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Abstract

World models have been widely utilized in
robotics, gaming, and autonomous driving.
However, their applications to natural language
tasks are relatively limited. In this paper, we
construct the dialogue world model, which
could predict future utterances and user beliefs,
including emotion, sentiment, and intention.
In this paper, we propose a framework called
DreamCUB, which shows that this user belief
modeling and the entire dialogue world model
can be established by LLM post-training. By
defining a POMDP, we apply model-based rein-
forcement learning to the dialogue system and
solve it by maximizing the information bottle-
neck. Experiments show that the pretrained
dialogue world model can achieve state-of-the-
art performances on emotion classification and
sentiment identification, while dialogue qual-
ity is also enhanced by joint training of policy,
critic and dialogue world model. Further analy-
sis reveals that DreamCUB holds a reasonable
exploration-exploitation balance and also trans-
fers well to out-of-domain scenarios such as
empathetic dialogues.

1 Introduction

Due to strong capabilities, modern Large Language
models (LLM) have obtained remarkable progress
on dialogue systems (Kang et al., 2024; Zhou et al.,
2024a). Among the training pipeline of conversa-
tional LLM, reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022) is an im-
portant post-training stage that bootstraps the hu-
man preference and achieves a deeper alignment
by interactive sampling. Although PPO (Schulman
et al., 2017) is employed as the usual approach,
its variants, such as DPO and GRPO, are also pro-
posed to improve the dialogue policy. However,
reinforcement learning (RL) is often subject to low
sampling efficiency, high performance variance,
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Figure 1: Paradigm of DreamCUB, where we introduce
user belief modeling, to speculate the unobservable
state in dialogue. State becomes the union of observa-
tion and belief, which further enhances the policy.

and high computational overhead. When applied
to dialogue systems, these issues become more
challenging when the model size is large and the
annotation is consuming.

To alleviate these issues, Model-Based Re-
inforcement Learning (MBRL) (Sutton, 1991;
Deisenroth and Rasmussen, 2011) is proposed,
which enables the agent to learn the environment
model and use it to simulate, plan, and act. Combin-
ing with recent progress on World Models (WM)
(Ha and Schmidhuber, 2018), MBRL has been a
powerful solution for visual control (Hafner et al.,
2020), game (Hafner et al., 2019), auto-driving
(Gao et al., 2024) and also dialogue system (Peng
et al., 2018; Xu et al., 2025). For example, DDQ
(Peng et al., 2018) proposes the world model of
dialogue which can predict the dialogue contents.
Nevertheless, dialogues are highly sensitive to hu-
man psychological states, such as emotion and sen-
timent (Firdaus et al., 2023; Qian et al., 2023). Peo-
ple’s reasoning, expression and intention can be
affected and influenced by these inner states. How-
ever, such states are unobservable, while current
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MBRL studies on dialogues are based on observ-
able states only, i.e., utterances. On the other hand,
previous research on empathetic dialogue systems
has mostly focused on generating responses given
certain emotions. However, being empathetic not
only requires responding based on self-emotions,
but more importantly, calls for the understanding
of user emotions and intentions, to respond appro-
priately (Lin et al., 2019).

To bridge these gaps, in this paper, we introduce
the user belief modeling into the MBRL frame-
work, to provide a more thorough understanding of
the dialogue policy. Such user beliefs may include
emotion, sentiment and intention, which are unob-
servable states for the agent, forming a Partially Ob-
servable Markov Process (POMDP). Correspond-
ingly, our Dialogue World Model (DWM) can not
only generate future dialogue utterances, but also
recognize user beliefs and behave as the reward
model. To solve this problem, we refer to the theo-
retical derivations of POMDP-based MBRL studies
(Chen et al., 2022), and deduce the DWM-RL algo-
rithm based on the information bottleneck. Com-
bining user belief modeling, DWM and MBRL, we
propose the framework called Dream to Chat with
User Belief (DreamCUB). DreamCUB simulates
user belief and emotional dynamics over the course
of interaction. Rather than relying on static emo-
tion classification or purely supervised generation,
DreamCUB enables an agent to imagine possible
future dialogue trajectories, reason about long-term
emotional impact, and plan supportive responses
accordingly. Figure 1 illustrates the paradigm of
DreamCUB. We summarize our contributions as
follows:

• We redefine the Dialogue World Model which
models user beliefs, to capture the sentimental
and emotional dynamics.

• We introduce DreamCUB, a model-based re-
inforcement learning framework to apply the
knowledge of Dialogue World Model on dia-
logue systems.

• We empirically validate our approach on daily
and empathetic dialogue datasets, showing
accurate emotional predictions, high response
quality and strong generalizations.

2 Preliminaries

POMDP. A Partially Observable Markov De-
cision Process (POMDP) models the decision-

user: I broke up with my bf.
agent: I’m so sorry to hear that.
user: He cheated on me.

Emotion

Sentiment

Intention

Dialogue world model

Next-query prediction

user:“I hate him.”

score  = 0.7

User belief model

Reward model

agent:“That’s too bad!”action:

observation:

Figure 2: The dialogue world model (DWM)
T (st+1, rt|st, at) consists of three parts, the user be-
lief model q(bt|ot), the next-query prediction model
p(st+1|bt, at) and the reward modelR(rt|st).

making process under uncertainty when the system
state is not fully observable. It is defined as 5-tuple:

P = (S,A,O, T ,R)

where S is the state space,A is the action space, O
is the observation space, T (s′|s, a) is the transition
model, andR(s) is the reward function.

Reward modeling. Application of RL on tex-
tual environments requires Reward Model (RM)
(Ouyang et al., 2022), which is trained from pair-
wise preference data (x, y+, y−) with x as the in-
put, y+ and y− are positive and negative responses.
RM is usually implemented by an LLM with the
classification head added, which produces a 0-1
score. Its loss can be derived from human pref-
erence distribution by the Bradley-Terry (Bradley
and Terry, 1952) model

LR =
1

N

N∑

i=1

log σ(R(yi+|xi)−R(yi−|xi)) (1)

where R denotes RM, L is the loss, and σ is the
sigmoid function.

RLHF. The generative policy on language tasks
solves the following problem:

max
πθ

Ex∼D,y∼πθ(·|x) [rϕ(y|x)− LKL] (2)

where LKL = βDKL(πθ(·|x)∥πSFT(·|x)) is the
regularization term which prevents the RL pol-
icy from deviating from SFT too much. One
usual solution is to employ PPO (Schulman et al.,
2017) to optimize the modified reward rϕ(y|x)−
β
(
log πθ(y|x)− log πSFT(y|x)

)
.
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Figure 3: Training framework of DreamCUB. (a) Dynamics learning of DWM. (b) Behavior Learning of dialogue
policy. (c) Interaction with the environment.

3 Method

Tasks formulation. Dialogue can be character-
ized by an interleaved sequence of user’s query
and agent’s response. At the T -th turn, we denote
the dialogue history as

hist(T ) := {query(t), resp(t)}0:T−1 (3)

where hist and resp abbreviate the history and
response, respectively.

Recent studies usually bootstrap and annotate
the agent’s reply strategy, to have enhanced
response grounded by strategy. In this work, we
further argue that the user’s state, called belief ,
can also be modeled and behaves as the con-
textual information of subsequent strategy and
response. Such belief may include the user’s
emotion, sentiment, and intention. In this for-
mulation, the determination pipeline becomes

hist⊕ query → belief → strategy → resp

System definition. The above formulation sug-
gests query, resp, hist and strategy are ob-
servable to the agent while the user’s emotion,
sentiment and intention are unobservable. The
system can then be described as a 5-tuple POMDP
(O,S,A,R, T ):
• Observation o = (hist, query) ∈ O
• Belief: b = (emotion, sentiment, intention)
• State: s = (o, b) ∈ S
• Action: a = (strategy, resp) ∈ A
• Reward r = R(s) with s as input instead of o
• Transition Function: T := S ×A → S.

Model implementation. To interpret this
POMDP, we employ the model-based RL
framework consisting of the following models:

• Belief inference model: q(bt|ot)
• Observation model: p(ot|bt)
• Belief Transition model: p(bt+1|bt, at)
• Reward model: R(rt|st)
• Actor net: π(a|s)
• Critic net: Q(s, a)

Taking advantage of the strong linguistic capa-
bility of LLMs, we implement all the above models
based on the foundation LLM, with the prompts in
three categories:

1. q ← LLM(promptcognitive): we implement
the cognitive prompt (Wang and Zhao, 2024)
for model q which allows the identification of
emotion, sentiment and intention.

2. p, π ← LLM(promptgenerative): use gener-
ative prompts for p(ot|bt), p(bt+1|bt, at) and
the actor π(a|s).

3. R, Q ← LLM(promptclassify) ⊕ head: add
the classification head on the last layer, which
yields a 0-1 score (Ouyang et al., 2022).

with detailed prompt provided in Appendix A.1.
Specifically, we propose the term Dialogue

World Model (DWM) T (st+1, rt|st, at) which
contains three parts: the belief inference model
q(bt|ot) which is a cognitive model to iden-
tify the user belief; the belief transition model
p(st+1|bt, at) = p(bt+1|bt, at)p(ot|bt) which con-
ducts the next-query generation1, and RMR(rt|st)
which produces the reward score. These three com-
bined together, form the entire DWM. Figure 2
visualizes our DWM with more details.

1In contrast, the dialogue policy π(a|s) produces the next-
response generation.
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Algorithm 1 DWM-RL
1: Initialize the batch sizes BDWM and BPPO, the window length L and imagination horizon H
2: Load pretrained cognitive model qξ, generative model pθ and reward model pη(rτ |sτ )
3: Initialize policy πϕ(a|s), critic Qψ(s, a) and the buffer B = {}
4: while not converged do:
5: ▷ Dynamic learning
6: Draw BDWM data sequences {(ot, at, rt)}k+Lt=k from B
7: Inference belief state qξ(bt|ot), rollout imaginary trajectories {(sτ , aτ )}t+Hτ=t with pθ(st+1|bt, at)
8: Update ξ, θ and η by ELBO (Equation 4)
9: ▷ Behavior learning

10: Predict rewards pη(rτ |sτ ) for each sτ
11: Draw BRL data sequences {(st, at, rt)} from {(sτ , aτ , rτ )}t+Hτ=t

12: Update ϕ and ψ jointly by PPO (Equation 2)
13: ▷ Interact with the environment
14: Get original query o1 from dataset.
15: for t = 1, . . . , T do
16: Inference the belief bt ∼ qξ(bt|ot), forming the state st = (ot, bt)
17: Determine the action at ∼ πϕ(at|st)
18: Execute at and get ot+1, rt
19: end for
20: Add experience to buffer B = B ∪ {(st, at, rt)}Tt=1

21: end while

Algorithm. Posterior of beliefs and rewards,
given observations and actions, can be maximized
jointly by the variational information bottleneck
(Tishby et al., 2000), or the Evidence Lower Bound
(ELBO) (Jordan et al., 1999):

log p(o1:T , r1:T |a1:T )

≥
T∑

t=1

(
Eq(bt|o≤t,a<t)[log p(ot|bt) + logR(rt|bt)]

− E
q(bt−1|ot−1)

[
DKL(q(bt|ot)∥p(bt|bt−1, at−1)

]
)
)

.
= LDWM

(4)

with precise derivation in Appendix B.1. This
lower bound was originally proved by (Chen et al.,
2022) which derives the following theorems:

Theorem 1. The approximation error of the log-
likelihood when maximizing the LDWM (the de-
rived ELBO) defined in Equation 4 is:

log p(o1:T , r1:T |a1:T )− LDWM

= E
q(b1:T |o1:T ,a1:T−1)

[
ΣTt=1DKL(q(bt|ot)∥p̄(bt|ot))

] (5)

where p̄(bt|ot) denotes the true states.

Based on the aforementioned consideration, we
propose Algorithm 1, the Dialogue World Model-
based Reinforcement Learning (DWM-RL), which

contains three stages: (i) Dynamic learning, (ii)
Behavior learning and (iii) Interact with the envi-
ronment. Figure 3 shows the entire framework.

4 Experiment

4.1 Settings
Implementation. Llama3.1-8B-Instruct
(AI@Meta, 2024) is employed as the base model.
Training is conducted on OpenRLHF (Hu et al.,
2024) with L = 1024, H = 16, BDWM = 256,
BPPO = 512, γ = 0.9, β = 0.01. The learning
rate is 5.0e− 7, training epoch is 1 and the replay
buffer size is 24,000. RM is trained with positive
responses from the original dataset and negative
responses from dynamic sampling.

Datasets. For DWM pretraining, we employ
three types of tasks:

1. Sentiment classification: classify either Pos-
itive or Negative from the user query. We
use Amazon2, Yelp3, and IMDB (Maas et al.,
2011) as benchmarks.

2. Sentiment intensity regression: predict a 0-1
score indicating the user’s sentiment polarity4.

2http://jmcauley.ucsd.edu/data/amazon/
3https://www.yelp.com/dataset/download
40 means fully negative and 1 means fully positive.
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task→ sentiment classification intensity regression emotion classification

model ↓
Amazon IMDb Yelp V-reg SST GoEmotion E-c

ACC MaF1 ACC MaF1 ACC MaF1 pcc pcc ACC MaF1 MiF1 MaF1

llama2-7b-chat 64.19 69.17 83.23 86.36 87.69 89.48 9.12 72.83 35.71 27.15 41.40 28.60
Emollama-chat-7b 56.95 63.43 73.52 82.90 74.46 81.01 88.00 82.00 37.00 39.00 69.30 54.00
DWM 74.13 73.89 96.38 96.38 97.42 97.31 86.38 90.28 39.44 30.41 51.32 48.67

llama2-13b-chat 69.54 71.93 90.66 91.51 90.07 91.06 24.06 81.10 27.80 33.70 42.40 30.20
Emollama-chat-13b 65.01 69.61 55.70 69.51 51.28 59.86 88.40 81.60 35.00 37.00 69.60 54.50
DWM 73.84 73.68 96.69 96.69 97.53 97.41 88.36 90.66 37.21 33.81 69.41 57.73

llama3-8b-instruct 72.38 73.92 92.63 92.66 93.21 92.94 57.04 82.17 32.83 34.43 43.95 41.38
DWM (q(b|o)) 87.87 87.87 96.99 96.99 96.34 96.17 86.50 90.19 33.60 32.52 58.39 59.42

Table 1: Performance of dialogue world model compared with state-of-the-art emotional cognition models. V-reg
and E-c are two subtasks of SemEval 2018 Task1. pcc denotes the Pearson correlation coefficient.

hi
st

or
y user: Did you hear about the robbery?

agent: Did I hear about it? I saw it happen.
user: Are you serious?

be
lie

f Emotion: "surprise", Sentiment:"negative", "0.388"
Ground Truth surprise, negative

agent: <inform> I was there.

qu
er

y

user:
Predicted: What went down?

Ground Truth: What happened ?

Table 2: Case of DWM on user belief cognition
(q(bt|ot)) and next-query prediction (p(ot|bt, ot−1)).
Contents from the original dataset are italic, and re-
sults of DWM are bolded.

We use Stanford Sentiment Treebank (SST)
(Socher et al., 2013) and the corresponding
subtask in SemEval-2018 Task1: Affect in
Tweet (Mohammad and Kiritchenko, 2018).

3. Emotion classification: select the appropri-
ate emotion from the candidates, such as joy,
anger, sad, etc. We use GoEmotion (Dem-
szky et al., 2020) and again the corresponding
subtask in SemEval-2018 (Mohammad and
Kiritchenko, 2018).

For PPO training, we use DailyDialog (Li et al.,
2017), ESconv (Liu et al., 2021), EmpatheticDia-
logues (Rashkin et al., 2019). The first two have an-
notations of emotion, strategy and response, while
the last one only has annotations of emotion and
response. To gain significant generalizability, we
use DailyDialog (Li et al., 2017), which is focused
on daily topics, as both training and in-domain (ID)
test sets. The other two, which are more focused
on empathetic dialogue, are used for out-of-domain
(OOD) evaluation purposes only.

Metrics. For classification tasks, we employ the
metrics of accuracy (ACC), Micro-F1 (MiF1) and

Macro-F1 (MaF1). We also refer to the evalu-
ation methods proposed by Kang et al. (2024),
which propose the bias based on the Bradley-Terry
model (Bradley and Terry, 1952). A smaller bias
means less bias, therefore it is better. For regres-
sion tasks, we use the Pearson correlation coef-
ficient (pcc). For the generation task, we utilize
the BLEU-2 (B-2), Rouge-L (R-L) and Distinct-2
(D-2). The first two are similarity-based metrics,
while the last one encourages response diversity.
We also conduct human annotations to evaluate the
responses. We leave the annotation principle and
metric details in the Appendix.

4.2 Training of DreamCUB
Figure 4 visualizes the training curves, which
shows that our Algorithm 1 converges and the re-
turn can be maximized. More specifically, Figure
4 (bottom-right) highlights a preference evolution
of the dialogue policy, the response length. At the
beginning of training, the LLM tends to provide
long responses, which are not natural enough con-
sidering the daily conversation situation. As joint
training with DWM, the responses start to become
shorter and finally reach a balance.

4.3 Results of dialogue world model
Emotion Cognition. Table 1 shows our DWM
after the pretraining. We achieve state-of-the-art
accuracy on all three types of emotional cognitive
tasks, surpassing the base model and EmoLLama.
To be consistent with our RL training, we use the
Llama3-based version for the subsequent formal
experiments. Table 2 shows a good case of emotion
cognition.

Dialogue Generation. Our system transition
model (p) of DWM needs to predict the user in-
tention or query, based on the current conversation
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Method
Emotion Strategy Response

ACC MaF1 bias ↓ ACC MaF1 bias ↓ B-2 R-L D-2

Direct - - - 52.60 18.03 1.66 3.35 10.33 44.74
+ Retrieve - - - 30.92 21.17 0.67 2.78 9.67 40.60
+ Refine - - - 48.27 28.28 0.70 2.56 8.70 43.67
+ Self-Refine - - - 49.76 22.15 1.18 2.40 7.75 34.01
+ CoT - - - 38.94 29.99 0.27 1.78 6.00 55.26
+ FSM 73.01 24.50 1.63 46.86 21.22 1.30 2.70 9.44 38.75

+ SFT 76.76 14.35 2.03 60.19 44.82 0.82 6.81 18.52 43.36
+ CoT + SFT 83.48 15.60 1.98 60.11 44.90 0.66 6.61 18.07 42.87
+ FSM + SFT 83.28 14.44 2.22 64.05 48.36 0.62 5.85 21.77 47.43
+ DreamCUB (ours) 88.05 50.88 0.74 67.80 62.29 0.33 11.65 29.09 49.36

Table 3: ID results on automatic metrics on DailyDialog, including classification metrics such as Accuracy (ACC),
Macro-F1 (MaF1) and bias, and generation metrics such as BLEU-2 (B-2), ROUGE-L (R-L) and Distinct-2 (D-2).
The best results of each LLM are bolded and the second best are underlined.
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Figure 4: Training plots of DreamCUB, including the
actor loss (top-left), the critic loss (top-right), return
(bottom-left) and reward (bottom-right).

context. However, next-query prediction is difficult
to have qualitative results, since user queries could
be open-ended topics. Instead, Table 2 shows a
typical case of p. One can observe that p can un-
derstand contextual information and generate rea-
sonable user queries that sometimes are similar to
the ground truth.

Scalability. Table 1 also shows results of the 13B-
based experiment, in which our DWM still per-
forms better than the base model and EmoLlama
on most of the metrics, suggesting our method is
scalable to higher model and data sizes.

4.4 Results of Dialogue Policy

Baselines. We consider the following baselines:
(1) Direct: directly inference the LLM, with the
same context.
(2) Retrieve: use RAG (Fan et al., 2024) to retrieve
the top-2 strategy. We employ E5-large (Wang

et al., 2024b) as the semantic retriever.
(3) Refine: a straightforward refinement method
in which the model revises its initial response to
incorporate emotional support considerations.
(4) Self-Refine: a method (Madaan et al., 2023)
initiated by generating feedback emphasizing emo-
tional support from the initial response, then refin-
ing the response based on this feedback.
(5) CoT: uses the Chain-To-Thought prompt (Wei
et al., 2022), which first generates the seeker’s emo-
tion, which then guides the generation of strategy
and response.
(6) FSM: the finite state machine (Wang et al.,
2024c) with finite sets of states and state transi-
tions triggered by inputs, and associated discrete
actions.

Results. Table 3 shows the ID results of our di-
alogue policy π(o), on the classification of emo-
tion and strategy, as well as metrics of response.
For most prompt-based baselines, it is difficult to
classify the user emotion without pretrained knowl-
edge, therefore we do not list this part of results.
The only exception is FSM, which provides a de-
tailed, situational strategy for the model to infer-
ence the emotion and strategy from finite sets. On
the other hand, the finetuning-based baselines can
classify both user emotion and the assistant strategy,
with the training datasets organized accordingly.
Nevertheless, our DreamCUB consistently outper-
forms these baselines, on both emotion, strategy
and response. Note we consider both similarity-
based metrics (B-2 and R-L) and diversity-based
metrics (D-2) here, which indicates a reasonable
balance achieved by DreamCUB. Table 11 and
12 in the Appendix further show per-emotion and
per-strategy results, indicating DreamCUB behaves
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Method
Emotion Strategy Response

ACC MaF1 bias ↓ ACC MaF1 bias ↓ B-2 R-L D-2
E

Sc
on

v
SFT 25.12 11.38 2.65 11.15 5.54 2.19 3.30 12.90 27.67
CoT + SFT 32.90 15.48 2.21 15.28 8.09 1.75 2.33 9.00 31.13
FSM + SFT 30.23 6.84 2.62 18.76 8.12 1.88 2.70 10.46 28.10
DreamCUB (ours) 34.26 14.78 1.94 30.78 10.90 1.80 3.68 13.71 33.23

E
m

pa
th

et
ic

-D
ia

lo
gu

es SFT 4.03 1.44 5.44 N/A N/A N/A 2.56 7.68 34.83
CoT + SFT 12.20 7.77 3.60 N/A N/A N/A 2.56 9.81 39.39
FSM + SFT 4.59 2.20 5.57 N/A N/A N/A 2.61 9.87 30.52
DreamCUB (ours) 16.49 17.58 5.15 N/A N/A N/A 4.03 13.15 37.08

Table 4: OOD results on automatic metrics on ESconv and EmpatheticDialogues, including classification metrics
such as Accuracy (ACC), Macro-F1 (MaF1) and bias, and generation metrics such as BLEU-2 (B-2), ROUGE-L
(R-L) and Distinct-2 (D-2). The best results of each LLMs are bolded and the second best are underlined.

Method Fluency Emotion Acceptance Effectiveness Sensitivity Alignment Satisfaction

Direct 2.95±1.41 3.00±1.34 2.60±1.15 2.40±0.92 2.70±1.08 2.70±1.08 2.60±1.41
+ Refine 3.09±1.25 3.09±1.16 2.73±1.22 2.91±1.41 2.91±1.23 2.82±1.25 2.84±1.40
+ Self-Refine 3.10±1.29 3.15±1.38 2.80±1.19 2.70±1.14 2.90±1.03 2.80±1.16 2.80±1.20
+ CoT 3.08±1.02 3.08±1.29 2.83±1.27 2.67±1.06 3.00±1.27 2.83±1.13 2.83±1.10
+ FSM 3.30±1.32 3.35±1.38 2.90±1.17 2.90±1.03 3.00±1.46 2.90±1.15 2.93±1.19

+ SFT 3.15±1.44 3.40±1.30 2.70±1.19 2.70±1.20 2.90±1.24 3.30±1.32 2.90±1.32
+ CoT + SFT 3.67±1.21 3.61±1.17 3.22±1.25 3.67±1.26 3.56±1.13 3.35±1.39 3.45±1.31
+ FSM + SFT 3.80±1.26 3.55±1.16 3.40±1.21 3.70±1.14 3.80±1.06 3.70±1.04 3.65±1.19
+ DreamCUB 3.85±1.10 3.52±1.47 4.09±0.87 3.90±0.99 3.86±1.14 4.01±1.09 3.98±1.12

Table 5: Average human scores (with standard deviations) of response quality on ESconv and EmpatheticDialogues.

equally across different emotions and strategies.
Table 4 further shows the OOD results on esconv

and empathetic dialogues, from models trained by
DailyDialog, conversations of daily topics. In this
situation, DreamCUB still generally performs bet-
ter than baselines, with seldom exceptions. This ob-
servation ensures that the knowledge learned from
general dialogues can smoothly transfer to some
specific domains, i.e., the emphatic dialogues, with
the assistance of the dialogue world model, as well
as model-based reinforcement learning.

Human evaluations. Table 5 presents human
evaluation results. DreamCUB achieves the high-
est scores in almost all aspects, which verifies the
automatic evaluation results.

Cases. Table 6 showcases the dialogue policy
and the dialogue world model, after being jointly
trained by Algorithm 1. From this typical case,
it can be observed that both π and q adapt to the
specific domain well, provide accurate emotion
and sentiment identification, and finally generate
reasonable strategies and responses.

4.5 Ablation

To verify the effectiveness of the components of
DreamCUB, here we consider the following abla-

tion settings:
• w/o WB: train the PPO policy without the knowl-
edge of DWM.
• w/o RL: inference DWM directly, without the RL
training.
• w/o b in DWM: do not consider the user belief in
the dialogue world model, i.e., only use dialogue
history to predict the next-query of user.
• w/o b inR: do not consider the user belief in the
reward model, i.e., provide the reward score based
on the dialogue context only.
• single-model: make the policy and DWM a single
parameter-shared model.

As shown in Table 7, DreamCUB still performs
the best on all the metrics, suggesting all its compo-
nents are necessary to reach optimal performance.
Especially, DreamCUB utilizes the user belief in-
formation (b), resulting in further performance ben-
efit compared to w/o b in DWM and R. Never-
theless, both w/o b in DWM and w/o b in R can
still surpass the baselines in Table 3, indicating the
pure application of MBRL on dialogue systems can
substantially improve the performance. Last, the
single-model approach can not behave as good as
DreamCUB, which indicates that it is still better to
use separate models for the dialogue policy and the
world model, given the current setting.
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Roles User’s Emotion User’s Sentiment Strategy Response

User no emotion - - Hi there, I want to reserve a hotel room.
Assistant - - question No problem at all. Could I have your full name, please?
User no emotion - - Sure, John Sandals.
Assistant - - question Hi, Mr. Sandals. I’m Michelle, at your service. When do you need the room?
User no emotion - - My plans are to be there April 14th to the 17th.
Assistant - - question We have new room rates, sir. Will that be acceptable to you?

User surprise - - Well, it depends on the price, of course. What is it ?

Assistant - - inform It’s $308 a night.
Direct no emotion 0.5 - Our nightly rate currently sits at $375. If you’d like, I can provide details about

available amenities as well.
DreamCUB surprise 0.43 inform The price is $458 per night.

User no emotion - - I have no problem with that.

Assistant - - question Great! Would you prefer smoking or nonsmoking?
Direct no emotion 0.5 - Perfect, I’ll make a note of that. By the way, do you have any special requests or

preferences during your stay?
DreamCUB happiness 0.78 question Would you like a smoking or non-smoking room?

User disgust - - Definitely nonsmoking. I can’t handle that smell.

Assistant - - question Nonsmoking. Now, is a queen-size bed okay?
Direct disgust 0.6 - Thanks for letting me know. Before we proceed, could you please confirm your

email address?
DreamCUB disgust 0.19 directive Nonsmoking, nonsmoking. Now, if you’ll just give me your phone number.

Table 6: Typical cases generated by DreamCUB in DailyDialog. Contents from the original dataset are italic, and
results of DreamCUB are bolded. Note that predictions of Emotion and Sentiment are for users instead of assistants.

Method
Emotion Strategy Response

ACC MaF1 bias ↓ ACC MaF1 bias ↓ B-2 R-L D-2

w/o WB 87.67 43.36 0.94 62.13 53.53 0.79 4.96 17.93 42.57
w/o RL 80.31 23.75 0.78 63.61 56.87 0.51 5.13 18.27 42.54
w/o b in p 86.71 41.36 1.19 61.13 52.68 0.54 6.16 19.26 42.75
w/o b in R 87.86 48.43 0.94 64.09 55.19 1.03 11.04 28.64 49.55
single-model 86.79 38.03 1.45 58.26 45.02 0.86 4.87 17.74 41.04
DreamCUB (ours) 88.05 50.88 0.74 67.80 62.29 0.33 11.65 29.09 49.36

Table 7: Ablation study on DailyDialog. The best results of each LLM are bolded and the second best are
underlined.

5 Related Work

RL on dialogue system. RL has been widely ap-
plied to LLM-based dialogue systems by aligning
models with human feedback via PPO (Ouyang
et al., 2022). Further attempts like Q-star (Wang
et al., 2024a) and ArCHer (Zhou et al., 2024b) im-
prove the multi-step planning by value-based learn-
ing and hierarchical RL, respectively. To improve
the sampling efficiency of traditional model-free
RLs, there have also been applications of model-
based RL (MBRL) on dialogue systems, such as
DDQ (Peng et al., 2018) and MCA (Xu et al., 2025).
Different from them, DreamCUB includes the user
belief in the LLM-based models, and solves a
POMDP (Young et al., 2013), enriching the ex-
ploration of dialogue policy by conditioning on
model knowledge of user beliefs.

World Models. World Models (Ha and Schmid-
huber, 2018) study the world dynamics primarily
on vision-based inputs, such as PlaNet (Hafner

et al., 2019), Dreamer (Hafner et al., 2020) and
Dream to Drive (Gao et al., 2024). There have also
been world models on textual environments (Wu
et al., 2021; Xu et al., 2025). However, they are
focused on task-oriented dialogues, while neglect-
ing emotional cognition. On the contrary, this work
proposes a dialogue world model for open-ended
dialogues by explicitly modeling user beliefs.

6 Conclusion

In this paper, we propose a framework called
DreamCUB to introduce the MBRL on the dia-
logue system, with user belief modeling of emo-
tion, sentiment and intention. We first pretrain a
dialogue world model which allows the user emo-
tional identification and the next-query prediction,
then jointly train this world model with dialogue
policy, to achieve better performance on the daily
dialogues. We further verify the effectiveness of
user belief both in the world model and the reward
model, as well as the typical conversation cases.
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7 Limitation

Due to time and page limits, here we only explore
a limited subset of user beliefs, including emotion,
sentiment, and intention. Nevertheless, user belief
modeling has the potential to consider more fea-
tures, for example, user preferences, habits, and
memory. A more thorough user modeling might
further enhance the performance.

In addition to dialogue, language tasks have
versatile scenarios, including question-answering,
translation, summarization, and textual games. We
expect this study could be a starting point for the
world model application in textual environments,
which may step forward in generalist artificial in-
telligence.

8 Ethical Considerations

DreamCUB models the user belief, which might
be correlated with the user’s private information.
Therefore, the confidentiality of datasets needs to
be strictly confirmed. Also, by exposing the user’s
privacy on the screen, DreamCUB can also poten-
tially result in user inconvenience. Users should be
aware of such conditions before deploying Dream-
CUB on industrial applications.
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A More Implementation Details

A.1 Prompts

Here we exhibit several prompts used in our frame-
work, including the cognitive and generative parts
of DWM prompts, and prompts of Actor, Critic and
RM.

Prompt of DWM (q(bt|ot)). The following
prompt is utilized by the DWM model for emo-
tion inference tasks.

promptcognitive:
Below is a dialogue between a user and an
assistant. The dialogue history is enclosed
within <history> tags.
<history> {history} </history>
The user’s current emotion before the assis-
tant’s last reply is: {emotion}.
The assistant’s reply, employing the {strategy}
strategy, is: {assistant reply}
Your task is to analyze the user’s mental be-
lief **after** receiving the assistant’s reply.
Complete the following three tasks based on
the updated user emotion:
1. Sentiment classification: Classify the
user’s emotional polarity as either: -1 = nega-
tive, 0 = neutral, 1 = positive. Output format:
{"sentiment_class": int}
2. Sentiment intensity regression: Estimate
the user’s overall sentiment as a real number
between 0 (extremely negative) and 1 (ex-
tremely positive). Output format: {"senti-
ment_score": float}
3. Emotion classification: Classify the user’s
emotion into one or more of the following
categories: {no emotion, happiness, surprise,
fear, disgust, sadness, anger}. Output format:
{"emotions": ["emotion1", "emotion2", ...]}

Prompt of DWM (p(st+1|bt, ot)). The following
prompt is utilized by the DWM model for next-
query prediction.
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promptgenerative:
Below is a dialogue between a user and an
assistant. The dialogue history is enclosed
within <history> tags.
<history>
{history}
</history>
The user’s current emotion before the assis-
tant’s last reply is: {emotion}.
The assistant’s reply, employing the {strategy}
strategy, is:
{assistant reply}
If you are the user:
1. Give the user’s response after receiving
this reply:
{user response}

Based on the updated user emotion after re-
ceiving the assistant’s reply, complete the fol-
lowing tasks:
2. Sentiment classification:
Classify the user’s emotional polarity as ei-
ther:
-1 = negative, 0 = neutral, 1 = positive
Output format: {"sentiment_class": int}
3. Sentiment intensity regression:
Estimate the user’s overall sentiment as a real
number between 0 (extremely negative) and 1
(extremely positive).
Output format: {"sentiment_score": float}
4. Emotion classification:
Classify the user’s emotion into one or
more of the following categories: {no
emotion, happiness, surprise, fear, dis-
gust, sadness, anger} Output format:
{"emotions": ["emotion1", "emotion2", ...]}

Prompts of Actor, Critic and RM. This prompt
guides the assistant to first infer an appropriate con-
versational strategy based on the user’s emotional
state and dialogue history, and then generate a fit-
ting response that aligns with that strategy.

The Critic and Reward model’s prompt should
be aligned with the Actor’s to accurately evaluate
the state value and reward.

A.2 Details of Datasets

Table 8 presents a comparison of three widely used
emotion-centric dialogue datasets: ESConv, Dai-
lyDialog, and EmpatheticDialogues. Each dataset
is annotated with both emotional categories and

promptRL:
Below is a dialogue between a user and an
assistant. The dialogue history is enclosed
within <history> tags.
<history> {history} </history>
User’s emotion: {belief}
Given the user’s emotion and the dialogue so
far, first infer the most appropriate assistant
strategy to move the dialogue forward.
Then, using the inferred strategy, the user’s
emotion, and the dialogue history, generate
the next assistant response that naturally con-
tinues the dialogue.
Please output in the following format:
Assistant’s strategy: {strategy}
Assistant’s response: {response}

communication strategies (where available). ES-
Conv includes a rich set of eight emotions and a
diverse set of support strategies, which are abbrevi-
ated in the table for brevity. DailyDialog provides
a smaller set of emotions along with basic dialogue
act types. EmpatheticDialogues focuses primarily
on emotional labels, covering a broader spectrum
of feelings, with only the top 10 most frequent emo-
tions shown here. This comparison highlights the
varying granularity and scope of annotations across
datasets used in empathetic and emotional dialogue
research.

Table 9 shows an example dialogue snippet from
the ESConv dataset. It illustrates a conversation
where the seeker expresses anxiety about quitting
a disliked job without a secure alternative. The
dialogue is annotated with the topic, the seeker’s
query, the emotional state (anxiety with high in-
tensity), and the empathetic strategy used by the
supporter—in this case, a “reflection of feelings.”
This example highlights how ESConv captures nu-
anced emotional expression alongside supportive
conversational strategies.

Table 10 presents a comparison of key statistics
across three dialogue datasets: ESConv, DailyDi-
alog, and EmpatheticDialogues. It includes data
on the number of sessions, utterances, average ut-
terance lengths, and speaker-specific information
such as utterance counts, average lengths, and the
number of annotated strategies and emotions.

A.3 Metrics of Classification and Regression

F1-scores. F1-related scores include Micro-F1
and Macro-F1. Micro-F1 considers the overall pre-
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Dataset Annotations Types

ESconv Emotion anger, anxiety, depression, disgust, fear, nervousness, sadness, shame
Strategy Que., Paraphrasing &Res., Ref., Self-Dis., Aff.& Rea., Pro., Inf., Others

DailyDialog Emotion anger, disgust, fear, happiness, sadness, surprise, no emotion
Strategy inform, question, directive, and commissive

EmpatheticDialogues Emotion surprised, grateful, proud, sentimental, excited, sad, disgusted, angry, joyful, . . .

Table 8: Lists of emotions and strategies of ESConv, DailyDialog and EmpatheticDialogues. Strategies of ESconv
here are abbreviated names; for full names, refer to the Appendix. Only the most frequent 9 emotions of Empathet-
icDialogues are listed.

Topic I hate my job but I am scared to quit and seek a new career.

Query
{history}
seeker: Seriously!
What I’m scare of now is how to secure another job.

Emotion Anxiety (intensity: 5)

Strategy Reflection of feelings

Response supporter: I can feel your pain just by chatting with you.

Table 9: An example of ESconv.

Category (↓) ESconv DailyDialog EmpatheticDialogues (test set only)

# Sessions 1.3K 13.1k 2.5K
# Utterances 38K 103.0k 11.0K
Average # Utterances 28.9 7.9 4.3
Average Utterance Length 18.8 13.6 16.7

Seeker/Speaker1

# Utterances 20K 53.8k 5.7K
Avg # Utterances 15.4 4.1 2.2
Avg Uttr Len 16.8 13.2 20.8
# Strategies - 4 -
# Emotions 11 7 32

Supporter/Speaker2

# Utterances 18K 49.2k 5.2K
Avg # Utterances 13.6 3.9 2.1
Avg Uttr Len 21.0 14.1 12.3
# Strategies 8 4 -
# Emotions - 7 32

Table 10: Statistics of ESConv, DailyDialog and EmpatheticDialogues.

cision and recall of all instances, while Macro-F1
equals the average F1-score of labels.

bias. We define the preference bias as how much
the model prefers certain labels over others. To
quantify the preference for each strategy in LLMs,
we employ the Bradley-Terry model (Bradley and
Terry, 1952), which is widely used in human pref-
erence modeling (Rafailov et al., 2023). Follow-
ing Newman (2023), we formally derive the prefer-
ence p for strategy i as follows:

p′i =

∑
j(wijpj)/(pi + pj)∑
j wji/(pi + pj)

(6)

where wij represents the number of times the
model predicts strategy i when the ground-truth
strategy is j. All of the preferences pi are initial-
ized as 1 and updated through iteration of the Eq (6)
, where p′i represents the preference in the next it-
eration. After the final iteration, we scale the total
sum of pi to 8 (

∑
pi = 8) so that the average p̄ be-

comes 1, indicating a strong preference for strategy
i if pi > 1.

We use a standard deviation of preferences pi
across the strategies as bias.

bias =

√∑N
i=1(pi − p̄)2

N
(7)
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where a higher value for bias indicates that the
model exhibits a clear preference for both preferred
and non-preferred strategies (Kang et al., 2024).

Pearson Correlation Coefficient. The Pearson
correlation coefficient r provides a dimensionless
index of the linear relationship between two con-
tinuous variables x and y. Formally, r is defined
as

r =

n∑

i=1

(xi − x̄)(yi − ȳ)
√√√√

n∑

i=1

(xi − x̄)2
√√√√

n∑

i=1

(yi − ȳ)2
(8)

A.4 Metrics of Generation

BLEU-2. B-2(Papineni et al., 2002) first com-
pute the geometric average of the modified n-gram
precisions, pn, using n-grams up to length N and
positive weights wn summing to one.

Next, let c be the length of the prediction and r
be the reference length. The BP and BLEU-2 are
computed as follows.

BP =

{
1 if c > r

e(1−r/c) if c ≤ r . (9)

BLEU = BP · exp
(

N∑

n=1

wn log pn

)
. (10)

Rouge-L. R-L(Lin, 2004) propose using LCS-
based F-measure to estimate the similarity between
two summaries X of length m and Y of length n,
assuming X is a reference summary sentence and
Y is a candidate summary sentence, as follows:

Rlcs =
LCS(X,Y )

m

Plcs =
LCS(X,Y )

n

Flcs =

(
1 + β2

)
RlcsPlcs

Rlcs + β2Plcs

(11)

Where LCS(X,Y ) is the length of a longest
common subsequence of X and Y , and β =
Plcs/Rlcs when ∂Flcs/∂Rlcs = ∂Flcs/∂Plcs. In
DUC, β is set to a very big number (→∞). There-
fore, the LCS-based F-measure, i.e., Equation 11,
is Rouge-L.

Dist-2. Li et al. (2015) report the degree of diver-
sity by calculating the number of distinct unigrams
and bigrams in generated responses. The value is
scaled by the total number of generated tokens to
avoid favoring long sentences:

Dist(n) =
Count(unique n− gram)

Count(n− gram)
(12)

A.5 Principle of Human Scoring
We start with the criteria proposed by Kang et al.
(2024). The human evaluation is aimed to align
with the ultimate purpose of ESC, the seeker’s sat-
isfaction. To achieve this, the supporter’s behavior
can be further classified into the following criteria:
Acceptance: Does the seeker accept without dis-
comfort;
Effectiveness: Is it helpful in shifting negative emo-
tions or attitudes towards a positive direction;
Sensitivity: Does it take into consideration the gen-
eral state of the seeker. Furthermore, to clarify the
capability of LLMs to align strategy and responses,
we include Alignment.

To achieve a more elaborate assessment, we con-
sider three more dimensions addressing the genera-
tion quality:
Fluency: the level of fluency of response.
Emotion: the emotional intensity of response which
could affect the seeker’s emotional state.
Interesting: Whether the response can arouse the
seeker’s interest and curiosity, presenting unique
ideas, vivid expressions or engaging elements that
capture the seeker’s attention and make the interac-
tion more appealing.

We invited 10 interns as annotators for the hu-
man evaluation. From the test set, we sampled 10
dialogue sessions, and each annotator scored all
responses independently. We then calculated the
average score for each method, as shown in Table
5. Regarding statistical significance, we performed
a t-test on the average scores of different methods
to verify whether our method significantly outper-
forms the others in Table13.

The interns rate the models according to these
multiple aspects, namely Fluency, Emotion, Inter-
esting, and Satisfaction, with Satisfaction covering
Acceptance, Effectiveness, Sensitivity, and Satis-
faction itself.
Throughout this evaluation process, we strictly
comply with international regulations and ethical
norms, ensuring that all practices conform to the
necessary guidelines regarding participant involve-
ment and data integrity.
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annotators are required to independently evalu-
ate each sample in strict accordance with the pre-
established criteria. By adhering to these principles,
the evaluation process maintains objectivity, stan-
dardization, and consistency, thus enhancing the
overall quality and credibility of the evaluation re-
sults. To ensure the reliability of the results, we
also evaluated the consistency of the evaluations in
Table14 to ensure that the annotator did not score
arbitrarily.
The detailed manual scoring criteria are as follows:

• Fluency:

1: The sentence is highly incoherent, making
it extremely difficult to understand and failing
to convey a meaningful idea.

2: The sentence has significant incoherence
issues, with only parts of it making sense and
struggling to form a complete thought.

3: The sentence contains some incoherence
and occasional errors, but can still convey the
general meaning to a certain extent.

4: The sentence is mostly fluent with only
minor errors or slight awkwardness in ex-
pression, and effectively communicates the
intended meaning.

5: Perfect. The sentence is completely fluent,
free of any errors in grammar, punctuation, or
expression, and clearly conveys the idea.

• Emotion:

1: The emotional expression is extremely in-
appropriate and chaotic, not in line with the
content, and may convey wrong emotions.

2: The emotional expression has obvious
flaws, either too weak or exaggerated, and
is disjointed from the content.

3: The emotional expression is average. It can
convey basic emotions but lacks depth and has
minor issues.

4: The emotional expression is good. It can
effectively convey the intended emotion with
an appropriate intensity and is well integrated
with the content.

5: The emotional expression is excellent. It
is rich, nuanced, and perfectly matches the
content, capable of evoking a strong and ap-
propriate emotional response.

• Acceptance:

1: The response inescapably triggers emo-
tional resistance.

2: The response is highly likely to trigger
emotional resistance.

3: The response has a possibility of emotional
resistance occurring.

4: The response rarely provokes emotional
resistance.

5: The response has no occurrence of emo-
tional resistance.

• Effectiveness:

1: The response actually worsens the seeker’s
emotional distress.

2: The response carries the risk of increasing
stress levels, and this outcome varies depend-
ing on the individual user.

3: The response fails to alter the seeker’s cur-
rent emotional intensity and keeps it at the
same level.

4: The response shows promise in calming
the emotional intensity; however, it is overly
complicated or ambiguous for the user to fully
comprehend and utilize effectively.

5: The response appears to be highly effective
in soothing the seeker’s emotions and offers
valuable and practical emotional support.

• Sensitivity:

1: The response renders inaccurate evaluations
regarding the seeker’s state.

2: The response is characterized by rash judg-
ments, as it lacks adequate assessment and
in-depth exploration of the seeker’s state.

3: The response is formulated with a one-
sided judgment and a limited exploration of
the seeker’s state.

4: The response demonstrates an understand-
ing that only covers a part of the seeker’s state.

5: The response precisely grasps the seeker’s
state and is appropriately tailored according
to the seeker’s actual situation.

• Alignment:

1: The response is in total contradiction to the
predicted strategy.
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2: The response has a minor deviation from
the predicted strategy.

3: There is some ambiguity between the re-
sponse and the predicted strategy.

4: The response largely matches the predicted
strategy, yet it contains some ambiguous ele-
ments.

5: The response effectively makes itself con-
sistent with the predicted strategy.

• Satisfaction:

1: The response is extremely disappointing. It
doesn’t answer the question at all and is of no
help.

2: The response is poor. It only gives a partial
answer and leaves many doubts unresolved.

3: The response is average. It meets the basic
requirements but isn’t particularly outstand-
ing.

4: The response is good. It answers the ques-
tion clearly and provides some useful details.

5: The response is excellent. It not only an-
swers the question perfectly but also offers
valuable additional insights.

B More Results

B.1 Evidence Lower Bound Derivations and
Discussion

The variational bound for latent dynamics models
p (o1:T , b1:T | a1:T ) =

∏
t p(bt|bt−1, at−1)p(ot|bt)

and a variational posterior q (b1:T | o1:T , a1:T ) =∏
t q (bt | o≤t, a<t) follows from importance

weighting and Jensen’s inequality as shown,

log p (o1:T , r1:T |a1:T )

= log Ep(b1:T |a1:T )

[
T∏

t=1

p (ot|bt)R (rt|bt)
]

= log Eq(b|o,a)

[
T∏

t=1

p (ot|bt) p (bt|bt−1, at−1)

q (bt|o≤t, a<t)
R (rt|bt)

]

≥ Eq(b1:T |o1:T ,a1:T )

[
T∑

t=1

log p (bt|bt−1, at−1)

− log q (bt|o≤t, a<t) + log p (ot|bt) + logR (rt|bt)]
(13)

, where b = b1:T , a = a1:T , o = o1:T .
In our work, we choose ELBO as the optimiza-

tion object in Eq.4 as we aim to maximize the log-
likelihood , which represent our world dialogue
model. Here, observation, reward, and action are

all observable variables. We introduce the belief
state to better model the user’s dialogue trajec-
tory and optimize the belief to maximize the log-
likelihood given the actions.

Since this likelihood is intractable, we derive a
tractable lower bound using the classical ELBO for-
mulation, resulting in the right-hand side of Eq.4,
with detailed derivation provided above. Therefore,
we optimize this lower bound as a surrogate for the
original log-likelihood to train our DWM.

To further explain our algorithm, we can divide
Equation 4 into two terms.

The first term is the reconstruction term, which
represents the expected log-likelihood of recon-
structing the data (i.e., observations and rewards)
under the posterior of the belief state. We aim to
maximize this term.

The second term is the KL divergence, acting as
a regularization term that penalizes the difference
between the posterior and prior distributions over
belief states. It encourages the posterior not to
deviate excessively from the prior, which helps
prevent overfitting and improves generalization.

B.2 More result curves

Figure 5 shows the training dynamics of Dream-
CUB. The left plot illustrates the policy KL diver-
gence, which reflects the difference between the
current policy and the reference model. While KL
naturally increases during PPO training, we keep
it within a controlled range to maintain stability.
The right plot shows the reward steadily increasing
and eventually converging, indicating good training
stability and convergence.
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Figure 5: More training plots of DreamCUB, including
the policy KL (left) and reward (right).

As shown in Figure 6, although the Acc is
slightly higher when gamma is set to 1.0, the D-2
metric drops significantly. Considering both indica-
tors, setting gamma to 0.9 achieves the best overall
performance and brings out the full potential of the
algorithm.
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Model
Emotion

no emo happiness surprise fear disgust sadness anger total

ACC

+ SFT 91.65 0.00 23.00 0.00 2.63 0.00 0.00 76.76
+ COT+SFT 99.10 8.09 1.00 0.00 0.00 0.00 1.14 83.48
+ FSM+SFT 99.81 0.62 0.00 0.00 0.00 5.26 0.00 83.28
DreamCUB 95.65 56.61 55.00 21.43 15.79 31.58 32.95 88.05

MaF1

+ SFT 87.17 0.00 8.13 0.00 5.13 0.00 0.00 14.35
+ COT+SFT 90.96 14.34 1.72 0.00 0.00 0.00 2.15 15.60
+ FSM+SFT 90.89 1.23 0.00 0.00 0.00 8.99 0.00 14.44
DreamCUB 93.17 62.81 56.70 30.00 27.27 44.44 41.73 50.88

bias

+ SFT 2.21 1.23 2.45 2.45 1.07 2.45 1.57 2.03
+ COT+SFT 0.66 1.98 1.61 2.45 1.50 1.74 2.45 1.98
+ FSM+SFT 0.78 1.99 2.45 2.45 2.45 2.45 1.79 2.22
DreamCUB 0.65 1.52 1.05 2.45 1.42 2.45 1.07 0.74

Table 11: Per-emotion automatic metrics on DailyDialog.
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Figure 6: Curves of Acc and D-2 variations under dif-
ferent gamma values.

B.3 Per-emotion automatic metrics

Table 11 presents the performance of different mod-
els across four dialogue emotions. Notably, our
model DreamCUBdemonstrates a more uniform
distribution of performance across different emo-
tional categories in various metrics, thereby miti-
gating emotion-related bias.

B.4 Per-strategy automatic metrics

Table 12 presents the performance of different mod-
els across four dialogue emotions on the DailyDi-
alog dataset, using several automatic evaluation
metrics. Overall, DreamCUB consistently outper-
forms the baselines across all metrics, demonstrat-
ing stronger generation quality and better strategic
alignment.

B.5 Significance Test for Human Evaluation

To verify the reliability of manual scoring, we per-
formed the following T-test on the results based on
the means and standard deviations in Table 5.

Table 13 presents our additional significance test-
ing results, which report the p-value of the follow-

Model
Strategy

directive inform question commissive total

ACC

+ SFT 1.30 78.85 47.00 74.77 60.19
+ COT+SFT 0.37 78.02 51.88 69.91 60.11
+ FSM+SFT 3.15 85.85 50.75 67.28 64.05
DreamCUB 42.79 80.83 58.41 68.34 67.80

MaF1

+ SFT 2.55 75.86 44.24 56.62 44.82
+ COT+SFT 0.74 76.01 44.67 58.19 44.90
+ FSM+SFT 6.01 78.48 49.78 59.17 48.36
DreamCUB 48.53 77.78 61.38 61.46 62.29

bias

+ SFT 0.60 0.76 0.77 0.73 0.82
+ COT+SFT 0.60 0.76 0.77 0.73 0.82
+ FSM+SFT 0.61 0.83 0.77 0.77 0.66
DreamCUB 0.62 0.59 0.65 0.60 0.33

B-2

+ SFT 4.45 7.25 6.74 7.96 6.81
+ COT+SFT 4.61 6.80 7.25 7.07 6.61
+ FSM+SFT 6.50 5.50 7.05 4.44 5.85
DreamCUB 10.20 12.38 12.11 9.42 11.65

R-L

+ SFT 14.59 19.92 17.00 19.72 18.54
+ COT+SFT 14.69 19.13 17.74 18.22 18.09
+ FSM+SFT 21.28 21.50 23.02 21.20 21.80
DreamCUB 25.15 30.62 28.14 30.38 29.09

D-2

+ SFT 59.82 53.18 55.81 58.77 43.36
+ COT+SFT 58.03 53.18 54.25 56.37 42.87
+ FSM+SFT 62.07 55.83 54.10 60.59 47.43
DreamCUB 66.25 59.24 59.15 67.77 49.36

Table 12: Per-strategy metrics on DailyDialog.

ing hypothesis test:

H0 :MetricX > MetricDreamCUB (14)

The results indicate that our method achieves
statistically significant improvements over most of
the baselines.

B.6 Consistency of human evaluation

To assess the consistency of annotators’ scores, we
computed the correlation matrix of scores across all
10 annotators for each evaluation dimension. The
correlation matrix of ’fluency’ is presented in Table
14. Except for Annotator 3, the others maintained
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Method Fluency Emotion Acceptance Effectiveness Sensitivity Alignment Satisfaction

Direct <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
+Refine <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01
+Self-Refine <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01
+CoT <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01
+FSM <0.01 0.2 <0.01 <0.01 <0.01 <0.01 <0.01

+SFT <0.01 0.27 <0.01 <0.01 <0.01 <0.01 <0.01
+CoT+SFT 0.14 0.68 <0.01 <0.01 <0.05 <0.01 <0.01
+FSM+SFT 0.38 0.56 <0.01 0.09 0.35 <0.05 <0.05
+DreamCUB – – – – – – –

Table 13: P-value of the hypothesis test on human evaluation.

0 1 2 3 4 5 6 7 8 9

0 1 0.71 0.46 0.41 0.58 0.67 0.6 0.61 0.49 0.58
1 0.71 1 0.66 0.46 0.65 0.7 0.59 0.56 0.61 0.63
2 0.46 0.66 1 0.34 0.49 0.64 0.5 0.44 0.59 0.68
3 0.41 0.46 0.34 1 0.39 0.39 0.46 0.37 0.46 0.43
4 0.58 0.65 0.49 0.39 1 0.55 0.54 0.59 0.53 0.56
5 0.67 0.7 0.64 0.39 0.55 1 0.62 0.52 0.56 0.69
6 0.6 0.59 0.5 0.46 0.54 0.62 1 0.54 0.57 0.59
7 0.61 0.56 0.44 0.37 0.59 0.52 0.54 1 0.58 0.61
8 0.49 0.61 0.59 0.46 0.53 0.56 0.57 0.58 1 0.61
9 0.58 0.63 0.68 0.43 0.56 0.69 0.59 0.61 0.61 1

Table 14: The correlation matrix of human evaluations on fluency. Row i and Column j denote the i and j-th
annotators, respectively.

relatively high levels of inter-agreement. Results
of other dimensions are similar, and we omit them
for ease of clarity.
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