minda Hu, Irwin King) of the
work described in this paper were partially sup-
ported by the Research Grants Council of the

Hong Kong Special Administrative Region, China
(CUHK 2410072, RGC R1015-23). As the first au-
thor, I would like to express my heartfelt gratitude
to my family, co-authors, and advisor, Prof. Irwin
King, for their unwavering support and invaluable
guidance throughout this work.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang
Li, Sheila Babayan, Kavya Kopparapu, Zachary
Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srini-
vasan, Manzil Zaheer, Felix X. Yu, and Sanjiv Kumar.
2023. Rest meets react: Self-improvement for multi-
step reasoning LLM agent. CoRR, abs/2312.10003.

Anthropic. 2025. Claude 3.7 sonnet: Hybrid reason-
ing model. https://www.anthropic.com/news/
claude-3-7-sonnet. Accessed: 2025-04-18.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Justin Chih-Yao Chen, Swarnadeep Saha, Elias Stengel-
Eskin, and Mohit Bansal. 2024. Magdi: Struc-
tured distillation of multi-agent interaction graphs im-
proves reasoning in smaller language models. arXiv
preprint arXiv:2402.01620.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao
Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu,
Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao,
Nicholas Thumiger, Aditya Desai, Ion Stoica, Ana
Klimovic, Graham Neubig, and Joseph E. Gonzalez.
2025. The danger of overthinking: Examining the
reasoning-action dilemma in agentic tasks. CoRR,
abs/2502.08235.

Quy-Anh Dang and Chris Ngo. 2025. Reinforcement
learning for reasoning in small llms: What works and
what doesn’t. arXiv preprint arXiv:2503.16219.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,

5163

https://doi.org/10.48550/ARXIV.2312.10003
https://doi.org/10.48550/ARXIV.2312.10003
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.48550/ARXIV.2502.08235
https://doi.org/10.48550/ARXIV.2502.08235
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82
others. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Tianqing Fang, Hongming Zhang, Zhisong Zhang,
Kaixin Ma, Wenhao Yu, Haitao Mi, and Dong Yu.
2025a. Webevolver: Enhancing web agent self-
improvement with coevolving world model. arXiv
preprint arXiv:2504.21024.

Tianqing Fang, Zhisong Zhang, Xiaoyang Wang, Rui
Wang, Can Qin, Yuxuan Wan, Jun-Yu Ma, Ce Zhang,
Jiaqi Chen, Xiyun Li, and 1 others. 2025b. Cognitive
kernel-pro: A framework for deep research agents
and agent foundation models training. arXiv preprint
arXiv:2508.00414.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Yu Gu, Boyuan Zheng, Boyu Gou, Kai Zhang, Cheng
Chang, Sanjari Srivastava, Yanan Xie, Peng Qi, Huan
Sun, and Yu Su. 2024. Is your LLM secretly a world
model of the internet? model-based planning for web
agents. CoRR, abs/2411.06559.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. 2024a. Webvoyager: Building an end-to-
end web agent with large multimodal models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 6864–6890. Association for
Computational Linguistics.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu,
Hongming Zhang, Tianqing Fang, Zhenzhong Lan,
and Dong Yu. 2024b. Openwebvoyager: Build-
ing multimodal web agents via iterative real-world
exploration, feedback and optimization. CoRR,
abs/2410.19609.

Minda Hu, Licheng Zong, Hongru Wang, Jingyan Zhou,
Jingjing Li, Yichen Gao, Kam-Fai Wong, Yu Li, and
Irwin King. 2024. SeRTS: Self-rewarding tree search
for biomedical retrieval-augmented generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 1321–1335, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Zhiyuan Hu, Yibo Wang, Hanze Dong, Yuhui Xu, Am-
rita Saha, Caiming Xiong, Bryan Hooi, and Jun-
nan Li. 2025. Beyond ’aha!’: Toward systematic
meta-abilities alignment in large reasoning models.
Preprint, arXiv:2505.10554.

Mengzhao Jia, Wenhao Yu, Kaixin Ma, Tianqing Fang,
Zhihan Zhang, Siru Ouyang, Hongming Zhang,
Meng Jiang, and Dong Yu. 2024. Leopard: A vi-
sion language model for text-rich multi-image tasks.
CoRR, abs/2410.01744.

Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena
Karpinska, Mohit Iyyer, Amir Houmansadr, and
Eugene Bagdasarian. 2025. Overthinking: Slow-
down attacks on reasoning llms. arXiv preprint
arXiv:2502.02542.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yu-
tao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng
Dou. 2025. Webthinker: Empowering large reason-
ing models with deep research capability. Preprint,
arXiv:2504.21776.

Xinbin Liang, Jinyu Xiang, Zhaoyang Yu, Jiayi Zhang,
and Sirui Hong. 2025. Openmanus: An open-source
framework for building general ai agents. https:
//github.com/mannaandpoem/OpenManus.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu,
Xiaotian Han, Shengyu Zhang, Hongxia Yang, and
Fei Wu. 2025. Infigui-r1: Advancing multimodal gui
agents from reactive actors to deliberative reasoners.
arXiv preprint arXiv:2504.14239.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf,
Yann LeCun, and Thomas Scialom. 2024. GAIA: a
benchmark for general AI assistants. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Monica.Im. 2025. Manus ai. Technical report, Mon-
ica.Im.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer,
Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, and 244 others. 2024.
Openai o1 system card. Preprint, arXiv:2412.16720.

OpenAI. 2023. Gpt-4 technical report. Technical Re-
port. A large multimodal model capable of process-
ing image and text inputs and producing text outputs.
Achieves human-level performance on various pro-
fessional benchmarks including passing a simulated
bar exam in the top 10

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu
Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Awadallah. 2025. Explorer: Scaling
exploration-driven web trajectory synthesis for multi-
modal web agents. CoRR, abs/2502.11357.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei
Leng, Bing Jiang, Hangyu Liu, Yanyi Shang, Shuyan
Zhou, Tongshuang Wu, and Zhengyang Wu. 2024.
Webcanvas: Benchmarking web agents in online en-
vironments. CoRR, abs/2406.12373.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-
Condrei, Marius-Constantin Dinu, Chris Callison-
Burch, and Sepp Hochreiter. 2024. Large language
models can self-improve at web agent tasks. CoRR,
abs/2405.20309.

5164

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2411.06559
https://doi.org/10.48550/ARXIV.2411.06559
https://doi.org/10.48550/ARXIV.2411.06559
https://doi.org/10.18653/V1/2024.ACL-LONG.371
https://doi.org/10.18653/V1/2024.ACL-LONG.371
https://doi.org/10.48550/ARXIV.2410.19609
https://doi.org/10.48550/ARXIV.2410.19609
https://doi.org/10.48550/ARXIV.2410.19609
https://doi.org/10.18653/v1/2024.findings-emnlp.71
https://doi.org/10.18653/v1/2024.findings-emnlp.71
https://arxiv.org/abs/2505.10554
https://arxiv.org/abs/2505.10554
https://doi.org/10.48550/ARXIV.2410.01744
https://doi.org/10.48550/ARXIV.2410.01744
https://arxiv.org/abs/2504.21776
https://arxiv.org/abs/2504.21776
https://github.com/mannaandpoem/OpenManus
https://github.com/mannaandpoem/OpenManus
https://openreview.net/forum?id=fibxvahvs3
https://openreview.net/forum?id=fibxvahvs3
https://manus.im/
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.2502.11357
https://doi.org/10.48550/ARXIV.2502.11357
https://doi.org/10.48550/ARXIV.2502.11357
https://doi.org/10.48550/ARXIV.2406.12373
https://doi.org/10.48550/ARXIV.2406.12373
https://doi.org/10.48550/ARXIV.2405.20309
https://doi.org/10.48550/ARXIV.2405.20309

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao
Sun, Wenyi Zhao, Yu Yang, Xinyue Yang, Jiadai Sun,
Shuntian Yao, Tianjie Zhang, Wei Xu, Jie Tang, and
Yuxiao Dong. 2025. Webrl: Training llm web agents
via self-evolving online curriculum reinforcement
learning. Preprint, arXiv:2411.02337.

Qwen. 2025. Qwq-32b: A compact reasoning model
with reinforcement learning scaling. https://
huggingface.co/Qwen/QwQ-32B. Apache 2.0 Li-
cense. Model available at https://huggingface.
co/Qwen/QwQ-32B.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Joykirat Singh, Raghav Magazine, Yash Pandya, and
Akshay Nambi. 2025. Agentic reasoning and tool
integration for llms via reinforcement learning. arXiv
preprint arXiv:2505.01441.

Yixiao Song, Katherine Thai, Chau Minh Pham,
Yapei Chang, Mazin Nadaf, and Mohit Iyyer. 2025.
Bearcubs: A benchmark for computer-using web
agents. arXiv preprint arXiv:2503.07919.

Jinyan Su, Jennifer Healey, Preslav Nakov, and Claire
Cardie. 2025. Between underthinking and overthink-
ing: An empirical study of reasoning length and cor-
rectness in llms. arXiv preprint arXiv:2505.00127.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang
Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou
Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guo-
hao Li, Junxian He, Yu Qiao, and Zhiyong Wu.
2025. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. Preprint,
arXiv:2412.19723.

Brandon Trabucco, Gunnar A. Sigurdsson, Robinson
Piramuthu, and Ruslan Salakhutdinov. 2025. To-
wards internet-scale training for agents. CoRR,
abs/2502.06776.

Jason Wei, Nguyen Karina, Hyung Won Chung,
Yunxin Joy Jiao, Spencer Papay, Amelia Glaese, John
Schulman, and William Fedus. 2024. Measuring
short-form factuality in large language models. arXiv
preprint arXiv:2411.04368.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin
Lu, Liang Qiu, Changlong Yu, Puyang Xu, Chao
Zhang, Bing Yin, Hyokun Yun, and Lihong Li.

2025. Webagent-r1: Training web agents via end-
to-end multi-turn reinforcement learning. Preprint,
arXiv:2505.16421.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang,
Zekun Xi, Runnan Fang, Linhai Zhang, Yulan He,
Deyu Zhou, Pengjun Xie, and Fei Huang. 2025a.
Webwalker: Benchmarking llms in web traversal.
CoRR, abs/2501.07572.

Junde Wu, Jiayuan Zhu, and Yuyuan Liu. 2025b. Agen-
tic reasoning: Reasoning llms with tools for the deep
research. arXiv preprint arXiv:2502.04644.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui
Gong, Tianjian Ouyang, Fanjin Meng, and 1 others.
2025. Towards large reasoning models: A survey
of reinforced reasoning with large language models.
arXiv preprint arXiv:2501.09686.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang,
Zekun Wang, Yuchen Mao, Caiming Xiong, and Tao
Yu. 2024. Agenttrek: Agent trajectory synthesis via
guiding replay with web tutorials. arXiv preprint
arXiv:2412.09605.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Hongming Zhang, Ruixin Hong, and Dong Yu. 2025a.
Streaming looking ahead with token-level self-
reward. Preprint, arXiv:2503.00029.

Hongming Zhang, Xiaoman Pan, Hongwei Wang,
Kaixin Ma, Wenhao Yu, and Dong Yu. 2024a. Cog-
nitive kernel: An open-source agent system towards
generalist autopilots. CoRR, abs/2409.10277.

Yuxiang Zhang, Yuqi Yang, Jiangming Shu, Xinyan
Wen, and Jitao Sang. 2025b. Agent models: Inter-
nalizing chain-of-action generation into reasoning
models. arXiv preprint arXiv:2503.06580.

Zhisong Zhang, Tianqing Fang, Kaixin Ma, Wenhao Yu,
Hongming Zhang, Haitao Mi, and Dong Yu. 2025c.
Enhancing web agents with explicit rollback mecha-
nisms. Preprint, arXiv:2504.11788.

Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu.
2024b. Mmina: Benchmarking multihop multimodal
internet agents. CoRR, abs/2404.09992.

5165

https://arxiv.org/abs/2411.02337
https://arxiv.org/abs/2411.02337
https://arxiv.org/abs/2411.02337
https://huggingface.co/Qwen/QwQ-32B
https://huggingface.co/Qwen/QwQ-32B
https://huggingface.co/Qwen/QwQ-32B
https://huggingface.co/Qwen/QwQ-32B
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://arxiv.org/abs/2412.19723
https://arxiv.org/abs/2412.19723
https://doi.org/10.48550/ARXIV.2502.06776
https://doi.org/10.48550/ARXIV.2502.06776
https://arxiv.org/abs/2505.16421
https://arxiv.org/abs/2505.16421
https://doi.org/10.48550/ARXIV.2501.07572
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2503.00029
https://arxiv.org/abs/2503.00029
https://doi.org/10.48550/ARXIV.2409.10277
https://doi.org/10.48550/ARXIV.2409.10277
https://doi.org/10.48550/ARXIV.2409.10277
https://arxiv.org/abs/2504.11788
https://arxiv.org/abs/2504.11788
https://doi.org/10.48550/ARXIV.2404.09992
https://doi.org/10.48550/ARXIV.2404.09992

Zhonghan Zhao, Ke Ma, Wenhao Chai, Xuan Wang,
Kewei Chen, Dongxu Guo, Yanting Zhang, Hongwei
Wang, and Gaoang Wang. 2024. Do we really need a
complex agent system? distill embodied agent into a
single model. arXiv preprint arXiv:2404.04619.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024. Webarena: A realistic web en-
vironment for building autonomous agents. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

A Details of WebCoT Implementation

We provide additional details about the prompts
used for the web agent in our experiments. The
prompts are categorized as follows: {Prompt Re-
finement Hints}, {Environment Description},
and {Agent Hints}. These are provided in Table 8,
Table 9, and Table 10, respectively. The system-
level prompt used for web agent action generation
is detailed in Table 14. For the automatic evaluation
conducted using GPT-4O, the evaluation prompt is
listed in Table 11.

For the Reflection & Lookahead mechanism, the
prompt used to construct hLt is provided in Table 7.
Similarly, the prompt for the Rollback mechanism,
which involves constructing the rollback CoT, is
shown in Table 15.

All OpenAPI calls were configured with the fol-
lowing parameter settings: max_tokens was set to
1,000, the random seed was fixed at 42, and the
temperature was set to 0 to ensure reproducibility.

Regarding inference settings, max_tokens was
set to 10,240 for QWQ-32B and LLAMA-3.3-70B
+ QWQ DISTILL to accommodate their extended
reasoning capabilities, while it was limited to 2,048
for all other model variants. Across all experiments,
the temperature parameter was fixed at 0 to ensure
deterministic outputs and reproducibility.

In Table 5, we show the number of tokens and
API price induced for the whole WebCoT. This re-
sults in exceptionally low operational costs, making
our approach scalable, cost-effective, and practical
for real-world applications.

B Implementation Details of
WebDreamer

The prompt designs for proposing possible actions,

(h
(i)
t , a

(i)
t)

k

i=1, simulating the outcomes of these ac-
tions, and evaluating them based on the simulations

Method TOKEN NUM. PRICE $

REFLECTION 5,943,491 26.15
BRANCHING 289,886 1.28
ROLLBACK 54,233 0.24
TOTAL 6,287,610 27.67

Table 5: Generated token number and price (in USD)
from using GPT-4O-MINI in WebCoT.

Method WebVoyager M2W SimQA

REJ. SAMPLING 22.08 46.00 16.98
GPT-4O DISTILL 22.59 22.00 16.98
WEBCOT 25.52 47.00 18.87

Table 6: Performance of WebCoT on Qwen3 8B.

are provided in Table 16, Table 17, and Table 18,
respectively.

C Details of Finetuning

We use the Megatron-LM3 framework to finetune
all the models. On each dataset, one epoch is
trained, using a learning rate of 1e-5 and a batch
size of 64.

D Performance of WebCoT on Qwen3-8B

To assess WebCoT’s broader applicability, we con-
ducted supplementary experiments using QWEN3-
8B-INSTRUCT. The results in Table 6 show that
WebCoT maintains its performance advantage over
rejection sampling across all evaluated benchmarks.
These findings demonstrate that our fine-tuning
approach generalizes beyond LLAMA-3.3-70B-
INSTRUCT, confirming WebCoT’s robustness.

E Performance of GPT-4o Distillation

We also present the results of the baseline perfor-
mance of QWEN3-8B distilled from GPT-4O tra-
jectories in Table 6. Specifically, we sampled suc-
cessful trajectories generated by GPT-4o on the
training queries of the WebVoyager dataset and
fine-tuned the Qwen3 model under identical ex-
perimental settings. The results demonstrate that
WebCoT offers a clear advantage over GPT-4o dis-
tillation on the WebVoyager dataset. Interestingly,
we observe that GPT-4o distillation harms OOD
performance in the SimpleQA setting compared to
other baselines. This finding reinforces the con-
clusion that WebCoT fundamentally enhances the
generalizability of LLMs by introducing critical
cognitive behaviors absent in other approaches.

3https://github.com/NVIDIA/Megatron-LM

5166

https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

{Environment Description}

{Prompt Refinement Hints}

Chain of Thought demonstration: {htc}
The task: {q}
The navigation history: {τ}
The current observation (web page’s accessibility tree): {τt<tc}
The current action you are about to exactly choose: {atc}
The navigation lookahead: {τt>tc}

Please directly generate your thoughts and critiques.

Table 7: Prompt for constructing hL
t .

Please directly generate your chain of thoughts and critiques, and reasoning right before exactly choosing the given
current action {atc} according to the task, the navigation history/lookahead, and the current observation. Your thoughts
should be focused on: What important information for the task completion can be expected after performing the current
action based on the current observation within the broader navigation context? How does the current action, based
on the current observation, contribute to achieving the overall task goal within the broader context of the navigation
overview? How necessary is the current action based on the current observation for the task completion in the context of
the overall navigation overview? Additionally, provide a detailed plan outlining the next steps after completing the
current action, ensuring it aligns with the navigation overview.

Hints:
1. Be aware of the task’s constraints while offering your insights.
2. Try to avoid mentioning the current action at the beginning of the chain of thought.
3. Write the chain of thought supposing that the given current action has not been taken, and you are giving a look-ahead
of what will happen in the future.
4. Your chain of thought should be shorter as length of navigation lookahead decreases, which means you are closer to
the task completion.

Table 8: Prompt for {Prompt Refinement Hints}.

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based tasks.
These tasks will be accomplished through the use of specific actions you can issue.
Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current observation (web page’s accessibility tree): This is a simplified representation of the webpage, providing
key information. Optionally, you may be provided with a screenshot of the webpage. You should pay close attention to
the screenshot to make decisions.
The open tabs: These are the tabs you have open.
The previous actions: You can refer to the conversation history with the user to see the actions you have taken. It may
be helpful to track your progress.

The actions you can perform are the following:
‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field with id. By default, the "Enter"
key is pressed after typing unless press_enter_after is set to 0.
‘scroll [direction=down|up]‘: Scroll the page up or down.
‘goback‘: Navigate to the previously viewed page.
‘restart‘: Navigate to the original homepage at first. When you can’t find information on some websites, try starting
over from the beginning.
‘stop [answer]‘: Issue this action when you believe the task is complete. If the objective is to find a text-based answer,
provide the answer in the bracket. If you believe the task is impossible to complete, provide the answer as "N/A" in the
bracket.

Table 9: Prompt for {Environment Description}.

5167

To be successful, it is very important to follow the following rules:
1. If you are uncertain about the next action, follow these steps: First, generate up to three of the most likely and valid
actions based on the current observation. Then, for each of these possible actions, simulate and describe the expected
future outcome in free text, detailing the next observation that would result from performing the action. Next, evaluate
the correctness of each action by considering both the current observation and the simulated future results. Assign a
numerical score from 0 to 1 to indicate the likelihood of correctness for each action: a score of 1.0 means "complete",
0.5 means "on track", and 0 means "incorrect". Provide your rationale for each score before assigning it. Finally, select
and output the action with the highest score from the evaluated actions.
2. You should only issue an action that is valid given the current observation. For example, you should NOT type into
buttons or click on statictext.
3. You should only issue one action at a time.
4. STRICTLY Avoid repeating the same action if the webpage remains unchanged. You may have selected the wrong
web element or numerical label.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop.
6. If you ever need to login, login with Google. Try to skip any follow-up questions that may appear after logging in.
Your reply should strictly follow the format:

<think>
1. Thought: {{Your brief thoughts (briefly summarize the info that will help complete the task)}}
Possible Step: {{One of the logical and valid actions to take based on the current observation.}}
Simulated Output: {{A prediction of what the next observation or result will be after performing the action.}}
Critic Evaluation: {{Your rationale on the effectiveness of the action as well as a score from 0 (poor performance) to 1
(excellent performance), judging the corresponding action’s s effectiveness.}}
2. ... (continue with subsequent steps as needed in the same format)
</think> (Optional: You can choose to include the steps between ‘<think>‘ and ‘</think>‘ if necessary or skip them
based on the task’s complexity.)

Thought: Your brief thoughts (briefly summarize the info that will help complete the task) Action: “‘The final action
you choose to take in the process.“‘

Table 10: Prompt for {Agent Hints}.

As an evaluator, you will be presented with three primary components to assist you in your role:
1. Web Task Instruction: This is a clear and specific directive provided in natural language, detailing the online activity
to be carried out. These requirements may include conducting searches, verifying information, comparing prices,
checking availability, or any other action relevant to the specified web service (such as Amazon, Apple, ArXiv, BBC
News, Booking etc).
2. Result Webpage Accessibility Tree: This is a representation of the web page showing the result or intermediate state
of performing a web task. It serves as proof of the actions taken in response to the instruction.
3. Result Response: This is a textual response obtained after the execution of the web task. It serves as textual result in
response to the instruction.

– You DO NOT NEED to interact with web pages or perform actions such as booking flights or conducting
searches on websites.
– You SHOULD NOT make assumptions based on information not presented in the webpage when comparing it to the
instructions.
– Your primary responsibility is to conduct a thorough assessment of the web task instruction against the outcome
depicted in the screenshot and in the response, evaluating whether the actions taken align with the given instructions.
– NOTE that the instruction may involve more than one task, for example, locating the garage and summarizing the
review. Failing to complete either task, such as not providing a summary, should be considered unsuccessful.
– NOTE that the screenshot is authentic, but the response provided by LLM is generated at the end of web browsing, and
there may be discrepancies between the text and the screenshots.
– Note the difference:
1) Result response may contradict the screenshot, then the content of the screenshot prevails, 2) The content in the
Result response is not mentioned on the screenshot, choose to believe the content.

You should elaborate on how you arrived at your final evaluation and then provide a definitive verdict on
whether the task has been successfully accomplished, either as ’SUCCESS’ or ’NOT SUCCESS’.

Table 11: Prompt for GPT-4o automatic evaluation.

5168

<think>
......
k. Thought: {h(k)

t }
Possible Step: {a(k)

t }
Simulated Output: {sim(oj , a

(k)
t)}

Critic Evaluation: {score(sim(oj , a
(k)
t))}

</think>

Thought: {h(I)
t }

Table 12: Template of constructing hB
t .

{Environment Description}

{Agent Hints}

Previously, the action "{aj}" has been attempted. Please explore a different action.

Table 13: Prompt for generating alternative thoughts and actions.

{Environment Description}

{Agent Hints}

Table 14: System prompt for web agent.

{Environment Description}

{Agent Hints}

Previously, the action "{a′
j}" has been attempted, and this action will not lead to the task completion. Please provide an

action for going back to the last observation following the aforementioned format. Give your brief reason why this
action cannot help to complete the task.

Last Observation: {oj}
Current Observation: {o′j+1}

Table 15: Prompt for constructing Rollback CoT.

{Environment Description}

{Agent Hints}

Please generate actions different from {(h(i)
t , a

(i)
t)}k−1

i=1 .

Table 16: Prompt for proposing (h
(k)
t , a

(k)
t) in WebDreamer.

F Case Study of Hallucination

Table 19 presents two common types of hallucina-
tion errors observed in the web agent fine-tuned on
D̂c

L. In the first example, the agent fabricates the

statement: “the price starts at $799 for the 128G
model,” despite the fact that “128G” does not exist
in the webpage observation. The second example
demonstrates a hallucination in the accessibility
tree, where the agent incorrectly assumes the exis-

5169

You are a web server. You are given the current observed accessibility tree of the web page, and an action to perform.
The expected output is a short description on what the next observation is, in the form of free text.

The definitions of the actions are as follows: The actions you can perform are the following:
‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field with id. By default, the "Enter"
key is pressed after typing unless press_enter_after is set to 0.
‘scroll [direction=down|up]‘: Scroll the page up or down.
‘goback‘: Navigate to the previously viewed page.
‘restart‘: Navigate to the original home page and restart the action.

Table 17: Prompt for action simulation in WebDreamer.

You are an evaluator of a web agent task, evaluating the correctness of the action, conditioned on the current observation
and a simulated future result.
You are given the task query, the current observed accessibility tree, the action performed, and a textual description of
the simulated output after performing this action.
You are expected to give a numerical score (0 to 1) to indicate whether the simulated output is correct. The higher the
score, the more likely the action is correct.

Here are some example scores: complete (1.0), on track (0.5), or incorrect (0).
Output your rationale first and then the score.

Output format:
Thought: XXXX. Score: {a score from 0 to 1}.

Table 18: Prompt for action evaluation in WebDreamer.

tence of an element with ID [11] to click, whereas
the webpage’s maximum element ID is only 5.

G Case Comparison between WebCoT
and Rejection Sampling

Here we include a case comparison in Table 20
demonstrating scenarios where WebCoT-optimized
LLMs outperform baseline models in web naviga-
tion tasks. For example, in the task Find out which
musician made the headlines in Music News, the
WebCoT variant exhibited a deeper understanding
of the webpage interface. When the "Music" but-
ton was not explicitly available on the page, the
WebCoT model correctly inferred that the relevant
link could be found under the "Culture" section.
In contrast, the rejection sampling baseline began
to hallucinate and erroneously selected the [15]
"Travel" link instead.

H Additional Details on Mind2web-live
and WebVoyager Dataset

We conduct our evaluations using a subset of the
testing portion of Mind2Web-Live4 and WebVoy-

4https://huggingface.co/datasets/iMeanAI/
Mind2Web-Live/blob/main/mind2web-live_test_
20241024.json

ager5. The list of websites that are excluded is in
Table 21.

5https://github.com/MinorJerry/WebVoyager/
blob/main/data/WebVoyager_data.jsonl

5170

https://huggingface.co/datasets/iMeanAI/Mind2Web-Live/blob/main/mind2web-live_test_20241024.json
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live/blob/main/mind2web-live_test_20241024.json
https://huggingface.co/datasets/iMeanAI/Mind2Web-Live/blob/main/mind2web-live_test_20241024.json
https://github.com/MinorJerry/WebVoyager/blob/main/data/WebVoyager_data.jsonl
https://github.com/MinorJerry/WebVoyager/blob/main/data/WebVoyager_data.jsonl

OBJECTIVE: latest iPhone model price and screen size comparison between iPhone Pro and iPhone
Pro Max
OBSERVATION: Tab 0 (current): Apple[1] RootWebArea ’iPhone - Apple’ focused: true[2] navigation
’Global’[3] link ’Apple’[4] link ’Store’[5] button ’Store menu’ expanded: false[6] link ’Mac’[7]
button ’Mac menu’ expanded: false[8] link ’iPad’[9] button ’iPad menu’ expanded: false[10]
link ’iPhone’[11] button ’iPhone menu’ expanded: false[12] link ’Watch’[13] button ’Watch menu’
expanded: false[14] link ’Vision’[15] button ’Vision menu’ expanded: false[16] link ’AirPods’[17]
button ’AirPods menu’ expanded: false[18] link ’TV and Home’[19] StaticText ’TV & Home’[20]
button ’TV and Home menu’ expanded: false[21] link ’Entertainment’[22] button ’Entertainment
menu’ expanded: false[23] link ’Accessories’[24] button ’Accessories menu’ expanded: false[25]
link ’Support’[26] button ’Support menu’ expanded: false[27] button ’Search apple.com’[28] button
’Shopping Bag’[29] link ’iPhone 16 Pro’[30] link ’iPhone 16’[31] link ’iPhone 16e New’[32] link
’iPhone 15’[33] link ’Compare’[34] link ’AirPods’[35] link ’AirTag’[36] link ’Accessories’[37]
link ’Apple Card’[38] link ’iOS 18’[39] link ’Shop iPhone’[40] StaticText ’Get $170–’[41]
StaticText ’$630 in credit toward iPhone 16 or iPhone 16 Pro when you trade in iPhone 12 or
higher.’[42] link ’Footnote * symbol’[43] link ’Shop iPhone’[44] StaticText ’Designed to be
loved.’[45] button ’Play iPhone 16 lineup animation’
THOUGHT: The current observation indicates that I am on the page for the iPhone 16 Pro, which
is the latest model in the iPhone series. The page provides essential details about the device,
including its price, which is listed as starting at $799 for the 128GB model. This information
is crucial for completing the task, as it directly answers the question regarding the latest
model and its price. Given that the task is to find the latest model of the iPhone and its price,
the current action of stopping and providing the answer is both necessary and sufficient. The
navigation history shows that I have successfully navigated to the relevant page and retrieved
the required information. There are no further actions needed, as I have already obtained the
answer to the task. After completing this action, there are no additional steps required, as
the task will be considered complete. The answer will be provided in the specified format, and
I can conclude the navigation process. In summary, the current action is essential for task
completion, and since I have all the necessary information, I can confidently proceed to stop
and provide the answer.
ACTION: “‘stop [The latest model of the iPhone is the iPhone 16 Pro, and its price starts at
$799 for the 128GB model.]“‘

OBJECTIVE: A 175cm tall, 85kg, 40yo man climbs 2500 steps at about 18cm per step and 40 steps
per minute metabolic properties"
OBSERVATION: Tab 0 (current): Wolfram|Alpha: Computational Intelligence[1] RootWebArea
’Wolfram|Alpha: Computational Intelligence’ focused: true[2] button ’UPGRADE TO PRO’ hasPopup:
menu expanded: false[3] button ’APPS’ hasPopup: menu expanded: false[4] link ’TOUR’[5] button
’Sign in’
THOUGHT: The current observation indicates that the input query regarding the energy expenditure
of a 40-year-old male has been successfully entered into the Wolfram Alpha input field. The
next logical step is to click the "Compute input button" (identified as button [11]), which will
trigger the computation necessary to provide the answer to the query. By clicking this button,
I expect to be directed to a results page that will contain the calculated energy expenditure
for the specified activity. This action is crucial for progressing towards the task completion,
as it directly leads to the acquisition of the desired information. Without this step, the task
would remain unfulfilled, as I would not receive the answer needed.After performing the click
action, the immediate next steps would involve examining the results presented on the following
page. I would look for the specific answer regarding the energy expenditure, which should be
prominently displayed. If the answer is clear and satisfactory, I would then proceed to stop
the task and provide the final answer. If the results are unclear or do not address the question
adequately, I may need to consider alternative actions, such as refining the query or seeking
additional information. However, given the context, it is likely that the results will provide
the necessary information to complete the task.
ACTION: “‘click [11]“‘

Table 19: Examples of hallucination in D̂c
L. Parts with hallucination are marked in red.

5171

OBSERVATION:
Tab 0 (current): BBC News - Breaking news, video and the latest top stories from the U.S. and
around the world

[1] RootWebArea ’BBC News - Breaking news, video and the latest top stories from the
U.S. and around the world’ focused: true
- [2] button ’Open menu’
.........
- [11] link ’Business’
- [12] link ’Innovation’
- [13] link ’Culture’
- [14] link ’Arts’
- [15] link ’Travel’
- [16] link ’Earth’
- [17] link ’Audio’
- [18] link ’Video’
- [19] link ’Live’
.........
- [31] link ’BBC InDepth’
- [32] button ’More’

OBJECTIVE: Find out which musician made the headlines in Music News. Please interact with the
BBC News website.
THOUGHT: The current page is the homepage of BBC News, and the objective is to locate
musician-related headlines in Music News. To achieve this, I need to navigate to the "Music"
section.
ACTION: click [15] (Incorrectly selects the "Travel" link due to hallucination.)

OBSERVATION:
Tab 0 (current): BBC News - Breaking news, video and the latest top stories from the U.S. and
around the world

[1] RootWebArea ’BBC News - Breaking news, video and the latest top stories from the
U.S. and around the world’ focused: true
- [2] button ’Open menu’
.........
- [11] link ’Business’
- [12] link ’Innovation’
- [13] link ’Culture’
- [14] link ’Arts’
- [15] link ’Travel’
- [16] link ’Earth’
- [17] link ’Audio’
- [18] link ’Video’
- [19] link ’Live’
.........
- [31] link ’BBC InDepth’
- [32] button ’More’

OBJECTIVE: Find out which musician made the headlines in Music News. Please interact with the
BBC News Website.
THOUGHT: To find Music News, I need to navigate to the "Music" section. Although there is no
direct link to "Music," the "Culture" link might lead to music-related news.
ACTION: click [13] (Correctly selects the "Culture" link, demonstrating inference capability.)

Table 20: Case comparison between rejected sampling baseline (upper half) and WebCoT (lower half). Parts with
hallucination are marked in red, and correct ones are colored in cyan.

5172

EXCLUDED_WEBSITES_MIND2WEB = { ’exploretock’, ’kohls’, ’united’, ’parking’, ’viator’,
’delta’, ’redbox’, ’soundcloud’, ’gamestop’, ’travelzoo’, ’amctheatres’, ’ryanair’,
’cargurus’, ’resy’, ’rentalcars’, ’kbb’, ’cabelas’, ’menards’, ’yellowpages’, ’tripadvisor’,
’tiktok.music’, ’stubhub’, ’thumbtack’, ’weather’, ’uhaul’, ’health.usnews’, ’healthgrades’,
’theweathernetwork’, ’zocdoc’, ’usnews.education’, ’epicurious’, ’osu.edu’, ’ups’,
’dmv.virginia.gov’, ’extraspace’, ’finance.yahoo’, ’pinterest’, ’sixflags’, ’spothero’,
’justice.gov’, ’foxsports’, ’ign’, ’koa’, ’tvguide’, ’webmd’, ’sports.yahoo’, ’babycenter’,
’tesla’, }
EXCLUDED_WEBSITES_WEBVOYAGER = { ’booking’, ’espn’, ’amazon’, ’google’, ’googleflight’,
’allrecipes’, ’cambridgedictionary’ }

Table 21: List of omitted websites.

5173

