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Abstract

Knowledge distillation for knowledge graph
embedding (KGE) models effectively com-
presses KGE models by reducing their em-
bedding dimensions. While existing meth-
ods distill knowledge from a high-dimensional
teacher to a low-dimensional student, they typi-
cally rely on a single teacher embedding space,
thereby overlooking valuable complementary
knowledge from teachers in distinct embedding
spaces. This paper introduces DTDES-KGE,
a novel knowledge distillation framework that
significantly enhances distillation performance
by leveraging dual teachers in distinct embed-
ding spaces. To overcome the challenge of
spatial heterogeneity when integrating knowl-
edge from dual teachers, we propose a spatial
compatibility module for reconciliation. Addi-
tionally, we introduce a student-aware knowl-
edge fusion mechanism to fuse the knowledge
from dual teachers dynamically. Extensive ex-
periments on two real-world datasets validate
the effectiveness of DTDES-KGE.

1 Introduction

Knowledge graphs (KGs) represent factual knowl-
edge with diverse structures as triples. Their effi-
cacy in organizing complex information has driven
widespread adoption in various applications such
as natural language processing (Ma et al., 2025),
question answering (Wu et al., 2024b), and recom-
mendation systems (Lai et al., 2024).

Knowledge Graph Embedding (KGE) models
are pivotal for leveraging KGs, as they learn em-
beddings for entities and relations, facilitating the
integration of KGs into numerous downstream ap-
plications (Zhang et al., 2024; Mohamed et al.,
2021; Choudhary et al., 2021). While diverse
KGE models have emerged, where Euclidean space
models prove adept at capturing chain structures
and hyperbolic space models excel in representing
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Figure 1: An example of leveraging dual teachers from
distinct embedding space for knowledge distillation.

hierarchies in KGs (Liu et al., 2024; Cao et al.,
2022; Li et al., 2025), achieving state-of-the-art
performance often necessitates large embedding
dimensions. This subsequently leads to prohibitive
storage demands and increased inference latency,
which severely limits their practical deployment,
particularly in resource-constrained environments.

Knowledge distillation (KD) offers a promis-
ing avenue for compressing these large KGE mod-
els, where a low-dimensional student model learns
from a pre-trained, high-capacity teacher model
by mimicking its output and embedding structure
(Zhu et al., 2022). However, existing knowledge
distillation approaches for KGEs predominantly
rely on teacher models trained within a single em-
bedding space (Wang et al., 2021a; Zhu et al., 2022;
Liu et al., 2023; Xu et al., 2024). This overlooks
the rich, complementary knowledge that teachers
from different embedding spaces, each of which
excels at capturing distinct structural properties of
KGs, could collectively provide. Recognizing this
untapped potential, and as illustrated in Figure1,
we propose to utilize dual teachers, one from Eu-
clidean space and another from hyperbolic space,
to furnish a more comprehensive knowledge base
for the student model.

Despite the considerable promise of fusing
knowledge from Euclidean and hyperbolic KGE
models (Wang et al., 2021b), a critical challenge
emerges: inter-space heterogeneity (Cao et al.,
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2022; Wang et al., 2024). The distinct geomet-
ric properties and scoring mechanisms inherent to
these disparate spaces result in heterogeneous out-
puts and embedding structures. This fundamental
incompatibility severely impedes effective knowl-
edge fusion, preventing the student model from
optimally learning from the combined wisdom of
cross-space teachers.

This paper investigates the pivotal research ques-
tion: How can we effectively leverage dual teachers
from distinct embedding spaces for KGE model dis-
tillation? To this end, we introduce DTDES-KGE,
a novel Dual Teachers with Distinct Embedding
Spaces for Knowledge Graph Embeddings distilla-
tion framework. DTDES-KGE is designed to first
reconcile spatial disparities and then intelligently
fuse knowledge from dual teachers. Specifically,
to address the challenge of spatial heterogeneity,
DTDES-KGE incorporates a spatial compatibil-
ity module. This module employs optimal distri-
bution selection to harmonize the heterogeneous
outputs from the dual teachers and utilizes a pre-
distillation phase to align their disparate embed-
ding structures, thereby fostering better cross-space
knowledge transfer. Furthermore, to intelligently
integrate the reconciled knowledge, DTDES-KGE
employs a student-aware knowledge fusion mecha-
nism. This mechanism dynamically assigns adap-
tive weights to the dual teachers throughout the
distillation process. It considers prior knowledge
about teacher specializations, the knowledge diver-
gence between teachers, and the student’s current
grasp of different knowledge facets, ensuring an
optimal blend of guidance.

We conduct comprehensive experiments on two
real-world benchmark datasets. The results demon-
strate that DTDES-KGE significantly enhances the
performance of low-dimensional KGE models, en-
abling them to achieve results comparable or even
superior to leading, larger KGE models and exist-
ing distillation techniques.

Our main contributions are summarized as fol-
lows: (i) We propose DTDES-KGE, a knowledge
distillation framework for KGE models utilizing
dual teachers with distinct embedding spaces. (ii)
We design a dedicated spatial compatibility mod-
ule to mitigate inter-space heterogeneity and a
student-aware knowledge fusion mechanism to dy-
namically and judiciously integrate complementary
knowledge from these diverse teachers. (iii) Ex-
periment results show that DTDES-KGE achieves
comparable or superior performance to leading ap-

proaches on two datasets.

2 Related Work

2.1 Knowledge Graph Embeddings

KGE models can be divided into three groups
based on the curvature of their embedding spaces:
Euclidean-space models (zero curvature), hyper-
bolic space models (non-zero curvature), and
mixed-curvature models. For Euclidean-space
KGE models, some researchers focus on treating
relations as translations from head entity embed-
ding to the tail entity embedding (Bordes et al.,
2013; Sun et al., 2019; Zhang et al., 2019, 2020;
Ge et al., 2023; Niu et al., 2022), whereas others
focus on representing relations as linear transfor-
mations applied to the entity embeddings (Yang
et al., 2015; Nickel et al., 2011; Trouillon et al.,
2016). For hyperbolic KGE models, early stud-
ies explored the Poincaré ball model (Balazevic
et al., 2019; Kolyvakis et al., 2019; Chami et al.,
2020; Pan and Wang, 2021). Recent efforts moti-
vated by the potential for richer semantic represen-
tation, have explored modeling within ultrahyper-
bolic manifold spaces or utilized the Lorentz model
for relationship modeling (Xiong et al., 2022; Chen
et al., 2022; Fan et al., 2024). To further enhance
the performance of KGE models, recent research
explores modeling in multiple spaces with varying
curvatures and integrates representations from dif-
ferent spaces with a well-designed strategy (Cao
et al., 2022; Wang et al., 2021b; Liu et al., 2024; Li
et al., 2025).

2.2 Knowledge Distillation for KGE Models

Knowledge distillation, introduced by Hinton (Hin-
ton, 2015), enhances a smaller student model by
transferring knowledge from a larger teacher model.
MulDE (Wang et al., 2021a) first applied KD to
KGE models, using four hyperbolic KGEs as teach-
ers. Subsequent approaches include DualDE (Zhu
et al., 2022), proposing a two-stage framework that
models teacher-student dual influence; IterDE (Liu
et al., 2023), employing an iterative method to re-
duce student-teacher performance gaps; and SKDE
(Xu et al., 2024), exploring self-distillation for low-
dimensional KGEs. However, existing KGE distil-
lation methods predominantly use teacher models
from a single embedding space. This practice trans-
fers only one type of knowledge, thereby limiting
student model performance.
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3 Method

This section first outlines KGE model distillation
preliminaries (§3.1). As shown in Figure 2, our
framework has three key components: a spatial
compatibility module to reconcile heterogeneous
dual-teacher knowledge (§3.2); a student-aware
mechanism to dynamically fuse this reconciled
knowledge (§3.3); and a combined strategy inte-
grating logits-based (§3.4) and feature-level distil-
lation (§3.5) into the overall objective (§3.6).

3.1 Preliminaries
Given a set of entities E and a set of relations R, a
knowledge graph G = {(h, r, t)|h, t ∈ E, r ∈ R}
is a collection of factual triples. KGE models learn
entity and relation representations by training on
observed positive triples T and negative triples T−,
which are generated by randomly corrupting heads
or tails of positive triples.

KGE models use different scoring functions
fr(h, t) to measure the plausibility of triples. In-
spired by (Wu et al., 2024a), the score function of
the student model is defined as:

fr(eh, et) = exp(
eThret

τf∥ehr∥2∥et∥2
)

+ exp(
1

τf
(

eThret
∥ehr∥2∥et∥2

)3),

(1)

where τf is the temperature hyperparameter. ehr is
the query embedding obtained by transforming the
concatenation of the head and relation embeddings
eh, er through a linear layer.

Usually, a margin-based loss (Sun et al., 2019)
is used to optimize the KGE model:

LH =− log σ(fr(h, t)− γ)

−
n∑

i=1

1

n
log σ(γ − fr(h

′
, t

′
)),

(2)

where n denotes the number of negative samples,
σ denotes the sigmoid function, and γ is a hyper-
parameter controlling model’s learning difficulty.

A widely-adopted logits-based knowledge dis-
tillation approach utilizes Kullback-Leibler (KL)
divergence as a soft loss to guide the student model
to mimic the teacher’s output:

LKD =
1

n

∑
τ2sKL(σ

′
(Pt/τs), σ

′
(Ps/τs)),

(3)

where Pt and Ps denote the output of the teacher
model and the student model, σ

′
denotes the soft-

max function, and τs represents the temperature.

3.2 Spatial Compatibility Module

This section introduces our spatial compatibility
module, which mitigates heterogeneous knowl-
edge from dual teachers, thereby enabling effective
cross-space knowledge fusion. To achieve this, it
employs optimal distribution selection and a pre-
distillation phase to reconcile their outputs and em-
bedding structures.
Optimal Distribution Selection. To fully leverage
the rich, nuanced information contained within the
teacher models’ logits and to facilitate their direct
weighted aggregation, we first address the inherent
distributional heterogeneity of their outputs. To
this end, we introduce a dynamic mechanism that
learns a query-specific target distribution, denoted
as D∗. By mapping the outputs of both teachers to
this unified distribution, we harmonize their scores,
rendering them directly comparable and enabling a
more principled fusion.

Specifically, the parameters of the target distri-
bution D∗ are dynamically learned from key sta-
tistical properties of the two teacher distributions
(D1,D2). We construct a feature set comprising
their individual means (µ1, µ2) and standard devia-
tions (σ1, σ2), along with their relational statistics—
the mean difference (µ1 − µ2) and standard devia-
tion ratio (σ1/σ2). This feature vector is then input
to a linear layer, producing an output vector y that
directly specifies the parameters of the optimal dis-
tribution D∗:

µ∗ = y[0], (4)

σ∗ = softplus(y[1]), (5)

where µ∗ and σ∗ represent the target mean and
standard deviation. Finally, the raw logits from the
dual teachers, s1, s2 ∈ Rn, are normalized and re-
projected to align with D∗, yielding the reconciled
scores s∗1, s

∗
2. This element-wise transformation is

formulated as:

s∗i [j] =
si[j]− µi

σi
· σ∗ + µ∗ j = 1, . . . , n (6)

Pre-distillation Phase. Recent studies show that
using teachers’ embedding structure as hint knowl-
edge benefits distillation (Hao et al., 2024; Li et al.,
2024; Zheng et al., 2025). However, dual teacher
models with heterogeneous embedding spaces pose
a significant challenge to directly leveraging their
embedding structures as hint knowledge. This het-
erogeneity implies that properties of different KGE
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Figure 2: The overall architecture of DTDES-KGE. “Vanilla KD” indicates vanilla knowledge distillation approach
utilizing KL divergence introduced by (Hinton, 2015).

models such as distance, angles and transforma-
tions are defined differently.

To overcome this challenge, we introduce a pre-
distillation phase. The core idea is to transform the
heterogeneous embeddings into a unified, homo-
geneous representation. This is achieved by em-
ploying the simple but effective vanilla knowledge
distillation approach utilizing KL divergence intro-
duced by introduced by (Hinton, 2015). Specifi-
cally, each of the heterogeneous teacher models is
independently distilled into a homogeneous KGE
model. Through this process, the rich knowledge of
each heterogeneous teacher is largely transferred to
the homogeneous model, meanwhile significantly
mitigating the heterogeneity of the dual teachers’
embedding structures, thereby reducing student
learning complexity. We select RotatE (Sun et al.,
2019) as the homogeneous KGE model for the
pre-distillation phase. The influence of using dif-
ferent homogeneous KGE models for this phase is
further investigated, and experimental findings are
discussed in Section 4.5.

3.3 Student-aware Knowledge Fusion
Mechanism

This section details our student-aware knowl-
edge fusion mechanism, designed to assign query-
specific fusion weights to dual teachers. This ap-
proach addresses their varying proficiency across
queries and adapts to student learning progress.
Weights combine a static component ws accord-

ing to prior knowledge with a dynamic component
wd determined by teacher performance and student
learning state. To simplify representation, let s∗1
and s∗2 be the outputs under optimal distribution ob-
tained from teachers in Euclidean and hyperbolic
spaces, respectively.

We first utilize Krackhardt hierarchy score K(r)
and estimated curvature C(r) of each relation r as
prior knowledge. Detailed calculations for these
metrics are provided in (Chami et al., 2020). Given
that Euclidean space is typically better suited for
modeling chain-structured knowledge while hy-
perbolic space excels at modeling hierarchical-
structured knowledge (Liu et al., 2024), the static
weight for the hyperbolic teacher is increased for
relations with strong hierarchical indicators (higher
K(r) and lower C(r)), and vice versa for the eu-
clidean teacher.

For each relation r, a static weight ws =
[ws

1, w
s
2] is computed by averaging contribu-

tions cC(r) and cK(r). These contributions,
cC(r), cK(r) ∈ R2, are derived from metrics C(r)
and K(r) by comparing them to thresholds Cthres
and Kthres:

cC(r) =

{[
1− Copt, Copt

]
, if C(r) < Cthres[

Copt, 1− Copt
]
, if C(r) ≥ Cthres

(7)

cK(r) =

{[
1−Kopt, Kopt

]
, if K(r) ≥ Kthres[

Kopt, 1−Kopt
]
, if K(r) < Kthres

(8)
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where Copt,Kopt are hyperparameters. The static
weight ws is then calculated as follows:

ws =
cC(r) + cK(r)

2
, (9)

guiding fusion towards the teacher space geometri-
cally aligned with relation r’s structure.

Dynamic weights wd = [wd
1 , w

d
2 ] are deter-

mined based on query-specific features extracted
from the dual teachers and the student. Teacher
features ftea are extracted from output scores
s∗1 and s∗2, encompassing positive sample prob-
abilities indicating teacher confidence and KL
divergences DKL(softmax(s∗1)||softmax(s∗2)) and
DKL(softmax(s∗2)||softmax(s∗1)) measuring the de-
gree of divergence in the dual teachers’ outputs.
Student features fstu are extracted from embeddings
eh, er and output scores sstu of the student model.
They comprise the student’s embeddings, repre-
senting embedding structure of the student model,
the positive sample probability from sstu, and KL
divergences DKL(softmax(sstu)||softmax(s∗i )) for
i = 1, 2, reflecting the student’s learning state and
distance from mastering each teacher’s knowledge.

Entity embeddings eh and relation embeddings
er are transformed by linear layers Te and Tr into la-
tent representations vh = Te(eh) and vr = Tr(er),
respectively. Similarly, features ftea and fstu are
processed by linear layers Ttea and Tstu to yield la-
tent representations vtea = Ttea(ftea) and vstu =
Tstu(fstu), respectively.

These four transformed vectors are then concate-
nated as input z = [vh;vr;vtea;vstu] ∈ R4·dh . The
dynamic weights wdyn is calculated as follows:

wd = σ
′
(W 2×dh(GELU(W dh×4dhz))). (10)

The final fusion weights w = [w1, w2] are
computed as a weighted combination of the static
wieghts and the dynamic weights :

w =
psws +wd

1 + ps
, (11)

where pw is a hyperparameter controlling the influ-
ence of the prior knowledge.

3.4 Logits-based Distillation
The fused teacher output sopt is a weighted sum of
s∗1 and s∗2:

sopt = w1s
∗
1 + w2s

∗
2 (12)

To ensure the accuracy of the fused teacher output,
we utilize formulate 2 to calculated the hard loss

Lopt of the fused teacher output . The logits-based
soft loss Llogtis is calculated as follows:

Llogtis = λ1L
1
soft + λ2L

2
soft + λoptL

opt
soft, (13)

where L1
soft, L

2
soft and Lopt

soft are soft losses calcu-
lated with formula 3 with teacher output s∗1, s

∗
2, sopt

and student output s. The weights λ1, λ2, λopt are
dynamically adjusted based on the training epoch
E. Initially, higher weights are assigned to L1

soft

and L2
soft to enable the student model to acquire

foundational knowledge directly from dual teach-
ers. As training progresses, the weights gradually
shift towards Lopt

soft. This encourages the model
to learn the higher-quality, more complex fused
knowledge.

3.5 Feature-level Distillation
We utilize InfoNCE (Gutmann and Hyvärinen,
2010) as our feature-level distillation loss function:

Lfeature = log
eθ(ẽt,e

+
s )/τc

eθ(ẽt,e
+
s )/τc +

∑
eθ(ẽt,e

−
s )/τc

,

(14)

where θ(·, ·) is the cosine function and τc is the
temperature hyperparameter, and ẽt is the fused
embedding structure from two homogeneous teach-
ers. ẽt is calculated from the weighted sum et:

et = w1e
1
t + w2e

2
t , (15)

where e1t and e2t are embeddings from dual teachers.
This sum is then transformed to match the student
dimension:

ẽt = W d×d(GELU(W d×Det + b)), (16)

where W, b are learnable parameters. d and D are
student and teacher embedding dimensions, respec-
tively.

3.6 Overall Objective
The framework jointly minimizes task-related hard
loss and soft loss for knowledge distillation:

L = LH + λLS , (17)

where λ is the weight of soft loss. The soft loss is
calculated as follows:

LS = Llogits + Lopt + λsLfeature, (18)

where λs is the weight of distilling feature knowl-
edge.
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4 Experiments

4.1 Experimental Settings

Datasets. We conducted experiments on two real-
world datasets: FB15k-237 and WN18RR. The
statistics of two datasets are shown in Table 1.

Datasets #entity #relation #train #valid #test
FB15k-237 14541 237 272115 17535 20466
WN18RR 40943 11 86835 3034 3134

Table 1: Dataset statistics. #entity and #relation are the
number of entities and relations.

Baselines. We evaluate DTDES-KGE by com-
paring it with four different types of KGE models:
Euclidean, hyperbolic, knowledge distillation, and
mixed-curvature. For Euclidean models, we select
TransE (Bordes et al., 2013), ComplEx (Trouillon
et al., 2016), RotatE (Sun et al., 2019), HAKE
(Zhang et al., 2020), and CompoundE (Ge et al.,
2023). For hyperbolic models, we consider MuRP
(Balazevic et al., 2019), AttH (Chami et al., 2020),
UltraE (Xiong et al., 2022), and LorentzKG (Fan
et al., 2024). For knowledge distillation models,
we evaluate MulDE(Wang et al., 2021a), DualDE
(Zhu et al., 2022), IterDE (Liu et al., 2023), and
SKDE (Xu et al., 2024). For mixed-curvature mod-
els, we choose GIE(Cao et al., 2022), M2GNN
(Wang et al., 2021b), UniGE (Liu et al., 2024), and
MRME (Li et al., 2025) as baseline models.
Metrics. KGE models are evaluated on link pre-
diction. For each test triple (h, r, t), candidates are
generated by replacing its head or tail with other
entities. The correct triple’s rank (rankt) among
these candidates is used to calculate Mean Recipro-
cal Rank (MRR) and Hits@k (k ∈ 1, 3, 10) in the
filtered setting (Sun et al., 2019).

4.2 Implementation Details

DTDES-KGE, implemented in PyTorch(Paszke
et al., 2019), was optimized via grid search for
learning rate, γ, and τf . The optimal hyperparam-
eters are 0.005, 9, 0.6 for FB15k-237 and 0.005,
9, 1.0 for WN18RR. For negative sampling, we
employ a query-aware sampling strategy, the de-
tails of which are provided in Appendix A. The
teacher models we utilized include HAKE, RotatE,
and LorentzKG. Appendices B and C detail hy-
perparameter selection and teacher model training.
Experiments were accelerated on a single NVIDIA
RTX 4090 GPU. Our code can be found here.

4.3 Main Result

Table 2 compares the performance of DTDES-KGE
with various baseline methods. These results form
the basis for the following discussion.
Q1. Can dual teachers from distinct embed-
ding space enhance knowledge distillation? Yes.
DTDES-KGE demonstrates enhanced knowledge
distillation performance by leveraging dual teach-
ers from distinct embedding spaces, outperforming
existing KGE baselines on both datasets. Specif-
ically, on FB15k-237, DTDES-KGE achieved an
MRR of 40.5, surpassing the second-best baseline
(38.4) by 5.5%. On WN18RR, its MRR of 51.5
exceeded the next leading model (50.2) by 2.6%.
Notably, this strong performance was achieved
with a low embedding dimension (32). These find-
ings confirm that dual teachers from distinct spaces
transfer more comprehensive knowledge to the stu-
dent model, thereby enhancing distillation efficacy.

4.4 Ablation Studies

Table 3 shows ablation results for the DTDES-KGE.
In this table, “-LKD” indicates without using out-
puts of dual teachers as logits-based knowledge,
“-FKD” indicates without using embedding struc-
tures of dual teachers as feature-level knowledge,
“-Fusion” indicates without fusion the outputs and
embedding structures of dual teachers, and “ST”
indicates using only a single teacher during distil-
lation. The other variants represent the full frame-
work with a specific component removed: “-SCM”
(without the Spatial Compatibility Module), “-
ODS” (without the Optimal Distribution Selection),
“-PP” (without the Pre-distillation Phase), and “-
SKFM” (without the Student-aware Knowledge
Fusion Mechanism). Guided by the ablation re-
sults, we answer the following questions:
Q2. Can distilling both outputs and embed-
ding structures from dual teachers benefit KGE
model distillation? Yes, our ablation studies con-
firm this. Removing logits-based distillation (-
LKD) led to a severe degradation in MRR. Further-
more, eliminating feature-level distillation (-FKD)
or relying solely on a single teacher (ST) also re-
sulted in a distinct performance reduction. These
findings underscore that complementary guidance
from dual teachers, incorporating both output logits
and embedding structures, is crucial for effective
KGE model distillation.
Q3. Do both reconciling the heterogeneity of
dual teachers and employing a student-aware
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FB15k-237 WN18RR
Model MRR H@1 H@3 H@10 Dim MRR H@1 H@3 H@10 Dim
TransE 28.0 17.7 32.1 48.0 200 22.7 3.5 38.6 50.6 180

ComplEx 25.7 16.5 29.3 44.3 200 43.2 39.6 45.2 50.0 230
RotatE 30.1 21.0 33.1 48.5 1024 47.3 43.2 48.8 55.3 1000
HAKE 34.6 25.0 38.1 54.2 1000 49.7 45.2 51.6 58.2 1000

CompoundE 35.7 26.4 39.3 54.5 300 49.1 45.0 50.8 57.6 300
MuRP 33.5 24.3 36.7 51.8 200 48.1 44.0 49.5 56.6 200
AttH 34.8 25.2 38.4 54.0 500 48.6 44.3 49.9 57.3 500

UltraE 36.8 27.6 40.0 56.3 400 50.1 45.0 51.5 59.2 400
LorentzKG 38.4 28.7 42.2 57.9 32 50.2 45.6 52.3 58.9 32

MulDE 32.3 23.7 32.7 47.7 32 45.4 41.1 47.8 55.7 32
DualDE 34.6 24.0 34.5 51.9 32 46.0 41.9 48.1 56.3 32
IterDE 37.4 27.5 39.3 53.8 32 47.3 42.4 49.8 57.1 32
SKDE 35.3 26.0 39.0 54.0 200 48.0 44.0 49.0 55.0 200
GIE 36.2 27.1 40.1 55.2 200 49.1 45.2 50.5 57.5 200

M2GNN 36.2 27.5 39.8 56.5 200 48.5 44.4 49.8 57.2 200
UniGE 34.3 25.7 37.5 52.3 32 49.1 44.7 51.2 56.3 32
MRME 35.9 28.6 38.3 52.4 32 49.8 46.8 51.9 56.2 32

DTDES-KGE 40.5 31.8 44.1 57.9 32 51.5 47.2 53.4 59.5 32

Table 2: Experimental results comparing KGE models with different embedding dimensions on link prediction tasks
over the FB15k-237 and WN18RR datasets.

knowledge fusion strategy improve distillation
performance? Yes, both are crucial. Firstly,
merely using dual teachers independently with-
out fusion (-Fusion) significantly degraded per-
formance, consistent with previous studies (Cao
et al., 2022), thus underscoring the necessity of
knowledge integration. Secondly, effective fusion
demands heterogeneity reconciliation. Removing
the spatial compatibility module (-SCM) caused a
substantial performance drop, even with fusion at-
tempts, indicating naive fusion is ineffective. This
was further validated by performance reductions
upon removing SCM’s components: optimal dis-
tribution selection (-ODS) or the pre-distillation
phase (-PP). Finally, the student-aware knowledge
fusion mechanism (-SKFM) is also vital; its re-
moval led to significant performance degradation,
confirming its efficacy in adaptive knowledge com-
bination. Details are in Appendix D.

4.5 Further Exploration

Q4. Is optimal distribution selection a supe-
rior choice for reconciling output heterogene-
ity? Yes. Table 4 compares various distribution
selection strategies. “Proj-to” maps one teacher
model’s output distribution onto another teacher’s.
‘Stand Norm” and “Min-Max Scaling” respectively

Dataset Setting MRR Hit@1 Hit@3 Hit@10

FB15k-237

DTDES-KGE 40.5 31.8 44.1 57.9
-LKD 29.7 22.0 32.4 45.2
-FKD 39.8 31.0 43.2 56.9

ST 38.8 30.2 42.0 55.6
-Fusion 38.9 30.1 42.4 56.4
-SCM 38.7 29.7 42.4 56.2
-ODS 39.1 30.0 42.5 56.2
-PP 40.0 31.1 43.2 57.1

-SKFM 39.4 30.5 42.8 56.3

WN18RR

DTDES-KGE 51.5 47.2 53.4 59.5
-LKD 36.8 35.1 37.6 39.4
-FKD 50.6 46.2 52.6 58.8

ST 48.1 43.1 50.7 57.1
-Fusion 49.5 46.0 51.1 56.8
-SCM 49.7 45.8 51.0 57.1
-ODS 49.9 45.7 51.7 57.6
-PP 50.8 46.5 52.9 59.0

-SKFM 50.3 45.8 50.6 57.2

Table 3: Ablation Results of DTDES-KGE

standardize and apply Min-Max scaling to dual
teachers’ output distributions. “Softmax” converts
scores to a probability distribution using the soft-
max function. Fixed distribution selection strate-
gies fail to account for query-dependent variations
in teacher distributions, thereby reducing distilla-
tion performance. In contrast, our proposed strat-
egy dynamically adapts to these query-specific
teacher distribution characteristics, yielding supe-
rior performance.
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Dataset Setting MRR Hit@1 Hit@3 Hit@10

FB15k-237

Ours 40.5 31.8 44.1 57.9
Proj-to-1st 37.2 28.1 41.0 55.4
Proj-to-2nd 38.1 29.0 41.6 56.0
Stand Norm 37.4 28.7 40.7 54.6

Min-Max Scaling 25.4 17.6 27.4 40.9
Softmax 37.1 28.3 40.6 54.6

WN18RR

Ours 51.5 47.2 53.4 59.5
Proj-to-1st 42.3 38.1 44.4 49.7
Proj-to-2nd 44.0 38.5 47.4 53.2
Stand Norm 41.7 36.4 44.8 50.5

Min-Max Scaling 28.9 23.6 33.1 36.8
Softmax 44.3 40.6 46.0 51.1

Table 4: Analyzing the impact of alternative algorithmic
choices for optimal distribution selection.

Q5. Are homogeneous teacher models more ef-
fective for feature-level distillation? Yes. Fig-
ure 3 explores different settings for the embedding
space and dimension of homogeneous teacher mod-
els during feature-level distillation. Experimental
results indicate that employing the Euclidean space
model RotatE as a homogeneous teacher yields
superior performance compared to the hyperbolic
space model AttH. The rationale behind this ob-
servation is that aligning the embedding space of
homogeneous teacher models with the student’s
embedding space facilitates distillation effective-
ness through reduced spatial mismatch. Regarding
dimension, while sufficient capacity is necessary,
excessively large dimensions offer limited gain.
Conversely, insufficient dimensions degrade per-
formance. As shown in Table 5, a noteworthy find-
ing is that distilling both logits and features from
the homogeneous teacher model leads to perfor-
mance degradation compared to relying solely on
features. We attribute this phenomenon to the pre-
distillation phase. Although the transfer of logits
from original teachers largely reduces embedding
heterogeneity, this transfer is incomplete, thereby
incurring knowledge loss.

64 128 256 512
Embedding Dimension

39.0

39.5

40.0

40.5

41.0

M
R

R 39.8

40.2
40.4 40.5

39.8 39.7
39.9 39.9

RotatE
AttH

Figure 3: Impact of different homogeneous teacher
model selected in euclidean and hyperbolic spaces on
feature-level distillation.

Dataset Setting MRR Hit@1 Hit@3 Hit@10

FB15k-237
only feature 40.5 31.8 44.1 57.9

logits+feature 40.0 31.1 43.2 57.1

WN18RR
only feature 51.5 47.2 53.4 59.5

logits+feature 50.8 46.5 52.9 59.0

Table 5: Impact of different settings for knowledge
source on knowledge distillation.

Q6. Does DTDES-KGE Increase Training and
Inference Time?
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Figure 4: Traing Time of different KGE model distilla-
tion approach.
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Figure 5: Inference Time of different KGE model distil-
lation approach.

Figure 4 illustrates the training times of various
KGE distillation models across two datasets. The
results indicate that the training time of DTDES-
KGE remains within expected limits, with the ad-
dition of auxiliary tasks not causing any notable
increase in the convergence time. On the FB15K-
237 dataset, DTDES-KGE exhibits a more effi-
cient training time compared to both MulDE and
DualDE. Although on the WN18RR dataset, the
training time of DTDES-KGE is somewhat longer
than the three baseline models, the increase is not
substantial, remaining within an acceptable range.
Figure 5 presents the inference times of the differ-
ent KGE distillation methods on the test set. Due
to the reduced embedding dimensions of the stu-
dent models and the relatively simple design of the
scoring functions, all four models demonstrate high
inference performance. Each result is based on the
average of three separate trials.
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5 Conclusion

This paper introduced DTDES-KGE, a novel
knowledge distillation framework leveraging dual
teachers from distinct embedding spaces to en-
hance KGE distillation performance. It addresses
teacher heterogeneity in output scores and embed-
ding structures via a spatial compatibility module
and dynamically fuses knowledge using a student-
aware mechanism. Extensive experiments on two
real-world datasets validated DTDES-KGE’s effec-
tiveness in improving student performance while
compressing KGE models.

6 Limitations

We acknowledge that the scope of this study is pri-
marily limited to utilizing translation-based KGE
models as teachers. This may restrict the breadth
of the findings. Future research should explore a
wider variety of teacher architectures and evaluate
the method’s performance in these broader settings.
When the content of a knowledge graph involves
privacy risks, federated learning can be employed
to address this issue.
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A Query-aware Negative Sampling
Strategy

Given a query (head, relation, ?), each teacher
model i selects the top-100 highest-scoring entities
from the entity set as candidates, excluding those
present in the training set. We denote each selected
set as Ci. Since a well-trained teacher typically cap-
tures semantic relationships between entities cor-
rectly, entities in Ci predominantly exhibit seman-
tic proximity to the ground truth. Through learning
the score distribution among these entities, the stu-
dent model can achieve more efficient and effective
acquisition of semantic relationships between enti-
ties. The candidate set from both teacher models
are then merged, and duplicates are removed, re-
sulting in Cqas.

The Query-aware Sampling Size nqas is treated
as a hyperparameter. During the negative sampling
process, nqas entities are randomly selected from
Cqas to serve as Query-aware Sampling entities.
Any additional negative entities are then selected
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through random negative sampling, ensuring no
overlap with the previously sampled entities.

B The selection of hyperparameters

The main hyperparameter settings for DTDES-
KGE on the FB15k-237 and wn18rr datasets are
summarized in Table 6. For key parameters, we
performed a grid search over the specified ranges
to find the optimal values.

Hyperparameter
Dataset

FB15k-237 wn18rr
γ search:(6,9,12) search:(6,9,12)

batch size 3000 3000
negative sample size n 500 500

learning rate search:(0.005,0.02) search:(0.005,0.02)
τf search:(0.5,1.0,1.5) search:(0.5,1.0,1.5)
τs 0.6 1.0
pw 0.1 0.1
τc 1.0 1.0

λ, λopt, λs [1,1,0.001] [1,1,0.001]

Table 6: The selection of hyperparameters used in
DTDES-KGE

C Settings For Training Teacher model

For the FB15k-237 dataset, we selected Ro-
tatE(Sun et al., 2019) (dimension: 1024) and
LorentzKG(Fan et al., 2024) (dimension: 64)
as teacher models. Similarly, for the WN18RR
dataset, we employed HAKE(Zhang et al., 2020)
(dimension: 1000) and LorentzKG (dimension:
100) as teacher models. The optimal hyperparame-
ters are obtained from their respective original pub-
lications. RotatE, LorentzKG, and HAKE were se-
lected as teacher models due to their demonstrated
strong performance on FB15k-237 and wn18rr(Li
et al., 2025; Ge et al., 2023), enabling them to pro-
vide rich and reliable teacher signals. Given that the
source code for all teacher models we employed is
publicly available, this greatly facilitates the repro-
ducibility of our work by subsequent researchers.
We train the teacher model using the official code
from the original paper.

D Extended Results and Discussion

Q7. Can the student-aware weight assignment
mechanism achieve superior performance? Ta-
ble 7 presents experimental results evaluating
the impact of various knowledge fusion strate-
gies on DTDES-KGE. We compare different ap-
proaches: "equal weight" assigns equal weights to
the two teachers; w/o Lopt denotes without using
Lopt ;"w/o auxiliary" learns query-specific teacher

weights without incorporating auxiliary informa-
tion. Further ablations investigate the contribution
of specific information sources: "w/o prior", "w/o
tea_Infor", and "w/o stu_Infor" denote scenarios
where prior knowledge, teacher model informa-
tion, and student model information are excluded,
respectively. The results demonstrate that prior
knowledge and the information from both teacher
and student models are valuable resources for de-
termining query-specific fusion weights. Notably,
student model information is particularly crucial,
as it enables dynamic adjustment of these weights
based on the student’s current learning state.

Dataset Setting MRR Hit@1 Hit@3 Hit@10

FB15k-237

DTDES-KGE 40.5 31.8 44.1 57.9
equal weight 36.9 27.8 40.4 54.8

w/o opt 39.3 30.4 42.8 56.0
w/o Lopt 40.3 31.7 43.6 57.7

w/o auxiliary 39.1 30.3 42.6 56.7
w/o prior 39.8 31.0 43.4 57.3

w/o tea_Infor 39.8 31.0 43.2 57.2
w/o stu_Infor 38.9 30.4 42.1 56.3

WN18RR

DTDES-KGE 51.5 47.2 53.4 59.5
equal weight 49.3 45.2 50.6 57.2

w/o opt 50.2 45.7 52.1 58.1
w/o Lopt 51.2 46.5 52.5 58.9

w/o auxiliary 49.1 44.9 50.3 57.9
w/o prior 50.3 46.0 52.2 58.6

w/o tea_Infor 50.1 45.8 51.9 58.1
w/o stu_Infor 49.2 44.4 50.5 57.8

Table 7: Impact of different knowledge fusion strategies
of DTDES-KGE

Q8. Can better results be achieved by distilling
directly from a mixed-curvature model? Is dis-
tilling from teacher models in the same space
superior to distilling from teacher models in dif-
ferent spaces? No. “All Euclidean” and “All
Hyperbolic” respectively represent the use of dual
teachers that are both from Euclidean space and
dual teachers that are both from hyperbolic space.
Distillation is less effective when using teachers
from a single embedding space due to their lim-
ited complementary knowledge compared to teach-
ers from distinct spaces. Similarly, direct distil-
lation from state-of-the-art mixed-curvature mod-
els proved less effective than distilling from teach-
ers from different embedding spaces. This sug-
gests that mixed-curvature models provide a com-
plex, pre-fused signal that is difficult for students
to learn, whereas distinct, specialized knowledge
from single-curvature models allows the student to
learn and integrate this knowledge more effectively.
Q9. Would employing more than two teachers
further enhance performance? Not necessarily.
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Dataset Setting MRR Hit@1 Hit@3 Hit@10

FB15k-237

DTDES-KGE 40.5 31.8 44.1 57.9
All Euclidean 34.3 26.2 38.7 55.0
All Hyperbolic 39.2 30.3 41.8 55.8

Distill GIE 33.1 24.2 37.4 51.3
Distill MRME 29.7 21.7 32.3 45.7

WN18RR

DTDES-KGE 51.5 47.2 53.4 59.5
All Euclidean 48.8 44.1 50.9 57.2
All Hyperbolic 48.6 44.2 51.2 57.4

Distill GIE 46.4 42.9 48.5 54.0
Distill MRME 43.6 40.2 44.9 49.8

Table 8: Impact of using different teacher models on
distillation results.

Dataset Model MRR H@1 H@3 H@10

FB15k-237
Dual Teachers 40.5 31.8 44.1 57.9
Triple Teachers 40.7 31.8 43.2 57.6

WN18RR
Dual Teachers 51.5 47.2 53.4 59.5
Triple Teachers 51.3 47.4 53.1 59.0

Table 9: Performance comparison between our proposed
dual-teacher framework and a triple-teacher configura-
tion. The results indicate that simply increasing the
number of teachers does not guarantee improved perfor-
mance.

While leveraging multiple teachers is beneficial,
our investigation reveals that the diversity of knowl-
edge is more critical than the sheer quantity of
teachers. To validate this, we conducted additional
experiments comparing our proposed dual-teacher
setup against a triple-teacher configuration, with
the results presented in Table 9.

The results show that increasing the number of
teachers to three yields no significant performance
gains; on WN18RR, it even leads to a slight degra-
dation. This finding supports our hypothesis that
the primary benefit of multi-teacher distillation
stems from fusing complementary knowledge. Our
dual-teacher framework is designed to integrate
knowledge from two geometrically distinct spaces
(Euclidean and hyperbolic), which already captures
a rich set of diverse structural information. Adding
a third teacher, particularly one with similar ge-
ometric properties, likely introduces information
redundancy and offers diminishing returns. Fur-
thermore, an increased number of teachers compli-
cates the optimization of our student-aware fusion
mechanism, making it more challenging to assign
optimal weights.

Therefore, our dual-teacher approach represents
a well-balanced trade-off between knowledge di-
versity and model complexity, achieving state-of-
the-art performance without incurring the addi-
tional costs and optimization challenges of a larger
teacher ensemble.

Dataset Model MRR H@1 H@3 H@10

FB15k-237

HAKE 0.948 0.918 0.976 0.989
RotatE 0.945 0.915 0.974 0.987
AttH 0.961 0.932 0.981 0.989

LorentzKG 0.977 0.943 0.980 0.989
DTDES-KGE 0.984 0.955 0.983 0.991

WN18RR

HAKE 0.829 0.754 0.867 0.985
RotatE 0.814 0.754 0.822 0.957
AttH 0.856 0.821 0.894 0.983

LorentzKG 0.887 0.843 0.900 0.986
DTDES-KGE 0.901 0.868 0.912 0.991

Table 10: Performance comparison on the relation pre-
diction task. DTDES-KGE consistently outperforms all
strong baselines on both datasets.

Q10. Is the effectiveness of DTDES-KGE gener-
alizable to other tasks beyond link prediction?
Yes. To validate the generalizability of our frame-
work, we conducted additional experiments on the
crucial task of relation prediction. We compare
DTDES-KGE against several strong baseline mod-
els that are also capable of performing this task.
The results, presented in Table 10, demonstrate the
superior performance of our method.

On both the FB15k-237 and WN18RR datasets,
DTDES-KGE significantly outperforms all se-
lected baselines across all metrics, including MRR
and Hits@1. For instance, on WN18RR, our
method achieves an MRR of 0.901, surpassing the
next-best baseline, LorentzKG, by a notable mar-
gin. These strong results on a distinct task provide
robust evidence that the benefits of our dual-teacher
distillation framework are not confined to link pre-
diction, but are indeed generalizable.
Q11. Why specifically choose Euclidean and
hyperbolic spaces for the dual teachers? Our
choice is motivated by the principle that knowl-
edge diversity, driven by fundamental geometric
differences, is key to effective distillation. The dis-
tinction between zero-curvature (Euclidean) and
non-zero curvature (hyperbolic) spaces represents
a primary and functionally significant taxonomy in
KGE . This pairing allows us to fuse knowledge
from two highly complementary knowledge. While
more granular model classifications exist within
each curvature family (e.g., RotatE and HAKE in
Euclidean space), we hypothesize that fusing mod-
els from within the same family offers limited com-
plementary knowledge compared to fusing across
different curvature families.

To empirically validate this, we conducted ex-
periments with various teacher pairings, with the
results presented in Table 11. The findings strongly
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Teacher Combination Geometry Family MRR H@1 H@3 H@10
RotatE + LorentzKG Euc. + Hyper. 40.5 31.8 44.1 57.9
HAKE + Lorentz Euc. + Hyper. 40.5 31.6 43.8 57.4
RotatE + Poincaré Euc. + Hyper. 39.9 31.0 42.7 56.9
HAKE + Poincaré Euc. + Hyper. 40.1 30.9 43.4 57.1
RotatE + HAKE All Euclidean 34.3 26.2 38.7 55.0
MuRP + LorentzKG All Hyperbolic 39.2 30.3 41.8 55.8

Table 11: Performance of DTDES-KGE with different
teacher pairings on FB15k-237. Pairings that bridge
Euclidean (Euc.) and Hyperbolic (Hyper.) geometries
consistently outperform those within a single geometry
family.

support our rationale. As shown, any pairing of
a Euclidean-family model (RotatE, HAKE) with
a hyperbolic-family model (LorentzKG, MuRP)
consistently and significantly outperforms pairings
where both teachers reside in the same geometric
space (e.g., “All Euclidean”). This confirms that the
primary benefit of our framework stems from bridg-
ing disparate geometric curvatures, rather than
merely combining different architectures.

E Analysis of Scientific Artifacts Utilized
in the Research Process

We evaluated various Knowledge Graph Embed-
ding models using the extensively adopted FB15k-
237 and WN18RR datasets. FB15k-237 is licensed
under CC BY 4.0, while WN18RR operates un-
der Apache 2.0 License Revision 97a0bb6b. Our
implementation utilized the PyTorch framework,
which is distributed under a BSD-style license.
All conclusions drawn from existing literature are
comprehensively attributed through rigorous cita-
tions. The utilization of these datasets and frame-
work adheres strictly to their respective licensing
terms. In developing our code, we referenced the
official open-source implementations of RotatE,
HAKE, and LorentzKG on GitHub. Notably, Ro-
tatE and HAKE’s repositories are licensed under
MIT, whereas LorentzKG’s repository lacks an ex-
plicit licensing declaration.

F Statement

All references utilized in this paper were rigorously
sourced from peer-reviewed academic journals and
conferences, accessed through established schol-
arly databases. The code referenced was obtained
from previously published works made publicly
available by their original authors. The datasets
employed in this research are well-established in
the field and have been validated to ensure they
do not compromise the ethical standards protect-

ing animal or human subjects. The AI assistant’s
involvement in this paper was restricted to proof-
reading for spelling and grammatical accuracy.
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