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Abstract

Watermarking is a key technique for detecting
Al-generated text. In this work, we study its
vulnerabilities and introduce the Smoothing At-
tack, a novel watermark removal method. By
leveraging the relationship between the model’s
confidence and watermark detectability, our
attack selectively smoothes the watermarked
content, erasing watermark traces while pre-
serving text quality. We validate our attack on
open-source models ranging from 1.3B to 30B
parameters on ten different watermarks, demon-
strating its effectiveness. Our findings expose
critical weaknesses in existing watermarking
schemes and highlight the need for stronger
defenses.

1 Introduction

Detecting whether a text is generated by language
models is critical in domains such as fraud detec-
tion, fake news identification, and plagiarism pre-
vention. A common approach is watermarking,
where subtle patterns are embedded in the gener-
ated text for later detection (Aaronson, 2023; Christ
etal., 2023; Huang et al., 2023; Li et al., 2024). Wa-
termarking has gained traction in both academia
and industry (Dathathri et al., 2024) as a key safe-
guard for language model applications. While var-
ious watermarking techniques exist, they share a
core principle: biasing the token distribution to
favor certain tokens over others (see Section 2).

In this work, we identify key scenarios where
token-based watermarks fail and introduce a gen-
eral watermark removal attack that exploits this
weakness, exposing fundamental limitations in cur-
rent watermarking schemes.

Effectiveness of watermarks. We say a water-
mark as effective if (i) the watermarked text main-
tains high quality, comparable to that of the corre-
sponding un-watermarked model, and (ii) the de-
tector reliably identifies watermark traces without
incurring high error. We show both analytically

and empirically that these goals are inherently in
tension: higher text quality typically reduces de-
tectability, and vice versa. This tradeoff is closely
linked to the model’s confidence in generating the
next token. When confidence is high, watermark-
ing has negligible impact, leaving only faint traces.
When confidence is low, watermarking biases the
model toward otherwise unlikely tokens, producing
stronger traces at the cost of text quality.

Smoothing Attack. Based on this observation,
we propose the Smoothing Attack, a general ap-
proach for removing token-based watermarks. For
each prefix, the attack estimates the watermarked
model’s confidence in the output token. If confi-
dence is low (where watermarking is strongest),
we replace the token with a freshly sampled one,
erasing traces while preserving fluency. If confi-
dence is high, we retain the original output. This
systematic procedure eliminates watermark signals
without sacrificing quality, going beyond ad-hoc
heuristics.

We evaluate our attack across ten watermark-
ing schemes and three open-source model families:
OPT (Zhang et al., 2022) (from 1.3B to 30B param-
eters), Llama3-8B (Dubey et al., 2024), and Qwen2-
1.5B (Chu et al., 2024). In certain cases, our attack
completely removes the watermark (reducing wa-
termark detection rates to zero) while preserving
the text quality. It also outperforms the state-of-the-
art Paraphrasing Attack, which relies on GPT-3.5-
turbo. Compared with paraphrasing, our method is
far more cost-efficient, requiring only weak refer-
ence models (e.g., OPT-125M (Zhang et al., 2022)
when attacking OPT models up to 30B). These find-
ings reveal fundamental weaknesses in token-based
watermarks and highlight the need for more robust
defenses.

We evaluate our attack across ten diverse wa-
termarking schemes and three different families
of open-sourced models, OPT (Zhang et al., 2022)
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(from 1.3B to 30B parameters), Llama3-8B (Dubey
et al., 2024) and Qwen2-1.5B (Chu et al., 2024).
In certain cases, our attack completely removes the
watermark (reducing watermark detection rates to
zero) while preserving the text quality. Our attack
can also outperform the state-of-the-art Paraphras-
ing Attack, which uses the strong GPT-3.5-turbo
to paraphrase the watermarked text. Compared
with Paraphrasing Attack, our attack is more cost-
efficient, as it uses only much weaker reference
models, e.g., OPT-125M (Zhang et al., 2022) when
attacking OPT models from 1.3B to 30B parame-
ters. These findings underscore critical weaknesses
in existing watermarks and highlight the need for
more robust defenses.

2 Preliminaries and Related Work

Given an auto-regressive language model (LM) M
with vocabulary ), the model outputs a probabil-
ity distribution over tokens at each position ¢ in a
prompt by computing logits /;(v) and applying a
softmax:

exp (lt(v))
2 vrey €XP (lt (U/)) '

To sample the next token, common strategies
include top-k sampling (Fan et al., 2018; Holtzman
et al., 2018), selecting from the top k tokens by
probability, and top-p (nucleus) sampling (Holtz-
man et al., 2019), selecting from the smallest set
whose cumulative probability exceeds p.

Watermarking schemes subtly modify this sam-
pling to embed patterns in the generated text
(v1,...,vr). These patterns are later detected
via a scoring function d(vy, ..., vr); if the score
exceeds a threshold 7, the text is deemed water-
marked.

Below we briefly review representative water-

marking approaches.
Green-red watermark (Kirchenbauer et al.,
2023a). For each position t, a secret key and the
current prefix deterministically partition the vocab-
ulary V into a green list G; (size v|V|) and a red
list. The logits of green tokens are then boosted by
a constant 9, giving the modified distribution

exp(l¢(v) + 6 - 1{v € G;})
Sveyexp(li(v) +6-1{v" € Gi})
(2)

The detector checks whether green tokens appear
more frequently than expected, computing the

Py(v) = ey

P(v) =

score

T
d(’Ul, . ,UT) = Zt:l (l{vt < gt} _ 7) . (3)

Ty(1—7)

The score is high when green tokens are overrepre-
sented, indicating a watermark.

Gumbel and Tournament watermarks (Aaron-
son, 2023; Dathathri et al., 2024). These meth-
ods introduce randomness via a secret key and se-
lection process without altering the distribution
P;, preserving average text quality. In Gumbel
sampling, noise values u;(v) € [0,1] are gener-
ated using a seed derived from recent tokens and
a secret key; the token v} is selected as v; =

arg max, —%. The detector uses the score

d(vy,...,vr) = =, log(1 — u(vy)).

Tournament sampling similarly uses m secret
functions ¢V, ..., g™ to score each token based
on a seed ;. The token is chosen through m rounds
of pairwise comparisons among 2™ sampled candi-
dates. Detection relies on the average tournament
score:

d(vl, e

> % > O re). @

t=1 =1

Nl

7/UT) -

If the score significantly exceeds 0.5, the text is
predicted as watermarked.

Other related work. The Green-red list water-
mark (Kirchenbauer et al., 2023a) introduces token-
level bias by amplifying the probabilities of green-
listed tokens and is thus considered distortionary.
Variants differ in list construction and detection
methods (Kirchenbauer et al., 2023b; Lee et al.,
2023; Liu et al., 2023; Wu et al.). In contrast, Gum-
bel and Tournament sampling (Kuditipudi et al.,
2023; Aaronson, 2023; Dathathri et al., 2024) pre-
serve the token distribution in expectation and
are distortion-free. Other distortion-free schemes
include those by Hu et al.; Christ et al. (2023);
see Zhao et al. (2024a) for a broader review. We
evaluate 10 representative watermarks from both
categories to demonstrate the generality of our at-
tack.

Watermark removal techniques typically disrupt
token patterns using homoglyphs, emojis, or con-
trol characters (Pajola and Conti, 2021; Boucher
et al., 2022; Goodside, 2023), but often degrade flu-
ency. A more effective approach is paraphrasing,
where a separate model rewrites the text (Kirchen-
bauer et al., 2023b; Krishna et al., 2023; Piet
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et al., 2023). These attacks depend on strong para-
phrasers—e.g., using GPT-3.5-turbo to rewrite out-
puts from smaller models like LLaMA-7B (Ope-
nAl, 2023; Touvron et al., 2023).

Recent work explores adaptive paraphrasers
trained to evade specific watermark detectors (Diaa
et al., 2024), often requiring detailed knowledge
of the watermarking algorithm. Other methods
combine paraphrasing with auxiliary models to
select high-quality rewrites from large candidate
pools (Jovanovic et al., 2024; Zhang et al., 2024).
In contrast, our smoothing attack is lightweight:
it leverages only top-K token probabilities from
the watermarked model and a small reference
model—without needing a strong paraphraser,
large-scale sampling, or exact knowledge of the
watermarking scheme.

3 On the Effectiveness of Watermarks

We investigate two key aspects of watermark ef-
fectiveness: detectability and text quality. Our key
finding is that these aspects are inter-connected via
the model’s confidence in prediction and are in-
herent tension—improving detectability typically
decreases text quality, and vice versa. This trade-
off arises directly from how watermarking algo-
rithms exploit token-level decisions, revealing a
fundamental vulnerability leveraged by our pro-
posed attack. Full derivations and further analysis
are provided in Appendix C.

3.1 Token-level detectability

Detectability. Watermark detectors aggregate
token-wise signals. For the Green—red scheme,
the contribution of position ¢ is

St = EUNﬁz[l{v S gt}] - EUNPt[l{U € gt}]7

original

watermarked

where P; and ]3t are the original and logit-shifted
distributions. The detector score in Eq. equation 3
is just the normalised sum of these S;.

Link to model confidence. With logit shift §, S
can be expressed solely through E,p, [1{v € G;}]
(full derivation in Appendix):

(e —1) (1 = Epop,[1{v € Gi}])
14+ (e9 = 1)Epup,[1{v e G}

The variance of 1{v € G;} under P; equals
7(1 — 7) || P||%; hence departures of the expecta-
tion from its mean -y grow with the confidence mea-
sure | P[> = Y, P:(v)?. Figure 1 plots S; versus

Sy = &)

|| P;||? for 400 prefixes (OPT-1.3B, v = 0.5, § =
1.0). High-confidence locations (|| ;|| ~ 1) yield
small S;, whereas low-confidence ones (|| P ||? ~
|V|~!) maximise S;. The same inverse relation
holds for Gumbel and Tournament watermarks (see
Fig. 7 in Appendix C.5). The take-away is that
when the model is confident about a token, that out-
put token leaves little trace for watermark detection
(i.e., difficult to detect); uncertainty amplifies the
watermark signal (i.e., easy to detect).

3.2 Model confidence governs text quality

Ultimately, watermarking should minimize its neg-
ative impact on downstream text quality. While
we empirically assess quality via perplexity and
diversity in Section 5, we first quantify how water-
marking affects token-level distributional fidelity,
as changes at this level directly influence down-
stream quality. To measure fidelity loss, we use the
total-variation distance:

QZ’Pt ’

veY

Dry (P, Pt

This metric is prompt- and task-agnostic, precisely
capturing how watermarking alters token probabil-
ities. Importantly, D7y provides an upper bound
on any smooth token-level objective—including
perplexity and diversity—thus directly linking dis-
tributional fidelity to measurable text quality.

We evaluate fidelity loss under a fixed secret key,
which deterministically partitions tokens (e.g., into
green/red lists) based on the prefix. This matches
the practical setting, where detectors must know the
exact watermark key used during text generation.
Link to model confidence. Figure 2 (left) shows
that distortion shrinks as confidence || P;||? rises:
sharply peaked distributions are barely perturbed,
while flat ones incur substantial fidelity loss. Gum-
bel and Tournament watermarks exhibit the same
pattern (Appendix Fig. 8). In addition, if we focus
on the part where || P;||? is small, we note there is
very little difference between the Dy measured
between the original model and the watermarked
model and the the Dy measured between the orig-
inal model and the watermarked reference model.
Effectively, that means replacing low-confidence
tokens with samples from a small reference model
harms fidelity no more (and often less, according
to our experiments) than the watermark itself. Con-
versely, at high-confidence positions the reference
model can be worse than the watermarked model,
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Figure 1: Correlation between the token-level watermark signal Sy, the original model’s expected green-token

rate E,p,[1v € G;], and model confidence |||,

measured on OPT-1.3B with the Green-red watermark

(7y=0.5,; 0=1.0). Prefixes are drawn from the Harry Potter Wikipedia article. Corresponding results for Gumbel
and Tournament watermarks are provided in Fig. 7 (Appendix).
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Figure 2: Left: Token-level distributional shift
D1y (Py, P;) vs. model confidence || P;||? evaluated on
OPT-1.3B. The blue plot measures the distributional
shift due to the watermark distortion for Green—red
watermark (with v = 0.5, 4 = 1.0). The red plot
measures the distributional shift between the reference
model (OPT-125M) and the original model. Right:
Dry (P, P;) vs. token-level detectability S; for the
Green-red watermark. Lower confidence leads to larger
fidelity loss and stronger watermark detectability. Gum-
bel and Tournament show identical patterns (see Fig. 9).

which, in turn, underscores the watermark’s muted
effect per se.

3.3 Detectability—quality trade-off

Combining the findings of the previous two subsec-
tions, we now answer the question: are the tokens
that are easiest to detect are also those that most
distort the distribution?

The answer is yes. In Figure 2 (right), we see
that tokens that boost detectability scores (.S;) are
exactly those with the largest fidelity loss (Dry).
Hence token-level watermarks cannot achieve high
detectability without sacrificing distributional fi-
delity—and, by extension, downstreaming text
quality. This inherent trade-off motivates our
smoothing attack to be introduced in Section 4:
by targeting at low-confidence positions, we can
successfully remove the watermark signal while
preserving the overall text quality.

4 Smoothing Attack

Our attack aims to remove watermarks while pre-
serving text quality. At each token position, we
first estimate the model’s confidence and then se-
lectively smooth low-confidence tokens to weaken
the watermark detection signal. Detailed justifica-
tion and derivations are provided in Appendix C;
here we present the core algorithm clearly.
Adversary’s model access. We assume a practi-
cal scenario: the adversary queries the target wa-
termarked model via an API, obtaining only the
top-K token probabilities for a given prefix (with
K < |V|). The original, un-watermarked model is
not available to the adversary.

Estimating model confidence. We estimate model
confidence at position ¢ by approximating the
squared f2-norm of the token probability vector

(1 _Zvevmppt(v)>2
V- K ’

where Vo denotes the set of top- K tokens returned
by the model. Here we assume uniform probabili-
ties among unobserved tokens. - For distortion-free
watermarks (Gumbel, Tournament), the observed
probabilities P;(v) directly reflect the original dis-
tribution. - For distortionary watermarks (Green-
red), the probabilities from the watermarked model
slightly deviate from the original. However, as
shown in Appendix C, this approximation still cor-
rectly ranks tokens by their confidence; hence, it
remains effective without additional correction.

Normalizing confidence scores. To convert the
confidence estimate ¢; into a normalized confi-
dence score ¢; € [0, 1], we first establish empirical
bounds L (lower) and U (upper). Specifically, we
query the watermarked model using N random pre-
fixes (e.g., N = 200) and record their ¢; values.
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Given these bounds, we set

& —L
Ct = .
T UL

Smoothing procedure. Using a smoothing param-
eter o > 0, our attack proceeds as follows at each
token position. 1) For distortion-free watermarks,
with probability cf*, we retain the token originally
produced by the watermarked model; otherwise,
we resample from the observed top-K probabili-
ties. 2) For distortionary watermarks, we query a
small reference model (e.g., smaller than the wa-
termarked model) using the same prefix to obtain
its top- K token probabilities to construct a mixture
distribution:

Cta'Pwm“‘(l_C?)'Prefa

where Py and Per represent the watermarked and
reference model distributions, respectively. We
then sample from this mixture distribution. In-
tuitively, large o favors keeping tokens from the
watermarked model, while small o smooths the
watermark more aggressively by replacing tokens
more frequently.

Finally, if the adversary is uncertain about
whether the watermark is distortion-free or distor-
tionary, they simply follow the procedure designed
for distortionary watermarks (using the reference-
model mixture) and the attack’s success is not af-
fected, as demonstrated in Section 5.

Efficiency and assumptions. Our attack is com-
putationally efficient: it requires a modest ini-
tial overhead (a few hundred queries) to establish
confidence-score normalization bounds (L, U), fol-
lowed by one query per token position during gen-
eration. Importantly, our attack requires no knowl-
edge of the watermark’s algorithm, secret key, or
detector internals, ensuring practical applicability.

5 [Experiments

Setup. We evaluate our attack on three open-source
model families: Llama3 (8B parameters) (Dubey
etal., 2024), OPT (1.3B to 30B parameters) (Zhang
et al., 2022), and Qwen2 (1.5B parameters) (Chu
et al., 2024). When attacking distortionary wa-
termarks, we use smaller models as references:
Llama3-1B, OPT-125M, and Qwen2-0.5B, respec-
tively.

Following prior work (Kirchenbauer et al.,
2023a; Pan et al., 2024), we conduct evaluations

on the C4 dataset (Raffel et al., 2020), where water-
mark performance has been shown effective. We
avoid datasets with inherently low entropy (e.g.,
code generation), since previous studies (Kirchen-
bauer et al., 2023b; Lee et al., 2023) have demon-
strated that watermark effectiveness significantly
reduces in such settings. For each text in the dataset,
the first 30 tokens form the prompt, and models gen-
erate the subsequent 200 tokens. All reported re-
sults are averaged over 100 prompts. Experiments
were conducted using RTX-Titan GPUs.

We evaluate our attack against 10 rep-
resentative watermarking algorithms covering
both distortionary and distortion-free methods:
KGW (Kirchenbauer et al., 2023a), Unigram (Zhao
et al., 2023), UPV (Liu et al., 2023), X-SIR (He
et al., 2024), DIP (Wu et al.), SWEET (Lee et al.,
2023), EWD (Lu et al., 2024), Unbiased (Hu
et al.), SynthID (Tournament sampling) (Dathathri
et al., 2024), and Gumbel sampling (Aaronson,
2023). Our implementations build on the Mark-
LLM toolkit (Pan et al., 2024). Note that Gumbel
and X-SIR evaluations are restricted to OPT mod-
els, since Gumbel sampling exceeds 100 GB GPU
memory requirements for Llama/Qwen due to their
large vocabulary sizes, and X-SIR’s official imple-
mentation currently supports only OPT models.

We compare our Smoothing Attack with the
state-of-the-art Paraphrasing Attack (Piet et al.,
2023), which employs GPT-3.5-turbo to rewrite
texts, as well as its enhanced variants: paraphras-
ing multiple times and using GPT-40 as a stronger
paraphraser.

Performance metric. We measure attack effective-
ness along two dimensions: watermark removal
and text quality preservation. For watermark re-
moval, we report the true positive rate (TPR) of
watermark detection, under a fixed false positive
rate (FPR) of less than 1%. A lower TPR indi-
cates better watermark removal (TPR is 1% for
un-watermarked texts and 100% for fully water-
marked texts without any attack). To evaluate text
quality, we follow established protocols (Kirchen-
bauer et al., 2023a; Pan et al., 2024; Kirchenbauer
et al., 2023b) by reporting perplexity (lower is bet-
ter) and diversity (higher is better).

Unless otherwise noted, we set the smoothing
parameter o = 1.0 and use the top-10 tokens from
both the watermarked and reference models. Ad-
ditional experimental details and parameter varia-
tions are provided in the appendix.

4919



Table 1: Performance of watermark removal attacks on OPT-1.3B, Llama3-8B, and Qwen-1.5B models. We report
the watermark true positive rate (TPR, lower is better), perplexity (PPL, lower is better), and diversity (Div, higher
is better). All TPR values are measured at a fixed false positive rate below 1%. Additional results for models from

1.3B to 30B parameters are presented in Appendix B.6, demonstrating consistent trends.

Watermark Attack OPT-1.3B Llama3-8B Qwen2-1.5B
TPR PPL Div TPR PPL Div TPR PPL Div
Un-watermarked - 1 11.39  8.22 1 3.47 6.82 1 1226  8.10
Reference - 1 19.57 7.69 1 4.40 6.52 1 16.02 8.06
None 100 14.61 8.07 99  4.60 6.92 100 16.46 8.11
KGW (Kirchenbauer et al., 2023a) Paraphrasing 3 14.82  9.56 2 5.35 8.0 2 1045 9.42
Smoothing 0 9.57 6.72 2 3.20 5.63 0 8.02 6.91
None 100 1499 7.29 99 461 6.56 100 1541 7.37
Unigram (Zhao et al., 2023) Paraphrasing 53 1451 8.75 54 5.60 8.02 5 10.40 8.56
Smoothing 5 9.44 6.73 24 3.10 5.44 1 7.77 6.71
None 100 7.12 7.41 99 483 7.31 100 6.94 7.05
SynthID (Dathathri et al., 2024) ~ Paraphrasing 1 10.57  9.11 1 5.62 8.18 1 6.90 8.43
Smoothing 0 1040 8.64 0 3.40 6.86 0 1021  8.04
None 100 1373 844 84 403 7.35 100 1434 8.27
DIP (Wu et al.) Paraphrasing 0 13.95 9.25 0 5.25 8.34 2 10.10  8.85
Smoothing 6 9.34 6.84 6 3.17 5.67 11 7.62 6.92
None 100 13.61 8.29 84  4.02 7.29 100 14.64 821
Unbiased (Hu et al.) Paraphrasing 3 1445 1039 2 5.36 8.57 1 9.97 8.82
Smoothing 27 9.19 6.84 5 3.17 5.75 5 7.68 6.94
None 99 11.65 822 83 4.38 6.80 86 11.93 749
UPV (Liu et al., 2023) Paraphrasing 34 1373 9.92 2 5.43 8.00 2 9.03 8.58
Smoothing 20 10.01  6.89 1 3.12 5.49 0 8.16 6.91
None 100 1523 7.92 100 4.56 6.71 100 1631 7.85
EWD (Lu et al., 2024) Paraphrasing 0 1495 995 7 5.73 7.83 1 10.18  9.28
Smoothing 0 9.93 6.78 3 3.13 5.38 0 7.82 6.85
None 100 1436  8.02 99 453 6.69 100 15.89  7.65
SWEET (Lee et al., 2023) Paraphrasing 0 14.57 9.45 14 5.64 8.05 4 10.18  9.30
Smoothing 0 9.59 6.72 4 3.09 5.40 0 7.85 6.92

Performance in watermark removal. Our main
results are summarized in Tables 1 and 2. The
key finding is that the Smoothing Attack effec-
tively removes watermarks across diverse models
and watermarking algorithms, consistently outper-
forming the strong paraphrasing attacks. Specifi-
cally, our attack achieves very low watermark de-
tection rates (TPR around 5%, occasionally reach-
ing 0%), whereas paraphrasing attacks perform no-
tably worse. For instance, on OPT-1.3B with the
Unigram watermark (Table 1), paraphrasing leaves
53% of texts detectable, whereas our smoothing
reduces detection to just 5%, despite using only a
much smaller OPT-125M reference model.

Moreover, our attack is computationally inexpen-
sive and practical: watermarking text with KGW
on OPT-1.3B requires about 4.2 seconds, while
our smoothing attack using OPT-125M takes just
6.5 seconds (on two TITAN RTX GPUs). This
brings us an important message: existing water-
marking schemes are vulnerable to even resource-
limited adversaries, underscoring the significant
real-world applicability of the smoothing attack
and fundamental limitations of existing water-

Table 2: Performance of watermark removal attacks
on OPT-1.3B with Gumbel (Aaronson, 2023) and X-
SIR (He et al., 2024) watermarks (with FPR < 1%).

Watermark Attack TPR (%) PPL Div
None 98 296 435

Gumbel Paraphrasing 13 1421 11.13
Smoothing 9 19.25 8.30
None 94 13.99 7.96

X-SIR Paraphrasing 34 14.13 8.80
Smoothing 9 947 6.5

mark defenses.

Performance in text quality. Our smoothing at-
tack effectively preserves text quality, maintain-
ing low perplexity (PPL) and competitive diver-
sity (Div) while significantly improving watermark
removal. For instance, on OPT-1.3B with the Un-
igram watermark (Table 1), our attack achieves
notably better perplexity (9.44 vs. 14.51) and com-
parable diversity (6.73 vs. 8.75) relative to the para-
phrasing attack, while dramatically reducing wa-
termark detection (TPR of 5% vs. 50%). Further
details on these quality metrics are provided in Ap-
pendix B.3 (Figures 4 and 5).
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Table 3: Effectiveness of watermark removal attacks on
OPT-1.3B under Unigram and UPV schemes. Trans-
lation can reduce TPR but significantly degrades qual-
ity. Repeated paraphrasing using GPT-3.5 lowers TPR
further, with higher cost. GPT-40 improves fluency
(lower PPL) but still leaves detectable watermark traces.
Smoothing achieves the best overall trade-off by reduc-
ing TPR while preserving fluency and diversity.

Watermark Attack TPR(%) PPL Div

None 100 150 7.3

Translate (ZH) 100 222 7.6

Translate (FR) 0 23.0 73

. GPT-3.5 Paraphrase (1x) 53 145 8.8
Unigram

GPT-3.5 Paraphrase (2x) 0 157 99

GPT-3.5 Paraphrase (3x) 0 156 99

GPT-40 Paraphrase (1x) 0 11.2 84

Smoothing 5 94 6.7

None 99 11.7 82

Translate (ZH) 58 170 8.0

Translate (FR) 83 172 7.7

UPV GPT-3.5 Paraphrase (1x) 34 13.7 99

GPT-3.5 Paraphrase (2x) 23 15.1 99
GPT-3.5 Paraphrase (3x) 24 14.7 10.1
GPT-40 Paraphrase (1x) 51 9.8 8.7
Smoothing 20 10.0 6.9

The effectiveness of our smoothing method is
also evident for Gumbel sampling (Table 2). Al-
though Gumbel sampling itself yields artificially
low perplexity by generating repetitive content,
it substantially reduces text diversity and overall
quality. Our smoothing attack, by comparison,
slightly increases perplexity but significantly re-
duces undesirable repetition, thereby improving
actual text readability and coherence (examples in
Appendix B.5, Table 14).

While our attack may sometimes show slightly
lower diversity compared to paraphrasing, this pri-
marily arises because our method samples only
from the top-K most likely tokens instead of the
entire vocabulary. Increasing the value of K (see
Table 5) effectively restores diversity, though it re-
quires additional probability information from the
model. Interestingly, by restricting token selection
to the top- K tokens, our smoothing attack consis-
tently achieves even lower perplexity than unwater-
marked texts. Thus, beyond effectively removing
watermarks, our method also enhances overall text
quality by preventing the selection of extremely
unlikely tokens commonly encountered in standard
sampling.

Comparison with translation and repeated para-
phrasing attacks. We further contextualize our

smoothing attack by evaluating two additional at-
tack types—translation-based and repeated para-
phrasing attacks—particularly targeting watermark
schemes (Unigram and UPV) resilient to single-
pass GPT-3.5 paraphrasing.

For translation-based attacks, texts are translated
to an intermediate language (Chinese or French)
and then back to English using Google Trans-
late (Google, 2024). For repeated paraphrasing,
we apply GPT-3.5 up to three times iteratively, sim-
ulating more aggressive rewriting. Additionally,
we explore GPT-4o, a stronger paraphraser with
enhanced fluency and coherence.

Table 3 demonstrates that translation-based
attacks often significantly degrade text qual-
ity (higher perplexity) while only inconsistently
removing watermarks.  Repeated paraphras-
ing improves watermark removal but substan-
tially increases computational cost. Paraphras-
ing with GPT-40—a stronger model than GPT-
3.5 turbo—enhances text quality (lower perplexity)
but does not guarantee better watermark removal;
detection rates remain inconsistent and can even
worsen, as observed with the UPV watermark.

Overall, these baselines emphasize the core ad-
vantage of our smoothing attack: it achieves robust
watermark removal while preserving or even en-
hancing text quality, without relying on costly LMs.

Comparison with adaptive paraphrasers. We
compare our smoothing attack with the adaptive
paraphraser proposed by Diaa et al. (2024), which
relies on white-box knowledge of watermark algo-
rithms, including the secret key generation and em-
bedding mechanisms. In contrast, our smoothing at-
tack operates purely under black-box assumptions,
requiring no detailed watermark knowledge. De-
spite this weaker assumption, Table 4 demonstrates
our smoothing attack achieves comparable or supe-
rior watermark removal performance, while signif-
icantly preserving text quality (lower PPL). Thus,
our method offers practical effectiveness without
demanding unrealistic adversarial knowledge.

Ablation studies on K, o, and model size. We
extensively study the sensitivity of our smoothing
attack to critical parameters (K and «) and the
target model’s size.

Increasing K typically improves watermark re-
moval (lower TPR) and diversity, at a slight cost of
increased perplexity (Table 5). Notably, even with
a minimal setting (X = 1), our attack remains ef-
fective, achieving a TPR of only 18%, significantly
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Table 4: Comparison with the adaptive paraphraser
from Diaa et al. (2024) on Llama3-8B with the Uni-
gram watermark. The adaptive paraphraser is fine-tuned
on Llama3-3B. Our attack use the same base, non-fine-
tuned model as our reference model.

Attack TPR (%) PPL Div
None 67 4.6 6.6
Adaptive Paraphraser 0 6.5 7.4
Smoothing 0 3.1 6.6

Table 5: Impact of K and o on Smoothing Attack per-
formance on OPT-1.3B with Unigram watermark.

K @ TPR (%) PPL Div
0.5 42 99 6.86

' 1.0 5 9.44 6.73
Fixed to 10 20 0 938 6.58
3.0 1 925 643

1 18 321 4.62
5 ) 10 7.46 6.11
10 Fixed to 1 5 944 6.73
15 5 11.73 7.11

lower than GPT-3.5 paraphrasing (53%). Increas-
ing the smoothing parameter o makes our attack
more aggressive in replacing uncertain tokens, thus
enhancing watermark removal and generally im-
proving perplexity. However, higher o values can
slightly reduce diversity. By adjusting «, adver-
saries can effectively balance between watermark
removal and text diversity (see Table 5). Additional
results across diverse watermarks and models are
presented in Appendix B.4.

Finally, we evaluate the effect of varying the tar-
get model size within the OPT family (from 1.3B
to 30B), using the much smaller OPT-125M as the
reference model. Our results (Table 5) indicate min-
imal sensitivity to the target model’s size, confirm-
ing the scalability of our attack. Comprehensive
results are detailed in Appendix B.6.

Effect of reference model size. To evaluate the
influence of reference model size, we apply our
smoothing attack using OPT models ranging from
125M to 1.3B parameters as the reference model.
Table 7 clearly indicates that using larger reference
models improves text quality (lower PPL, higher
diversity), and can further reduce watermark de-
tectability. These results confirm that the expres-
siveness of the reference model positively impacts
overall attack performance.

Impact of watermark type knowledge. Our
smoothing attack requires knowledge of the wa-
termark type—specifically, whether it is distortion-

Table 6: Smoothing Attack against Unigram watermark-
ing on models of different sizes, with OPT-125M as the
reference model.

Target model size Setting TPR (%) PPL Div
Unwatermarked 0 12.95 8.67
1.3B Watermarked 99 16.53 7.29
Smoothing 6 10.37 6.83
Unwatermarked 0 11.75 8.36
2.7B Watermarked 100 1431 7.41
Smoothing 4 10.35 6.66
Unwatermarked 0 10.20 8.45
6.7B Watermarked 100 12.94 7.48
Smoothing 6 10.54 6.68
Unwatermarked 0 10.14 8.39
13B Watermarked 100 12.44 7.39
Smoothing 5 10.32  6.70
Unwatermarked 0 8.46 8.44
30B Watermarked 100 1045 17.56
Smoothing 7 10.15 6.75

Table 7: Impact of size of reference model size on the
performance of the smoothing attack. Larger models
reduce perplexity; lower TPR; and maintain diversity.

Watermark  Attack / Model Size TPR (%) PPL Div
None (Watermarked) 100 146 8.1
KGW Smoothing (OPT-125M) 0 9.6 6.7
Smoothing (OPT-350M) 0 8.5 7.0
Smoothing (OPT-1.3B) 0 7.0 7.3
None (Watermarked) 100 13.7 8.4
DIP Smoothing (OPT-125M) 6 9.3 6.8
Smoothing (OPT-350M) 9 8.2 7.0
Smoothing (OPT-1.3B) 6 6.9 7.2
None (Watermarked) 99 11.7 82
UPV Smoothing (OPT-125M) 20 10.0 6.9
Smoothing (OPT-350M) 5 8.9 7.2
Smoothing (OPT-1.3B) 4 74 13
Table 8: Impact of watermark-type knowledge on

smoothing attack against the distortion-free SynthID
watermark. Smoothing attack reduces true positive rate
to zero whether or not it knows the watermark type.

Setting TPR (%) PPL Div
Watermarked (no attack) 100 7.1 7.4
Smoothing (type known) 0 104 8.6
Smoothing (type unknown) 0 9.6 6.7

free or distortionary—only for deciding whether
and how to re-sample tokens. To assess the impor-
tance of this assumption, we evaluate our attack on
the distortion-free SynthID watermark both with
and without access to this information (Table 8).
The results show that our attack achieves identical
performance (TPR of 0%) in both settings, demon-
strating its robustness and practical applicability
even without watermark-type knowledge.
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6 Conclusion

We revealed limitations in existing watermarks for
language models and examined their robustness
against watermark removal attacks. We introduced
Smoothing Attack, a novel method that leverages
model confidence to selectively remove watermark
traces while preserving text quality. Comprehen-
sive evaluations demonstrated that Smoothing At-
tack can completely remove watermarks, outper-
forming the state-of-the-art attack and highlighting
a critical gap in current watermarks, and calling for
more robust solutions.
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8 Limitations and Ethical Considerations

In conducting this study, we have carefully consid-
ered several factors that could influence the general-
izability and applicability of our findings. Here we
outline these considerations explicitly, along with
the steps taken to address potential limitations.

Access to confidence-related information. Our
smoothing attack relies on estimating model confi-
dence from top-K token probabilities, commonly
provided by public APIs (e.g., OpenAl’s API). Al-
though limiting access to probability information
could theoretically mitigate our attack, in practice,
such restrictions are challenging to enforce and
may conflict with broader ethical goals around Al
transparency and interpretability (OECD, 2019;
National Institute of Standards and Technology
(NIST), 2023). Recognizing this tension, we high-
light the need for watermarking methods robust
to scenarios where confidence estimates remain
partially accessible.

Dependence on reference models. For distor-
tionary watermark removal, our attack uses a ref-
erence model to generate alternative token candi-
dates. We explicitly evaluated different reference
model sizes (Table 7), confirming strong perfor-
mance even when using significantly smaller refer-
ence models. However, selecting an extremely mis-
matched or lower-quality reference model could
impact both watermark removal and text quality.
We recommend using reference models carefully
matched to the domain or distribution of the target
model.

Dataset selection and evaluation scope. We
evaluated our methods extensively on the C4
dataset due to its well-documented suitability for
watermark evaluation (Kirchenbauer et al., 2023a;
Pan et al., 2024). Prior research indicated that
datasets with low-entropy generation (e.g., code)
already significantly reduce watermark effective-
ness (Kirchenbauer et al., 2023b; Lee et al., 2023).
Thus, while our findings clearly establish the effec-
tiveness of our attack under typical high-entropy
generation conditions, results may differ in special-
ized, low-entropy contexts.

Future watermarking approaches. Our attack
exploits inherent structural vulnerabilities shared
by current token-level watermark schemes. We ex-
plicitly acknowledge that future watermarking al-
gorithms could be designed specifically to counter
such confidence-based attacks. Recognizing this
potential evolution, we strongly encourage further
research into watermark robustness and the devel-
opment of methods resilient to confidence-based
adversaries.

9 Ethical Considerations

Our work demonstrates that an adversary, under
realistic assumptions, can successfully remove wa-
termarks from texts without compromising text
quality. Although robustness concerns regarding
watermarking have been highlighted by prior stud-
ies, our research underscores that these risks may
be even greater than previously assessed.

We conducted experiments on LLama (Dubey
et al.,, 2024), OPT (Zhang et al., 2022), and
Qwen (Chu et al., 2024), each of which has been re-
leased under their respective licenses, as detailed in
their documentation. Our implementation is based
on MarkLLLM (under the Apache License), and all
modifications we have introduced are clearly doc-
umented in the README file included with our
submitted code. Furthermore, any external pack-
ages used in our evaluations have been explicitly
presented in the code we submitted.

Artifact use in this research has been consistent
with intended purposes. Our dataset derives from
the publicly available C4 dataset, which, to the
best of our knowledge, does not contain person-
ally identifiable information or offensive content.
Additionally, relevant statistics regarding the data
utilized in our experiments have been comprehen-
sively reported C4 dataset (Raffel et al., 2020).

We utilized ChatGPT to revise portions of the
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manuscript; however, all revisions were performed
under direct human supervision, ensuring that the
final text accurately reflects our intent and ethical
standards.

We approach this research with a firm commit-
ment to ethical standards and responsible disclo-
sure. By openly illustrating vulnerabilities, rec-
ommending effective mitigation, and transparently
sharing our methods and outcomes, our objective
is to inform and assist the broader research commu-
nity. Our goal is to facilitate advancements in water-
marking techniques that effectively balance trans-
parency, innovation, and security, aligning with
emerging regulatory standards such as the EU Al
Act and the U.S. Al safety policies (European Com-
mission, 2021). Moreover, we explicitly discuss
potential defensive strategies and evaluate their ef-
ficacy (see Appendix D and Table10), providing
actionable guidance for enhancing the resilience
of watermarking techniques. Overall, by clearly
outlining these ethical considerations and limita-
tions, we believe our research contributes robust
and actionable insights, responsibly addressing the
ethical implications and boundaries inherent in our
study.
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A More on Related Work

Variations of Green-red list watermark. Differ-
ent variations of Green-red list watermark, e.g.,
see (Kirchenbauer et al., 2023b; Lee et al., 2023;
Liu et al., 2023; Wu et al.; Huo et al.; Zhou et al.,
2024; Lu et al., 2024; Liu et al., 2024; He et al.,
2024; Zhao et al., 2023; Kirchenbauer et al., 2023a),
mainly differ in the assignment of the green lists
and the detection process. In particular, the assign-
ment of G; could depend on the prefix, e.g., the pre-
ceding h tokens in the generated text. When h = 0,
we say the assignment is context-independent and
is referred to as the Unigram watermark (Zhao
et al., 2023); when h = 1, the assignment depends
on the previous token and is referred to as the KGW
watermark (Kirchenbauer et al., 2023a)

Scalable Tournament sampling. As shown
in their paper, the original tournament process
in (Dathathri et al., 2024) can be costly to
implement, as there are O(2™) times of sam-
pling and pair-wise comparison of tokens. In-
stead, they obtain a modified distribution for to-
kens. With ]3t(0) = P, they iteratively compute

PO = (1 + 900, r) = S ey (9O, 7) -
HD)) B0, o = L, an
! ! 7 =1,...,m,

then sample the token from pPm),

Distortion-free watermark. There are also other
distortion-free watermarks, which aim to preserve
the original model’s token distribution and avoid de-
tectable shifts in probabilities of output tokens, e.g.,
see Hu et al.; Zhao et al. (2024b); Fu et al. (2024);
Christ et al. (2023); Fairoze et al. (2023); Christ
and Gunn (2024); Cohen et al. (2024); Ghentiyala
and Guruswami (2024); Golowich and Moitra;
Dathathri et al. (2024); Wu et al..

Comparison with paraphrasing attacks. When
attacking OPT models (from 1.3B to 30B parame-
ters), our attack only leverages the OPT-125M as
the reference model when attacking distortionary
watermarks such as the Unigram watermark. When
attacking distortion-free watermarks, our attack
sometimes resamples from the target watermarked
model. In either case, the resource used in our at-
tack is significantly smaller than the state-of-the-art
paraphrasing attack, which uses the much larger
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Table 9: Table of notation definitions and their locations.

Notation Meaning Definition Location
M Auto-regressive language model (LM), which generates text sequentially Section 2
based on a given prompt.
M Watermarked model, a variant of M that embeds watermarks into generated Section 3.1
text.
)% Vocabulary of the LM, the set of all possible tokens that can be generated. Section 2
t Token position in the generated sequence, indicating the index of a specific Section 2
token.
l:(v) Logit assigned by the model to token v at position ¢ before applying softmax. Eq. equation 1
Py (v) Probability of token v at position ¢ after applying the softmax function. Eq. equation 1
P (v) Modified probability distribution in the watermarked model after logit ma- Eq. equation 2
nipulation.
(vi,...,v7) Sequence of tokens forming the output text from the language model. Section 2
d(vi,...,vr) Detection score function used to determine whether a text is watermarked. Section 2
T Threshold value for watermark detection; if d(v1, ..., vr) > 7, the text is Section 2
classified as watermarked.
Gt Green list, a subset of vocabulary containing tokens whose logits are in- Section 2
creased in green-red list watermarking.
o Fraction of the vocabulary included in the green list G;, determining the Section 2
probability of token selection.
) Logit increase applied to tokens in the green list G;, influencing token Eq. equation 2
selection probabilities.
T Length of the generated sequence, i.e., the total number of tokens in the Section 2
output text.
ue(v) Randomly sampled value from [0, 1] for token v in Gumbel sampling water- Section 2
marking.
o Token selected using Gumbel sampling watermarking by maximizing a Section 2
transformed probability.
St Contribution of the token at position ¢ to the overall watermark detection Eq. equation 5

Ey~p, [1{v € G¢}]
|| P]|®
Drv(Pi, P,)
Drpy (P, Pf)
K

VTop- K

UL

Ptret

score.

Expected probability mass assigned to green tokens at position ¢ from proba-
bility distribution P;.

L2 norm of the probability vector, measuring model confidence at position .
A higher value means greater confidence.

Total variation distance between original and watermarked probability distri-
butions, measuring distortion.

Total variation distance between the original model and a reference model’s
probability distributions.

Number of most probable tokens that the adversary has access to from the
watermarked model.

Set of top-K most probable tokens observed by the adversary.
Scaling factor used to estimate || P;||?
Green-red list watermarking.

from watermarked probabilities in

Normalized confidence score in [0, 1] based on estimated £ norm.

Upper and lower bounds for normalizing £ norms into the confidence score
c.

Exponential factor controlling the aggressiveness of the smoothing attack.
A larger « favors keeping watermarked tokens, while a smaller « favors
replacement.

Token probability distribution from a much smaller, un-watermarked refer-
ence model.

Eq. equation 5
Section 3.1
Section 3.1
Section 3.1

Section 4

Section 4
Section 4

Section 4

Section 4

Section 4

Section 4

GPT-3.5-turbo. Despite using fewer resources, our
approach achieves higher watermark removal rates

mark defenses.

and comparable text quality. This highlights that
even resource-limited adversaries can thwart water-
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B More on Experiments

B.1 Implementation

We evaluate the smoothing attack on eight
different watermarking algorithms, including
KGW (Kirchenbauer et al., 2023a), Unigram (Zhao
et al., 2023), SWEET (Lee et al., 2023), UPV (Liu
et al., 2023), EWD (Lu et al., 2024), X-SIR (He
et al., 2024), DIP (Wu et al.), Unbiased (Hu
et al.), SynthID (Dathathri et al., 2024) and Gum-
bel (Aaronson, 2023). We use the implementa-
tions and default configurations provided by Mark-
LLM (Pan et al., 2024). For completeness, we
provide details of the algorithms below.

* KGW (Kirchenbauer et al., 2023a): The green
set G; at each position ¢ is selected based on
the previous h tokens and a secret key known
to the service provider. The hyperparameters
are set as follows: v = 0.5, § = 2.0, and
h=1.

e Unigram (Kirchenbauer et al., 2023a): The
green set G; is fixed for each token ¢ and
each prefix, depending solely on the secret key
known to the service provider. No dynamic
updates are performed based on previous to-
kens. The parameters are: v = 0.5, § = 2.0.

* SWEET (Lee et al., 2023): A shift is applied
only when the entropy of the probability dis-
tribution at position ¢ is high, improving text
quality, particularly for code generation tasks.
The parameters are set as: v = 0.5, § = 2.0,
the entropy threshold is 0.9, and A = 1.0.

e UPV (Liu et al., 2023): The green token se-
lection process is similar to the previous ap-
proaches. However, this method requires train-
ing two additional models: a generator net-
work to separate red and green tokens and a
detector network for classification based on
the input text. The watermarks are introduced
using v = 0.5, § = 2.0, and h = 1.0. The
detector produces a binary prediction rather
than a continuous score like a z-score.

e EWD (Lu et al., 2024): Watermark introduc-
tion follows a similar process as the previous
methods. The hyperparameters are v = 0.5,
0 = 2.0, and h = 1.0. During detection,
tokens are assigned different weights based
on their entropy, with higher entropy tokens

receiving greater weight to improve detectabil-
ity in low-entropy scenarios.

* X-SIR (He et al., 2024): Instead of operating
at the token level, the red-green partition is ap-
plied at the level of semantic clusters, group-
ing similar words together and adding bias
at the group level. This improves robustness
against Cross-lingual Watermark Removal At-
tacks (CWRA).

e DIP (Wu et al.): Similar to Kirchenbauer et
al. (2023), this method selects green tokens
but uses a distribution-preserving reweight
function to adjust token probabilities. This in-
creases the probability of green tokens while
maintaining the overall distribution. The
reweighting is controlled by the parameter
a. The hyperparameters are set as v = 0.5,
h =5.

Implementation of the paraphrasing attack.
We include the strongest baseline that paraphrases
the given text based on the GPT-3.5-turbo (Piet
et al., 2023), denoted as P-GPT3.5 using the
prompt: “Please rewrite the following text:”. As
shown in (Kirchenbauer et al., 2023b), GPT-3.5-
turbo is more powerful in removing the watermarks
compared to Dipper model (Krishna et al., 2023).

Text quality metric. We use Llama3-8B, Qwen2-
7B, and OPT-2.7B to evaluate the perplexity of
the text generated from Llama3, Qwen2, and OPT
models. We also report the log diversity of the
text (Welleck et al.; Kirchenbauer et al., 2023b; Li
et al., 2022), following the definition in (Kirchen-
bauer et al., 2023b) considering the 2-gram, 3-gram,
and 4-gram repetition in the generated text. A
higher diversity score represents a more diverse
text.

B.2 Performance of the smoothing attack

Figure 3 shows three scatterplots of TPR vs. PPL.
for text generated under different watermarking
and attack settings. Each point is colored by
the watermarking method and corresponds to one
of three models (OPT-1.3B, Llama3-8B, Qwen2-
1.5B). Overall, the smoothing attack yields substan-
tially lower TPR relative to the watermarked set-
ting, demonstrating its performance at watermark
removal. Notably, smoothing’s TPR is on par with
that of the paraphrasing attack, which uses a more
powerful model (GPT-3.5-turbo). In terms of per-
plexity (PPL), smoothing also generates text that is
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competitive with (and sometimes lower than) both
the watermarked text and the paraphrased text, indi-
cating that it preserves text quality while removing
the watermark.

B.3 Text Quality Evaluation

Figure 4 and Figure 5 present boxplots of the per-
plexity (PPL) and diversity of text generated from
different sources using the OPT-1.3B model. We
observe that the smoothing attack generally yields
text with lower PPL than the watermarked model,
except in cases involving the Gumbel watermark.
This suggests that, according to the PPL metric, the
smoothing attack can generate high-quality text. In
terms of diversity, the constrained selection pro-
cess—where sampling is restricted to the top-K
candidates from both the reference and target mod-
els—results in lower diversity for the smoothing
attack. These findings are consistent with the av-
erage PPL results reported in Table 1 in the main
paper.

In addition, we compute the P-SP score (Wieting
et al., 2022), which quantifies the similarity be-
tween pairs of texts in the embedding space, with
higher scores indicating greater similarity. Specifi-
cally, we calculate P-SP scores for text generated
from different sources and visualize the results in
the heatmap shown in Figure 6. We observe that,
aside from the paraphrasing case, texts from dif-
ferent sources generally exhibit low similarity. For
instance, text generated by the watermarked model
has a P-SP score of 53.6 on Unigram, whereas the
similarity between the watermarked text and its
paraphrased version reaches 82.3. Our smoothing
attack produces a P-SP score (measuring similarity
between text from the smoothing attack and unwa-
termarked text) comparable to that of the water-
marked text (measuring similarity between water-
marked text and unwatermarked text). The gener-
ally low P-SP scores across different sources reflect
the natural variability in generated responses, as
multiple reasonable outputs can exist for the same
prompt. Therefore, P-SP metrics may not be a reli-
able measure for assessing text quality degradation
due to watermarking or smoothing.

B.4 Effect of K and «

Table 10 and Table 12 show the performance of
smoothing attacks against different watermarking
algorithms under varying values of K. In a smooth-
ing attack, the adversary has access only to the
top-K tokens and their probabilities from both the

reference and target models. Even with K = 1,
the attack can drastically reduce the true positive
rate (TPR) from 99% (without any attack) to an
extremely low value, sometimes reaching 0%. This
indicates that even with minimal access to both
models, the smoothing attack can effectively re-
move watermarks. Furthermore, we observe that
increasing K leads to more diverse text generation,
as discussed in the main paper. This is because a
higher K provides the attack with a larger selection
of candidate tokens, allowing for greater variation
in the generated text. This observation remains con-
sistent across both the OPT-1.3B and Llama3-8B
models.

Table 11 and Table 13 analyze the performance
of smoothing attacks against different watermark-
ing algorithms under varying values of «. In this
attack, the weight assigned to the top-K tokens
from the watermarked model is given by ¢*, while
the weight for the top-K tokens from the reference
model is 1 — ¢, where c is a confidence score be-
tween 0 and 1. A larger « shifts the token selection
preference toward the reference model, making the
generated text more aligned with it. Conversely, a
smaller o biases the attack toward the watermarked
model, producing text that more closely resembles
the watermarked output. As « increases, the true
positive rate (TPR) decreases, leading to a higher
watermark removal rate—an effect consistently ob-
served across all watermarking methods for both
the OPT-1.3B and Llama3-8B models.

In terms of text quality, when « is lower, the gen-
erated text is more influenced by the watermarked
model, which generally exhibits higher quality than
the reference model. Consequently, decreasing «
can improve text quality. This provides an adver-
sary with a way to adjust « to balance watermark
removal and text quality preservation.

B.5 Text example

Table 14 presents text generated by the Gumbel
sampling algorithm and the smoothing attack. We
observe that, although the perplexity of the water-
marked text is significantly lower than that of the
text from the smoothing attack, this is primarily
due to repetition in the generated text. This be-
havior may stem from the deterministic nature of
Gumbel sampling, which can lead to less diverse
outputs.
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Figure 3: Each subfigure shows how the true positive rate (TPR) varies with perplexity (PPL) for a specific attack.
No attack (a) corresponds to watermarked text without modifications, paraphrasing (b) uses GPT-3.5-turbo to rewrite
the text, and smoothing (c) randomly replaces some tokens to remove the watermark. Colors indicate the particular
watermarking method and each point corresponds to one of three models (OPT-1.3B, Llama3-8B, Qwen2-1.5B).
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Figure 4: Text Quality Comparison — Perplexity (OPT-1.3B). Box plots of perplexity for text generated from
different sources, with perplexity computed using the OPT-2.7B model. Our smoothing attack produces text with
quality comparable to, and in some cases better than, that of the watermarked model.
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Figure 5: Text Quality Comparison — Diversity (OPT-1.3B). Box plots of text diversity for outputs generated from
different sources. Our smoothing attack produces text with diversity comparable to, and in some cases lower than,
that of the watermarked model due to its constrained selection process.

B.6 Impact of model size

Table 15 presents the performance of the smooth-
ing attack across different watermarking algorithms
and varying sizes of OPT models. Perplexity
(PPL) is computed with respect to the OPT-30B
model, while the reference model remains consis-
tent across all settings—the OPT-125M.

For unwatermarked models, the True Positive
Rate (TPR) is consistently 0%. In contrast, wa-
termarked models achieve near-perfect TPR. How-
ever, the smoothing attack significantly reduces
TPR across all model sizes, with its impact increas-

ing as the model size grows—for instance, TPR
drops to 0% for the KGW watermark in the 30B
model.

Watermarked models exhibit a notable increase
in perplexity, indicating that watermarking impacts
text fluency. The smoothing attack reduces per-
plexity, bringing it closer to unwatermarked lev-
els, suggesting a partial recovery of fluency. Re-
garding diversity, the unwatermarked text demon-
strates the highest variation, while watermarking
constrains generation patterns, resulting in a no-
ticeable drop in diversity. The smoothing attack
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Figure 6: Text Quality Comparison — P-SP (OPT-1.3B). Heatmap comparing the similarity of text generated
by different models in the sentence embedding space. Text from the watermarked model has a low similarity
score compared to unwatermarked text, reflecting the inherent variability in generated responses. However, the
paraphrased text (Paraphrasing vs. watermarked) exhibits a high similarity score, suggesting that the P-SP metric is
more suitable for evaluating paraphrasing rather than assessing text quality degradation due to watermarking or
smoothing.

Table 10: Effect of K on Smoothing Attack Performance (OPT-1.3B). Evaluation of the smoothing attack’s
effectiveness against different watermarking algorithms on the OPT-1.3B model, varying the number of top-K
tokens accessible to the attacker.

K KGW Unigram SynthID DIP Unbiased

TPR PPL Div | TPR PPL  Div | TPR PPL Div | TPR PPL Div | TPR PPL Div
1 9% 322 454 | 18% 321 462 | 0% 1045 847 | 1% 336 4.57 7% 336 456
3 00% 576 571 | 8.0% 59 568 | 00% 105 831 | 40% 558 566 | 140% 559 5.68
5 20% 727 6.17 | 10.0% 7.46 6.11 | 0.0% 1035 871 | 3.0% 697 623 | 19.0% 7.11 6.29
7 1.0% 8.14 646 | 50% 848 655 | 00% 1042 863 | 7.0% 797 646 | 29.0% 8.06 6.47
10 0.0% 957 672 | 50% 944 673 | 0.0% 104 864 | 6.0% 934 684 | 27.0% 9.19 6.84
K XSIR UPV Gumbel EWD SWEET

TPR PPL Div | TPR PPL  Div | TPR PPL Div | TPR PPL Div | TPR PPL Div
1 14% 331 45 22% 362 4.63 | 0% 208 82 1% 331 449 2% 341 457
3 17.0% 5.69 552 | 140% 622 587 | 2.0% 21.72 847 | 0.0% 5.78 571 | 0.0% 564 5.75
5 80% 6.8 6.04 | 16.0% 768 63 | 80% 203 823 |00% 732 6.18 | 00% 7.15 6.23
7 100% 826 648 | 70% 875 665 | 9.0% 21.15 815 | 00% 865 652 | 00% 847 645
10 9.0% 947 6.5 | 20.0% 1001 6.89 | 9.0% 1925 83 | 0.0% 993 6.78 | 0.0% 9.59 6.72

further reduces diversity, primarily because tokens  the range of possible candidates.
are sampled only from the top-K tokens of both
the watermarked and reference models, limiting
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Table 11: Effect of a on Smoothing Attack Performance (OPT-1.3B). Evaluation of the smoothing attack’s
effectiveness against different watermarking algorithms on the OPT-1.3B model, varying the parameter . A larger
« indicates that the attack relies more on the reference model’s output, while a smaller o means the attack is more
influenced by the watermarked text.

«a KGW Unigram SynthID DIP Unbiased

TPR PPL  Div TPR PPL  Div TPR PPL  Div TPR PPL Div TPR PPL Div
05 11.0% 10.03 7.02 | 42.0% 9.9 6.86 | 2.0% 9.33 79 | 29.0% 927 7.11 | 63.0% 892 7.09
1.0 0.0% 957 672 | 5.0% 944 673 | 0.0% 104 8.64 | 6.0% 934 684 | 27.0% 9.19 6.84
20  0.0% 935 6.65 | 0.0% 938 658 | 00% 11.16 826 | 1.0% 9.03 671 | 9.0% 8.89 6.59
3.0  0.0% 945 646 | 1.0% 925 643 | 00% 1133 861 | 00% 932 682 | 1.0% 9.05 6.65

«a X-SIR UPVvV Gumbel EWD SWEET

TPR PPL  Div TPR PPL  Div TPR PPL  Div TPR PPL Div TPR PPL Div
0.5 280% 947 694 | 42.0% 1001 7.14 | 80.0% 13.73 754 | 00% 9.76 7.01 | 6.0% 9.66 7.13
1.0 9.0% 947 6.75 | 20.0% 1001 6.89 | 9.0% 1925 83 00% 993 6.78 | 0.0% 9.59 6.72
20 6.0% 945 646 | 4.0% 928 659 | 0.0% 2539 9.04 | 00% 9.63 658 | 00% 929 645
3.0 0.0% 9.12 641 1.0% 985 657 | 00% 2577 95 00% 943 6.68 | 0.0% 933 6.53

Table 12: Effect of K on Smoothing Attack Performance (Llama3-8B). Evaluation of the smoothing attack’s
effectiveness against different watermarking algorithms on the Llama3-8B model, varying the number of top-K
tokens accessible to the attacker.

K KGW Unigram SynthID DIP

TPR PPL Div | TPR PPL Div | TPR PPL Div | TPR PPL Div
1 6% 237 4.67 | 19% 241 4.67 | 0% 36 686 | 2% 253 484
3 1% 281 517 | 27% 2.8 52 0% 342 687 | 4% 291 547
5 3% 299 536 | 24% 292 531 | 0% 341 689 | 1% 297 555
7 2% 314 555 | 23% 3.03 543 | 0% 341 6.86 | 4% 3.1 578
10 2% 32 563 | 24% 31 544 | 0% 34 686 | 6% 3.17 5.67
K Unbiased UPVv EWD SWEET

TPR PPL Div | TPR PPL Div | TPR PPL Div | TPR PPL Div
1 1% 2.5 4.8 1% 248 4776 | 3% 243 4.68 | 3% 241 472
3 4% 29 544 | 1% 297 537 | 4% 294 533 | 3% 291 527
5 2% 295 553 | 0% 3.02 555 | 3% 306 548 | 4% 3.01 543
7 7% 314 572 | 1% 31 554 | 6% 309 543 | 5% 3.01 537
10 5% 317 575 | 1% 312 549 | 3% 313 538 | 4% 3.09 54

Table 13: Effect of & on Smoothing Attack Performance (Llama3-8B). Evaluation of the smoothing attack’s
effectiveness against different watermarking algorithms on the Llama3-8B model, varying the parameter a. A
larger « indicates greater reliance on the reference model’s output, while a smaller o means the attack text is more
influenced by the watermarked model.

a KGW Unigram SynthID DIP

TPR PPL Div | TPR PPL Div | TPR PPL Div | TPR PPL Div
05 13% 345 592 | 62% 34 577 | 0% 378 6.88 | 35% 3.34 6.19
1.0 2% 32 5.63 | 24% 3.1 544 | 0% 34 686 | 6% 3.17 5.67
20 0% 305 528 | 12% 293 521 | 0% 349 687 | 3% 299 523
30 0% 293 517 | 12% 299 526 | 0% 352 683 | 1% 296 5.16

o Unbiased UPV EWD SWEET

TPR PPL Div | TPR PPL Div | TPR PPL Div | TPR PPL Div
05 26% 337 6.09 | 10% 347 608 | 28% 344 584 | 4% 338 59
1.0 5% 317 575 | 1% 312 549 | 3% 3.13 538 | 4% 3.09 54
20 3% 298 528 | 0% 296 5.2 0% 30 536 | 1% 3.06 5.38
30 3% 29 521 | 0% 299 52 0% 289 518 | 0% 293 5.22
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Table 14: Text generated by watermarked model and smoothing attack (OPT-1.3B against Gumbel sampling).

‘Watermarked

Smoothing Attack

Cluster comprises IBM’s Opteron-based eServer 325
server and systems management software and storage
devices that can run Linux and Windows operating
systems.

The data center will be built on top of existing IBM
Power servers. The company will offer a variety of
services, including cloud-based services, as well as a
"plug and play" environment that will allow users to
transition to other hardware.

The data center will be built on top of existing IBM
Power servers. The company will offer a variety of
services, including cloud-based services, as well as a
"plug and play" environment that will allow users to
transition to other hardware. (Image: IBM)

The data center will be built on top of existing IBM
Power servers. The company will offer a variety of
services, including cloud-based services, as well as a
"plug and play" environment that will allow users to
transition to other hardware.

The data center will be built on top of existing IBM
Power servers. The company will offer a variety of
services, including cloud-based services, as well as a
"plug and play" environment that will allow users to
transition to other hardware.

C Analysis

C.1 Contribution Depends on the Confidence
Score of the Unwatermarked Model

We first demonstrate that the contribution of each
token to the detection score is influenced by the
confidence score of the unwatermarked model, as
measured by its probability distribution.

C.1.1 Case Study: Green-Red List
Watermark

Suppose that [; is the logit vector for predicting the
t-th token from the unwatermarked model, and G;
is the green list used by the watermarked model
at position ¢, with size |V|. Given the watermark
shift §, the probabilities assigned by the unwater-
marked and watermarked models are expressed as:

o) — exp(l¢(v))
B(v) = > ey exp(le(v')) ©
E(v) _ exp(lt(v) +4- l{Uegt}) '
S ey exp<lt(v’) +0- 1{u/egt}>
(7N

Rewriting P;(v), we observe:

exp(d 1iveg,})
Yoy Pi(v) exp((5 1{U/€gt})

P,(v) = P,(v)x

Cluster comprises IBM’s Opteron-based eServer 325
server and systems management software and storage
devices that can run Linux and Windows operating
systems.

IBM will start selling customers a prototype of the
cluster by July, according to Jim Bessen, the executive
vice president of middleware architecture and services
at IBM.

“The cluster is just the tip of the iceberg,” he said.

The cluster firm computing is encased in a step-by-step
process starting with activities such as how to set up
clinks that back up disks, store data, create back-up
schemes for data, and at what resolutions to save the
data.

“We are not done yet,” he said. As new kinds of
programming software and other technologies come out,
users need to act on it.

While IBM expects internal clusters with the capability
to run multiple operating systems in fuse over the next
year, this capability will be available only to Enterprise
Software Group (ESG) customers.

ESG will not sell its cluster technology to anyone else,
Bessen said.

Define the normalization factor:

ZU ey eXp(lt + 4 1{U Egz})

Zs = 8
: Sy ®
=Y P(v) exp(6 1{yeg,y)- 9)
v ey
Then:
0
~ 7 Pt(v)7 v E gta
Pt(’l)) = 15
7 Pt(’U), v ¢ gt
B

The expected fraction of tokens belonging to the
green list under the unwatermarked model is given

by:

Eyop[1(v e G)] = ZPt(U> = Pg,,

vEG:

where Fg, represents the probability mass assigned
to green tokens in the unwatermarked model.

Similarly, the expected fraction of green tokens
in the watermarked model is:

E'UNPt[ v € Gyl

=Y B = E;'fik.

vEG:
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Table 15: Impact of Model Size on the Smoothing Attack (OPT). Performance of the smoothing attack across
different watermarking algorithms and various sizes of OPT models. The perplexity (PPL) is computed with respect
to the OPT-30B model, while the reference model is consistently the OPT-125M. The table reports True Positive
Rate (TPR), Perplexity (PPL), and Diversity (Div.) for unwatermarked, watermarked, and smoothed settings.

. . | KGW Unigram SynthID DIP Unbiased
Size Setting
| TPR PPL Div.| TPR PPL Div.| TPR PPL Div.| TPR PPL Div.| TPR PPL Div.
Unwatermarked | 0.0% 1295 8.67 | 0.0% 1295 8.67| 0.0% 1295 8.67| 0.0% 1295 8.67| 0.0% 1295 8.67
1.3B  Watermarked 100.0% 15.94 8.09 | 99.0% 16.53 7.29 | 100.0% 7.7 7.41|100.0% 15.16 8.44 | 99.0% 15.14 8.29
Smoothing 4.0% 1048 6.72| 6.0% 1037 6.83| 1.0% 11.37 8.67| 6.0% 10.03 7.03| 40% 994 6.79
Unwatermarked | 0.0% 11.75 836 | 0.0% 11.75 836| 0.0% 11.75 836| 0.0% 11.75 836| 0.0% 11.75 8.36
2.7B  Watermarked 100.0% 13.94 7.88 | 100.0% 14.31 7.41| 99.0% 6.86 7.55| 97.0% 13.86 8.61 | 97.0% 13.6 8.69
Smoothing 4.0% 1035 6.77| 40% 1035 6.66| 6.0% 9.84 80 | 13.0% 9.87 684| 6.0% 9.85 6.88
Unwatermarked | 0.0% 102 845| 0.0% 102 845| 0.0% 102 845| 0.0% 102 845| 0.0% 102 845
6.7B  Watermarked 100.0% 13.16 8.06 | 100.0% 12.94 7.48 | 98.0% 621 748 | 98.0% 11.8 848| 97.0% 11.79 8.59
Smoothing 4.0% 1007 692| 6.0% 1054 6.68| 3.0% 898 831| 80% 9.78 6.86| 8.0% 9.68 6.74
Unwatermarked | 0.0% 10.14 839 | 0.0% 10.14 839 | 0.0% 10.14 839| 0.0% 10.14 839| 0.0% 10.14 8.39
13B  Watermarked 100.0% 12.88 8.56 | 100.0% 12.44 7.39 | 100.0% 5.88 7.8 | 96.0% 11.67 9.34 | 93.0% 11.42 8.77
Smoothing 20% 1024 6.82| 5.0% 1032 6.7 | 80% 807 78 | 8.0% 9.6 688| 7.0% 937 6.77
Unwatermarked | 0.0% 846 844 | 0.0% 846 844| 00% 846 844| 00% 846 844| 0.0% 846 8.44
30B  Watermarked 100.0% 10.23 8.34 | 100.0% 10.45 7.56 | 100.0% 527 7.72| 94.0% 943 8.78| 97.0% 9.89 9.08
Smoothing 0.0% 95 68| 7.0% 1015 6.75| 50% 696 8.04| 40% 934 6.89| 40% 936 6.88
. . ‘ X-SIR UPVv Gumbel EWD SWEET
Size Setting
‘ TPR PPL Div. ‘ TPR PPL Div. | TPR PPL Div. ‘ TPR PPL Div. ‘ TPR PPL Div.
Unwatermarked | 1.0% 1295 8.67| 0.0% 1295 8.67| 0.0% 1295 8.67| 0.0% 1295 8.67| 0.0% 1295 8.67
1.3B  Watermarked 94.0% 1542 796 | 99.0% 1279 822 | 98.0% 3.15 4.35|100.0% 16.88 7.92|100.0% 1599 8.02
Smoothing 13.0% 103 6.72 | 20.0% 10.78 6.89 | 9.0% 20.94 830| 1.0% 1071 6.75| 1.0% 10.54 6.81
Unwatermarked | 3.0% 11.75 836 | 0.0% 11.75 836| 0.0% 11.75 836| 0.0% 11.75 836| 0.0% 11.75 8.36
2.7B  Watermarked 91.0% 14.07 825| 99.0% 1230 8.01| 99.0% 2.96 4.38|100.0% 14.88 7.98|100.0% 14.07 8.32
Smoothing 10.0% 10.34 6.77 | 18.0% 1056 6.90| 10.0% 19.46 841 | 1.0% 1043 6.86| 3.0% 1049 6.86
Unwatermarked | 0.0% 102 845| 0.0% 1020 845| 0.0% 10.20 845| 0.0% 10.20 845| 0.0% 10.20 8.45
6.7B  Watermarked 91.0% 13.04 8.19| 97.0% 1092 7.75|100.0% 2.97 4.49|100.0% 13.42 8.69 | 100.0% 13.05 8.41
Smoothing 9.0% 10.01 6.7 | 8.0% 10.60 7.05| 9.0% 14.85 8.62| 0.0% 10.60 6.79| 1.0% 10.07 6.89
Unwatermarked | 0.0% 10.14 839 | 0.0% 10.14 839 | 0.0% 10.14 839| 0.0% 10.14 839| 0.0% 10.14 8.39
13B Watermarked 88.0% 1229 8.05| 99.0% 10.59 791 | 98.0% 2.96 4.63|100.0% 13.09 8.74 | 100.0% 12.32 8.35
Smoothing 11.0% 9.84 6.79| 12.0% 10.84 6.88 | 12.0% 15.06 827| 0.0% 10.16 6.73 | 2.0% 10.15 6.74
Unwatermarked | 0.0% 846 844 | 0.0% 846 844| 00% 846 844| 00% 846 844 | 0.0% 846 8.44
30B  Watermarked 91.0% 1043 843 | 97.0% 859 8.13| 97.0% 2.89 4.79|100.0% 10.75 8.54|100.0% 9.98 825
Smoothing 16.0% 9.65 6.74| 17.0% 10.06 7.11| 9.0% 1192 839| 2.0% 10.02 699 | 2.0% 9.55 6.84

Since Zs = (e — 1)Pg, + 1, the difference in
green token probabilities (i.e., the detection contri-
bution at token position ?) is:

St =E 5 [1(U S gt)] - E’UNPt [1(11 S gt)]

v~ Py

(11D
—( = 1)Pg, + (" = 1)
= . (12)
(66 - 1) + PLgt

In other words, the token-level detection contri-
bution S; is a function of the probability mass Fyg,
assigned to green tokens by the unwatermarked
model.

C.1.2 Case Study: Tournament Sampling
Watermark

In the Tournament Sampling watermark, when gen-
erating the ¢-th token, the algorithm assigns scores

to each token using m independent watermarking
functions ¢(V, ..., g™ . These scores depend on a
random seed generated based on the recent context
and a secret watermarking key. The token selection
follows a multi-round elimination process, where
2™ tokens are first sampled from P;(-), then com-
pete in m rounds to determine the final output.
Despite the complex sampling mechanism, the
probability of each token in the modified distribu-
tion P, is adjusted by a factor dependent on its
assigned g value. Specifically, for any token v:

Fi(v) - (1 - Pg,)
Fi(v) - (2 - Pg,)

if g(v) =

Flv) = if g(v)

0
© (13
L (13)

During watermark detection, the detector com-
putes the average g value across all tournament lay-
ers, ie, L 3", g (v), as the watermark score
for the token.
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Single Tournament Layer (m = 1). Consider the
simplest case where m = 1, meaning only one
tournament round is used. Let G; denote the set of
tokens where g(!) (v) = 1. The probability modifi-
cation simplifies to:

if v ¢ Qt,

14
ifUEgt. ( )

B) = { ) (1= Fg)
t P(v)- (2 Pg,)

__The expected g value for tokens sampled from
Pis (2 — Pg,) - Pg,, while the expectation under
P, is simply Pg,. Thus, the detection contribution
S; 1s:

Sy=(1-Pg,)- Pg,- (15)

This mirrors the Green-Red List watermark,
showing that the detection contribution per token
is fundamentally tied to Fg,.

C.2 Low Model Confidence Leads to Large
Variance in the Watermark Score for
Unwatermarked Text

Thus far, we have established that the contribution
of each token to the detection score is correlated
with the expected watermark score under the unwa-
termarked model. We now analyze what affects the
watermark score of the unwatermarked model.

Let P, = (p1,pe2, - - ., pa) be the probability vec-
tor from the unwatermarked model at token posi-
tion ¢, where p; € [0, 1] and E‘f:l p; = 1. Typi-
cally, d = |V| is large. We randomly select a subset
Gt C {1,...,d} of indices of size y|V|. Define the
random variable:

Pgt = Zpi‘

1€Gt
We analyze how Fg, is distributed over all possi-
ble assignments of G;. Define the indicator variable
X; as follows:

L,
Xi= 9,

Since each token is independently assigned to G;
with probability v, we have:

ifi € Gy,

otherwise.

E[X;] =7, and Var(X;)=~(1—7).

For different token indices ¢ # j, the covariance
between their assignments is:

COV(Xi, X]) = E[XZXJ} — E[XZ]E[X]]

For Poisson sampling (i.e., assigning each token
to G; independently with probability ), the covari-
ance is zero. However, under a fixed-size sampling
setup (i.e., selecting exactly y|V| tokens), we have:

V| .7|V| —1 — 2

COV(Xi,Xj) = d d—1
_ 21—y
V-1

Expressing Fg, in terms of X;, we obtain:

d
sz = Zlez
i=1

Expectation and Variance of Fg,.
tion is:

The expecta-

ElFg,] = ZE[Xi]pi = 72]97; = .

The variance Var(Fg, ) is:

d

ZP?Var(Xi) + Zpiijov(Xi, X;).
i=1 i#]

Substituting Var(X;) =

Cov(X;, X;) = — 5=

(1 — v) and

d (1 =)
Var(Fg,) = v(1—7) 1%2 T Zpipj'

i=1 VI-1 i#j
For the first term,
d
Y1 =) P} =~(1-7y)0?,
i=1

where 02 = °% | p? represents the squared £

norm of the probability vector.
For the second term, using the identity:

d 2 4
S iy — (zpz) I S NP
=1 =1

i#]

and we obtain:
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(1 =) (1 =9)
M1 2

For large |V, the correction term ng_’{) (1-0?)

becomes negligible, and we approximate:

Var(Pg,) ~ (1 — 7)0’2.

Interpretation. This analysis shows that Py, de-
pends on the probability mass distribution.
High-Uncertainty Case (Uniform Distribution):

If p; = ﬁ for all 4, then
4
1 1
2
o° = — =
2V =
For large V|, o2 is small, meaning that the dis-

tribution of Fg, concentrates tightly around v with
small variance. This corresponds to a scenario
where the model has high uncertainty, spreading
probability mass nearly uniformly over all tokens.
Low-Uncertainty Case (Dominant Tokens): In
practice, language models often assign high proba-
bility mass to a small number of dominant tokens.
Suppose p; > 0.8 for some token j, then:

o > pi = 0.64.

In this case, o2 is much larger than 1/|V| (which
is on the order of 10~° for large models). Conse-
quently, Pg, exhibits a bimodal distribution: it is
either close to 0 or close to 1, depending on whether
the dominant tokens are in G;. The probability of
Pg, ~ v is nearly zero.

Thus, when the model is confident in its predic-
tions (low uncertainty), the variance of Fg, is large,
leading to a higher variance in the watermark score.
Conversely, when the model is uncertain, the wa-
termark score is more stable and centered around

Y.

Connection to Watermark Detection. Since the
contribution to the detection score S; depends on
FPg, (Eq. equation 5), its variance is governed by
Var(Pg,). This means that tokens generated with
high confidence contribute more variability to the
detection score, whereas tokens generated under
uncertainty contribute less variability.

C.3 Estimating the Confidence Score of the
Unwatermarked Model Using the
Watermarked Model

Our goal is to estimate the squared ¢2 norm of the
probability distribution || P;||?, which serves as a
confidence measure for the unwatermarked model,
using only access to the watermarked model P,.
This estimation is critical for adaptive attacks and
for understanding how watermarking affects text
quality.

Setup. We consider the Green-Red List water-
marking scheme, where the probability distribution
P, is obtained by modifying P; as:

~ GJI{UEQt}
Fi(v) = TPt(v),

where the normalization factor Z; is defined as:

Zs = (1—Pg,) + €’ Pg,.

‘We aim to construct an estimator U for the con-
fidence measure:

IP* = Pi(v)*.

veY

Expected Squared Norm of the Watermarked
Model. Since each probability mass in P is
scaled by either el /Zs (if in G;) or 1/Zs (if not
in G;), we have:

626

E[B(w)? = (1- v)Zlgth)? R Lk

Summing over all tokens in V', we obtain:

(1—7) + e

B[R = S
é

1217

Unbiased Estimator. Rearranging the above ex-
pression, we define an unbiased estimator:

Z3

D12
(1) w11

Taking expectation, we confirm:

E[0] = | 2>
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Practical Approximation. Since Z; depends on
Pg,, which is unknown to an adversary, we approx-
imate it using +y:

Zs~ (1—7) + ~el.
Thus, the practical estimator becomes:
~ Q=) + e’
U= |53

(1 =) +7e?

This provides a computationally efficient way to
estimate || P;||? using only P;, making it useful for
designing attacks.

C.4 Estimating the /5 Norm Using Top-K
Probabilities

While we have established the connection between
the squared £5 norm || P ||? of the probability dis-
tribution and its contribution to the watermark de-
tection score, direct access to this quantity is often
unavailable, even for the watermarked model. In
this section, we show how to estimate || P;||? using
only limited access to the model’s top- K probabili-
ties.

Suppose we only have access to the top- K prob-
abilities:

pP1L=>p2 > 2 PK,

where the remaining probabilities
PK+1,---,py| are unknown. Define the re-
maining probability mass of the tail as:

K

Rzl_zpi-

i=1

Our goal is to estimate the squared ¢ norm:

4
1P = pr
given only pq,...,px and R.

We bound || P||? by considering two extreme
ways in which the unknown tail probabilities could
be distributed:

1. Uniform Tail: The remaining probability mass
R is evenly distributed across the unknown
tokens, minimizing the sum of squares.

2. Concentrated Tail: The entire probability
mass R is assigned to a single token, max-
imizing the sum of squares.

Uniform Tail (Lower Bound) If the tail probabil-
ity mass R is uniformly spread among the remain-
ing |V| — K tokens, then each unknown probability
i The squared sum of the tail probabilities

o (x)
R2

T VI-K

_R
RS
1s then:

VI

> i =(VI-

1=K+1

Since distributing the mass uniformly minimizes
the squared sum (due to convexity), this scenario
provides a lower bound for || P;||?:

K
> ) pi+
i=1

Concentrated Tail (Upper Bound) At the other
extreme, if the entire remaining probability mass
R is assigned to a single token, then the squared
sum of the tail probabilities is simply:

1P

4
> -
i=K+1
Since concentrating all probability mass in one
entry maximizes the sum of squares, this provides
an upper bound for || P;||%:

K
1P)* < Y pf + B2
i=1

Combining both bounds, we obtain:

17]* <

Zpl + R?,

2
NV

where R=1- K p.

Practical Approximation. A commonly used
practical heuristic is to assume that the remaining
probability mass R follows a uniform distribution
across the unknown probabilities. Under this as-
sumption, we approximate:

K
> pi+
=1

This estimate tends to be slightly lower than the
true value, since in reality, the tail probabilities

1P * =~
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are rarely perfectly uniform—some tokens may
have slightly higher probabilities than others. How-
ever, in the case of language modeling, probability
distributions often exhibit a “long tail” where the
remaining probability mass is spread across many
small values. In such cases, the uniform assump-
tion serves as a reasonable first-order approxima-
tion.

C.5 Additional Numerical Analysis

Generalization to other watermarking solutions.
For Gumbel sampling, we define the token-level
contribution to watermark detection as S; =
—log(1 — Uy+) — Epp,[—log(1 — U,)], where
v* is the token selected by the watermarked
model. Note that the choice of v* is determinis-
tic after the secret key held by the LM provider
and the prefix content are fixed. For Tourna-
ment sampling, we define the token-level con-
tribution as Sy = E__5 [ >, 9P (v,7)] —
Eoop, [ 500 ¢ (v,7)], where P, is the mod-
ified probability distribution.

For these two watermarks, we still observe the
same correlation between S; and || P;||? as we have
for Green-list watermarks, as shown in Figure 7.
Namely, the token-level contribution .Sy to the wa-
termark detectability is negatively correlated to the
model’s confidence at position .

Impact of watermarking on text quality We
also plot Dy (P;, Pf°f), which measures the neg-
ative impact on text quality if we alternatively
sample from the reference model OPT-125M (in
color red). We note that when the model is not
confident in its output, i.e., when || P;||? is small,
sampling from the reference model’s token dis-
tribution, i.e., Pr°f, does not hurt the text qual-
ity. In particular, under the Green-red list water-
marking scheme, Dry (P, P*') is comparable to
D7y (Py, P;) when || P;||? is small (observe that
the red points generally overlap with the blue
ones). For Gumbel and Tournament sampling,
Dry (P, P’ is even smaller than Dy (P, ﬁt)
when || P;||? is small (observe that the red points
are generally below the blue ones). Conversely,
when the model is confident in its output, i.e.,
when || P;||? is large, replacing the watermarked
model with a reference model may hurt the text
quality (observe that the red points are above the
blue ones).

Trade-off between detectability and text qual-
ity In Figure 9, we plot the correlation between
Dry (P, P;) and S;, empirically measured on
OPT-1.3B model using the same setup as the above
simulations. When the watermark has little im-
pact on text quality (i.e., smaller total variation dis-
tance), the watermark is also less detectable (i.e.,
smaller S;). Conversely, tokens that contribute
more to watermark detection also lead to more
notable text quality degradation. This finding, in
turn, reveals the crucial limitation of existing wa-
termarking schemes: high watermark detectability
and high text quality cannot be achieved at the same
time, since the very same set of tokens causes qual-
ity degradation while contributing to watermark
detectability simultaneously.

D Possible Defenses to Smoothing Attack

Our attack exploits the correlation between a to-
ken’s contribution to the watermark detection score
and the confidence level of the unwatermarked
model in predicting that token. One possible de-
fense against this attack is to restrict access to
confidence-related information, such as returning
only the most probable token without revealing
its probability. Note that, if the probability of the
most likely token is available, our attack remains
effective. However, such a defense is challeng-
ing to enforce in practice. Many existing LLM
services provide fop-K probabilities (e.g., Ope-
nAl’s API returns probabilities for the top 20 to-
kens), which is already sufficient to approximate
model confidence and execute our attack. More-
over, service providers often release these prob-
abilities to enhance transparency and build trust
by providing insights into the model’s reasoning,
addressing concerns about the opacity of Al sys-
tems (European Commission, 2021; OECD, 2019).
Access to probability distributions is also essen-
tial for debugging and evaluating model perfor-
mance, as it allows developers to identify biases,
diagnose overconfidence, and improve reliability
(National Institute of Standards and Technology
(NIST), 2023). Probabilities support explainable
Al (XAI) by revealing model uncertainty, enabling
users to interpret predictions and explore alterna-
tive suggestions (Brown et al., 2020). From an
ethical standpoint, making probability distributions
available facilitates bias auditing and aligns with
broader efforts to promote fairness and accountabil-
ity in AI (OECD, 2019). Additionally, probability
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Figure 7: The correlation between S; (watermark contribution score) and || P;||? (model confidence) evaluated
on model OPT-1.3B with the Gumbel and Tournament sampling (with m tournaments) watermarks, using the
same setup as in Figure 1. Each sample corresponds to a specific prefix and secret key. || P;||? is computed from
the original un-watermarked model. The overall observation is similar to what we have for the Green-red list

watermarking: S; decreases as || P;||? increases.
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Figure 8: The correlation between Dy (P, ﬁt), i.e., the negative impact on text quality due to watermarks (in color
blue), and || P; ||, measured on OPT-1.3B with the Green-red list and Gumbel and Tournament sampling watermarks.

We also plot Dry (P, P*"), which measures the negative impact on text quality if we use tokens sampled from the
reference model OPT-125M (in color red).

information empowers developers and end users  ensure robustness against adversarial attacks that
by enabling advanced decision-making strategies, exploit confidence information.
such as re-ranking, rejection sampling, and beam

search (OpenAl, 2023). Furthermore, it helps mit-

igate risks associated with model overconfidence

and hallucinations, which is particularly crucial in

high-stakes domains such as healthcare and law

(National Institute of Standards and Technology

(NIST), 2023). Given the practical difficulties in re-

stricting access to confidence-related information,

our findings suggest that existing watermarking

techniques may be vulnerable when model confi-

dence can be estimated. This highlights the need

for developing watermarking schemes that remain

effective even in scenarios where adversaries have

partial access to confidence estimates. Future re-

search should explore watermarking methods that

explicitly account for the model’s confidence and
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Green-Red Gumbel Tournament
T

Figure 9: The correlation between Dpy (P, ISt), i.e., the negative impact of watermarking on the text quality,
and S;, i.e., the token-level contribNution to watermark detectability. We measure this on OPT-1.3B. For all three
watermarking schemes, Dy (P;, P;) increases as .S; increases.
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