
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 5098–5110
November 4-9, 2025 ©2025 Association for Computational Linguistics

CoRanking: Collaborative Ranking with Small and Large Ranking
Agents

Wenhan Liu1, Xinyu Ma2, Yutao Zhu1, Lixin Su2, Shuaiqiang Wang2

Dawei Yin2 and Zhicheng Dou1*

1Gaoling School of Artificial Intelligence, Renmin University of China
2Baidu Inc., Beijing, China

lwh@ruc.edu.cn, xinyuma2016@gmail.com, dou@ruc.edu.cn

Abstract

Listwise ranking based on Large Language
Models (LLMs) has achieved state-of-the-art
performance in Information Retrieval (IR).
However, their effectiveness often depends
on LLMs with massive parameter scales and
computationally expensive sliding window pro-
cessing, leading to substantial efficiency bot-
tlenecks. In this paper, we propose a Col-
laborative Ranking framework (CoRanking)
for LLM-based listwise ranking. Specifically,
we strategically combine an efficient small
reranker and an effective large reranker for
collaborative ranking. The small reranker per-
forms initial passage ranking, effectively filter-
ing the passage set to a condensed top-k list
(e.g., top-20 passages), and the large reranker
(with stronger ranking capability) then reranks
only this condensed subset rather than the full
list, significantly improving efficiency. We fur-
ther address that directly passing the top-ranked
passages from the small reranker to the large
reranker is suboptimal because of the LLM’s
strong positional bias in processing input se-
quences. To resolve this issue, we propose a
passage order adjuster learned by RL that dy-
namically reorders the top passages returned by
the small reranker to better align with the large
LLM’s input preferences. Our extensive experi-
ments across three IR benchmarks demonstrate
that CoRanking achieves superior efficiency, re-
ducing ranking latency by approximately 70%
while simultaneously improving effectiveness,
compared to the standalone large reranker.

1 Introduction

In recent years, many studies (Liu et al., 2024c; Sun
et al., 2023; Zhu et al., 2023) have demonstrated
strong zero-shot passage ranking capabilities of
large language models (LLMs). A typical approach
is listwise ranking, which feeds the query and a list
of passages into an LLM and instructs it to output

*Corresponding author.

a ranked list of passage IDs in descending order
of relevance. This approach has established state-
of-the-art performance (Sun et al., 2023) on major
IR benchmarks, including TREC (Craswell et al.,
2020b) and BEIR (Thakur et al., 2021).

Despite its effectiveness, LLM listwise passage
ranking faces critical efficiency challenges, as il-
lustrated in Figure 1(A), primarily stemming from
two factors: First, its state-of-the-art performance
relies on LLMs with massive parameters (such as
Qwen2.5-72B or GPT-4), which introduces sig-
nificant computational overhead and results in an
efficiency issue. Second, due to the limitation of
the context length of LLMs, existing listwise rank-
ing methods typically employ a sliding window
strategy (Sun et al., 2023). With a fixed window
size (e.g., 20 passages) and step size (e.g., 10 pas-
sages), this strategy bubbles the relevant passages
that are initially lowly ranked to the top. However,
the interdependence between windows hinders the
parallelization of sliding windows, which results in
many repetitive and sequential rankings of sliding
windows (e.g., totally 9 sliding windows if window
size and step size are set as 20 and 10 when rank-
ing the top 20 from 100 passages) and creates an
efficiency bottleneck (especially when employing
LLMs with massive parameters).

The sliding window strategy of LLM reranker
primarily serves to elevate initially low-ranked rele-
vant passages into the final reranking window (e.g.,
top 20). We believe that this repetitive and ineffi-
cient process could be replaced by a small listwise
reranker.1 By utilizing a small listwise reranker to
pre-rank the whole list of passages (e.g., 100 pas-
sages) using a sliding window strategy, the large
listwise reranker, which has stronger ranking ca-
pability, only needs to rerank the passages in the
final window (i.e., containing the top 20 passages).

1In this work, we consider models with parameters less
than or equal to 3B as small rerankers.

5098



Rank 100

Rank 20

(A) Large Listwise Reranker (B) Naive Collaboration (C) CoRanking (Ours)

Large Listwise Reranker

Small Listwise Reranker

Passage Order Adjuster

…

Rank 100

…

…

…

… …

Rank 20

Rank 20

… …

…

… …

Rank 100

… …

… …

Relevant Passage

Irrelevant Passage

Large Reranker Calls

Small Reranker Calls
Efficiency

Effectiveness

(B) (C)

1
9

1
10

(A)

9
0

RL

Figure 1: (A) Large Listwise Reranker: Apply a large listwise reranker to rerank 20 passages from 100 candidates
based on a sliding window strategy. (B) Naive Collaboration: Pre-rank 100 passages with a small listwise reranker
using a sliding window strategy, then rerank the top 20 with a large listwise reranker. (C) CoRanking: Pre-rank 100
passages with a small reranker using a sliding window strategy, adjust the order of the top 20 via the passage order
adjuster, then rerank them with the large listwise reranker. “Large/Small Reranker Calls” represents the number of
sliding windows for listwise ranking.

This hybrid approach could dramatically reduce
computational costs and improve efficiency.

However, existing small listwise rerankers are
mainly trained on golden lists whose passages are
ranked solely based on relevance (Pradeep et al.,
2023b,a). We argue that directly feeding the top-
ranked passages returned by these small listwise
rerankers into a large listwise reranker may lead to
sub-optimal performance (see Figure 1 (B)). This
is because the effectiveness of a listwise reranker
has a complex relationship with the order of in-
put passages, rather than being determined exclu-
sively by their relevance, as indicated by existing
studies (Sun et al., 2023; Tang et al., 2024). For
example, Tang et al. (2024) reveal that relevant
passages appearing in the middle of the list tend
to be ranked at the bottom by the listwise reranker.
This stems from LLMs’ pre-training biases toward
the positions of input tokens (Liu et al., 2024a).
While the passage order generated by the small
listwise reranker, which is trained using relevance-
based ranking, may deviate from the large listwise
reranker’s order preference. To address this is-
sue, we introduce a passage order adjuster (also
a small listwise reranker) to rerank the top-ranked
passages from the small listwise reranker so that
they align with the order preference of the large
listwise reranker (see Figure 1 (C)).

More specifically, we propose a collaborative
ranking framework, namely CoRanking, that inte-
grates small and large ranking models to perform
passage ranking in a multi-stage manner. In the
first stage, we train a small listwise reranker (SLR)
to pre-rank all the passages to elevate the relevant

passages to the top part of the list (e.g., top-20).
Different from existing methods (Pradeep et al.,
2023a,b) that solely use teacher-generated ranking
lists as training labels, we propose a human-label-
enhanced method to improve the ranking quality. In
the second stage, we train a passage order adjuster
(POA) using the reinforcement learning algorithm
DPO. The POA reorders the top-ranked passages to
align with the large listwise reranker’s order prefer-
ence. In addition, we design a significance-aware
selection strategy S3 to build high-quality prefer-
ence pairs for DPO training. In the third stage, a
large listwise reranker is used to further rerank the
top-ranked passages, enhancing the overall ranking
effectiveness. Extensive experiments on diverse
IR benchmarks demonstrate that our CoRanking
framework achieves a 70% reduction in ranking
latency while maintaining superior effectiveness,
compared to a standalone large listwise reranker.

Our contributions are summarized as follows:
(1) We propose a ranking framework, CoRank-

ing, that enables small and large LLMs to collabo-
rate, thereby achieving efficient and effective pas-
sage ranking.

(2) We propose a novel passage order adjuster
(POA) that aligns the output passages of the small
listwise reranker with the order preference of the
large listwise reranker. We further design the S3

strategy, which builds valuable preference pairs for
POA’s training.

(3) We conduct extensive experiments on diverse
IR benchmarks, and the results demonstrate that
our CoRanking achieves a significant efficiency im-
provement compared to a standalone large listwise

5099



reranker while exhibiting superior performance.

2 Methodology

In this section, we present a collaborative ranking
framework CoRanking that integrates both small
and large passage rerankers. As illustrated in Fig-
ure 2, the framework comprises three key compo-
nents: (1) a small listwise reranker, (2) a passage
order adjuster, and (3) a large listwise reranker.
Next, we will introduce the definition of the rank-
ing task, the inference process of CoRanking, and
the training details.

2.1 Task Definition

The aim of passage ranking is to rerank a list of
retrieved passages [p1, . . . , pN ] based on their rele-
vance to a query q. The listwise ranking approach
takes both q and a set of passages as input, and
generates a reranked sequence of passage IDs (e.g.,
[4] [2]. . . ). Due to the constraints of LLMs’ in-
put length, existing listwise ranking approaches
typically employ a sliding window strategy that
iteratively processes passage subsets. Specifically,
this strategy applies a window of size w that moves
from the end to the beginning of the passage list
with a step size s, dynamically promoting relevant
passages to higher positions. Following previous
studies (Sun et al., 2023), we set the total number
of passages N to 100, with window size w and step
size s set to 20 and 10, respectively.

2.2 Inference Process of CoRanking

Given the passages to rerank, our CoRanking (see
Figure 2) first applies the small listwise reranker to
pre-rank all the passages using a sliding window
strategy. Then, we use the passage order adjuster
to rerank the top-20 passages in a listwise man-
ner, so that their order meets the preference of the
large listwise reranker. Finally, the large listwise
reranker is applied to further rerank the top-20 pas-
sages to obtain the final ranking list. This avoids
the large listwise reranker’s inefficient sliding win-
dow operations on all 100 passages, significantly
improving ranking efficiency. The specific prompt
template for a large listwise reranker is provided
in Appendix A, which is consistent with previous
studies (Pradeep et al., 2023b; Liu et al., 2024c). In
the following, we will illustrate the training details
of our small listwise reranker and passage order
adjuster.

2.3 Small Listwise Reranker (SLR)
To mitigate the latency and computational overhead
of the large listwise reranker (denoted as LLR), we
propose using a small listwise reranker (denoted
as SLR) to pre-rank the entire passage list. The
SLR aims to elevate relevant passages into the final
sliding window (i.e., the top-20 passages), thereby
reducing the number of LLR’s sliding window iter-
ations. Here we adopt listwise training because we
find that it performs better than other approaches
(e.g., pointwise training (Nogueira and Cho, 2019)),
and the SFT-trained SLR naturally serves as the ini-
tialization for our listwise passage order adjuster,
which will be detailed in Section 2.4.
Training Label Conventional listwise reranker
training typically employs knowledge distilla-
tion (Pradeep et al., 2023a,b), which uses a
strong teacher model (e.g., GPT-4) to rerank
BM25-retrieved top-20 passages, with the teacher-
generated rankings serving as supervised fine-
tuning (SFT) labels. However, the teacher model
can not perform consistently well across all queries,
such as long-tail queries, which can result in sub-
optimal performance. To further improve the SFT
label, we propose a human-label-enhanced ranking
construction (HRC) method that improves teacher-
generated rankings with human labels.

Specifically, we first iteratively rerank BM25-
retrieved top-20 passages M times using a pow-
erful teacher model in a listwise manner, where
the (i+ 1)-th reranking input is the output ranking
from the i-th iteration. In this paper, we apply LLR
as our teacher model and set the maximum itera-
tion number to 5. This progressive reranking ap-
proach is motivated by prior studies (Pradeep et al.,
2023b,a) which reveal that iteratively reranking en-
ables gradual improvement of ranking lists. Then,
we choose the ranking where human-annotated rel-
evant passages are ranked at the top (i.e., NDCG=1)
during the iteration process as the gold ranking.
Training Loss After obtaining the gold ranking,
we concatenate the query q and the candidate pas-
sages [p1, . . . , pN ] together as the training input x
and optimize our SLR by minimizing the standard
language modeling loss L:

L = −
|y|∑

i=1

log(Pθ(yi | x, y<i)), (1)

x = q ◦ [1] ◦ p1 ◦ [2] ◦ p2 . . . [N] ◦ pN , (2)

where [i] represents the ID of passage pi and y is
the gold ranking label (e.g., “[4] [2] . . . ”).

5100



...201 2

...1 25

Rank 100

…

Large Listwise Reranker (LLR)

Small Listwise Reranker (SLR)

Passage Order Adjuster (POA)

1001 20…

1001 20 …

10020 1 …

Rank 20

Rank 20

100 20 1 …

… …

NDCG=1

...20 3
Gold Ranking

... 201 2
Candidates ...201 2

...20 1 2

...

Prediction 𝐿𝐿
...20 1 2

...202 1

...

Output Ranking 𝐿𝐿𝐿

Evaluate

Rewards

1.0

0.8

S3 Strategy
Significance of winner
Significant reward gap

…

Preference Pairs

...201 2

...201 2

+ …
Input

1 20

+ …
Input

1 20
1

Legend

ith ranking i + 1th ranking

...201 2

...120 2

...1 20 2

Winner

Loser

Loser
...

Inference Training
Small Listwise Reranker

Evaluate

Passage Order Adjuster

Human-label-enhanced Ranking Construction

gap< 𝜇𝜇

gap≥ 𝜇𝜇

Supervised Finetuning

Reinforcement Learning

Rewards

LLR

LLRSLR

POA

SLR
(Sliding windows)

Figure 2: The “Inference” part shows how our CoRanking works with both large and small listwise rerankers. As for
training of the small listwise reranker, we design a human-label-enhanced ranking construction method to generate
gold rankings for supervised fine-tuning. As for training the passage order adjuster, we proposed the S3 strategy to
obtain high-quality preference pairs for DPO reinforcement learning.

2.4 Passage Order Adjuster (POA)
While our SLR is trained to rank relevant passages
at the top of the list, the order of top-ranked pas-
sages (i.e., the top-20 passages) may not align well
with the order preference of LLR. To address this
issue, we employ a reinforcement learning (RL) al-
gorithm to train a passage order adjuster POA based
on LLR’s feedback to rerank these top-ranked pas-
sages. We adopt the Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) algorithm for
its optimization stability. The following sections
elaborate on the construction of DPO training data
and model optimization.
Training Data The training data of DPO consists
of a series of prediction pairs. Each prediction pair
contains a winner and a loser prediction, namely, a
passage ID list. The reward R for each prediction
L is computed by feeding L to LLR and evaluating
the ranking metric M of LLR’s output ranking L′

based on human-annotated relevance label y:

R = M(L′, y), (3)

where we use NDCG@10 as our metric M .
We apply our trained SLR to rerank BM25-

retrieved top-100 passages with a sliding window
strategy for training queries and use the top-20

reranked passages as training candidate passages,
which aims to align with the input passage distribu-
tion encountered by POA during inference. To gen-
erate the preference pairs for training POA, we first
sample m predictions from SLR by taking the can-
didates as the input, then evaluate these predictions
through Equation 3. After that, the highest-reward
list is selected as the winner prediction, while oth-
ers serve as loser predictions. Next, we pair the
winner prediction with all the loser predictions to
construct initial training preference pairs.

To ensure the quality of these preference pairs,
we introduce a significance-aware selection strat-
egy S3 to filter out low-quality pairs. Specifically,
the S3 strategy follows two rules: (1) Significance
of Winner: The reward of the winner prediction
must be 1 and exceed LLR’s ranking metric (i.e.,
the NDCG@10 of directly use LLR to rerank the
candidate passages), ensuring the winner predic-
tion provides positive improvement for final rerank-
ing of LLR; (2) Significant Gap between winner
and loser: The reward difference between win-
ner prediction and loser prediction must exceed a
threshold µ, eliminating noisy pairs with marginal
differences.

Optimization Given constructed preference

5101



pairs, we optimize POA using the following DPO
objective:

LDPO = − E
x,yw,yl

[
log σ

(
β log

πw
θ π

t
f

πw
f π

t
θ

)]
, (4)

πw
θ = πθ(yw | x), πt

f = πf (yl | x), (5)

πw
f = πf (yw | x), πt

θ = πθ(yl | x), (6)

where x represents the training input whose for-
mat is the same as Equation (2). yw, yl represent
the winner prediction and loser prediction, respec-
tively. πθ is the policy model to be optimized, and
πf is the original policy model, which is initial-
ized with our trained SLR. The frozen πf acts as a
regularizer to maintain generation stability during
optimization, and β balances preference alignment
and regularization towards πf .

3 Experiments

3.1 Setting
Evaluation Datasets We evaluate our frame-
work on three established information retrieval
benchmarks: TREC DL (Craswell et al., 2020b),
BEIR (Thakur et al., 2021), and BRIGHT (Su et al.,
2024). For the TREC DL benchmark, we adopt the
TREC Deep Learning 2019 (DL19) (Craswell et al.,
2020b) and 2020 (DL20) (Craswell et al., 2020a)
datasets derived from MS MARCO v1. The BEIR
benchmark (Thakur et al., 2021) is selected to eval-
uate cross-domain generalization capabilities. We
choose three representative datasets: TREC-Covid,
Robust04, and Trec-News. BRIGHT (Su et al.,
2024) is a reasoning-intensive IR benchmark whose
relevance assessment transcends simplistic key-
word matching or semantic similarity, instead de-
manding intentional and deliberate reasoning. We
choose Economics, Earth Science, and Robotics
datasets for evaluation. The detailed descriptions
of each dataset will be provided in Appendix B.

Implementation Details As for the supervised
fine-tuning of our SLR, we use Qwen2.5-3B-
Instruct as the backbone model. The training
queries consist of a total of 2k queries sampled
from the MS MARCO training set. We utilize
Qwen2.5-72B-Instruct2 as our teacher model to
SFT our SLR and also employ it as the LLR model
throughout this study unless otherwise specified.
As for the RL training of POA, we use our trained

2https://huggingface.co/Qwen/Qwen2.
5-72B-Instruct-GPTQ-Int4

SLR for model initialization. We set the threshold
µ as 0.4 and generate about 12k preference pairs
from 2k queries for the DPO algorithm. Please see
the Appendix D for more implementation details.

Baselines We compare our framework against
a series of baselines, which can be divided into
two parts: (1) Single reranker, (2) Collabora-
tive rerankers (i.e.reranking with small and large
rerankers).

As for single reranker, we compare
our trained SLR with a series of state-
of-the-art supervised rerankers, including
monoBERT (340M) (Nogueira and Cho,
2019), monoT5 (3B) (Nogueira et al.,
2020), RankT5 (3B) (Zhuang et al., 2023b),
RankVicuna (7B) (Pradeep et al., 2023a),
RankZephyr (7B) (Pradeep et al., 2023b) and
RankMistral100 (Liu et al., 2024c). The first
three are pointwise rerankers trained from human
labels in the MS MARCO dataset (Nguyen et al.,
2016). The last three are listwise rerankers which
are distilled from GPT-3.5, GPT-4, and GPT-4o,
respectively. To ensure more fair comparison with
SLR in model architecture and training data, we
introduce baseline Qwen-pointwise, which is a
pointwise reranker based on Qwen2.5-3B-Instruct.
This model concatenates a query-passage pair as
input and outputs a relevance score. We utilize
the same gold ranking label as SLR and optimize
the model with RankNet loss, which is the same
as what Sun et al. (2023) did. We also report the
ranking performance of our SLR and LLR, which
rerank all the passages using the sliding window
strategy.

As for collaborative rerankers, we introduce
three naive collaborative baselines, including
monoT5 (3B) + LLR, RankT5 (3B) + LLR, and
Qwen-pointwise (3B) + LLR. The three baselines
first use a corresponding small reranker (3B) to
rerank all the passages and then apply LLR to
rerank the top-20 passages.

3.2 Overall Results

The main experimental results are presented in Ta-
ble 1, from which we could draw the following
observations:

(1) Our collaborative reranking framework
CoRanking achieves the best average performance
(51.39) across all datasets, outperforming both sin-
gle rerankers and other collaborative baselines. No-
tably, it even surpasses the large listwise reranker

5102

https://huggingface.co/Qwen/Qwen2.5-72B-Instruct-GPTQ-Int4
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct-GPTQ-Int4


TREC DL BEIR BRIGHT

Models Strategy DL19 DL20 Covid Robust04 News Econ. Earth. Rob. Avg.

BM25 - 50.58 47.96 59.47 40.70 39.52 16.45 27.91 10.91 36.69

Single Reranker

monoBERT (340M) Pointwise 70.46 67.55 70.85 46.11 47.61 10.45 19.98 11.34 43.04
monoT5 (3B) Pointwise 71.57 69.83 72.39 49.81 49.34 9.65 19.16 8.56 43.79
RankT5 (3B) Pointwise 71.83 70.27 80.19 51.45 49.11 8.66 24.75 13.95 46.28
Qwen-pointwise (3B) Pointwise 70.62 64.99 81.77 53.60 47.78 14.13 26.25 9.89 46.13
RankVicuna (7B) Sliding 67.72 65.98 79.19 48.33 47.15 11.05 16.30 8.03 42.97
RankZepyer (7B) Sliding 73.39 70.02 82.92 53.73 52.80 15.63 18.52 12.12 47.39
RankMistral100 (7B) Full 72.55 71.29 82.24 57.91 50.59 18.82 23.91 15.75 49.13
SLR (3B) Sliding 70.24 68.85 81.85 53.68 49.85 15.56 29.47 13.68 47.90
LLR (72B) Sliding 73.26 70.51 85.46 57.76 51.28 21.34 28.88 19.04 50.94

Collaborative Rerankers

monoT5 (3B) + LLR Collaborative 70.79 70.73 81.80 55.08 51.60 13.46 21.83 11.68 47.12
RankT5 (3B) + LLR Collaborative 69.16 71.41 84.66 55.80 50.04 12.92 25.91 16.01 48.24
Qwen-pointwise (3B) + LLR Collaborative 72.28 67.89 81.01 56.37 52.30 20.00 28.12 18.26 49.53
CoRanking Collaborative 72.79 70.48 84.90 57.71 52.26 22.72 31.20 19.03 51.39

Table 1: Results (NDCG@10) on TREC, BEIR, and BRIGHT benchmarks. The “Pointwise”, “Sliding”, ’Full’ and
“Collaborative” in “Strategy” column represent pointwise ranking, sliding window strategy, full ranking (Liu et al.,
2024c) and collaborative ranking, respectively. The best and second-best results for the “Single Reranker” part
and the “Collaborative Rerankers” part are indicated in bold and underlined, respectively. “Avg.” represents the
averaged result of all 8 datasets.

LLR by about 0.5 points on average. These re-
sults demonstrate that our framework could effec-
tively align the passage order generated by the
SLR (3B) with the preferences of the large lan-
guage model (LLR), thereby achieving better rank-
ing performance than only using LLR. (2) Regard-
ing single rerankers, our SLR (3B) achieves an
average score of 47.90, outperforming all the point-
wise rerankers, including monoBERT, monoT5,
RankT5, and Qwen-pointwise, and even surpassing
7B-scale RankVicuna and RankZephyr. Further-
more, SLR surpasses Qwen-pointwise by about 1.8
average points under identical training conditions,
proving listwise reranking’s superiority through
comparison of multiple passages for precise rele-
vance assessment.

(3) Collaborative reranker baselines (e.g.,
RankT5 (3B) + LLR) improve over correspond-
ing single rerankers (e.g., RankT5 (3B)). How-
ever, these baselines still lag behind LLR and our
CoRanking, indicating that directly feeding small
rerankers’ ranking results to LLR fails to align with
LLR’s order preference.

3.3 Efficiency Analysis

As mentioned in Section 1, our primary target
of CoRanking is to mitigate the efficiency is-
sue of pure LLM-based reranking. To quantita-
tively demonstrate this advantage, we compare our

DL19

DL20

Covid

News

Robust04

Econ.

Earth.

Rob.

2

4

6

2.85

0.78

2.56

0.68 3.11
0.92

3.04
0.86

2.60

0.79

4.34

1.44

3.56
0.99

5.70

1.90

LLR
CoRanking

Figure 3: Ranking latency (seconds/query) of LLR and
CoRanking on 8 datasets.

CoRanking against LLR across all 8 datasets. Our
experiments are conducted on 8×40GB NVIDIA
A100 GPUs using the vLLM inference framework3.
We average across all queries within each dataset
and show the comparison results in Figure 3.

Across all datasets, our CoRanking approach
demonstrates a significant reduction in latency,
achieving a 67%-74% decrease compared to the
LLR. This substantial improvement highlights the
efficiency advantage of CoRanking. Addition-
ally, the latency of less than 1 second achieved

3https://github.com/vllm-project/vllm

5103

https://github.com/vllm-project/vllm


Model TREC Avg. BEIR Avg. BRIGHT Avg.

CoRanking 71.64 64.96 24.32
w/o S3 strategy 70.10 63.86 23.26
w/o POA 70.23 63.80 22.74

SLR 69.55 61.79 19.57
w/o HRC 68.22 59.58 19.43

Table 2: Average performance (NDCG@10) of ablated
models on TREC (DL19, DL20), BEIR (Covid, Ro-
bust04, News), and BRIGHT (Economics, Earth Sci-
ence, Robotics).

by CoRanking across most datasets also show-
cases its practical efficiency in real-world search
engines. Lastly, the ranking latency varies signifi-
cantly across different datasets, which is primarily
due to the differences in passage lengths. This is
because longer passages inherently require more
computational time for processing.

3.4 Ablation Study
To evaluate the contribution of each component
in our framework, we conduct comprehensive ab-
lation experiments. Table 2 presents the average
performance for each individual benchmark, with
detailed per-dataset results available in Table 4.

First, to evaluate our proposed S3 sampling strat-
egy for generating the preference pairs of DPO,
we introduce a variant, denoted as “w/o S3”. This
variant uses random sampling for preference pair
selection, without ensuring the significant reward
of winner prediction and the reward gap between
the winner and loser predictions. The performance
degradation across all benchmarks (e.g., 1.54-point
drop on TREC Avg.) demonstrates the effective-
ness of our S3 sampling in identifying valuable
preference pairs for effective DPO training.

We further remove our POA to validate its align-
ment effectiveness, denoted as “w/o POA”. In this
case, the LLR directly reranks the top-20 passages
after SLR’s reranking (i.e., the naive collaboration
mentioned in Figure 1 (B)). The notable perfor-
mance decline (especially 1.6-point decrease on
BRIGHT Avg.) demonstrates that POA could ef-
fectively align with the order preference of LLR.

Finally, to validate our human-label-enhanced
ranking construction (HRC) for fine-tuning SLR,
we create a variant (w/o HRC) which generates
ranking labels by utilizing LLR to rerank training
passages only once and choosing not to use human
labels for filtering high-quality ranked lists. The
significant performance drops across benchmarks
(especially BEIR) highlight HRC’s effectiveness in

SLR +POA +LLR
Ranking Stage

66
68
70
72
74

ND
CG

@
10

DL19
CoRanking
SLR+LLR

SLR +POA +LLR
Ranking Stage

50
52
54
56
58
60

ND
CG

@
10

Robust04
CoRanking
SLR+LLR

SLR +POA +LLR
Ranking Stage

46
48
50
52
54

ND
CG

@
10

News
CoRanking
SLR+LLR

SLR +POA +LLR
Ranking Stage

16
18
20
22
24

ND
CG

@
10

Economics
CoRanking
SLR+LLR

Figure 4: The changes of NDCG@10 after reranking
by SLR, POA, and LLR.

generating high-quality ranking labels.

3.5 Detailed Analysis of POA

Our POA is designed to adjust the order of the top-
20 passages reranked by SLR to align them more
with the preferences of the LLR. However, whether
this adjustment improves or degrades the ranking
quality of top-20 passages remains unknown. We
believe this is an interesting question because it
helps us understand the reasons why POA works.

In this part, we selected four datasets—DL19,
Robust04, News, and Economics—and reported
the changes in the ranking metric NDCG@10 af-
ter ranking by SLR, POA, and LLR, respectively.
We also report the performance of the naive collab-
oration SLR+LLR as a baseline. The results are
shown in Figure 4. After POA’s adjustment, the
ranking metric on three datasets—DL19, Robust04,
and News—decreases (except for the Economics
dataset). This indicates that a passage ranking list
with a high-ranking metric does not necessarily
align with LLR’s preferences. This may be due
to the positional bias of input tokens during the
pre-training of LLMs (Tang et al., 2024). More-
over, due to the stronger ranking capability, LLR
further improves effectiveness compared to SLR
and SLR+POA, demonstrating its necessity in the
CoRanking framework.

3.6 Generalization on Other LLMs

In the previous experiments, we use Qwen2.5-72B-
Instruct as our LLR model. However, it remains un-
clear whether our proposed CoRanking framework
can generalize effectively to other LLR models. To
evaluate this, we conduct additional experiments

5104



Model DL19 News Earth. Avg.

BM25 50.58 39.52 27.91 39.34

Using GPT-4o as LLR

RankT5 (3B) + LLR 73.17 49.31 29.64 50.71
Qwen-pointwise (3B) + LLR 72.35 48.36 34.62 51.78
SLR+LLR 73.10 48.75 34.97 52.27
CoRanking 74.10 50.19 35.93 53.41

Using DeepSeek-V3 as LLR

RankT5 (3B) + LLR 71.90 49.47 31.47 50.95
Qwen-pointwise (3B) + LLR 72.16 49.07 35.38 52.20
SLR+LLR 72.62 50.91 38.09 53.87
CoRanking 73.79 51.48 39.01 54.76

Table 3: The performance (NDCG@10) of CoRanking
based on different LLRs. “Avg.” represents the average
performance across the three datasets.

with two different LLRs: GPT-4o4 and DeepSeek-
V3, and compare our CoRanking with three collab-
orative rerankers (“RankT5 (3B) + LLR”, “Qwen-
pointwise (3B) + LLR”, and “SLR + LLR”). Note
that “SLR + LLR” represents the naive collabo-
ration in Figure 1 (B). For evaluation, we select
one dataset from each of the three benchmarks:
DL19 from TREC, News from BEIR, and Earth
Science from BRIGHT. As illustrated in Table 3,
our CoRanking consistently outperforms the best
baseline “SLR + LLR” by about 1 point on average,
regardless of the LLR used. This demonstrates that
the order preference alignment of our POA could
generalize to different LLMs.

4 Related Work

4.1 LLMs for Passage Ranking

The application of large language models (LLMs)
into retrieval systems (Zhu et al., 2023; Li et al.,
2025a) has driven substantial research efforts in
passage ranking tasks. Current LLM-based rank-
ing methods can be categorized into three cate-
gories: pointwise, pairwise, and listwise. Pointwise
methods (Liang et al., 2022; Sachan et al., 2022;
Zhuang et al., 2023a; Liu et al., 2024e,d; Li et al.,
2025b) compute the relevance score for each query-
passage pair. Pairwise methods (Qin et al., 2023;
Luo et al., 2024; Li et al., 2025d) compare two pas-
sages at a time and identify the more relevant one.
Listwise methods (Sun et al., 2023; Pradeep et al.,
2023a; Reddy et al., 2024; Liu et al., 2024c,b; Chen
et al., 2024) directly take a list of passages as the in-
put and output the passage identifiers in descending

4The version of GPT-4o we used is gpt-4o-2024-08-06.

order of their relevance. Through comparing mul-
tiple passages, a listwise reranker could assess the
relevance more comprehensively and yield better
ranking results. Due to the superior performance
of listwise ranking, it has attracted the interest of
many researchers (Tang et al., 2024; Pradeep et al.,
2023b; Liu et al., 2025; Fan et al., 2025; Li et al.,
2025c).

The superior performance of LLM listwise
rerankers is often attributed to the utilization of
large-scale LLMs and the sliding window strategy,
which leads to an efficiency issue in ranking. In this
paper, we introduce a novel framework that lever-
ages the collaborative ranking of large rerankers
and small rerankers to enhance the ranking effi-
ciency while maintaining ranking effectiveness.

4.2 Preference Alignment

Preference alignment has emerged as a critical
research direction, aiming to align model behav-
iors with human or task-specific preferences (Sun
et al., 2024). Early approaches primarily relied
on reinforcement learning from human feedback
(RLHF), where models are fine-tuned using re-
ward signals derived from human preference an-
notations. To reduce the computational complexity
of RLHF, recent studies propose more efficient al-
ternatives, such as DPO (Rafailov et al., 2023) and
Step-DPO (Lai et al., 2024). Direct preference opti-
mization (DPO) (Rafailov et al., 2023) reformulates
preference learning as a supervised objective, by-
passing explicit reward modeling while achieving
competitive performance. In this paper, to address
the positional sensitivity of a large listwise reranker,
we propose training a passage order adjuster with
the DPO algorithm to align the passage order gen-
erated by the small listwise reranker with the order
preference of the large listwise reranker.

5 Conclusion

In this paper, we introduce a novel collaborative
ranking framework, namely CoRanking, to com-
bine small and large listwise rerankers for more
efficient and effective passage ranking. Specifi-
cally, we first train a small listwise reranker SLR
to move the relevant passages to the top of the list.
Then we introduce a passage order adjuster POA to
rerank the top-ranked passages to better align with
the order preference of a large listwise reranker. Fi-
nally, the large listwise reranker is utilized to solely
rerank the top passages. Extensive experiments

5105



demonstrate the efficiency advantage and superior
performance of our CoRanking.

Limitations

We acknowledge some limitations in our work.
First, our framework consists of three models, mak-
ing its online deployment more complex compared
to using a single unified reranker. Second, we only
use Qwen2.5-3B-Instruct as the backbone model of
our SLR and POA. We believe it is meaningful to
attempt using different backbones (such as Llama-
series models) and models of varying sizes (such
as Qwen2.5-1.5B-Instruct) to further demonstrate
the generalization of our CoRanking framework.

Acknowledgments

This work was supported by National Natural Sci-
ence Foundation of China No. 62272467, Bei-
jing Municipal Science and Technology Project
No. Z231100010323009, Beijing Natural Science
Foundation No. L233008. The work was partially
done at the Engineering Research Center of Next-
Generation Intelligent Search and Recommenda-
tion, MOE.

References
Yiqun Chen, Qi Liu, Yi Zhang, Weiwei Sun, Dait-

ing Shi, Jiaxin Mao, and Dawei Yin. 2024. Tour-
rank: Utilizing large language models for documents
ranking with a tournament-inspired strategy. CoRR,
abs/2406.11678.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and
Daniel Campos. 2020a. Overview of the TREC 2020
deep learning track. In TREC, volume 1266 of NIST
Special Publication. National Institute of Standards
and Technology (NIST).

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M. Voorhees. 2020b. Overview
of the TREC 2019 deep learning track. CoRR,
abs/2003.07820.

Yongqi Fan, Kui Xue, Zelin Li, Xiaofan Zhang, and
Tong Ruan. 2025. An llm-based framework for
biomedical terminology normalization in social me-
dia via multi-agent collaboration. In Proceedings of
the 31st International Conference on Computational
Linguistics, pages 10712–10726.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
llms. CoRR, abs/2406.18629.

Yuchen Li, Hengyi Cai, Rui Kong, Xinran Chen, Ji-
amin Chen, Jun Yang, Haojie Zhang, Jiayi Li, Jiayi

Wu, Yiqun Chen, et al. 2025a. Towards ai search
paradigm. arXiv preprint arXiv:2506.17188.

Yuchen Li, Haoyi Xiong, Yongqi Zhang, Jiang Bian,
Tianhao Peng, Xuhong Li, Shuaiqiang Wang, Linghe
Kong, and Dawei Yin. 2025b. Rankelectra: Semi-
supervised pre-training of learning-to-rank electra for
web-scale search. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining V. 1, pages 2415–2425.

Yuchen Li, Hao Zhang, Yongqi Zhang, Hengyi Cai,
Mingxin Cai, Shuaiqiang Wang, Haoyi Xiong, Dawei
Yin, and Lei Chen. 2025c. Rankexpert: A mixture
of textual-and-behavioral experts for multi-objective
learning-to-rank in web search. In Proceedings of
the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining V. 2, pages 4437–4449.

Yuchen Li, Hao Zhang, Yongqi Zhang, Xinyu Ma,
Wenwen Ye, Naifei Song, Shuaiqiang Wang, Haoyi
Xiong, Dawei Yin, and Lei Chen. 2025d. M2oerank:
Multi-objective mixture-of-experts enhanced ranking
for satisfaction-oriented web search. In 2025 IEEE
41st International Conference on Data Engineering
(ICDE), pages 4441–4454. IEEE Computer Society.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yüksekgönül, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2022. Holistic eval-
uation of language models. CoRR, abs/2211.09110.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the middle: How language
models use long contexts. Trans. Assoc. Comput.
Linguistics, 12:157–173.

Qi Liu, Bo Wang, Nan Wang, and Jiaxin Mao. 2024b.
Leveraging passage embeddings for efficient list-
wise reranking with large language models. CoRR,
abs/2406.14848.

Wenhan Liu, Xinyu Ma, Weiwei Sun, Yutao Zhu,
Yuchen Li, Dawei Yin, and Zhicheng Dou.
2025. Reasonrank: Empowering passage rank-
ing with strong reasoning ability. arXiv preprint
arXiv:2508.07050.

Wenhan Liu, Xinyu Ma, Yutao Zhu, Ziliang Zhao,
Shuaiqiang Wang, Dawei Yin, and Zhicheng Dou.
2024c. Sliding windows are not the end: Exploring

5106

https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.48550/ARXIV.2412.14574


full ranking with long-context large language models.
CoRR, abs/2412.14574.

Wenhan Liu, Yujia Zhou, Yutao Zhu, and Zhicheng
Dou. 2024d. How to personalize and whether to
personalize? candidate documents decide. Knowl.
Inf. Syst., 66(9):5581–5604.

Wenhan Liu, Yutao Zhu, and Zhicheng Dou. 2024e.
Demorank: Selecting effective demonstrations for
large language models in ranking task. CoRR,
abs/2406.16332.

Jian Luo, Xuanang Chen, Ben He, and Le Sun. 2024.
Prp-graph: Pairwise ranking prompting to llms with
graph aggregation for effective text re-ranking. In
ACL (1), pages 5766–5776. Association for Compu-
tational Linguistics.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Proceedings of
the Workshop on Cognitive Computation: Integrat-
ing neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2016), Barcelona,
Spain, December 9, 2016, volume 1773 of CEUR
Workshop Proceedings. CEUR-WS.org.

Rodrigo Frassetto Nogueira and Kyunghyun Cho.
2019. Passage re-ranking with BERT. CoRR,
abs/1901.04085.

Rodrigo Frassetto Nogueira, Zhiying Jiang, Ronak
Pradeep, and Jimmy Lin. 2020. Document ranking
with a pretrained sequence-to-sequence model. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, Online Event, 16-20 Novem-
ber 2020, volume EMNLP 2020 of Findings of ACL,
pages 708–718. Association for Computational Lin-
guistics.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023a. Rankvicuna: Zero-shot listwise doc-
ument reranking with open-source large language
models. CoRR, abs/2309.15088.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023b. Rankzephyr: Effective and robust
zero-shot listwise reranking is a breeze! CoRR,
abs/2312.02724.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu, Don-
ald Metzler, Xuanhui Wang, and Michael Bender-
sky. 2023. Large language models are effective text
rankers with pairwise ranking prompting. CoRR,
abs/2306.17563.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual

Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu,
Md. Arafat Sultan, Deevya Swain, Avirup Sil,
and Heng Ji. 2024. FIRST: faster improved list-
wise reranking with single token decoding. CoRR,
abs/2406.15657.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi,
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and
Luke Zettlemoyer. 2022. Improving passage retrieval
with zero-shot question generation. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 3781–3797. Association for Computational
Linguistics.

Ian Soboroff, Shudong Huang, and Donna Harman.
2019. Trec 2019 news track overview. In TREC.

Hongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi,
Niklas Muennighoff, Han-yu Wang, Haisu Liu, Quan
Shi, Zachary S. Siegel, Michael Tang, Ruoxi Sun,
Jinsung Yoon, Sercan Ö. Arik, Danqi Chen, and
Tao Yu. 2024. BRIGHT: A realistic and challenging
benchmark for reasoning-intensive retrieval. CoRR,
abs/2407.12883.

Weiwei Sun, Zhengliang Shi, Wu Jiu Long, Lingyong
Yan, Xinyu Ma, Yiding Liu, Min Cao, Dawei Yin,
and Zhaochun Ren. 2024. MAIR: A massive bench-
mark for evaluating instructed retrieval. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 14044–14067,
Miami, Florida, USA. Association for Computational
Linguistics.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is chatgpt good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 14918–14937. Association for Computational
Linguistics.

Raphael Tang, Xinyu Crystina Zhang, Xueguang Ma,
Jimmy Lin, and Ferhan Ture. 2024. Found in the
middle: Permutation self-consistency improves list-
wise ranking in large language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), NAACL 2024, Mexico City, Mexico,
June 16-21, 2024, pages 2327–2340. Association for
Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In NeurIPS Datasets
and Benchmarks.

5107

https://doi.org/10.48550/ARXIV.2412.14574
https://doi.org/10.1007/S10115-024-02138-Y
https://doi.org/10.1007/S10115-024-02138-Y
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://arxiv.org/abs/1901.04085
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.48550/arXiv.2309.15088
https://doi.org/10.48550/arXiv.2309.15088
https://doi.org/10.48550/arXiv.2309.15088
https://doi.org/10.48550/arXiv.2306.17563
https://doi.org/10.48550/arXiv.2306.17563
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.18653/v1/2022.emnlp-main.249
https://doi.org/10.48550/ARXIV.2407.12883
https://doi.org/10.48550/ARXIV.2407.12883
https://doi.org/10.18653/v1/2024.emnlp-main.778
https://doi.org/10.18653/v1/2024.emnlp-main.778
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://aclanthology.org/2023.emnlp-main.923
https://doi.org/10.18653/V1/2024.NAACL-LONG.129
https://doi.org/10.18653/V1/2024.NAACL-LONG.129
https://doi.org/10.18653/V1/2024.NAACL-LONG.129


Ellen M. Voorhees. 2004. Overview of the TREC 2004
robust track. In Proceedings of the Thirteenth Text
REtrieval Conference, TREC 2004, Gaithersburg,
Maryland, USA, November 16-19, 2004, volume 500-
261 of NIST Special Publication. National Institute
of Standards and Technology (NIST).

Ellen M. Voorhees, Tasmeer Alam, Steven Bedrick,
Dina Demner-Fushman, William R. Hersh, Kyle Lo,
Kirk Roberts, Ian Soboroff, and Lucy Lu Wang. 2020.
TREC-COVID: constructing a pandemic information
retrieval test collection. SIGIR Forum, 54(1):1:1–
1:12.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu,
Wenhan Liu, Chenlong Deng, Zhicheng Dou, and
Ji-Rong Wen. 2023. Large language models for infor-
mation retrieval: A survey. CoRR, abs/2308.07107.

Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan,
Xuanhui Wang, and Michael Bendersky. 2023a. Be-
yond yes and no: Improving zero-shot LLM rankers
via scoring fine-grained relevance labels. CoRR,
abs/2310.14122.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. 2023b. Rankt5: Fine-tuning T5
for text ranking with ranking losses. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, pages
2308–2313. ACM.

5108

http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf
https://doi.org/10.1145/3451964.3451965
https://doi.org/10.1145/3451964.3451965
https://doi.org/10.48550/arXiv.2308.07107
https://doi.org/10.48550/arXiv.2308.07107
https://doi.org/10.48550/ARXIV.2310.14122
https://doi.org/10.48550/ARXIV.2310.14122
https://doi.org/10.48550/ARXIV.2310.14122


A Listwise Ranking Prompt

The listwise ranking prompt of LLR used in this
paper is shown as bellow:

Prompt: Listwise Ranking Prompt

You are RankLLM, an intelligent assistant
that can rank passages based on their rele-
vancy to the query.
I will provide you with {num} passages,
each indicated by a numerical identifier [].
Rank the passages based on their relevance
to the search query: {query}.
[1] {passage 1}
[2] {passage 2}
...
[{num}] {passage {num}}

Search Query: {query}.

Rank the {num} passages above based on
their relevance to the search query. All the
passages should be included and listed using
identifiers, in descending order of relevance.
The output format should be [] > [], e.g.,
[4] > [2]. Only respond with the ranking
results, do not say any word or explain.

B Datasets Details

In this part, we provide the details of each evalua-
tion dataset we used:
• DL19/DL20 The TREC Deep Learning 2019
(DL19) (Craswell et al., 2020b) and 2020
(DL20) (Craswell et al., 2020a) datasets are de-
rived from the MS MARCO V1 passage ranking
corpus. DL19 contains 43 test queries with dense
relevance annotations from the TREC 2019 Deep
Learning Track, while DL20 includes 54 queries
from the 2020 edition. Both datasets focus on web
search scenarios and are widely adopted as standard
benchmarks for large-scale information retrieval
systems.
• TREC-Covid (Voorhees et al., 2020): A biomed-
ical dataset comprising scientific articles related to
COVID-19, with 50 test queries from the TREC
2020 COVID Track.
•Robust04 (Voorhees, 2004): A news retrieval
dataset from the TREC Robust Track 2004, featur-
ing 249 queries with ambiguous or complex infor-
mation needs.

•TREC-News (Soboroff et al., 2019): A web-
archive retrieval dataset containing news articles
from the Washington Post corpus, evaluated with
57 test queries requiring event-oriented semantic
matching.
•Economics: Focuses on technical questions in
economics, including policy analysis and theoreti-
cal discussions from StackExchange. Contains 103
complex queries derived from user posts.
•Earth Science: Targets geophysical and climate-
related inquiries, such as weather patterns and en-
vironmental processes. Includes 116 queries based
on detailed observational questions.
•Robotics: Centers on robotics engineering chal-
lenges, including system errors and design opti-
mizations. Comprises 101 queries from StackEx-
change’s technical discussions.

C Baselines Details

In this paper, we include two kinds of baselines:
(1) Single reranker and (2) Collaborative rerankers.
The details of single reranker are shown as below:
• monoBERT (340M) (Nogueira and Cho, 2019):
A BERT-large-based cross-encoder re-ranker.
• monoT5 (3B) (Nogueira et al., 2020): A T5-
based sequence-to-sequence re-ranker that com-
putes relevance scores via pointwise ranking loss.
• RankT5 (3B) (Zhuang et al., 2023b): A T5-based
re-ranker optimized with listwise ranking loss.
• Qwen-pointwise (3B): To ensure fair compari-
son in model architecture and training data, we fine-
tune a pointwise re-ranker based on Qwen2.5-3B-
Instruct. This model concatenates queries and pas-
sages as input to predict relevance scores, trained
on SLR data with RankNet loss following (Sun
et al., 2023).
• RankVicuna (Pradeep et al., 2023a): RankVi-
cuna is a listwise re-ranker distilled from GPT-3.5-
generated ranked lists.
• RankZephyr (Pradeep et al., 2023b):
RankZephyr is a listwise reranker distilled
from GPT-3.5 and GPT-4.
• RankMistral100 (Liu et al., 2024c):
RankMistral100 is a full reranker trained us-
ing a full ranking list generated by GPT-4o. It
directly takes all the passages as input and output
the reranked list without relying on a sliding
window strategy.
• LLR (72B): The large listwise reranker that em-
ploys a zero-shot sliding window strategy for pas-
sage re-ranking.

5109



TREC BEIR BRIGHT

Model DL19 DL20 Covid Robust04 News Econ. Earth. Rob. Avg.

CoRanking 72.79 70.48 84.90 57.71 52.26 22.72 31.20 19.03 51.39
w/o S3 strategy 70.90 69.30 83.18 56.91 51.48 21.88 30.38 17.51 50.19
w/o POA 70.34 70.11 84.14 56.99 50.26 21.20 30.50 16.51 50.01

SLR 70.24 68.85 81.85 53.68 49.85 15.56 29.47 13.68 47.90
w/o HRC 69.53 66.90 79.36 50.61 48.77 15.59 29.66 13.04 46.68

Table 4: Results (NDCG@10) of ablated models on TREC, BEIR, and BRIGHT benchmarks. The best-performing
models are marked in bold.

D More Implementation Details

Unlike previous studies (Pradeep et al., 2023b; Liu
et al., 2024c) that adopted GPT-series models (e.g.,
GPT-4o) as the teacher model, we select Qwen2.5-
72B-Instruct as it demonstrates comparable and
even better performance to GPT-4o across most
datasets while being more cost-effective. Never-
theless, we have included additional experimental
results using GPT-4o as the LLR model in Sec-
tion 3.6. We train the SLR for 4 epochs with a
learning rate of 5e-6 and a batch size of 1. The
batch size, learning rate, and the hyperparameter β
of DPO are set as 1, 1e-6, and 0.4, respectively.

5110


