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Abstract

Cross-lingual consistency should be considered
to assess cross-lingual transferability, main-
tain the factuality of the model knowledge
across languages, and preserve the parity of
language model performance. We are thus in-
terested in analyzing, evaluating, and interpret-
ing cross-lingual consistency for factual knowl-
edge. To facilitate our study, we examine mul-
tiple pretrained models and tuned models with
code-mixed coreferential statements that con-
vey identical knowledge across languages. In-
terpretability approaches are leveraged to ana-
lyze the behavior of a model in cross-lingual
contexts, showing different levels of consis-
tency in multilingual models, subject to lan-
guage families, linguistic factors, scripts, and
a bottleneck in cross-lingual consistency on a
particular layer. Code-switching training and
cross-lingual word alignment objectives show
the most promising results, emphasizing the
worthiness of cross-lingual alignment supervi-
sion and code-switching strategies for both mul-
tilingual performance and cross-lingual consis-
tency enhancement. In addition, experimental
results suggest promising result for calibrating
consistency in the test time via activation patch-
ing.

1 Introduction

Frege’s theory of reference (Frege, 1892) indicates
that the knowledge conveyed by a sentence de-
pends on the references of the expressions that
make up the sentence. A salient aspect of humanity
is that, while people may speak different languages,
they can share common references and knowledge.
Thus, references and knowledge must be consis-
tent across languages, and a multilingual model
serving as a knowledge base (Gupta and Srikumar,
2021; Kassner et al., 2021; Hu et al., 2024) should
provide consistent knowledge when consulted in
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different languages. Not only does this theory con-
tribute to cross-lingual performance and maintain
knowledge between languages, but it also ensures
parity and self-consistency of model performance
(Hupkes et al., 2023; Wang et al., 2023). This mo-
tivates us to evaluate the knowledge consistency
of multilingual language models in all languages
when sharing the same references.

Few recent works (Kassner et al., 2021; Fierro
and Sggaard, 2022; Qi et al., 2023) focused on
translation pair consistency and reported that multi-
lingual models may output knowledge for a particu-
lar query that differs with knowledge obtained from
the query’s translation. We argue that multilingual
models show different language biases, leaving
a non-trivial confounding factor when evaluating
consistency with translation pairs. We hypothesize
that for a consistent multilingual model, references,
regardless of the surface language, provide energy
to constrain the degree of freedom in knowledge
recalling. To evaluate this hypothesis (Figure 1),
we examine the difference in the output distribu-
tion between the original monolingual statement
and the corresponding code-mixed coreferential
statements, which takes a different angle and is or-
thogonal to existing works (Kassner et al., 2021;
Qi et al., 2023) that rely on translation pairs and
the output candidates. This examination explicitly
instantiates Frege’s theory of reference to check the
consistency of knowledge across languages that the
same references for sub-sentential expressions, e.g.,
entities, should result in the identical knowledge.
We attempt to answer three questions: /) do multi-
lingual language models recall factual knowledge
for the coreferential statements in a similar manner,
2) how does the mechanism of multilingual lan-
guage models work on the incorporation between
entities or references to convey knowledge in cross-
lingual settings, and 3) which factors prevent model
consistency in multilingual settings?

In addition to model consistency in cross-lingual
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Figure 1: Illustration of Cross-lingual knowledge consistency. Frege’s theory of reference defines the reference of
a sub-sentential expression as the object singled out by the name. A salient aspect of humanity is that, they can
understand knowledge based on references regardless of language.

settings, our study is related to a broader linguis-
tic phenomenon of entity-level code-switching and
language interference: an entity code-switches be-
tween two languages without changing the refer-
ence, as we create code-mixed coreferential state-
ments from monolingual statements by substituting
a subject entity with an equivalent one in another
language that shares the same reference. More
recently, we share a similar goal with knowledge
incorporation and editing (Beniwal et al., 2024; Li
et al., 2024), since we incorporate a coreferential
entity from other languages to recall factual knowl-
edge in cross-lingual settings. Our main findings
are as follows.

* We present a code-mixed coreferential task to
observe implicit consistency across languages
within a sentence. In our experiments, obser-
vations and findings are also transferable to
explicit cross-lingual consistency across trans-
lation pairs.

* We discover consistency bottlenecks and is-
sues tied to language characteristics, scripts,
and training biases through layer-wise anal-
yses and interpretability approaches, which
potentially prevent cross-lingual consistency
improvements and gains from scaling.

 There is a partial causality from adding lan-
guage biases (of high-resource languages) to
improving cross-lingual knowledge consis-
tency. Directly adding bias via representation
patching could be a potential method to cali-
brate consistency in the test time.

* Shared language scripts contribute to cross-
lingual consistency, especially for encoder and
decoder models, but it is not a necessary condi-
tion to achieve it. Reducing script overlaps by

expanding vocabulary size slightly improves
the consistency yet it helps to improve the
consistency for some low-resource languages.

* Cross-lingual supervision can alleviate the
consistency bottleneck to enhance alignments
between coreferential entities, which can be
achieved by training with an explicit align-
ment objective or a code-switching objective.
On the other hand, parallel samples providing
cross-lingual generalization supervision offer
limited gains to consistency.

Our contribution is to offer an understanding of
multilingual language models’ limitations under
cross-lingual settings and highlight potential re-
search directions to address such issues.

2 Methodology

2.1 Task Definition

We focus on a code-mixed, generative task that
forces the multilingual model to condition on coref-
erential entities across languages to recall a factual
answer from its internal knowledge base'. We show
an example in Figure 1 where en entry "Paris is the
capital of ___ " is evaluated with its possible code-
mixed coreferential statements (ar entry & ta entry).
Readers can refer to Appendix §A.1 and §A.2 for
details and implementations.

Let] = {S",-..,O,---} € 11? be a statement,
where /1 stands for matrix language (the predom-
inant language), S = {sy,---,s;} € Il are

subject sub-tokens, and O = {01, 09, - - -
denote object sub-tokens.

, Oj} ell
This statement
ISee limitation in §8.

The surface structure is not restricted. We use the com-
mon subject—object structure as an example.
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is used to format an input I,,on, by remov-
ing O to elicit the internal knowledge K
and instruct the model to output the n-gram
Cand(Ocv |Imono) over the model’s vo-
cabulary V, where Cand(Ocv|lnono) =
P(Oev|Kj)P(K§|S™, I (s1n0))- Simi-
larly, we create a code-mixed coreferen-
tial statement I., by replacing S with a
coreferential subject S*? in the embedded
language (2 to obtain Cand(Ocy|lem) =
P(Oev|Kg)P(Kg|S®, I\ (5110))- Lem and Imono
with coreferential subjects S!' and S'? condition
the model for recalling knowledge. To measure
the knowledge consistency between K, and K,
we calculate the difference between the output
Cand(O¢y |Iom,) and Cand(Ocy |Imono) as K
and Ky provide energies to constrain the degree
of freedom in generation. Additionally, we also
evaluated the baseline setting of /.., by removing
the subject entities to obtain the model’s default
outputs with no references for comparison.

We analyze the consistency evolution as the
layer goes deeper to trace the consistency and
understand the models’ behavior. Specifically,
we apply LogitLens (nostalgebraist, 2019) for en-
coder and encoder-decoder models or Decoder-
Lens (Langedijk et al., 2023) for decoder models
to computing the layer-wise output distributions
from the layer representations, retrieving layer-
wise Cand(Ocvy |Ierm) and Cand(Ocv | Imono)-

2.2 Metric Function and Interpretability

Readers can refer to Appendix §A.3 for more de-
tails, e.g., equations.

Output Distributions Consistency. Top@1 Ac-
curacy and RankC (i.e., weighted Precision@5) (Qi
et al., 2023) are used to capture the difference be-
tween two output distributions, Cand(Ocv | Imono)
and Cand(Ocy|Icm,). In contrast to the previous
works (Kassner et al., 2021; Qi et al., 2023), we
do not constrain the output candidate or domain.
Instead, the output distribution over the full vocabu-
lary is examined. Since the experimental results in
Top@1 and RankC are similar, Top@1 are moved
to the Appendix §A.4.

Cross-lingual Representations Similarity. We
hypothesize that cross-lingual generalization across
languages results in cross-lingual consistency to
some extent. To evaluate this hypothesis, we exam-
ine the contextualized representation similarity for

our correferential statements by computing batch-
wise CKA similarity scores (Kornblith et al., 2019)
between them over each layer.

IG? Score. We adapted /G2 (Liu et al., 2024) to
interpret the impact of each feed-forward neuron
on the output where the higher the value is, the
more critical the neuron is to predict the ground
truth object. This examination is used to analyze
the correlation between cross-lingual consistency
and shared neurons across languages.

2.3 Dataset and model

Dataset. We use mLAMA dataset (Kassner et al.,
2021) that provides parallel triples (object, pred-
icate, subject) in 53 languages written in cloze,
completion task format (e.g., “Paris is the capital
of ) to query knowledge in zero-shot settings. In
our experiments, /1 is set to English for all pairs,
and [2 is the other 52 languages to report an over-
all result, where [2 languages are categorized into
two separate categories for each of the three factors
(geographics, writing scripts, and language family)
using ISO-639 language codes information from
"localizely"3. For an in-depth analysis, we exam-
ine 2 similar /2 languages (De, Id) and 2 dissimilar
[2 languages (Ar, Ta) to observe the consistency

evolution from early layers to later ones*.

Models. We examine distinct model families: en-
coder models (xIm-r from 0.3B to 10B) (Conneau
et al., 2020)), encoder-decoder models (mTO from
0.6B to 3.7B (Muennighoff et al., 2023), mT5 from
0.6B to 3.7B) (Xue et al., 2020)), and decoder mod-
els (Llama3-instruct 1B & 8B) (Grattafiori et al.,
2024)). In our experiments, we obtain consistent
findings across model families and sizes. There-
fore, we show essential results in the main text and
move the rest to the Appendix §A.4.

3 Observing Consistency

3.1 Consistency on All Languages

From Figure 2, dissimilar /2 tends to have lower
consistency than those similar to [1 across all fac-
tors. The difference in writing scripts plays the
most important role in both encoder and decoder
models. However, surprisingly, encoder-decoder
models are more tolerant to any kind of factors.

3https: //localizely.com/language-code

*While Id does not belong to the same language family as
En, it has many loanwords from En (Krause, n.d.). Ar and Ta
are not considered as Indo-European languages and also do
not use latin scripts.

4977


https://localizely.com/language-code

indo-euro non_euro

——mt0-base
—— mt0-large
——mt0-xI
——mt5-large
mt5-xI

non_indo-euro

latin non_latin

indo-euro non_euro

—e— xIm-r-base
—— xIm-r-large
—— xIm-r-XXL
—— xIm-align
xlm-v

non_indo-euro xim-r-cs

latin non_latin

indo-euro non_euro

——llama3.2-1b
——llama3.1-8b
—— llama3.1-8b-instruct

i - euro
non_indo-euro 0 0.20. 0.8 1

latin non_latin

Figure 2: Cross-lingual consistency of output distri-
bution in different model types (top: encoder-decoder,
middle: encoder, bottom: decoder) grouped by 3 factors
(geographics: europe & non_europe, language family:
indo-european & non_indo-european, writing scripts:
latin & non_latin). (cf. §A.4.2.)

Another intriguing finding is that geographic fac-
tor affects consistency, and this could be attributed
to common culture and vocabulary (Zhao et al.,
2024a). On the other hand, we suppose that other
linguistic factors contributing to cross-lingual per-
formance, such as similarity in linguistic charac-
teristics (Chronopoulou et al., 2023), or borrowing
(Tsvetkov and Dyer, 2016), could also affect cross-
lingual knowledge consistency. However, such fac-
tors are difficult to quantify, leaving such analyses
for future work. Note that language families and
writing scripts have an impact on vocabulary, and
we will confirm it in a later section.

3.2 Consistency Evolution across Layers

To better understand the cross-lingual consistency
bottleneck, we examine the layer-wise consistency
patterns in different model sizes and types, as pre-
sented in 1st and 2nd Row of Figure 3. For encoder
and encoder-decoder models, the noticeable differ-
ence lies in the initial consistency, whereby dis-
similar language pairs have low consistency scores.
The consistency gap between dissimilar and simi-
lar languages starts to close at some specific layer

while widening again later. Meanwhile, for de-
coder models, the pattern is more distinct, where
there is a consistent degradation for smaller model
in dissimilar language pairs and baseline, as for
the larger model, it interestingly manages to re-
cover the consistency starting from middle layer
yet we can notice a bottleneck in last layer. This
observation provides evidence for empirical studies
that scaling benefits downstream task performance
(Conneau et al., 2020), for example, XNLI, but of-
fers limited gain for cross-lingual consistency, as
we can observe in Figure 2.

Layer-wise analyses help us to understand the
model behaviors. However, the question remains
as to why such behaviors could happen. To answer
that question, we analyze contextualized represen-
tation similarity across layers from the 3rd and 4th
Row of Figure 3, which shows different patterns
from the cross-lingual consistency. In general, for
encoder-decoder and encoder models, there is a
degradation of similarity scores until the middle
layer (except for xlm-r-base, where the growth is
slightly fluctuating). In contrast, the small decoder
model shows more stable similarity over the lay-
ers, and there is also a monotonic increase until the
middle layer for the larger decoder model. This
finding suggests that the cross-lingual representa-
tion similarity improved via model scaling might be
a necessary condition rather than a sufficient con-
dition to achieve cross-lingual consistency. Some
other factors, such as isotropy and contextualiza-
tion (Ethayarajh, 2019), might impact cross-lingual
consistency other than the cross-lingual represen-
tation similarity. In addition, dissimilar languages
have low similarity scores that are quite similar to
the baseline setting, which is also observed in the
layer-wise consistency scores.

3.3 Correlation and Interpretability

To understand the model behaviors, we analyze the
contribution of every neuron within MLP on the
correferential statements based on findings from
(Geva et al., 2020). Specifically, we inspect the
IG? scores of all the feed-forward neurons at all
the layers. Our analysis for this factor could show
a moderate correlation with the cross-lingual con-
sistency, as shown in Table 1. In Figure 4, the /G2
scores for similar language pairs are almost the
same, while there is a subtle difference for the dis-
similar language pairs. This disparity on neurons
could explain why the multilingual model is only
highly consistent for certain language pairs.
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Figure 3: Consistency evolution (1st and 2nd row: consistency score for small and large models, 3rd and 4th row:
CKA score for small and large models) in different model types (L: encoder-decoder, M: encoder, R: decoder). For
each model family, scaling models is not a promising strategy in general to mitigate consistency bottlenecks when
observing 1st row vs 2nd row and 3rd row vs 4th row (except for the xIm-r-xx1 CKA similarity). (cf. §A.4.1)

1G2
Model RankC Acc
mTO-base 0.528* 0.519*
mTO-large 0.705* 0.699*
xIm-r-base 0.400* 0.397*
xIm-r-large 0.508* 0.481*
1lama3.2-1B-Instruct 0.544* 0.489*

Table 1: Statistical spearman p correlation (o = 0.05)
between average scores of layers with the patterns on
each language model’s IG? absolute difference.

4 Correlation between Consistency,
Language Bias, and Cross-lingual Bias

4.1 Can Language Bias Calibrate Consistency
in The Test Time?

From previous findings, we think of one question:
Can we add biases from I,,,op, to the feed-forward
layers for consistency calibration in the test time?
Considering that two different patterns (on IG?
scores) are discovered from our experiments and
IG? score is moderately correlated with the consis-

Model Codemixing Language Patched FEN Layers
- en—ta [0,3,10,11]
mt0-base en—ar [0,1,9,10]
en—ta [0,1,19,20,21]
mi0-large en-ar [0,1,19.2021]
en—ta [5.8,9,10]
Xlmr-base en—ar [5,7,8,10]
. en-ta [0.2,5.19,20]
-arge en—ar [17,18,19,20,21]
— en-ta [2.5.10,12]
Llama3.2-1B O [2,5,10,12]
o en-ta [5,10,15,18,20]
Llama3.1-88 . o [5.10,15,18,20]

Table 2: Causal Intervention Hyperparameters Setup

tency score, we perform one causal intervention on
the feed-forward network to align the output of .,
closer to the output of I,;,4,0 by patching I,,,on0’s
activations of all tokens to I, in selected feed-
forward neurons based on 1G? (Vig et al., 2020;
Geiger et al., 2021). This experiment measures
whether each pattern has a causal relationship with
cross-lingual consistency.

(1,p)

Specifically, we consider a; ™ as the activation
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Figure 4: IG? scores in across different model types (L: encoder-decoder, M: encoder, R: decoder) for en—id (1st
row) and en—ta (2nd row). The distribution is more contrastive on dissimilar languages (en—ta) than the similar

languages (en—id). (¢f: §A.4.4.)

of the i-th token on 1,4, produced by the p-th neu-
ron in the feed-forward network of the [-th layer,
and then the patched activation value for the i-th
token on I, is a(l’p ) = ( ?) , in which we apply
this to every new token. We intervene 4 different
layers for base models and 5 different layers that
have language-sensitive neurons based on G2 (i.e.,
layer which has noticeable IG? distribution differ-
ence between I,,ono and I.,,). Table 2 lists the
hyperparameters used in this experiment.

In Figure 5, there is a potential causal relation-
ship between the activation intervention and con-
sistency, subject to model architectures and sizes.
Specifically, for encoder-decoder models, the in-
tervention approach can increase the consistency
scores in the middle-later layers only in the larger
model, while such intervention does not offer sub-
stantiate gains for the smaller model. Similarly,
we observe the effectiveness of the intervention
in large encoder models but not in small encoder
models. In contrast, the intervention shows effec-
tiveness for small decoder models, but not for the
large decoder models.

4.2 Vocabulary Expansion and Script
Overlapping to Cross-lingual Consistency

We hypothesize that vocabulary size plays a cru-
cial role in improving consistency, as 1) it allows
a language model to potentially align semantics
better due to preventing the model from latching
onto shallow local signals or restoring words from
subtokens (Levine et al., 2021)° and 2) it impacts

Se.g., if the tokenizer splits the word "Tokyo" into ["To,"

"Kyo"], the token "To" is polysemous making thus the align-
ment of this word would be one-to-many, on the other hand, if

the script overlapping across language. To test this
hypothesis, we consider two similar language mod-
els, xlm-r-base and xIm-v-base (Liang et al., 2023),
where xIm-v-base has a larger vocabulary (901,629
tokens) than xIlm-r-base (250,002 tokens).

The vocabulary expansion offers a slight consis-
tency improvement in any categorization, which is
evident from the consistency difference between
xlm-v-base and xlm-r-base in Figure 2. This find-
ing challenges the conclusion in previous works
(Kassner et al., 2021; Fierro and Sggaard, 2022;
Qi et al., 2023), where sharing script is the key to
cross-lingual consistency. Specifically, the base
model shows better cross-lingual consistency in
early layers due to the surface alignments via pos-
sible shared scripts. This can be observed from
the study of representation similarity in Figure 6,
where the base model shows strong alignments in
early layers before final contextualization. How-
ever, such cross-lingual consistency cannot propa-
gate to later layers. Compared to that, vocabulary-
expanded models rely on deep semantic alignments
in later layers for cross-lingual consistency. In Fig-
ure 0, the layer-wise consistency drops significantly
in the base model’s last layers but increases in the
vocabulary-expanded model’s last layers. On the
other hand, more samples are required to gener-
alize in the pre-training phase for the vocabulary
expansion. Therefore, it alone cannot improve con-
sistency significantly, especially for low-resource
languages with limited corpora, but it still bene-
fits dissimilar languages with lower consistency in
the last layers to alleviate the consistency bottle-

a tokenizer keeps the word as it is, the tokenized form of the
word is monosemous making it less ambiguous.
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Figure 5: FFN intervention scores in different model types (L: encoder-decoder, M: encoder, R: decoder) with
different model sizes (1st row: small models, 2nd row: large models). ( c¢f. §A.5.1).
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Figure 6: Effects of vocabulary expansion to consistency
scores (top) and CKA scores (bottom). (cf: §A.5.2)

neck to some extent because of the deep seman-
tic alignment regardless of the script overlapping.
Overall, this finding shares the insight from Zhao
et al. (2024a) where they found that the one-token
P@1 of Afrikaans is higher than the Japanese due
to segmentation and tokenization®. Additionally,
we studied whether transliteration could help, and
found that such a factor does not boost consistency,
which we could attribute to the lack of semantic
alignments in later layers (cf. §A.5.6).

8See discussions about a token parity issue in Figure 24.

4.3 Cross-lingual Supervisions to
Cross-lingual Consistency

Lastly, we analyze how different training supervi-
sions could contribute to the cross-lingual consis-
tency. For this factor, we evaluated several training
approaches: additional cross-lingual word align-
ment training (Chi et al., 2021), code-switching
training (Whitehouse et al., 2022), multilingual
multitask instruction tuning (Wei et al., 2021), and
multilingual chat instruction tuning (Grattafiori
et al., 2024). The former two strategies provide ex-
plicit alignments across languages, while the latter
two strategies leverage the cross-lingual generaliza-
tion from parallel samples for implicit alignments.

Overall, as presented in Figure 2, instruction
tuning does not offer significant gains, but code-
switching and word alignment training objectives
improve the consistency significantly, especially
for non-Latin script languages, which is not sur-
prising as these objectives encourage models to
align word knowledge and writing systems across
languages. In addition, the alignment might
also improve robustness for handling non-standard
spellings and orthographic variations, which is ob-
served in our case study for "transliteration vs trans-
lation" presented in §A.5.6. This finding may show
the importance of adding explicit cross-lingual
alignment in the training objective.

In the layer-wise analysis, from Figure 7, code-
switching (2nd column, xIlm-r-cs) and word align-
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Figure 7: Consistency evolution (1st row: consistency score, 2nd row: CKA score) with different pre-training
objectives (1st col: word alignment, 2nd col: code-switching training, 3rd col: instruction tuning on mt5, 4th col:

instruction tuning on llama3.1-8b)

ment (1st column, xlm-align) training objectives
could contribute to alleviating the consistency bot-
tleneck occurring in middle layer onward, with
word alignment showing the best effect. Such an at-
tribute could cause the cross-lingual representation
to be more consistently high as shown in 2nd row of
Figure 7. On the other hand, instruction tuning with
parallel samples, including the 3rd column (mtO
tuned from mt5) and the 4th column (Llama 3.1-
8b-instruct tuned from Llama 3.1-8b) in the figure,
does not offer a universal solution to the consis-
tency bottleneck across model types. Specifically,
it manages to slightly improve the cross-lingual
consistency for the encoder-decoder, as shown in
the 1st row of Figure 2 with mtO-base showing
better consistency over mt5-x1. This could be at-
tributed to additional parallel samples used in the
instruction tuning, e.g., multilingual task datasets
used for mt0. However, this is not a successful
strategy for decoder models, where Llama 3.1-8b-
instruct is not more cross-lingually consistent than
the base model Llama 3.1-8b. For further analysis
of the effect of each supervision on consistency,
readers can refer to §A.5.3, §A.5.4, and §A.5.5.

5 Transferable Findings to Other
Language Bias

Throughout this paper, studies are conducted on
code-mixed coreferential statements between En-
glish and other languages. However, references
and knowledge are universal. This raises a ques-
tion: are all findings transferable to other coreferen-
tial entities and statements in non-English-centric
scenarios? To answer this question, we conduct

experiments for Llama-3.1-1B-Instruct, mtO-base,
and xlm-r-base, using fr, vi and hy as the matrix
(L1) languages. Experimental results in Figure 8
are consistent with our main findings, providing ev-
idence that our findings can be transferred to other
language bias.

6 Related Work

Kassner et al. (2021) extended LAMA (Petroni
et al., 2019) to a multilingual version multilin-
gual version, mLAMA, and discovered that the
language’s relational knowledge capability varies
in different languages, sharing similar findings with
Schott et al. (2023); Zhao et al. (2024a) and other
benchmarks (Wang et al., 2024a; Qi et al., 2023).
Fierro and Sggaard (2022); Zhao et al. (2024a)
studied the final predictions in different languages
and reported inconsistencies across languages, es-
pecially for low-resource languages. Mousi et al.
(2024) quantified the entity alignment in the shared
space for the consistency goal, and Gao et al.
(2024); Hua et al. (2024) further traced the align-
ments emerged from multilingual training. We take
a different angle from those works in which we
evaluate the consistency against code-mixed coref-
erential statements in cross-lingual settings.
Bhattacharya and Bojar (2023); Kojima et al.
(2024); Tan et al. (2024); Miao and Kan (2025)
discovered that a considerable portion of language-
agnostic neurons encode universal concepts and
utilize the latent language (in this case English).
Zhao et al. (2024b); Wang et al. (2024c); Zhang
et al. (2024) further showed that the cross-lingual
downstream performance is potentially propor-
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Figure 8: Consistency evolution across different model types (1st row: fr, 2nd row: hy, 3rd row:vi) on different
non-english matrix languages (L: encoder-decoder, M: encoder, R: decoder). (¢f. Figure 17)

tional to the number of language-agnostic neu-
rons. Ferrando and Costa-jussa (2024) discovered
a shared circuit or sub-network that is responsi-
ble for subject-verb agreement task for English &
Spanish, and Stanczak et al. (2022); Wang et al.
(2024b) found that morpho-syntax attributes have
noticeable neuron overlapping degree over notable
amount of language pairs. Wang et al. (2025) dis-
covered three stages of cross-lingual factual recall
in which the inconsistency occurred in the last stage
called translation stage happening in later layers.
In addition, they discovered that language mod-
els are able to recall the correct knowledge in the
middle layers using the English concept, which is
consistent with Wendler et al. (2024); Dumas et al.
(2024). We trace consistent information and knowl-
edge throughout the layers in cross-lingual settings,
attempting to understand and interpret how com-
monly used strategies to improve multilingual mod-
els for downstream tasks could impact the cross-
lingual knowledge consistency.

7 Conclusion

Our analysis reveals that knowledge consistency is
highly dependent on model architectures, training
strategies, deep semantic alignments, and language-
specific information. Our layer-by-layer analysis
of multilingual models uncovers a consistency bot-

tleneck whereby the consistency does not grow
monotonically on each layer. Our work highlights
promising directions in the test-time calibration
and training with cross-lingual alignment objec-
tives to achieve knowledge consistency across lan-
guages, which will better preserve parity of lan-
guage model performance and also alleviate such
bottleneck. Cross-lingual representations, shared
scripts and parallel samples might contribute to the
cross-lingual consistency but are not a sufficient
condition to achieve it.

We encourage researchers to work on repre-
sentation learning approaches that induce cross-
lingual alignment inductive bias explicitly to en-
hance alignments between coreferential entities.
We also suggest test-time approaches that cali-
brate output distributions for knowledge consis-
tency across languages. These methods can allevi-
ate the consistency bottleneck and enhance align-
ments between coreferential entities, potentially im-
proving both multilingual performance and cross-
lingual consistency.

8 Limitations

A promising avenue for this work is evaluating
cross-lingual knowledge consistency on other lan-
guage models. Moreover, we only analyze each
crucial component independently due to the time
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constraint and left scrutinizing the interaction be-
tween each component for future work (In partic-
ular, one can run any automatic circuit discovery
algorithm (Syed et al., 2023; Conmy et al., 2023)
to find subnetwork responsible for cross-lingual
consistency and evaluate its performance). In the
future, we may expand this work by analyzing how
the interaction among these components could af-
fect the cross-lingual consistency of multilingual
models. Another thing is that our causal interven-
tion method needs to be done manually, and we sus-
pect that this method could produce a side effect on
the model because the representations encoded by
language models are more likely to be polysemous.
In addition, we only evaluate language models in
context-independent settings. Thus, in the future,
we plan to evaluate the consistency of the models’
knowledge and observe whether language models
utilize their parametric knowledge more or empha-
size the knowledge from the given context under
the cross-lingual setting. Another thing to con-
sider is that we only evaluate our solution using
some particular models due to the time constraint.
One interesting thing to explore in this aspect is to
see whether adversarial training and multi-agent
setting could help to enhance cross-lingual con-
sistency. Moreover, we use an assumption that
one reference is represented as a single English ob-
ject entity to make the evaluation tractable; hence,
we do not take into account the real-world setting
where one reference can be interpreted in different
ways on multiple languages (e.g., "China" is writ-
ten as "ZhongGuo" in Chinese rather than "China").
Lastly, our research scope assumes that the knowl-
edge we want to evaluate is factual and not depen-
dent on subjective aspects (e.g., cultural context).
With that assumption, we assume that references
here generally have one-to-one mapping to repre-
sentation in one language where the representation
here is considered common knowledge.

9 [Ethics Statement

This work aims to evaluate the consistency of the
language model across different senses (particu-
larly between a monolingual input and its code-
mixed counterparts) and the impact of different
factors on that metric. Doing such a study could
shed light on the limitations of language models
and think of the mitigations of such matters.
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A Appendix
A.1 Our Task Definition

We focus on a code-mixed context-independent
cloze task that forces the multilingual model to
rely on its internal knowledge base to recall the
common knowledge shared by coreferential enti-
ties across languages due to cross-lingual general-
ization’. In the following introduction, we will
define the evaluation task mathematically. Let
I = {S",...,0,---} € 11® be a statement,
where [1 stands for matrix language (the predom-
inant language), S = {s1,---,s,} € Il are
subject sub-tokens, and O = {01,092, ,0;} €
[1 denote object sub-tokens. This statement
is used to create a cloze task input I,,on0 =
{SU ... M,---}, where M is the mask to-
ken used to substitute O in I (i.e., the mask
M = {masky,--- ,mask;} in encoder models,
the sentinel token M =< extra_id_0 >, or
the next token in decoder models). We define
n-gram prediction for O from M, denoted as
Cand(Ocv|Imono), as the top-k n-gram candi-
dates obtained from beam search decoding over
the model’s vocabulary V. Similarly, we can cre-
ate a code-mixed coreferential statement I, by

"See limitation in §8.
8The surface structure is not restricted. We use the com-
mon subject—object structure as an example.
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replacing S"' with a coreferential subject S*2 in the
embedded language /2 (the subsidiary language)
in order to obtain Cand(Ocy|I.y). Therefore,
I, and 1,00 are coreferential and expected to
recall the same knowledge. Finally, we define
the consistency of cross-lingual knowledge as 0 <
fmetric(cand(OeV|]mono)7 Cand(OEV‘Icm)) <
1, where fpetric 1S @ consistency metric defined
in the next subsection. If fy,ctric = 1, it implies
that multilingual language models recall the factual
knowledge for the coreferential statements I,05,0
and I, in an identical manner. The coreferen-
tial statements are fully inconsistent if fy,etric = O.
Note that we do not consider whether the prediction
is correct. Instead, fy,etric €valuates the parity and
consistency across languages in which the model is
expected to produce similar candidates for I,,0p0
and I.,,.

From a probability view, we can define
our task as measuring the difference be-
tween two distributions, Cand(Ocvy|lem) =
P(Oev|Ko)P(E(|S?, I (s1110))
and Cand(Ocv|Imono) =
P(Oev|Kj)P(K§|S™, I (s1n0y), Where Ky is
the knowledge recalled from the model given
the preceding context, and I\ g1y stands for
I without both the subject and the object. Then,
cross-lingual knowledge consistency between K
and K reflects on the measured difference.

The high-level idea of this evaluation task is
illustrated in Figure 1 where en entry "Paris is
the capital of ___" is evaluated with its possi-
ble code-mixed statements (ar entry & ta entry).
Additionally, we also evaluated the baseline set-
ting of I.,, by removing the subject entities to
obtain the model’s default object tokens for com-
parison. In this example, S'!, I\ (s11n0), and
S2 are "Paris", "is the capital of", and the ar
or ta entry for "Paris", respectively. If coref-
erential subject entries are trained to generalize
across languages, we could observe the cross-
lingual consistency. In addition, we are aware of
a baseline from this probability view. Specifically,
we define the baseline as the difference between
Cand(Oev |Inono) and Cand(Ocv |1\ (g1no)) =
P(Ocv|Kg)P(K§|L\ (s1n0)), measuring agnos-
tic consistency without the coreferential subjects
S and S'? in cross-lingual settings. In implemen-
tation, we mask the both subject and object entities
to create the "code-mixed" counterpart as the base-
line. Readers can refer to Appendix §A.2 for our

implementation.

A.2 Input Format

In our task definition, we introduce our evalua-
tion task in both intuition and math perspective.
Here is the input sample in Table 3, 4, 5. Mean-
while, as presented in the task definition, we do
not consider whether predictions are true but focus
on the same prediction distributions regardless of
languages. Note that we did not perturb the surface
structure in order to minimize variables to affect
factual knowledge recall because S*? "switches-in"
at grammatically correct point as the new subject
(Pratapa et al., 2018).

A.3 Metric Function and Interpretability
Approach

RankC RankC (Qi et al., 2023) is used to evalu-
ate the cross-lingual knowledge consistency. Given
a set of statements S where each of the state-
ment having each own I,;,on, and I.,,, the num-
ber of candidates C'and(Ocy |Imono) of i-th state-
ment N;, mono’ stands for the j-th candidate of
Cand(Oev | Imono), cm? stands for the j-th candi-
date of C'and(Ocy|I.y,), and the RankC score of
Cand(Ocv|Imono) concerning Cand(Ocy |Iem)
can be written as

Rank:C(cm mono) )
2‘3‘1 Z] 1 Z * PQj

ol ©

PQj = ;]{cmil,cmZ ,cm{}ﬁ 3)

{mono;, mono?,--- monoz}|. 4)

Top@1 Accuracy The Top@1 accuracy is de-
fined as the average number of exact matches be-
tween the top-1 predictions given Ip,on0 and Iop,.

IG? Score If w§l) is the activation value of j-th
neuron in the [-th layer of a particular input (either
code-mixed or not), m is the approximation step,
and ¢ as a token of the whole ground truth object
entity, the score for a given I,,on0 OF Iz, is defined

as
(l) 8P(t| k (l))

Zk 1 S

1w =3 m (5)

teT
A.4 Findings in Details
A.4.1 Layer-wise Consistency
Refer to Figure 9, 10, and 11.
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xlm-r input

Iono Paris is the capital of <mask>
I o U is the capital of <mask>
I\(s1noy <mask> is the capital of <mask>

Table 3: Input sample for the evaluation task for xIm-r. We only predict the object in bold. I\ (s11n0) is the baseline

input.

mt0 input
Imono Paris is the capital of <extra_id_0>
I, L is the capital of <extra_id_0>
I\(snnoy <extra_id_0> is the capital of <extra_id_1>

Table 4: Input sample for the evaluation task for mt0. We only predict the object in bold. I\ (51110 is the baseline

input.

Llama input

Lmono

Finish the cloze question with words. Do not give additional comments. Question: Paris is the capital of _. Answer:

Tem Finish the cloze question with words. Do not give additional comments. Question: o JL. is the capital of _. Answer:

I\(sllm())

Finish the cloze question with words. Do not give additional comments. Question: _is the capital of _. Answer:

Table 5: Input sample for the evaluation task for llama 3. We only predict the object in bold. I\ (g1 is the

baseline input.

A.4.2 Opverall Consistency of Qutput
distribution

Refer to Figure 12, 14, and 15.

A.4.3 Consistency of Non-English Matrix
Languages

Refer to Figure 12, 14, and 15.

A.4.4 Feed-Forward Neurons’ Gradients Sum
Refer to Figure 18, 19, and 19

A.5 Improving Consistency

A.5.1 Adding Monolingual Bias
A.5.2 TImpact of Larger Vocabulary

When expanding the vocabulary size, we found on
Figure 26 that such method causes marginal im-
provement. Furthermore we conducted correlation
analysis and based on Figure 24, we discovered no
correlation between token parity seen in table and
consistency improvement and this explains why we
observed such limited improvement.

A.5.3 The Effect of Cross-Lingual Word
Alignment Training Objective to The
Cross-lingual Consistency

Another possible hypothesis is that there might

be an entanglement of features between linguistic

and knowledge features. (Elhage et al., 2022) dis-
covered that a neural network could fit multiple
features into one dimension at the price of more
entangled features, and this entanglement could
cause tokens not cross-lingually aligned, as there
may be an entanglement between syntactic and se-
mantic features within one dimension. Inspired
by that, we suspect that this might hinder the con-
sistency of language models. To test this assump-
tion, we evaluated two similar language models in
which one model is trained solely on MLM objec-
tive (xlm-r), and another similar model is trained
on one additional objective to align word transla-
tions (xlm-align (Chi et al., 2021)), where this word
alignment could be helpful in aligning references
across languages.

Word alignment increases cross-lingual consis-
tency monotonically to alleviate the cross-lingual
bottleneck. Similar to the vocabulary expansion,
this strategy does not improve the consistency for
the baseline as we would expect. The aligned
model outperforms the baseline starting from the
middle layers in Figure 27. Multiple pre-training
objectives that could approximately disentangle dif-
ferent features can help preserve the model’s knowl-
edge of different languages. We could also confirm
this finding by observing the overall cross-lingual
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Figure 9: mTO (base, large, XL) layer-wise cross-lingual consistency scores (left: RankC, right: Top@1)

consistency result in. In addition, word alignments
improve consistency for transliterations or simi-
lar orthographical forms, contributing to model’s
robustness against orthographic variations and non-
standard spellings, but vocabulary expansion can
not offer such gains.

A.5.4 The Effect of Code-switching Training
to The Cross-lingual Consistency

Inspired by the experiment on cross-lingual super-
vision, we further hypothesize that code-switching
training, which substitutes an entity with alterna-
tives from other languages for intra-sentential align-
ments in cross-lingual settings, can help the model
understand common knowledge across languages
for cross-lingual consistency to some extent. To
evaluate this hypothesis, we study xIm-r and xIm-r-
cs (Whitehouse et al., 2022), where xIm-r-cs is con-
tinuously trained on code-switching corpus from
xlm-r-base and shows high performance in multi-
lingual fact-checking. From Figure 29, we observe
a shift in the consistency bottleneck from the mid-
dle layers to the later layers of xIm-r-cs, where
the consistency gap between dissimilar and similar
languages narrows in xlm-r-cs compared to xIm-r

in the middle layers. Overall, code-switching can
offer significant gains to the cross-lingual consis-
tency, even without additional objectives.

A.5.5 The Effect of Multi-task Fine-tuning to
The Cross-lingual Consistency

We hypothesize that method of fine-tuning can
improve the cross-lingual consistency due to im-
proved cross-lingual generalization across similar
tasks in different languages, as opposed to word-
level alignments discussed in previous sections.
Surprisingly, multi-task fine-tuning can not offer
significant gains to the layerwise cross-lingual con-
sistency. As presented in Figure 31 and Figure
32, the consistency patterns are quite similar for
both type of model families (decoder is represented
by llama3.1-8b-instruct, encoder-decoder is repre-
sented by mt0O-large). Intriguingly, we can more
salient enhancement on encoder-decoder models as
shown in Figure 33 than decoder models as evident
in Figure 34 which might suggest the possibility
of ratio of multilingual examples in the pretraining
corpora could play role on such improvement.
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Figure 10: xIm-r (base, large, XXL) layer-wise crosslingual consistency scores (left: RankC, right: Top@1)
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Figure 11: llama 3 (1B, 8B) layer-wise cross-lingual consistency scores (left: RankC, right: Top@1)

A.5.6 Case Study for Transliteration

Instead of using translations, we transliterate bn’
and ar'? to understand the impact of writing sys-

*https://github.com/shhossain/BanglaTranslationKit
nhttps://github.com/hayderkharrufa/arabic-buckwalter-
transliteration

tems, particularly transliterations. As presented in
Figure 35, word alignments (or the similar effect
from CS training) contribute to the model’s cross-
lingual consistency against writing systems be-
cause xIm-align and xIlm-r-cs show similar perfor-
mance in both original and transliteration settings.
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Figure 12: Overall cross-lingual consistency across different transformer types (left: encoder-decoder, middle:
encoder, right: decoder) grouped by 3 factors (geographics: europe & non_europe, language family: indo-european
& non_indo-european, writing scripts: latin & non_latin).

Meanwhile, we can observe that xIm-align and xIm-
r-cs significantly improve the overall performance
for non-Latin scripts in §A.5.3 & §A.5.4. This
is reasonable as word alignments or CS training
help the model link original words with their trans-
lations or transliterations, depending on the train-
ing corpus, thereby enhancing cross-lingual consis-
tency. We suspect that these word alignments might
also improve robustness for handling non-standard
spellings and orthographic variations. However,
xlm-v-base and xIm-r-base without word alignment
benefit from transliterations, which means that xIm-
v-base and xIlm-r-base do not sufficiently align orig-
inal words with their transliterations to main cross-
lingual consistency. It is also confirmed by the
overall performance of vocabulary expansions in
§A.5.2, where vocabulary expansions can not of-
fer significant gains for cross-lingual consistency.
Overall, the evaluation task does not inadequately
boost consistency for languages using Latin script
because word alignments resulting in cross-lingual
consistency are the main factor.
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family: xIm-r
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Figure 23: Intervention scores across all models. Metrics legend: left: RankC, right: Top@1 Accuracy. Model
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Token Parity Ratio vs Consistency Difference
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Figure 24: Regression analysis between parity ratio and
RankC improvement offered by xlm-v to xlm-r. Spear-
man p = 0.06. We define parity ratio as the token length
ratio between tokenized subjects for xIm-v-base and
xlm-r-base. Our analysis discovers that many languages
have a token parity ratio average within 0.8-1, which
means that many of the subject entities are known on
both tokenizers of the models.
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Figure 26: Effects of vocabulary expansion to overall cross-lingual consistency (top: RankC, bottom: Top@1
Accuracy). Note: The dashed line here is the average corresponding consistency scores of xIm-r-base across
languages
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Figure 27: Effects of cross-lingual word-alignment train-
ing on the layer-wise consistency.
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Figure 28: Effects of additional cross-lingual word alignment to overall cross-lingual consistency (top: RankC,
bottom: Top@1 Accuracy). Note: The dashed line here is the average corresponding consistency scores of xIm-r-
base across languages

5005



— xIm-r-base_en-ar

0.8
— xIm-r-cs_en-ar
— xIm-r-base_en-ta
= 0.6
= 0 — xIm-r-cs_en-ta
) xlm-r-base_en-baseline
3 0.4 —— xIlm-r-cs_en-baseline
c
©
2

° /\_,/\/
0

— xIm-r-base_en-ar
0.8 — xIlm-r-cs_en-ar
— xIm-r-base_en-ta

—~
—

o' 0.6 — xIm-r-cs_en-ta

‘>f xIm-r-base_en-baseline
K — xIm-r-cs_en-baseline

- 04

=1

Q

O

<

v /\_/_v’\/
0

Figure 29: Effects of code-switching training to layer-
wise cross-lingual consistency (top: RankC, bottom:
Top@1 Accuracy).
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Figure 30: Effects of code-switching training to overall cross-lingual consistency (top: RankC, bottom: Top@ 1
Accuracy). Note: The dashed line here is the average corresponding consistency scores of xIm-r-base across
languages
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Figure 31: Effects of multi-task instruction tuning on
the layer-wise consistency in encoder-decoder models.
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Figure 32: Effects of multi-task instruction tuning on
the layer-wise consistency of decoder models.
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Figure 33: Effects of multi-task instruction tuning to overall cross-lingual consistency (top: RankC, bottom:
Top@1 Accuracy). Note: The dashed line here is the average corresponding consistency scores of mt5-large across
languages
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Figure 34: Effects of multi-task instruction training to overall cross-lingual consistency (top: RankC, bottom:
Top@1 Accuracy). Note: The dashed line here is the average corresponding consistency scores of 1lama3.1-8b
across languages
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Figure 35: Impact of Transliterations.
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