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Abstract

Scientific summarization remains a challeng-
ing task due to the complex characteristics of
internal structure and its external relations to
other documents. To address this, our proposed
model constructs a heterogeneous graph to rep-
resent a document and its relevant external ci-
tations. This heterogeneous graph enables the
model to exploit information across multiple
granularities, ranging from fine-grained tex-
tual components to the global document struc-
ture, and from internal content to external ci-
tation context, which facilitates context-aware
representations and effectively reduces redun-
dancy. In addition, we develop an effective
encoder based on a multi-granularity graph at-
tention mechanism and the triplet loss objec-
tive to enhance representation learning perfor-
mance. Experimental results across three dif-
ferent scenarios consistently demonstrate that
our model outperforms existing approaches.
Source code is available at: https://github.
com/quocanuetcs/CiteHeteroSum.

1 Introduction

Automatic summarization aims to create an
abridged version that contains the most critical in-
formation from the original text(s) (El-Kassas et al.,
2021). As scientific publications are growing at an
exponential rate—doubling every nine years—the
need for efficient summarization tools is crucial to
enhance the productivity of researchers (Bornmann
and Mutz, 2015). Unlike abstractive summariza-
tion, which generates new sentences, extractive
methods select only important information to form
a summary. This reduces the risk of hallucination
and makes them more reliable for scientific docu-
ment summarization (Zhang et al., 2023a).
Summarizing scientific texts is challenging due
to their complex internal structure. Early graph-
based models demonstrated significant potential
for adapting to structured data (Erkan and Radeyv,
2004; Mihalcea and Tarau, 2004). However, these

“Equal contribution
Corresponding author

Input citations Input document

Summary

In this paper, Ben and Riloff present a coreference resolver called BABAR that focuses on the use of contextual-role
knowledge for coreference resolution. The problem of coreference resolution has received considerable attention,
including theoretical discourse models and supervised machine learning systems. BABAR's performance in both
domains of terrorism and natural disaster, and the contextual-role knowledge in pronouns have shown successful
results. However, using the top-level semantic classes of WordNet proved to be problematic as the class distinctions
are too coarse. Beanand Riloff also used bootstrapping to extend their semantic compatibility model, proposed using
caseframe network for anaphora resolution, information extraction patterns to identify contextual clues (.... Finally,
several systems have incorporated ici ination modules,

Figure 1: An example of producing a summary from an
input document and the citations that reference it.

unsupervised models, while effective for structur-
ing, lack the ability to capture deep semantic fea-
tures without labeled data. The advancement of
deep learning models has led to the emergence
of sequence-based approaches aimed at captur-
ing cross-sentence relations (Nallapati et al., 2017;
Zhou et al., 2018; Beltagy et al., 2020). Recently,
graph neural networks have been proposed to com-
bine deep learning with graph architecture, offer-
ing a high-level representation of text spans for
more effective summarization (Huang and Kuro-
hashi, 2021; Qi et al., 2022; Zhang et al., 2023a;
Zhao et al., 2024). Researchers have explored vari-
ous strategies to optimize graph structures for sum-
marization, from manual section-based input (Ca-
chola et al., 2020) to automatic hierarchical learn-
ing (Huang and Kurohashi, 2021; Zhao et al., 2024).
However, they primarily focus on internal informa-
tion while overlooking external relations.

A scientific document is rarely an isolated work;
it is part of a larger academic conversation, us-
ing references to prior research to discuss or reuse
information. As a result, citations have recently
been recognized as a valuable source for enhanc-
ing summary quality (Yasunaga et al., 2019; Syed
et al., 2023). One efficient approach to leveraging
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citation information is to incorporate short citing
spans from external documents that reference the
target document, in order to capture the commu-
nity’s perspective and gather concise, up-to-date
insights into the paper’s contributions (Yasunaga
et al., 2019; Syed et al., 2023). Figure 1 shows an
example of creating a summary from a document
and relevant citations.

In this paper, we propose CiteHeteroSum, a sum-
marization model that creates a summary from
multi-granular information, ranging from fine-
grained textual components to the global document
structure, and from internal content to external ci-
tation context. Unlike most existing heterogeneous
graph-based models that rely solely on the input
document, our model incorporates both the doc-
ument and relevant citations as input. This dual-
input is formatted in a heterogeneous graph be-
fore encoding through a multi-granularity graph
encoder. Finally, we estimate the importance of
each text unit and select the most significant ones
to form the summary. Our contributions are:

* We propose a heterogeneous graph architec-
ture that integrates information at varying
granularities, enabling context-aware repre-
sentations and reducing redundancy.

* To learn heterogeneous graph representations
and optimize summarization performance, we
combine triplet loss and summary loss to
guide the learning process and employ a multi-
granularity graph encoder to update the model
parameters.

* We evaluate our model across different scenar-
ios (high-quality dataset, cross-dataset, and
large dataset), demonstrating that it outper-
forms existing approaches. In addition, we
conduct further analysis to highlight the role
of the proposed components.

2 Related Work

Text Summarization with Graph Structures
Graph-based summarization is a potential approach
to model complex relations within texts, as in scien-
tific documents. Early graph-based methods were
unsupervised, such as LexRank (Erkan and Radev,
2004) and TextRank (Mihalcea and Tarau, 2004).
They built graphs with sentences as nodes and sim-
ilarities as edges, then applied ranking algorithms
to find important content. After that, Approximate
Discourse Graph (ADG) (Christensen et al., 2013)

was one of the pioneering approaches that lever-
aged graph structures for training models in text
summarization. Subsequent studies have incorpo-
rated multiple types of nodes and edges, enabling
richer representations of diverse information. For
instance, fine-grained units such as words and ele-
mentary discourse units (EDUs) enable the elimi-
nation of redundant sentence components (Huang
and Kurohashi, 2021; Zhao et al., 2024), while
sections allow the uncovering of hidden structures
within the document (Qi et al., 2022). However,
most existing graph-based approaches focus solely
on internal content, overlooking valuable external
knowledge from citations. In contrast to existing
methods, our approach leverages a heterogeneous
graph that captures both the internal structure of the
document and relevant external citations, providing
a more comprehensive representation.

Citation-based Summarization Using citations
directly is one of the common approaches to lever-
age citations in the summarization task (Qazvinian
and Radev, 2008; Mohammad et al., 2009; Abu-
Jbara and Radev, 2011). However, citation sen-
tences often combine discussions of the input doc-
ument with references to other works, which can
introduce a considerable amount of irrelevant infor-
mation. Some studies addressed this issue by de-
tecting the cited text spans — portions of the input
document most relevant to the citation — and gen-
erating summaries based on these spans (Qazvinian
etal., 2010; Wang et al., 2017; Agrawal et al., 2019;
Yasunaga et al., 2019; Syed et al., 2023). However,
the drawback of these approaches is that identify-
ing the correct cited text span is challenging, as a
citation may provide an overview of the input docu-
ment rather than explicitly referring to any specific
text span within it. In this study, we propose a new
approach that breaks down sentences into elemen-
tary discourse units (EDUs) to eliminate irrelevant
information in the citation and enables the direct
use of citations as input.

3 Methodology

This section formalizes the extractive summariza-
tion problem and describes the proposed model.
Figure 2 shows the overall model architecture.

Problem Formulation We choose the elemen-
tary discourse unit (EDU) as the summary funda-
mental unit. EDU is commonly used in discourse
parsing and is well-suited for structured documents.
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Figure 2: The overall model architecture of the proposed model.

It is a better choice than a sentence because of its
finer granularity, especially when a citation may in-
clude irrelevant information (Li et al., 2020). Given
an input document D containing np EDUs and its
k citations {cy }; ¢, where ¢, contains n., EDUs.
The task of the extractive summarization is to pre-
dict an important score y; € {0,1} for all EDUSs,
where y = 1 represents the i-th EDU that should
be included in the summary and y = 0 otherwise.
The ground truth labels, which we call ORACLE,
are extracted following previous work (Qi et al.,
2022). During inference, the most important EDUs
are selected to form the predicted summary.

3.1 Graph Construction

A document D and its relevant citations {cy},<
are represented in a heterogeneous graph G.

Architecture Forming We combine node types:
EDUs to reduce redundancy, sections to capture
structure, and sentences to bridge EDUs and sec-
tions in G. A document-level multilingual RST dis-
course parsing framework is used to extract EDUs
(Appendix A). Formally, GG has three node types:
section (Viec), sentence (Vsent), and EDU (Ve pry),
defined by V' = Viee U Ve U Vepry. The edge
set I/ of GG is defined as ' = E;,,;; U Egyt, Where
FEipy is the set of internal relations while Fe,; rep-
resents external relations. Formally, an edge E;;
connects two nodes ¢ and j within a document or
a citation if node ¢ is a parent/child of node j or
shares the same parent as node j. Meanwhile, F;;

integrates a citation into the relevant section by:
(1) identifying the most similar section based on
cosine similarity, and (2) linking the citation to the
found section and the section’s sentences.

Node and Edge Initialization We define the ini-
tial node representations H = {h;}” ,, where n is
the number of nodes in G, h; is the initial represen-
tation of node ¢ — th. A node’s representation is
initialized by aggregating the initialized represen-
tation of its children. Firstly, tokens are extracted
from each EDU and embedded. Then, the initial
representation of EDU e; is calculated as follows:

h; = Z Xt; + PE(pz) + PE(ps ) + PE(psecl)

] 1

ey
where n; is the number of tokens in e;, Xt is the
vector of token j — th, PE(.) is the position encod-
ing function in the Transformer model (Vaswani,
2017) to maintain sequential order information, p;,
Ds; and psec; denote the positions of e;, its sentence
and its section, respectively. Similarly, the initial
representations of a sentence and a section are com-
puted by averaging the initial representations of
their children, without using positional encoding.
Edges are represented by an adjacency matrix A,
where a relation between two nodes ¢ and j is in-
dicated by a value at positions (4, j) and (j,7). We
set the initial relation value between ¢ and j to 1 if
node 7 is connected to node j through Ej,¢ or Fey,
and to 0 otherwise.
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3.2 Multi-granularity Graph Encoder

The initial node representation H and the adjacency
matrix A are fed into the multi-granularity graph
encoder to learn node representations.

Graph Attention Network Graph Attention Net-
work (GAT) (Velickovié et al., 2017) is used to
update node representation after each interaction.
When a node ¢ aggregates information from its
neighbours, the attention weight is calculated as:

z;; = LeakyReLU(W,[Wh;||W;h;]) (2)

_ exp(zij)

ZkeNeighi exp(zik)
where W, W, W, are trainable weights, Neigh,
is the first-degree neighbors of node h;, and || is
concatenation operation. With multi-head attention,
the output is calculated as follows:

3)

Wz'j

b= o Y whwhh 4)

j€ENeigh,

where || is concatenation operation, o is activation

function, wfj are attention weight computed by
k" attention mechanism and W* is corresponding

trainable weight.

Multi-granularity Graph Attention We employ
GAT across different node types in the heteroge-
neous graph to capture information from local to
global levels (Zhang et al., 2023a). Firstly, we
customize the adjacency matrix at each level by
disabling edges that do not connect nodes of that
type as follows:

Agpu = A © 1cEDUVj€EDU}
Asent = A O 1{i€senth€sent} (5)
Asee = A O 1{7LEsech€sec}

where A is the full adjacency matrix, ® denotes
element-wise multiplication, and 1. is the indi-
cator function that returns 1 if node ¢ or node j
belongs to the specified type.

Each node type — EDU, sentence, and section
— is updated separately by GAT as follows:

Hypy = GATepu(H, Agpu)
H/ t — GATsem(H, Asent) (6)

sen

H/ = GATsec(Ha Asec)

sec

The nodes that have been isolated in H through the
customized adjacency matrices are not updated.

The updated representations are concatenated
and passed through a multi-layer perception (MLP)
layer to aggregate information across different gran-
ularities:

H/ =0 (Wagg [H;ec H Hlsent H H;EDU]) (7)

where W, is trainable weight, o is activation
function and || is concatenation operation.

Finally, a residual connection is applied to en-
hance learning stability and performance.

H' —=H +H ®)

Contrastive Learning Loss Contrastive learning
loss is employed as one of the objective functions
to enhance representation learning. In contrast to
prior work using InfoNCE (Zhang et al., 2023a;
Nguyen et al., 2025), we adopt triplet loss for its
simplicity and greater interoperability (Ostendorff
et al., 2022):

N¢
1
= — d(h?, h?) — d(h¢ h}
LC Nt;maX{ ( 79 z) ( 19 2)4—0&,0}
©)

where Ny is the total number of triplets, h{ is the
representation of golden summary, h? is the repre-
sentation of positive nodes, h' is the representation
of negative nodes, d(., .) is the Euclidean distance,
« is the loss margin.

Because hard samples have been shown to im-
prove model performance (Ostendorff et al., 2022),
we propose an approach to select hard samples
for our model. Firstly, a margin is used to avoid
positive and negative samples colliding:

Positive  if ROUGE-2 P; > 3
flei) = {

. (10)
if ROUGE-2 P; < ~

Negative

where [ and -y are thresholds, A = [ — +y is hard
margin, A > 0. The model then selects hard pos-
itives as the top k£ EDUs with the lowest scores
among positive samples and hard negatives as the
top k EDUs with the highest scores among negative
samples (Appendix B).

3.3 Important Score Estimation

After the multi-granularity graph encoder phase,
we obtain the final EDU node representations
H"” = {h/}7_,. In this phase, the importance of
each EDU is estimated, and the final joint loss is
computed for training optimization.
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Important Score Estimation The representa-
tions of EDU h/ and its corresponding sentence
hY and section h{ .. are concatenated and then fed

into MLP layers to predict an importance score:

Vi = @(Woh||hi g ] +b)  (11)

where ¢ is Sigmoid activation function, W, is the
weight matrix, b is the bias. y; reflects the impor-
tance of the EDU or the likelihood of the EDU
being included in the summary.

Summary Loss The summary loss is calculated
to optimize the important score of EDUs. By com-
paring the predicted score ¢; with the ground-truth
label y; € {0, 1}, the loss is defined using binary
cross-entropy as follows:

1 &
Li=—— Z [yilog gi + (1 — ;) log(1 — ;)]

Ng “
=1
(12)
where Ng is the number of EDU.
The final loss combines contrastive and summa-
rization losses as follows:

Etotal = )\Econtrastive + (1 - )\)Esumm (13)

where A is a hyperparameter that balances repre-
sentation learning and summary quality.

Summary Inference To ensure diversity, our
model selects EDUs in descending order of im-
portance, skipping any EDU e; if there ex-
ists a previously selected EDU e; such that
ROUGE-2 P(e;, e) > k. EDUs are selected until
the desired summary length is reached. Finally,
the elected EDUs are reordered according to their
original sequence and concatenated to form the
predicted summary.

4 Experiments

This section details the experimental design for
evaluating the effectiveness of the proposed model.

4.1 Experiment Setup

Datasets and Test Scenarios We used three sce-
narios to evaluate the proposed model on data with
varying sizes and characteristics. Table 1 shows
statistics for three scenarios.

Scenario 1: High-quality Dataset We use a
high-quality dataset created by human annotators
to evaluate the model. The CL-SciSumm dataset, a
reliable resource used in the shared task for years,

Table 1: The dataset statistics for scenarios

1. High-quality 2. Cross 3. Large
Train Test Train Test Train Test
Document
Num 40 62 1000 102 17122 2767
Avglen 5964 4647 3872 5163 5937 5906
Citation
Avg/Doc  18.83 1540 17.37 1659 875 7.51

Avg Len 433 384 428 404 236 271
Summary Human Human Abstract Sec
Acronym: Num (Number of), Len (Length), Avg (Average), Sec (Section)

is employed in this scenario (Chandrasekaran et al.,
2020). The training set has 40 samples, while the
testing set has 62 samples.

Scenario 2: Cross-Dataset We aim to assess the
model’s generalization by training and testing on
different datasets. Model is trained on SciSumNet
dataset (Yasunaga et al., 2019) and tested on the
full CL-SciSumm dataset (Chandrasekaran et al.,
2020). The training set consists of 1000 semi-
automatically generated samples, while the test set
comprises 102 human-annotated samples.

Scenario 3: Large Dataset To further vali-
date the model’s generalization and scalability,
we use a large automatically generated dataset,
CiteArXiv (Nguyen et al., 2025). Compared to the
datasets in Scenarios 1 and 2, the summary labels
in CiteArXiv are automatically extracted from the
abstract section. This scenario has 17122 training
samples and 2767 testing samples.

Evaluation Multiple evaluation metrics are em-
ployed, including ROUGE-1, ROUGE-2, ROUGE-
L (Lin, 2004), BERTScore (Zhang* et al.,
2020), BLEU (Papineni et al., 2002), and ME-
TEOR (Banerjee and Lavie, 2005).

Implementation Details The proposed model is
trained on an NVIDIA A40. SciBERT is used to
generate initial token embeddings (Beltagy et al.,
2019). The GAT is configured with 2 layers and a
hidden size from 128 to 256. The model is trained
using Adam with a learning rate of 0.0003, and
a dropout rate of 0.3. The best training-loss scal-
ing factor is set to 0.5. For triplet loss, 5 = 0.5,
~v=0.4and k € {3,5} (Appendix C). The version
of the model incorporating the EDU layer contains
3.30M parameters, which is a 21.8% increase com-
pared to the version without it. Inference on a
document with 11852 tokens takes 0.109 seconds
(Appendix D).
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Table 2: Experimental Results Across Three Scenarios

Model R-1 R-2 R-L BERT BLEU Meteor

Scenario 1: High-quality Dataset

ORACLE* 66.38 60.08 61.04 - - -

LEAD 38.37 2248 2822 86.72 8.59 19.61
LexRank 33.08 17.52 18.18 8320 9.46 38.80
PACSUM 3400 15.12 18.00 83.10 4.26 16.93

Llamaj, | 10.16 701 811 8497 302 1879
Phi-3} 1042 717 821 8550 3.12 1870

mini

Flan_TSlase 51.05 31.17 36.79 87.75 19.33  34.69
GPT—4ofmm 50.81 31.03 3449 87.93 2099 42.53
PEGASUS 33.97 2095 27.04 86.14 4.78 16.50
BART 45.01 26.17 3272 87.22 13.95 26.27
GraphSAGE | 32.38 12.14 1735 8296 17.16 25.87
GCN 3732 14.01 2033 83.86 10.78  30.62
HSG 36.33 33.83 21.43 8461 7.39 22.42
HAESum 4320 24.15 29.19 86.70 12.19 24.82
CHANGES | 57.60 36.82 41.17 88.48 27.15 46.14
CiteArXiv 57.12 3579 41.09 88.15 2590 45.58
Ours 59.90 40.92 45.16 89.17 31.02 50.41
Scenario 2: Cross-Dataset
ORACLE* 65.40 57.80 59.01 - - -
LEAD 36.36 20.86 2651 8644  5.80 18.25

LexRank 31.10 16.47 16.74 83.14 8.25 37.08
PACSUM 30.27 14.00 1559 8394 322 14.51

Llamaj, | 1006 7.06 804 8475 303 1884
Phi-3}, . 1024 719 813 8522 310 1882

Flan-T5{,, | 4821 2756 3445 8740 1613 3052

GPT-4o!, . | 5030 2861 33.06 87.57 19.12 41.20
PEGASUS | 33.16 1940 2601 8587 394 16.11
BART 4358 2383 30.67 8675 1120 24.83
GraphSAGE | 31.11 1033 1587 8253 577 2334
GCN 3696 1297 2027 8411 987 2898
HSG 3747 2787 2863 8735 7.02 218l
HAESum | 4480 2567 28.67 87.31 12.84 2594
CHANGES | 52.15 3045 3447 87.09 20.51 39.86
CiteArXiv | 53.90 3218 37.56 8744 2262 4144
Ours 55.67 34.73 39.09 87.96 24.76 44.17

Scenario 3: Large Dataset

ORACLE* 65.03 34.13 4335 - - -

LEAD 29.18 691 1636 8262 229 17.12
LexRank 3038 6.57 1643 81.86 1.78 16.63
PACSUM 30.44 7.08 1496 8136 345 23.23

Llama], 1481 124 11.14 7269 0.05 8.45

tiny

Phi-3},. 973 535 610 8269 188 1876
Flan-TS . | 2974 767 1740 8224 230 1661
GPT-4o! .. | 4376 1433 2206 84.14 396 2451
PEGASUS | 2432 746 1565 8274 103 1087
BART 3353 9.08 1849 8328 230 1641
GraphSAGE | 3858 12.13 18.88 8346 280  20.71
GCN 39031 1433 2088 84.04 3.5 2213
HSG 37.68 1444 2188 8471 565 2136

HAESum 44,67 17.06 23.58 8531 925 28.90
CHANGES | 45.89 17.67 22.60 8520 10.67 31.56
CiteArXiv 4692 18.63 2432 86.12 11.14 32.87
Ours 47.25 19.57 24.76 8528 11.83 33.58

Acronym: R-1 (ROUGE-1), R-2 (ROUGE-2), R-L (ROUGE-L)
* Based on extractive ground truth labels
t Extractive-oriented zero-shot prompt, § Abstractive-oriented zero-shot prompt

The highest result (excluding ORACLE) is bolded

4.2 Models for Comparison

We compare our model with four model groups:

* Unsupervised Models: ORACLE, which
uses extractive ground-truth labels as an ap-
proximate upper bound performance (Qi et al.,
2022); LEAD, which selects the first few sen-
tences; and two graph-based unsupervised
models - LexRank (Erkan and Radev, 2004)
and PACSUM (Zheng and Lapata, 2019).

General-purpose Language Models:
Llamaygy,y (Touvron et al., 2023), Phi3 ;i (Ab-
din et al., 2024), Flan-T5p,s (Chung et al.,
2024), and GPT-40ini (Hurst et al., 2024)
— followed two zero-shot prompting styles:
extractive-oriented and abstractive-oriented
(Appendix E).

Task-specific Language Models: PEGA-
SUS (Zhang et al., 2020) and BART (Lewis
et al., 2020).

Deep Neural Graph-based Models: Graph-
SAGE (Hamilton et al., 2017), GCN (Ya-
sunaga et al., 2019), HSG (Wang et al.,,
2020), HAESum (Zhao et al., 2024),
CHANGES (Zhang et al.,, 2023a) and
CiteArXiv (Nguyen et al., 2025).

5 Results

We present the main evaluation results of all base-
line and proposed models, followed by a perfor-
mance analysis assessing the contribution of the
proposed components.

5.1 Main Result

Table 2 shows the performance of the proposed
model compared to related models. Scenario 3
has the lowest score on ORACLE, indicating a
lower upper-bound performance compared to oth-
ers. The LEAD results suggest that key informa-
tion appears early in Scenarios 1 and 2, unlike Sce-
nario 3, where the abstract sections are not included
from the input. Graph-based unsupervised models
(LexRank and PACSUM) demonstrate limited per-
formance in most scenarios because they are not
trained on labeled data. General-purpose language
models were tested with two zero-shot prompt-
ing styles: while Llamag,y and Flan-T5p,s per-
formed better with the extractive-oriented prompt,
Phi3in and GPT-4onn; performed better with
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Figure 3: Change in ROUGE scores after exclud-
ing citation information from the input. Agrouge =
ROUGEwithout - ROUGEwith

the abstractive-oriented prompt (Appendix E). No-
tably, Flan-T5p,se and GPT-40,i,; outperform task-
specific language models in most scenarios. In the
deep neural graph-based models, CHANGES and
CiteArXiv have better results than others.

Across three scenarios, our model consistently
outperforms all comparative models. In Scenario
1, our model demonstrates excellent performance
across all metrics. This performance surpasses the
next best model, CHANGES, which is also based
on a heterogeneous graph neural network. Simi-
larly, in Scenario 2, the proposed model maintains
its lead, demonstrating its generalization capabil-
ity in a cross-dataset setting. In Scenario 3, the
proposed model continues to have the best perfor-
mance on a large dataset, demonstrating its gener-
alisation and scalability on the large dataset. The
superior performance of our model over other ap-
proaches, including those based on heterogeneous
graphs (CHANGES and CiteArXiv), stems from its
ability to directly incorporate citation information
into the document. It also integrates information
at varying granularities, enabling context-aware
representations and reducing redundancy.

5.2 Performance Analysis

This section demonstrates the effectiveness of in-
corporating citation information as part of the input
to the summarization model. Besides, some ex-
periments are also employed to demonstrate the
contributions of the proposed components.

Figure 3 shows the change in ROUGE scores
after excluding citations from the input. The neg-
ative values of Arpuag scores demonstrate that
removing citations from the input degrades model
performance across all scenarios and evaluation
metrics. The performance drop highlights the cru-
cial role of citations in providing concise, human-
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Figure 4: Model performance with different input sec-
tions in Scenario 1

written information about the input paper. This is
especially valuable when the original document is
lengthy and contains complex figures and formulas.
Moreover, in Scenario 3, although the summary
labels are created automatically from the abstract
section, the citation information still contributes
significantly to the model’s performance.

Some previous studies have shown that impor-
tant information tends to concentrate in specific
positions and sections of scientific documents (Qi
et al., 2022). We also evaluate model performance
with different input sections, aiming to identify
the most informative inputs for our model. How-
ever, although scientific documents often follow
a common structure, section titles may differ in
position and wording. Therefore, to facilitate this
experiment, we normalize the section titles by GPT
(Appendix F) before feeding them into the model.
Figure 4 shows the model performance with differ-
ent input sections. As a result, the proposed model
performs best with input sections: Abstract and
Conclusion. Therefore, we select the abstract and
conclusion sections as inputs for Scenarios 1 and
2. Since the input documents in Scenario 3 do not
include abstracts, the introduction and conclusion
sections are chosen.

The architecture of the heterogeneous graph
plays a crucial role in determining the model’s
performance. Figure 5 illustrates the model’s per-
formance under various graph configurations, in-
cluding graphs with a single node type, two node
types, three node types, and a fully-connected vari-
ant that adds edges between Section and EDU
nodes. The results demonstrate that the heteroge-
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neous graph with three node types—Section, Sen-
tence, and EDU—achieves the best performance
across multiple evaluation metrics. This may be
because section nodes help capture structural char-
acteristics, EDU nodes enable the extraction of
fine-grained local features and reduce noise, while
sentence nodes serve as a bridge between local and
global information.

During the inference process, experiments are
conducted to determine the optimal values for max-
imum summary length and the diversity parameter
k across the three scenarios. Figure 6 presents con-
tour plots of ROUGE-2 score with corresponding
values of summary lengths and . The contour
chart shows that a short summary does not provide
enough information from the input, while a long
summary may include noisy information. The opti-
mal configurations generally match the maximum
summary lengths that best reflect the document
characteristics of each scenario (165 for Scenario 1,
170 for Scenario 2, and 205 for Scenario 3). Mean-
while, x values in the range of 0.25 to 0.35, where
0.3 consistently yields strong performance across
all scenarios.

Figure 7 shows the ablation and replacement ex-
periments with key components in the proposed
model. The experiments demonstrate that all com-
ponents contribute to the model’s performance to
different degrees. When disabling the contrastive
learning loss, we observe consistent performance
degradation across all scenarios, with particularly
notable drops in ROUGE-2. Disabling the sum-
mary loss also leads to the most severe performance
degradation, as it directly optimizes the model
based on the predicted labels and the golden labels.

5041



The hard sample selection proves valuable as its
removal causes varying performance decreases de-
pending on the scenario, with Scenario 1 showing
the largest impact. Finally, the Multi-Granularity
Graph Attention is replaced by a normal Graph
Attention Network. The performance drop demon-
strates that the Multi-Granularity Graph Attention
is more effective at learning representations from
structured text by employing specialized attention
mechanisms for different types of nodes (Section,
Sentence, and EDU), thereby capturing both local
and global contextual relations.

6 Conclusion

In this paper, we have introduced a heterogeneous
graph-based summarization model for scientific
documents. Unlike most existing approaches that
rely solely on the input document, our model in-
corporates both the input document and its cita-
tions. We proposed a heterogeneous graph architec-
ture that enables the model to capture information
across multiple granularities, ranging from fine-
grained textual units to the global document struc-
ture, and from internal content to external citation
context. We also employ a multi-granularity graph
encoder to align with the graph architecture and
combine triplet loss with summary loss to enhance
model performance. Evaluation on three different
scenarios shows that our model outperforms re-
lated models across all evaluation metrics. Besides,
analysis experiments indicate that citation informa-
tion and proposed components of our model were
shown to contribute to its performance.

In the future, we would like to continuously re-
search effective ways to leverage information from
scientific documents for summarization.

Limitations

Despite its strong performance, our model has
certain limitations that suggest avenues for future
improvements. Although incorporating citations
shows potential, irrelevant information from cita-
tions may affect model performance. Further re-
search is needed to explore noise reduction meth-
ods for citations. Additionally, the detailed hetero-
geneous graph, particularly its fine-grained EDU
layer, increases computational resource demands.
Optimizing graph construction or exploring prun-
ing techniques to manage this trade-off between
detail and resource use needs further research. The
lack of rewriting in extractive models leads to in-

consistencies in narrative perspective—first-person
for text extracted from the document and third-
person for text from citations—which may cause
confusion for end users.
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A EDU Parsing

In this study, sentence segmentation into EDUs is
performed using a joint framework for document-
level RST discourse segmentation and parsing (Liu
et al., 2021). This model, named DMRST, is de-
signed to handle multilingual discourse parsing and
provides a mechanism for identifying the bound-
aries of EDUs within a given text.

In detail, an input text is first processed by the
framework through a shared encoder to generate
contextualized representations for the entire text.
Subsequently, the two tasks are trained jointly, al-
lowing parsing information to guide the segmenta-
tion process and vice versa, thereby enhancing the
accuracy of both. The details of the two tasks are
as follows:

1. Segmentation: EDU segmentation is formu-
lated as a sequence labeling task, where the
model predicts boundary labels for tokens to
identify the limits of discourse units.

2. Parsing: A hierarchical RST discourse tree is
constructed to represent the rhetorical organi-
zation of the text, specifying the relationships
(e.g., Elaboration, Contrast) that hold between
the segmented EDUs.

The final output is a complete discourse tree. The
leaf nodes of this tree correspond to the identi-
fied EDUs. We use the pre-trained model pro-
vided by the authors, which is referenced in our
released source code, to ensure consistency and
reproducibility.
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B Hard Sample Selection

Selecting hard samples has proven to enhance the
model’s performance (Ostendorff et al., 2022). Fig-
ure 8 shows a hard sample example in vector space.

easy
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easy
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hard
ositive

P hard
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conflict area

Figure 8: Hard samples in vector space

Hard negatives are close to but do not overlap
with positives, challenging the model to distinguish
differences. Meanwhile, hard positives are the sam-
ples that are close but not trivially close to the
anchor vector, helping the model learn diversity.
To avoid positive and negative samples colliding
(ensuring that samples are clearly positive or neg-
ative), we selected a margin A to separate these
two types of samples. This margin (described in
Formula 10) allows the use of threshold values to
exclude uncertain cases.

Secondly, the model selects hard positives as
the top £ EDUs with the lowest scores from the
positive samples and hard negatives as the top k
EDUs with the highest scores from the negative
samples.

C Hyperparameter Configuration

Table 3: Hyperparameter settings across scenarios

Hyperparameter Scenario1  Scenario2 Scenario 3
High-quality Cross Large
Hidden size 128 128 256
Heads 64 64 64
Dropout 0.3 0.3 0.3
Learning rate 0.0003 0.0003 0.0003
Negative threshold () 0.4 0.4 0.4
Positive threshold (3) 0.5 0.5 0.5
Triplet loss margin («) 2 2 2
Triplet hard samples (k) 3 3 5
Loss scaling factor (\) 0.5 0.5 0.5
Maximum summary length 165 170 205
Diversity controller (k) 0.3 0.3 0.3

Acronym: sim (similarity)

Table 3 presents the hyperparameter settings
used across the three experimental scenarios. The

model architecture maintains consistent configura-
tions across scenarios, with hidden sizes of 128 for
Scenarios 1 and 2, increasing to 256 for the more
complex Scenario 3. All scenarios use 64 attention
heads and a dropout rate of 0.3 to prevent over-
fitting. Training settings remain consistent with
a learning rate of 0.0003. For triplet loss, we set
positive/negative threshold to 0.4/0.5 and a triplet
loss margin « of 2, with the number of hard sam-
ples k adjusted from 3 (Scenarios 1 and 2) to 5
(Scenario 3). The training-loss scaling factor is
tuned in the range [0, 1] with a step size of 0.1,
and 0.5 is found to offer the best balance between
convergence speed and accuracy. In inference, the
maximum summary length is set to 165 words for
Scenario 1, 170 for Scenario 2, and 205 for the
more complex Scenario 3, with a diversity con-
troller x of 0.3 across all scenarios.

D Computational Cost Analysis

To provide a clear overview of the computational
overhead, we present a detailed comparison in Ta-
ble 4. The results demonstrate that while the in-
troduction of the EDU-level graph increases the
number of parameters, the impact on training and
inference time is modest, ensuring the model re-
mains practical and scalable.

Table 4: Comparison of Computational Cost and Model
Parameters.

Metric Without EDU  With EDU
Parameters 2.71M 3.30M
Training Time ~242s ~303s
(50 epochs, 40 samples)

Inference Time 0.092s 0.109s

(11852 tokens)

E LM Prompting Strategy

With general-purpose language models, we
adopted the zero-shot prompting strategies for
extractive and abstractive summarization (Zhang
et al., 2023b). This approach uses a two-part struc-
ture—a system role definition and a user com-
mand—to guide the model’s behavior.

Extractive-oriented prompt The objective is to
require the model to select important sentences
from the source text. The model is assigned the
role of an extractive summarizer and instructed to
choose the top-k important sentences, ensuring that
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Table 5: Comparing Extractive-oriented and Abstractive-oriented Zero-Shot Prompts for Summarization on General-

Purpose Language Models

Model Extractive-oriented Abstractive-oriented
R-1 R-2 R-L BERT BLEU Meteor | R-1 R-2 R-L BERT BLEU Meteor
Scenario 1: High-quality Dataset

Llamayny 10.16 7.01 8.11 8497 3.02 1879 | 882 642 7.19 8535 277 17.39

Phi-3ini 10.37 7.12  8.15 8498  3.07 18.64 | 1042 7.17 821 8550 3.12 18.70

Flan-TS5pyee | 51.05 31.17 36.79 87.75 1933 34.69 | 48.00 29.19 3543 8733 16.64 31.83

GPT-4onn; | 46.15 18.89 2638 86.93  8.00 35.17 | 50.81 31.03 3449 87.93 2099 42.53
Scenario 2: Cross-Dataset

Llamag,y 10.06 7.06 8.04 84.75 3.03 18.84 | 922 635 741 84.64 2.69 17.33

Phi-3 ini 10.20 7.15 8.09 8476  3.07 18.72 | 10.24 7.19 813 8522 3.10 18.82

Flan-TS5pyee | 48.21 27.56 3445 8740 16.13 30.52 | 46.82 2639 3290 8696 15.10 30.70

GPT-4omini | 45.59 18.05 2586 86.78 7.62 34.57 | 50.30 28.61 33.06 87.57 19.12 41.20
Scenario 3: Large Dataset

Llamaypy 14.81 124 11.14 72.69 0.05 845 | 1431 1.11 1035 7331 0.02 8.01

Phi-3 ini 9.72 532 608 8245 1.87 18.78 | 9.73 535 6.10 82.69 1.88 18.76

Flan-T5pye | 29.74 7.67 1740 8224 230 16.61 | 2694 7.14 17.03 8159 1.79 14.21

GPT-40mini | 40.29 13.52 1993 8359 346 2777 | 43.76 14.33 22.06 84.14 3.96 24.51

Acronym: R-1 (ROUGE-1), R-2 (ROUGE-2), R-L (ROUGE-L)

The higher result for each model corresponding to a prompt style is highlighted in bolded

Table 6: Section Title Normalization Prompt

Your task is to extract the section names from the follow-
ing scientific article and classify each section into one
of the following labels: [Abstract, Introduction, Method,
Result, Conclusion, Others].

Return a response where the section name and its corre-
sponding label are printed on a single line in the format:
(section’s name — label).

the final output is a subset of the original document
and follows the length constraint.

Abstractive Summarization Prompt The ob-
jective is to encourage the model to generate a
new summary by synthesizing information. In this
prompt, the model is assigned the role of an abstrac-
tive summarizer, which allows it to freely rephrase,
reorganize, and condense the source content.

The detailed results of the models using
this prompt are reported in Table 5. While
Llamayny and Flan-T5p,se performed better with
the extractive-oriented prompt, Phi3;, and
GPT-40p,in; performed better with the abstractive-
oriented prompt.

F Section Title Normalization

Although scientific documents generally follow a
common structure (abstract, introduction, related
Work, method, results, and conclusion), section

titles may differ in positions and wording. To ad-
dress this challenge, we leverage GPT to classify
section titles into six main categories: Abstract,
Introduction, Method, Result, Conclusion, and Oth-
ers. Table 6 presents the prompt used to guide the
process.

In addition, we observed that different wordings
are often used to refer to the same type of section.
For example, summary, conclusion, conclusions,
and conclusion & future work all typically indicate
the Conclusion section. To ensure consistency, we
created a mapping dictionary to normalize such
variations into unified labels.
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