PrAd: Prompt Adaptive Tuning for Decoder-only Language Models

Youneng Ma and Junyi He and Haojun Fei
Qifu Technology
No. 1217, Dong Fang Road, Pudong New Area, Shanghai, China
Building 2, No.6, Jiuxiangiao Road, Chaoyang District, Beijing, China

Correspondence: feihaojun-jk @360shuke.com

Abstract

Fine tuning pretrained language models for
downstream NLP tasks, while effective, can
be costly when the model size and the number
of tasks increase, as it requires full parame-
ter updates and a separate model served for
each task. Parameter-efficient tuning (PET)
addresses the issue by keeping the pretrained
parameters fixed while introducing minimal
task-specific parameters. There are two es-
sential PET paradigms: prompt-based tun-
ing and adapter-based tuning, each with dis-
tinct limitations. Prompt-based methods suf-
fer from increased input lengths and sensitivity
to weight initialization, whereas adapter ap-
proaches can substantially increase inference
time. To overcome these limitations, we pro-
pose prompt adaptive tuning (PrAd), a general
prompt-based tuning framework for decode-
only models that delivers strong performance
with high efficiency, even in multi-task scenar-
ios. Unlike conventional prompt-based tuning
which uses soft tokens to "wrap" inputs, PrAd
employs adapters for flexible input transforma-
tion. While traditional adapter-based tuning
adapts both the prompt and decoded tokens,
PrAd only adapts the prompt. PrAd enables the
creation of diverse prompt-based approaches
while providing critical advantages for real-
world use: (1) it can maintain original input
lengths with easy initialization during training,
like adapter-based methods; (2) it can reduce
management costs while facilitating deploy-
ment and efficient batch inference of different
tasks, like prompt-based tuning.; and (3) it in-
troduces no additional inference latency in the
decoding phase even when serving multiple
tasks concurrently. Experiments on six diverse
tasks demonstrate that PrAd can consistently
attain comparable or better performance and
higher inference efficiency.

1 Introduction

It has been a dominant paradigm to fine tune a
pretrained language model (PLM) for the transfer

learning of downstream NLP tasks. Though pow-
erful, fine tuning all the parameters and serving a
new tuned model for each task can be prohibitively
expensive when the number of tasks and model size
grow. Parameter-efficient tuning methods (PETs),
such as prompt-based tuning (Lester et al., 2021;
Li and Liang, 2021), adapter tuning (Houlsby et al.,
2019; Pfeiffer et al., 2020; He et al., 2021; Lei
et al., 2024; Zhang et al., 2023b), and LoRA (Hu
et al., 2021), represent effective approaches to ad-
dressing this issue. PETSs can attain high parameter
sharing by only updating a small number of extra
parameters for each task and keeping the pretrained
parameters frozen.

Despite their widespread adoption, current main-
stream PETSs exhibit distinct limitations in prac-
tical applications. Prefix Tuning and its variants
(Li and Liang, 2021; Wu et al., 2022; Chen et al.,
2022; Yang et al., 2023) prepend the input with
additional trainable prefixes, which increases the
input length and reduces the usable sequence length
for downstream tasks. Meanwhile, Prefix Tuning is
hard to optimize and its performance changes non-
monotonically in trainable parameters (Hu et al.,
2021). While adapter-based methods demonstrate
superior overall performance and greater stability
compared to Prefix Tuning (He et al., 2021; Ding
et al., 2023), they are much less efficient in terms
of batch inference across diverse tasks, and may in-
cur more management costs and notable additional
inference latency in certain scenarios. It has been
shown that adapter-based methods can introduce
over 20% additional inference latency in an online,
short-sequence-length scenario (Hu et al., 2021).
Riicklé et al., 2020 propose to drop the adapters
in the lower layers of the pretrained models for
higher training and inference efficiency. Condi-
tional Adapter (Lei et al., 2024) reduces significant
computation by selecting only a small subset of
input tokens to query the pretrained model. How-
ever, this method is intricate and only applicable

4729

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 4729-4743
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:email@domain

for encoder-only models. LoRA (Hu et al., 2021)
introduces no additional inference latency when
serving a single task by enabling the merging of
its trainable parameters into the pretrained model.
However, in multi-task settings, LoRA’s efficiency
benefit is compromised as task-specific adapters
must be maintained separately, preventing weight
merging and introducing additional inference la-
tency.

To overcome the limitations of existing PET
methods, we introduce PrAd, a novel and efficient
PET framework for decoder-only LMs that delivers
strong performance while maintaining high effi-
ciency, even in multi-task scenarios. PrAd utilizes
adapters exclusively during the refill stage. It pro-
vides several key advantages for practical utiliza-
tion: 1. It can facilitate deployment and batch
inference of different tasks, and reduce the man-
agement and memory costs incurred by adapters
by up to 50% in practical scenarios where the pre-
fill and decoding phases are dis-aggregated (Zhong
et al., 2024). 2. Its ease of implementation and
training, coupled with robust performance across
various NLU and NLG tasks, are pivotal for prac-
tical adoption. 3. It does not increase the input
length, thereby not reducing the available input
length for downstream tasks, addressing a major
limitation of existing prompt-based methods. 4. It
introduces negligible additional inference latency
even when serving multiple tasks concurrently. Our
main contributions are summarized as below:

* We propose PrAd, a general prompt-based tun-
ing framework for decode-only models, fea-
turing in "transforming" the prompt with train-
able modules only in the prefill phase, giving
rise to various novel prompt-based methods.
Existing prompt-based approaches can also be
conceptualized as specific instances of PrAd.

* We propose sequential and parallel adapter-
enhanced prompt tuning strategies which syn-
ergistically integrate the advantages of both
prompt-based and adapter-based tuning. Our
approach is unique in that it does not incur
any extra inference latency during decoding
while serving multiple tasks concurrently.

* We conduct extensive experiments across var-
ious tasks to validate the effectiveness of our
methods. PrAd stands out for causing negligi-
ble extra inference latency in single-task set-
tings and far greater efficiency in multi-task

Prefill Decode
Step Step 1 Step 2 Step n+1

‘ M

ppegpsghest

Figure 1: PrAd Inference. "M" represents the pre-
trained LM. "A" denotes inserted adapters. The prompt
and output tokens are represented by @ and y; respec-
tively. "KV" denotes the key-value caches. "EOS" is the
stop token. PrAd differs from traditional adapter-based
approaches by utilizing adapters exclusively during the
prefill stage. It slashes the management and memory
overhead associated with adapters by 50% in decou-
pled deployments, while introducing zero additional
inference latency during decoding.

scenarios while still delivering competitive
performance and facilitating deployment. Our
code is publicly available !

2 Background

2.1 Decoder-only language model

The Transformer model (Vaswani et al., 2017)
is now the most widely-used architecture for the
majority of successful PLMs. A standard Trans-
former model consists of an encoder and a de-
coder. Decoder-only LMs only use the decoder
for pretraining with the task of language model-
ing (Radford et al., 2018). A typical Decoder-
only LM comprises of an Embedding layer, fol-
lowed by a stack of Transformer Blocks and a LM
head at the end. Each Transformer Block com-
prises of two sub-layers: Multi-head Self-Attention
Layer (ATTN) and a fully connected Feed-Forward
Network (FFN). Decoder-only LMs demonstrated
strong performance on many NLP tasks in the zero-
shot and few shot settings (Brown et al., 2020)
and have garnered popularity nowadays. Formu-
lating various NLP tasks as conditional Natural
Language Generation (NLG) problems has been
a popular practice in NLP as it allows us to use a
unified learning framework while maintaining com-
petitive performance across various tasks (Raffel
et al., 2020). Let us denote @ = [zg, T1, ..., Ty,
as the input (or prompt), and y = [y0, Y1, .-+, Yn)
as the output sequence. A decoder-only LM such
as (Radford et al., 2019; Brown et al., 2020; Tou-
vron et al., 2023) generates the target sequence

Code: https://github.com/younengma/prad

4730

auto-regressively as below:

yi = LM([z, y<;]) (1)

The inference process comprises of two phases:
Prefill: encode the input and generate the first out-
put token. Decode: generate the rest of tokens
based on tokens that come before them. During
the inference process, as each token only depends
on past tokens, the keys and values of the past to-
kens can be cached and reused for the generation
of future tokens. The computation of prefill phase
and decode phase differs in latency preference for
different forms of parallelism. It is often beneficial
to dis-aggregate those two phases for optimized ser-
vice serving in real scenarios (Zhong et al., 2024).

2.2 Parameter-efficient Tuning

Nowadays, as pretrained models become increas-
ingly larger, fine tuning all parameters and serving
a tuned model for each task can be prohibitively
expensive, especially when a large number of tasks
are involved. PET is an effective approach to mit-
igate the issue. The main idea of PET is to fix
the pretrained model’s parameters and introduce a
small set of extra trainable parameters for task adap-
tation, yielding high parameters sharing. PETSs are
promising for several reasons. Firstly, they can of-
ten perform comparable with Fine Tuning while be-
ing much more parameter efficient (Houlsby et al.,
2019; Li and Liang, 2021; Hu et al., 2021; He et al.,
2021). Secondly, many of these methods support
efficient batch inference across multiple tasks con-
veniently, a particularly valuable feature for large-
scale applications like cloud services where simul-
taneous processing of numerous tasks is essential.
Finally, in low-resource settings, PETs demonstrate
superior extrapolation performance than Fine Tun-
ing (Li and Liang, 2021). Many innovative PETs
have been introduced and summarized in the liter-
ature (Ding et al., 2023; Han et al., 2024). Here,
we introduce the methods that are particularly per-
tinent to our work.

Prompt-based tuning: A prompt usually refers
to the input to a LM at the input layer. Broadly
speaking, a prompt can also refer to an input to
deep layers of the LM. Prompt-based tuning fea-
tures in wrapping the input with additional tokens
to convert various downstream NLP tasks to a uni-
fied language modeling task (Brown et al., 2020;
Liu et al., 2023). It is a powerful and attractive
paradigm as it allows the LM to perform few-shot

or even zero-shot learning with plain texts. How-
ever, designing manual prompts or searching for
discrete prompts can be time-consuming and sub-
optimal (Liu et al., 2022a). Some works propose to
combine soft trainable prompts with text prompts
(Lester et al., 2021; Li and Liang, 2021; Liu et al.,
2022b). Prompt Tuning (Lester et al., 2021) in-
serts soft prompts in the input layer and it become
more competitive as the model size grows. In-
stead of adding prompts only at the input layer,
Prefix Tuning (Li and Liang, 2021) introduces train-
able continuous tokens (prefixes) to at every Trans-
former layer, and significantly enhances model per-
formance. Instead of using fixed prefixes, recent
methods propose to incorporate dynamic prefixes
that are dependent on input instances (Chen et al.,
2022; Wu et al., 2022; Yang et al., 2023). These
methods have shown enhanced performance, albeit
with an increase in complexity. An advantage of
prompt-based methods over other methods is that
they usually do not modify the architecture of the
PLM, a feature that streamlines the implementa-
tion and makes deployment in real-world scenarios
more convenient. Although prompt-based methods
have shown very competitive performance in vari-
ous downstream tasks, they are relatively difficult
to optimize especially for tasks with long input and
generally converge slower (Li and Liang, 2021; Hu
et al., 2021; Chen et al., 2022). Meanwhile, adding
prefixes to the input increases the input length and
reduces the available sequence length for down-
stream tasks.

Adapter-based tuning: Adapter-based tuning
approaches (Rebuffi et al., 2017; Zhu et al., 2021;
He et al., 2021) insert lightweight neural modules,
termed adapters, into the pre-trained model and
tune only the adapters for task adaptation. From
a broader perspective, all PETs can be conceptu-
ally seen as specialized forms of adapter-based ap-
proaches, as they fundamentally share the principle
of incorporating lightweight neural modules for
task adaptation, despite variations in module de-
sign and application. Adapters were first proposed
by Rebuffi et al., 2017 for domain transfer learn-
ing in computer vision. Houlsby et al., 2019 then
applied adapters for efficient NLP transfer learn-
ing and designed a popular adapter architecture
which comprises of a down projection W, and a up
projection W,, with a residual connection for the
Transformer Layer (Vaswani et al., 2017) as below:

A(x) = ReLU (xWy)W,, + x)

4731

Adapter-based methods are very competitive
as they can often perform on par (or only
slightly under-perform) compared with Fine Tun-
ing (Houlsby et al., 2019; Lin et al., 2020; Riicklé
et al., 2020; He et al., 2021). There are two types
of adapters: Sequential Adapter (SA) (Houlsby
et al., 2019) and Parallel Adapter (PA) (He et al.,
2021; Zhu et al., 2021). SA is inserted after the
PLM module, the PLM module and the adapter
process the input sequentially. In contrast, PA is
inserted beside the PLM module, the PLM mod-
ule and the adapter process input in parallel. An
graphical illustration of SA and PA is depicted in
Figure 2(a) and (c). PA has demonstrated better
performance than SA in many scenarios (He et al.,
2021; Zhu et al., 2021). In terms of computational
efficiency, compared with standard Fine Tuning,
adapters can be up to 60% faster in training while
being 4-6% slower at inference on average (Riicklé
et al., 2020). However, the inference latency in-
troduced by adapters can be significant (>20%)
in an online, short-sequence-length scenario (Hu
et al., 2021). Riicklé et al., 2020 showed that drop-
ping the adapters from lower transformer layers
can improve the inference speed considerably in
multi-task settings. Conditional Adapter (Lei et al.,
2024) attained an impressive 2x to 8x inference by
selecting only a small subset of input tokens to be
processed by the slower pretrained model and all to-
kens processed by the fast adapter layer. However,
this method is only applicable to encoder models
and introduces significant complexity. Inspired by
that fact that pretrained models reside on a low in-
trinsic dimension (Li et al., 2018; Aghajanyan et al.,
2020), Hu et al., 2021 proposed Low-Rank Adap-
tation (LoRA) approach which injects trainable
decomposition low-rank matrices into each layer
of the Transformer architecture for task adaptation.
LoRA can be regarded as a special case of PA. One
key advantage of LoRA is that task-specific weights
can be merged into the pretrained model, introduc-
ing no additional inference latency. However, this
benefit is lost in multi-task scenarios, where dif-
ferent tasks require separate LoRA weights and
merging is no longer feasible. Similarly, in single-
task settings involving concurrent deployment of
multiple adapter versions—such as during A/B test-
ing—weight merging cannot be applied, limiting
LoRA’s deployment flexibility. LoRA has gained
much popularity recently and has been further de-
veloped (Valipour et al., 2022; Zhang et al., 2023a;
Liu et al., 2024).

3 Our Method

We introduce Prompt Adaptive Tuning (PrAd) for
decoder-only LMs, a novel and versatile prompt-
based framework which extends existing prompt-
based approaches while integrating the advantages
of adapter-based methods. The core innovation of
PrAd lies in its general and dynamic input trans-
formation mechanism during the prefill phase, for-
mally expressed as: @’ = A(x), where "A" repre-
sents a parameterized prompt transformation mod-
ule, denotes input representation. As illustrated
in Figure 1, the inference of decoder-only LMs
comprises of two distinct operational phases: prefill
and decode. Disaggregating these two phases can
often lead to optimized service performance and
efficiency (Zhong et al., 2024). We decouple these
phases into separate computational models - specif-
ically, a prefill model and a decode model. PrAd ex-
clusively modifies the prefill model by incorporat-
ing "A" into its structure for task adaptation, while
keeping the decode model intact. Notably, conven-
tional prompt-based methods (Li and Liang, 2021;
Chen et al., 2022; Wu et al., 2022; Yang et al., 2023)
can also be regarded as special instances of PrAd.
PrAd offers substantial versatility in the choice of
"A", enabling the derivation of numerous PrAd
variants. However, selecting an appropriate "A"
remains crucial for achieving successful outcomes.
Empirical findings from existing prompt-based ap-
proaches indicate that an effective transformation
"A" should create a strong dependency between
x and z’. Human-designed prompts should be
relevant to the input topic (Brown et al., 2020).
The soft prefixes should be initialized using task-
specific token embeddings for more stable train-
ing (Li and Liang, 2021). Incorporating input-
dependent prefixes has been shown to improve
model performance (Chen et al., 2022; Wu et al.,
2022; Yang et al., 2023). Prompt-based methods
are closely correlated with adapter-based methods.
He et al., 2021 demonstrated that the underlying
mechanism of prompt-based tuning can be can be
mathematically formulated as implementing PA in
the ATTN layer. However, unlike adapter-based
methods that can employ identity initialization in
the residual adapters for stable training (Houlsby
et al., 2019), Prefix Tuning lacks the residual struc-
ture, which may partially account for the optimiza-
tion difficulties observed in Prefix Tuning. Con-
ventional prompt-based methods primarily perform
input transformations limited to the ATTN layer via

4732

,,,,,,,,,,,,

(a) Sequential Adapter (b) Sequential PrAd

=1gk

___JIEN

[T ix < |

(c) Parallel Adapter (d) Parallel PrAd

Figure 2: Graphical illustration of the computation of standard adapters and the proposed PrAd variants when
decoding the 7*" target token. Here, "M" represents a certain sublayer of the PLM that is frozen. "A" denotes an
inserted trainable adapter that works together with "M". "x" denotes the input hidden states related to prompt.

o oo

"y ;" represents the input hidden states related to the already decoded tokens. "x’" and "y ~; " represent the output
hidden states. Standard adapters process both "z" and "y ;" with "M" and "A" as denoted in (a) and (c). In contrast,
the proposed methods process "x" with "M" and "A", but process "y;" only with "M" as shown in (b) and (d).

’additional attention values’. As Wang et al., 2024
theoretically proves, the limitation makes them less
adaptable than methods employing flexible direct
input transformations. This rigidity may explain
why prompt-based methods often underperform
adapter methods on challenging tasks.

Building upon these theoretical insights and
empirical observations, we propose the adapter-
based prompt transformation, leveraging residual
adapters to enable powerful input transformation,
while enforcing a strong dependence relationship
between x and =’ and enabling identity initializa-
tion for stable training. When decoding the i*"
token of target sequence, the input is the concate-
nation of prompt & and the already decoded token
sequence Y;. Let us denote a’, y”; as the corre-
sponding outputs of x, y; respectively. A stan-
dard parallel adapter (He et al., 2021) computes its
output together with a pretrained module as below:

[yl = M([z, y<i]) + Allz,y<i]))

where "IM" denotes the frozen pretrained module
and "A" denotes the adapter. As we can see in the
function, the standard parallel adapter processes
both the prompt @ and the already decoded tokens
Y. Inspired by the fact a PLM can be effectively
steered only by prompts, we propose to apply a
parallel adapter only on the prompt :

=, yZil = M([z, y<i]) + [A(2), 0] 4)

As the proposed approach incorporates a paral-
lel adapter that exclusively processes the prompt,
it’s termed Prompt Adaptive Tuning with Parallel

Adapter (PrAd-PA). Accordingly, we also propose
the sequential variant of PrAd (PrAd-SA). A con-
ventional sequential adapter (Houlsby et al., 2019),
together with a pretrained module, processes the
input as below:

Applying the sequential adapter only on the prompt
x yields PrAd-SA:

@, yls] = [A(M(@, y<i):0),M(z, yi) 1]

(6)
where [is the length of x, tensor slicing oper-
ations (eg."[: []" and "[I :]") follow the rule of
PyTorch. Figure 2 depicts the different compu-
tation processes between standard adapters and the
proposed methods. The key distinction between
PrAd and prior adapter methods (Houlsby et al.,
2019; He et al., 2021) is that adapters of PrAd
only process the prompt, while adapters of previ-
ous methods process both the prompt and already
decoded tokens. Our design eliminates adapter
requirements during decoding, reducing their mem-
ory footprint and management overhead by 50%
in prefill-decode deployments while also boosting
decoding efficiency. PrAd can also be viewed as a
dynamic prompt tuning method (Wu et al., 2022),
as its adapters generate instance-specific prompts
for modules after them. However, unlike previous
methods, PrAd maintains the original input length
and offers broader applicability as it’s not restricted
to ATTN layer. PrAd introduces no additional infer-
ence latency during decoding even in multi-task set-
tings. As far as we know, this is only PET method

4733

that possesses this merit. Although this article pri-
marily focuses on adapter-based methods given
their effectiveness and broad usage, it is worth not-
ing that other PrAd variants can be easily derived.
In most cases, for an existing PET method, we can
apply it exclusively to the prefill model to develop a
corresponding PrAd variant. For instance, by only
tuning the bias terms of the prefill model using Bit-
fit (Zaken et al., 2021), we can derive PrAd-Bitfit.
Similarly, applying DoRA (Liu et al., 2024) only
during the prefill phase yields PrAd-DoRA.

4 Experiments

4.1 Tasks, datasets and metrics

To validate the effectiveness of the proposed meth-
ods, we conduct experiments on both NLU and
NLG tasks with six diverse datasets as below:
SST2: A sentence-level binary classification task.
We use the binary version Stanford Sentiment Tree-
bank (Socher et al., 2013), a corpus of movie re-
views with human annotations of their sentiment.
The model needs to predict the sentiment label (pos-
itive/negative) of a given sentence. We report the
accuracy metric on the development set.

MNLI: A Natural Language Inference NLU task.
We use the Multi-Genre Natural Language Infer-
ence Corpus (Williams et al., 2017). The model
needs to determine whether a premise-hypothesis
pair is entailment, neutral or contraction. We report
the accuracy score of the matched section on the
development set.

E2E: A table-to-text NLG task. We use the E2E
datasets (Novikova et al., 2017) which contains
around 50K examples with 8 distinct fields in the
restaurant domain. The model needs to generate
natural language responses based on attributes. We
report BLEU (Papineni et al., 2002), NIST (Belz
and Reiter, 2006), METEOR (MET) (Banerjee and
Lavie, 2005), ROUGE-L (Lin, 2004) and CIDEr
(Vedantam et al., 2015) with the official evaluation
script.

WebNLG: A table-to-text NLG task. We use the
WebNLG-challenge (Gardent et al., 2017) dataset
which contains triplets-text pairs of 9 categories in
the train and validation set and five extra unseen
categories in the test set. The model needs to gen-
erate sensible sentences based on short triplets. We
report BLEU, MET and TER (Snover et al., 2005)
for All (A), Seen (S) and Unseen (U) categories on
the test set following notations in Prefix Tuning (Li
and Liang, 2021).

MT: A German to English translation task. We use
the IWSLT2014 GE-EN dataset. We report BLEU.
XSUM: An English summarization task. We use
XSum (Narayan et al., 2018) dataset. The model
needs to predict a summary given a news article.
We report ROUGE-1/2/L (Lin, 2004).

4.2 Baselines and proposed model variants

To validate the proposed methods, we use the fol-
lowing representative methods as the baselines:
Fine Tuning: Fine Tuning is a classic approach
for adaptation which updates all the parameters in
the pretrained model. It can show a relative upper
bound performance of the tasks.

Prefix Tuning: Prefix Tuning (Li and Liang, 2021)
is a seminar work of prompt-based tuning meth-
ods. It prepends trainable prefix vectors to the keys
and values of every ATTN layer for task adaptation.
We use the re-parametrization trick (Li and Liang,
2021) in all the experiments for stable training.
PA: Parallel Adapter inserts an adapter in parallel
into an existing sublayer. We focus on the appli-
cation of parallel adapters in the FFN layer as it
attains better performance (He et al., 2021).
LoRA: LoRA is a special kind of PA where train-
able pairs of rank decomposition matrices are in-
serted in parallel to existing weight matrices. By
default, we mainly focus on the basic variant which
applies LoRA to query, value projection matrices
in the ATTN layer (Hu et al., 2021).

SA: Sequential Adapter inserts an adapter after an
existing sublayer (Houlsby et al., 2019). We focus
on the application of sequential adapter in the FFN
layer for simplicity.

We mainly consider the following variants of the
proposed PrAd methods and provide experiment re-
sults of additional PrAd variants in Appendix C.2.
PrAd-PA: The "PA version" of PrAd. Like PA, we
insert an adapter into the FFN layer. However, in
PA, the inserted adapter processes both the prompt
x and the decoded tokens y.; as shown in Figure
2(c). In PrAd-PA, the inserted adapter processes
only « as shown in Figure 2(d).

PrAd-LoRA: In LoRA, the inserted adapter pro-
cesses both x and y; as shown in Figure 2(c). In
PrAd-LoRA, the inserted adapter only processes
x as shown in Figure 2(d). By default, we apply
LoRA only in the ATTN layer.

PrAd-SA: The sequential version of PrAd. While
adapters in SA process both x and y; as depicted
in Figure 2(a), adapters in PrAd-SA only process
x as shown in Figure 2(b).

4734

SST2 MNLI E2E WebNLG
Accuracy Accuracy BLEU NIST MET ROUGE-L CIDEr BLEU MET TERJ
Fine Tll[lil’lg 91.36.73 81.52.18 68.2270 8.742,058 0.4644001 70.78453 2.441_014 45-33.88 0.375.002 0.5344013
Prefix Tuning 91 .32,42 68.31 81 @,06 8.743,009 0.4654001 71.4115 2.462_005 529541 m.[)()l 0.4424004
PA 91.74 34 80.0036 67.7649 8.637 054 0.464001 70.2717 2382931 50.6933 0.402901 0.465 03
LoRA 90.83 73 80.3295 683527 8761019 0464002 70.6228 2427024 52.0736 0.406001 0.448 o6
PrAd-PA 91.63 09 799623 684003 8736028 0462002 709102 2396004 513821 0.400001 0.454 06
PrAd-LoRA 90.4442 80.74,24 68.55_20 8.744 025 0.464 001 709523 2.397,007 51-72.64 04398,001 0.465009

Table 1: Performance on tasks SST2, MNLI, E2E and WebNLG with GPT-2 Small. Here, we report metrics for
"All categories" on WebNLG. The PETs have similar sizes of parameters to store during inference. We run each
experiment 3 times with random seeds and report the mean value with standard deviation in the subscript. The best

scores among PETs are boldfaced and second best scores are underlined.

GPT-2 Large LLaMA-7B
SST2 MNLI MT XSUM SST2 MNLI MT XSUM
Accuracy Accuracy BLEU ROUGE-1/2/L Accuracy Accuracy BLEU ROUGE-1/2/L
PA 94.53 14 85.6434 33.9423 38.32(3/16.700:/31.145; 969016 90.1403 40.73 17 43.941,/21.59 12/36.15 14
LoRA 944211 853835 33.1305 37.89.13/16.36,08/30.7799 969025 90.4503 40.4216 43.66.12/21.3215/35.90 15
PrAd-PA 94.65,4 857313 34353 38.1313/16.4911/31.0113 97.051; 90.3004 40.5616 43.8810/21.5003/36.15 o9
PrAd-LoRA 942734 853597 33.0009 37.9216/16.2810/30.80.19 96.9025 90.4614 40.4619 43.7811/21.4020/36.05 16

Table 2: Performance on tasks SST2, MNLI, MT and XSUM with GPT-2 Large and LLaMA-7B.

MT XSUM
BLEU ROUGE-1/2/L
Fine Tuning 311804 35.11.10/13.97 09/28.17 o7
Prefix Tuning 16.72.16 30.84 ¢3/10.49 ¢5/24.41 g
SA 29.9201 33.38,09/12.67 05/26.77 o7
PA 30.6316 34.09.09/13.24 (4/27.34 o5
LoRA 29.57 11 33.72,04/12.70 03/26.94
LoRA-FFN 311803 33.93,04/13.01 02/27.21 o7
PrAd-SA 277114 33.71,07/12.83 04/27.09 o7
PrAd-PA 294019 34.19 05/13.20 06/27.55 o7
PrAd-LoRA 26.67 33 33.6102/12.72 04/27.00 o3

PrAd-LoRA-FFN = 29.96 99 34.11 ¢6/13.19 03/27.49 05

Table 3: Performance on tasks MT and XSUM with
GPT-2 Small.

4.3 Experiment settings

We use GPT-2 Small (124M), GPT-2 Large (774M)
(Radford et al., 2019) and LLaMA-7B (Touvron
et al., 2023) as the PLMs. We formulate all
tasks as NLG problems. For example, instead of
adding a classification head for label index pre-
diction, we directly generate the sentiment label
(positive/negative) conditioned on the input text
for SST2. We mainly focus on the variants of par-
allel PrAds and their counterparts, PA and LoRA
given their superiority (He et al., 2021; Zhu et al.,
2021; Ding et al., 2023). As a general rule, we
use a smaller parameter budget for easier tasks (e.g.
SST2 and MNLI) and larger parameter budget for
harder tasks (e.g. MT and XSUM). For a fair com-
parison, the sizes of the parameters to store during
inference of different PETs are set to be nearly
the same for the same task. For data processing,
we follow the sample practice by Lin et al., 2020,

which inserts task tokens into the input to help the
model better understand the semantic structure of
the input. We run the experiments with 3 random
seeds and report the average score with standard
deviation in the subscript. More experiment details
are provided in the Appendices A and B.

4.4 Results and Analysis

GPT-2 small: The performance on tasks SST2,
MNLI, E2E and WebNLG is presented in Table
1. For NLU tasks SST2 and MNLLI, the proposed
PrAd methods consistently achieve comparable or
superior performance relative to PA and LoRA,
thereby validating their effectiveness. In contrast,
Prefix Tuning exhibits a substantial performance
degradation on MNLI, suggesting inherent opti-
mization challenges of the method. For E2E, Prefix
Tuning achieves the best overall performance on
the task. The performance gap of Prefix Tuning on
MNLI and E2E demonstrates that a method which
underperforms on one task may excel on another,
underscoring the importance of evaluating methods
across diverse tasks. Our methods keep perfor-
mance parity. Notably, PrAd-LoRA achieves the
highest BLEU score and exhibits superior perfor-
mance compared to both PA and LoRA, suggest-
ing that our approaches can outperform conven-
tional adapter-based methods in specific task. For
WebNLG, PETs generally outperform Fine Tun-
ing and the proposed methods perform comparable
with baselines. Table 3 presents the results on the
more challenging XSUM and MT tasks. Prefix
Tuning exhibits a significant drop in performance.

4735

Number of Tasks 8 16 64
Inference Phase Prefill Decode Total Speedup Prefill Decode Total Speedup Prefill Decode Total ~ Speedup
LoRA 27.54 174791 1775.05 - 45.05 2774.53 2819.59 140.39 8588.22 8728.61 -
PA 15.67 937.09 952.76 x0.86 22.69 1329.27 135196 x1.09 70.13 3429.28 349941 x1.49
PrAd-LoRA 27.54 482.05 509.59 x2.48 45.05 496.56 541.62 x4.21 140.39 513.29 653.68 x12.35
PrAd-PA 15.67 482.05 497.72 x2.57 22.69 496.56 519.25 x4.43 70.13 51329 58342 x13.96

Table 4: Inference latency with GPT-2 Large measured in milliseconds averaged across 50 runs on an Nvidia A100
40G in multi-task scenarios. In each run, we simultaneously encode multiple task samples of 64-token length and
generate output sequences of equal length. The number of trainable parameters of different PETs are set nearly
the same and the bottleneck dimension in the adapters is 16. The speedup is compared with LoRA. The shortest
inference time among the PETs is shown in bold, while the second shortest is underlined.

While our methods show slightly inferior perfor-
mance to PA and LoRA on MT, they demonstrate
improved performance on XSUM. Notably, PrAd-
PA outperforms all baselines on XSUM. More-
over, the results reveal that implementing LoRA in
the FFN layer (LoRA-FFN and PrAd-LoRA-FFN)
yields better performance, which aligns with previ-
ous research (He et al., 2021).

GPT-2 Large and LLaMA-7B: We further con-
duct experiments on 4 tasks: SST2, MNLI, XSUM
and MT with GPT-2 Large and LLaMA-7B. We
only compare our methods with LoRA and PA
given their superiority (He et al., 2021; Hu et al.,
2021; Ding et al., 2023). Table 2 presents the per-
formance on the 4 tasks. Our method matches or
exceeds strong baselines (PA/LoRA). On GPT-2
Large, PrAd-PA emerges as the top-performing
method across three tasks: SST-2, MNLI, and
MT, while securing the second-best performance in
XSUM. PrAd-LoRA maintains comparable perfor-
mance against the baselines. On LLaMA-7B, PrAd-
LoRA achieves optimal performance in MNLI,
while PrAd-PA ranks first in SST2 and ranks sec-
ond in both MT and XSUM tasks. Notably, while
our methods underperform on MT with GPT-2
Small (as shown in Table 3), they can outperform
the baselines on the large models, suggesting that
our approaches become more competitive with the
increase in model scale.

Inference efficiency: Prior research (Hu et al.,
2021; Riicklé et al., 2020) has found that adapters
can introduce significant additional inference la-
tency in certain scenarios, which is also observed
in our experiments. Figure 3 presents the inference
time of different methods with various sequence
lengths and batch sizes with GPT-2 Small in single
task settings. PrAd-LoRA, like LoRA, introduces
no extra inference latency, whereas PrAd-PA and
Prefix Tuning have minimal impact. PA, however,
leads to a significant latency increase. These find-
ings are further corroborated by our extended ex-

Batch Size =1 Batch Size = 8

N
S

Methods

PA
—x- LoRA
- PrAd-PA
-+ PrAd-LoRA
—e+— Prefix Tuning

Methods

PA
«= LoRA
PrAd-PA
PrAd-LoRA
—e— Prefix Tuning

@

12.5

3

.

o

. A
o i\

Tgg

Increased Inference Latency (%)
Increased Inference Latency (%)
3
°

peme

3 A . 7
%, H cag” Sy RN g
S~ DT s AN IR et T e

o

0 100 200 300

Sequence Length

400 0 100 200 300

Sequence Length
Batch Size = 32

Methods
PA

LoRA

e PrAd-PA
-+ PrAd-LoRA
—e— Prefix Tuning

400

Batch Size = 16

-
15 Methods

PA
«= LoRA
------ PrAd-PA
=+ PrAd-LoRA
—e— Prefix Tuning

Increased Inference Latency (%)
3
Increased Inference Latency (%)

K ———ar®
P N P e

R e Oy e

_e—t—e
e

0

0 100 200 300

Sequence Length

400 0 100 200 300

Sequence Length

400

Figure 3: The increased inference latency (%) com-
pared with Fine Tuning averaged over 50 runs on an
NVIDIA A100 40G with GPT-2 Small. In each run, we
encode an input of "Sequence Length" and generate an
output sequence of the same length. The prefix length
and bottleneck dimension in the adapters are set as 32.

periments on large models in Appendix C.1. Table
4 presents the inference time when handling mul-
tiple tasks simultaneously. The results show our
methods achieves substantially higher efficiency
than PA and LoRA. While LoRA achieves high
inference efficiency in single-task settings, it is
much less efficient than our approach in multi-task
scenarios due to the use of task-specific adapters
during both prefill and decoding phase, which pre-
vents effective batched computations. In contrast,
as PrAd doesn’t use any task-specific modules in
the decoding phase, it attains high inference ef-
ficiency in multi-task environments by enabling
batched inference across tasks and introducing al-
most no additional computational overhead during
decoding.

Management costs reduction: In real-world de-

4736

ployments, the prefill and decode phases are often
decoupled for service optimization. PrAd intro-
duces adapters exclusively during the prefill phase,
leaving the decode model unchanged throughout
the adapter lifecycle. This design confines adapter
maintenance—including updates, removals, and
version control—to the prefill model only, result-
ing in a 50% reduction in adapter management
overhead.

5 Conclusion

We propose PrAd, a general prompt-based tuning
framework for decoder-only LMs. PrAd enables
the development of diverse prompt-based methods
and integrates the strengths of both prompt-based
and adapter-based tuning. PrAd (1) maintains input
length and allows simple initialization during train-
ing, while performing on par with or surpassing
strong baselines (e.g., PA, LoRA) across diverse
tasks; 2) introduces zero additional inference la-
tency during decoding, even when serving multi-
ple tasks concurrently; 3) facilitates deployment
and batch inference of various tasks, reducing 50%
management and memory costs of adapters while
significantly boosting inference efficiency in multi-
task scenarios. With its strong performance, greater
efficiency and lower management costs, PrAd can
be a superior choice for real-world use, especially
in multi-task scenarios.

6 Limitations

As our methods use additional adapters in the pre-
fill phase during inference, it can introduce addi-
tional computation cost when generating the first to-
ken. While the overall performance of our method
remains competitive with other strong PET tech-
niques in most scenarios, it may underperform
compared to state-of-the-art methods depending on
task-specific characteristics. As studied in previous
works, the choice of hyper-parameters in adapter-
based methods can have an impact on the final
performance (Valipour et al., 2022; Zhang et al.,
2023a), further research is required to understand
the impact of the choice of hyper-parameters in our
methods.

Additionally, our work currently focuses only
on decoder-only models, although the concept of
prompt adaptive tuning could potentially be ex-
tended to other architectures involving autoregres-
sive decoding (e.g., encoder-decoder models), its
efficacy across different architectures remains an

open question that we leave for future work.

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv
preprint arXiv:2012.13255.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65-72.

Anja Belz and Ehud Reiter. 2006. Comparing automatic
and human evaluation of nlg systems. In /1th confer-
ence of the european chapter of the association for
computational linguistics, pages 313-320.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Yifan Chen, Devamanyu Hazarika, Mahdi Namaz-
ifar, Yang Liu, Di Jin, and Dilek Hakkani-Tur.
2022. Inducer-tuning: Connecting prefix-tuning and
adapter-tuning. arXiv preprint arXiv:2210.14469.

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Haitao Zheng, Jianfei
Chen, Y. Liu, Jie Tang, Juanzi Li, and Maosong Sun.
2023. Parameter-efficient fine-tuning of large-scale
pre-trained language models. Nature Machine Intel-
ligence, 5:220-235.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez Beltrachini. 2017. The webnlg chal-
lenge: Generating text from rdf data. In Proceedings
of the 10th international conference on natural lan-
guage generation, pages 124-133.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
ArXiv, abs/2403.14608.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790-2799. PMLR.

4737

https://api.semanticscholar.org/CorpusID:257316425
https://api.semanticscholar.org/CorpusID:257316425
https://api.semanticscholar.org/CorpusID:268553763
https://api.semanticscholar.org/CorpusID:268553763

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua
Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent
Zhao, Yuexin Wu, Bo Li, et al. 2024. Conditional
adapters: Parameter-efficient transfer learning with
fast inference. Advances in Neural Information Pro-
cessing Systems, 36.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Ja-
son Yosinski. 2018. Measuring the intrinsic di-
mension of objective landscapes. arXiv preprint
arXiv:1804.08838.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In 7Text summarization
branches out, pages 74-81.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2020. Exploring versatile generative language model
via parameter-efficient transfer learning. arXiv
preprint arXiv:2004.03829.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022a. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-

vances in Neural Information Processing Systems,
35:1950-1965.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022b.
P-tuning: Prompt tuning can be comparable to fine-
tuning across scales and tasks. In Annual Meeting of
the Association for Computational Linguistics.

Shashi Narayan, Shay B Cohen, and Mirella Lap-
ata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural net-

works for extreme summarization. arXiv preprint
arXiv:1808.08745.

Jekaterina Novikova, Ondfej Dusek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. arXiv preprint arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. Advances in neural informa-
tion processing systems, 30.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. Adapterdrop: On the effi-
ciency of adapters in transformers. arXiv preprint
arXiv:2010.11918.

Mathew Snover, Bonnie Dorr, Richard Schwartz, John
Makhoul, Linnea Micciulla, and Ralph Weischedel.
2005. A study of translation error rate with targeted
human annotation. In Proceedings of the 7th Confer-
ence of the Association for Machine Translation in
the Americas (AMTA 06), pages 223-231.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-

cal methods in natural language processing, pages
1631-1642.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

4738

https://api.semanticscholar.org/CorpusID:248780177
https://api.semanticscholar.org/CorpusID:248780177

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter
efficient tuning of pre-trained models using dynamic
search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566—4575.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui
Hsieh. 2024. Universality and limitations of prompt
tuning. Advances in Neural Information Processing
Systems, 36.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux-
iao Dong, V. G. Vinod Vydiswaran, and Hao Ma.
2022. Idpg: An instance-dependent prompt gener-
ation method. In North American Chapter of the
Association for Computational Linguistics.

Xianjun Yang, Wei Cheng, Xujiang Zhao, Wenchao Yu,
Linda Petzold, and Haifeng Chen. 2023. Dynamic
prompting: A unified framework for prompt tuning.
arXiv preprint arXiv:2303.02909.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023a. Adaptive budget allocation for
parameter-efficient fine-tuning. In International Con-
ference on Learning Representations. Openreview.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu,
Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and
Yu Jiao Qiao. 2023b. Llama-adapter: Efficient fine-
tuning of language models with zero-init attention.
ArXiv, abs/2303.16199.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
2024. Distserve: Disaggregating prefill and decoding
for goodput-optimized large language model serving.
arXiv preprint arXiv:2401.09670.

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan
Wang, and Lei Li. 2021. Serial or parallel? plug-able
adapter for multilingual machine translation. arXiv
preprint arXiv:2104.08154, 6(3).

A Experiment Details for GPT-2 Models

We use "huggingface transformers" and PyTorch
packages for the implementation of different meth-
ods. For all tasks we use linear scheduler with
warm-up ratio of 0.06 and grad norm is set as 1.
We use beam search for decoding during inference,
with beam size set as 1 for MNLI and SST2, beam
size as 3 for the rest of the tasks. The training
hyperparameters are selected as follows: to main-
tain consistency, we standardize the batch size and
epoch settings across all methodologies for a given
task. The learning rate for Fine Tuning is set at
the widely-adopted value of 5e-5. In the case of
PETs, the learning rate is carefully chosen within
the spectrum of 1e-4 to 3e-3, guided by the vali-
dation loss metrics and settings in previous works
(Lin et al., 2020; Hu et al., 2021; He et al., 2021).

GPT-2 Small: The hyper parameters used for
GPT-2 Small are shown in Table 5. For The bottle-
neck dimension of adapters is set as 16 in SST2 and
32 in MNLI, which results in around 0.24% train-
able parameters in SST and 0.48% in MNLI for
the PETs. For E2E challenge and WebNLG, a bot-
tleneck dimension of 108 is used for the adapters,
around 1.6% trainable parameters are introduced
in PETs. For XSUM and MT tasks, a bottleneck di-
mension of 200 used for the adapters, around 2.9%
trainable parameters are introduced. The prefix
length in Prefix Tuning and the rank of introduced
matrices in LoRA are adjusted accordingly so that
all PETs have similar sizes of parameters to store
during inference.

GPT-2 Large: The hyper parameters used for
GPT-2 Large are shown in Table 6. The bottleneck
dimension of adapters is set as 16 in SST2 and
32 in MNLI, which results in around 0.19% train-
able parameters in SST and 0.39% in MNLI for
the PETs. For XSUM and MT tasks, a bottleneck
dimension of 100 used for the adapters, around
1.19% trainable parameters are introduced. The
rank of introduced matrices in LoRA are adjusted
accordingly so that all PETs have similar sizes of
parameters to store during inference.

The data processing procedure for GPT-2 fol-
lows the practice by Lin et al., 2020. For each task,
we add task-related embedding at certain positions
to help the model better identify the different parts
of the inputs. The main difference is that we do
not use the segment embedding (or token type em-
bedding), as in our initial experiments we found
that adding segment embedding didn’t contribute

4739

https://api.semanticscholar.org/CorpusID:257771811
https://api.semanticscholar.org/CorpusID:257771811

to the performance improvement. We list the data
processing detail for different tasks in the following
part.

A1l SST2

We convert the classification task as a generation
task. We directly generate the sentiment label (pos-
itive or negative) of the input. For example, the
training sample: {text: a sometimes tedious film.
label: O } is processed as {input: <start>a some-
times tedious film.<sep>, label: negative<end>
}. Tokens in angle brackets (e.g. <start>, <sep>
and <end>) are special tokens with trainable em-
beddings. The special token <end> is used as the
stop generation token for all tasks. The maximum
length of input is set as 128 tokens.

A.2 MNLI

We convert this task as a generation task. For the
following train sample:

* premise: Everyone really likes the newest
benefits

* hypothesis: The new rights are nice enough

* label: 2

We prepend the prefix text to the hypothesis and
premise, and insert special task embedding at cer-
tain positions:

* input: <start>/hypothesis|:Everyone really
likes the newest benefits [premise]:The new
rights are nice enough<sep>

¢ label: entailment<end>

where [hypothesis] and [premise] are plain text
prefix, <start>, <sep> and <end> are special to-
kens. The maximum length of the input is set as
128 tokens.

A3 E2E

For E2E generation task, we follow the practice by
Lin et al., 2020. The following train sample:

¢ meaning representation: name: Alimentum,
area: city centre, familyFriendly:no

* human reference: There is a place in the city
centre, Alimentum, that is not family-friendly.

is processed as:

* input: <start><name>Alimentum<area>city
centre<familyFriendly>no<sep>

* label: There is a place in the city centre, Ali-
mentum, that is not family-friendly.<end>

Learning Rate Batch Size Train Steps
SST2:
Fine Tuning Se-5 32 5 epochs
Prefix Tuning le-4 32 10 epochs
PA le-3 32 10 epochs
LoRA Se-4 32 10 epochs
DoRA le-3 32 10 epochs
PrAd-PA le-3 32 10 epochs
PrAd-LoRA le-4 32 10 epochs
PrAd-DoRA le-3 32 10 epochs
MNLI:
Fine Tuning Se-5 32 5 epochs
Prefix Tuning 2e-3 32 5 epochs
PA 2e-3 32 5 epochs
LoRA le-4 32 5 epochs
PrAd-PA 2e-3 32 5 epochs
PrAd-LoRA le-4 32 5 epochs
E2E:
Fine Tuning Se-5 32 60000
Prefix Tuning 2e-3 32 60000
PA 2e-3 32 60000
LoRA Se-4 32 60000
PrAd-PA le-3 32 60000
PrAd-LoRA Se-4 32 60000
XSUM:
Fine Tuning Se-5 32 60000
Prefix Tuning le-3 32 60000
SA Se-4 32 60000
PA 2e-3 32 60000
LoRA Se-4 32 60000
DoRA Se-4 32 60000
LoRA-FFN Se-4 32 60000
PrAd-SA Se-4 32 60000
PrAd-PA 2e-3 32 60000
PrAd-LoRA Se-4 32 60000
PrAd-LoRA-FFN Se-4 32 60000
PrAd-DoRA Se-4 32 60000
WebNLG:
Fine Tuning Se-5 32 18000
Prefix Tuning le-3 32 18000
SA le-4 32 18000
PA Se-4 32 18000
LoRA Se-4 32 18000
PrAd-SA Se-4 32 18000
PrAd-PA le-3 32 18000
PrAd-LoRA Se-4 32 18000
MT:
Fine Tuning Se-5 32 60000
Prefix Tuning 2e-3 32 60000
SA 8e-4 32 60000
PA le-3 32 60000
LoRA le-3 32 60000
LoRA-FFN le-3 32 60000
PrAd-SA le-3 32 60000
PrAd-PA 3e-3 32 60000
PrAd-LoRA 6e-4 32 60000
PrAd-LoRA-FFN le-3 32 60000

Table 5: Hyper parameters settings for different tasks
with GPT-2 Small.

4740

Learning Rate Batch Size Train Steps
SST2:
PA 2e-4 16 5 epochs
LoRA 2e-4 16 5 epochs
PrAd-PA Se-4 16 5 epochs
PrAd-LoRA 2e-4 16 5 epochs
MNLI:
PA 2e-4 16 5 epochs
LoRA 8e-5 16 5 epochs
PrAd-PA 2e-4 16 5 epochs
PrAd-LoRA 8e-5 16 5 epochs
XSUM:
PA 2e-4 8 5 epochs
LoRA 2e-4 8 5 epochs
PrAd-PA 2e-4 8 5 epochs
PrAd-LoRA 2e-4 8 5 epochs
MT:
PA 2e-4 16 10 epochs
LoRA Se-4 16 10 epochs
PrAd-PA Se-4 16 10 epochs
PrAd-LoRA 2e-4 16 10 epochs

Table 6: Hyper parameters settings for different tasks
with GPT-2 Large.

where tokens in angle brackets (e.g.<start>,
<name> etc.) are special tokens. The maximum
length of the input and label are both set as 256
tokens.

A4 WebNLG

For the WebNLG task, the input consists of multi-
ple triples. We also insert special tokens to identify
the different parts and concatenate them as texts.
For the example:

* triples: (United States, capital, Washing-
ton D.C.), (Albany Oregon, isPartOf, United
States)

* text: Albany, Oregon is part of the United
States, where Washington, D.C. is the capital.

is processes as:

e input: <start> <subject> United States
<property> capital <object> Washington
D.C. <triple-sep> <subject> Albany Oregon
<property> isPartOf <object> United States
<sep>

* label: Albany, Oregon is part of the United
States, where Washington, D.C. is the capi-
tal.<end>

where tokens in angle brackets are special tokens.
The maximum length of input and label are both
set as 256 tokens.

A.5 XSUM and MT

The inputs of XSUM and MT are processed simi-
larly. Suppose the task input is "[task input]" and
the target sequence is "[task output]". We insert
"<start>" at the begging and "<sep>" at end of
the task input. We also append an "<end>" at the
end of the target sequence. And we get the input-
label pair as input: <start>[task input]<sep>, la-
bel: [task outputl<end>. We set the maximum
length as 100 tokens for both input and output in
MT. In XSUM, the maximum length is 400 tokens
for input and 130 for output.

B Experiment Details for LLaMA-7B

For experiments with LLaMA-7B, the experiments
of SST2, MNLI and MT were ran on 4 NVIDIA
A100 40G. The experiments of XSUM were ran on
4 NVIDIA A800 80G. We use greedy decoding dur-
ing inference for all tasks. The bottleneck dimen-
sion of the adapters is set as 4 in SST2 and MNLI
, which leads to around 0.031% trainable parame-
ters (compared with the base model) in the PETs.
For XSUM and MT, a bottleneck dimension of 32
is used for the adapters, which results in around
0.248% trainable parameters in the PETs. We use
"huggingface transformers" and PyTorch packages
for the implementation of different methods. We
use deepspeed package for efficient training. For
all tasks, we use warm-up steps of 500 and grad
norm of 1. We use AdamW as the optimizer. Other
hyper parameters used are shown in Table 7.

We use a simple data processing procedure for
all the tasks. Suppose the task input is "[task in-
put]" and the target sequence is "[task output]". The
training sequence is formulated as "#INPUT: [task
input] #OUTPUT: [task output]". For example, for
task SST2, we have a task input: "a sometimes te-
dious film" and task output: "negative". The model
needs to generate the label: "negative" conditioned
on the text: "#INPUT: a sometimes tedious film
#OUTPUT:". The maximum input length for SST2,
MNLI, MT is set as 256 tokens. The maximum
input length for XSUM is set as 512 tokens. The
maximum output length for MT and XSUM is set
as 256 tokens.

C Additional Experiment Results

C.1 Inference Time Comparison

This section presents supplementary experimen-
tal evaluations on inference time. The average
inference time across 50 experimental runs was

4741

Learning Rate Batch Size Train Steps
SST2:
PA Se-5 32 3 epochs
LoRA Se-5 32 3 epochs
PrAd-PA Se-5 32 3 epochs
PrAd-LoRA Se-5 32 3 epochs
MNLI:
PA 2e-3 32 2 epochs
LoRA le-4 32 2 epochs
PrAd-PA 2e-3 32 2 epochs
PrAd-LoRA le-4 32 2 epochs
XSUM:
PA 2e-4 32 3 epochs
LoRA 2e-4 32 3 epochs
PrAd-PA 2e-4 32 3 epochs
PrAd-LoRA 2e-4 32 3 epochs
MT:
PA 2e-4 32 3 epochs
LoRA 2e-4 32 3 epochs
PrAd-PA 2e-4 32 3 epochs
PrAd-LoRA 2e-4 32 3 epochs

Table 7: Hyper parameters settings for different tasks
with LLaMA-7B.

SST2 XSUM
Accuracy ROUGE-1/2/L
DoRA 92.09 32.97/12.16/26.40
MaM 90.94 33.67/12.94/26.92
PrAd-DoRA 92.09 32.94/12.15/26.34
PrAd-MaM 90.48 33.91/13.04/27.20

Table 8: Performance of DoRA and MaM on task SST2,
XSUM on GPT 2 Small.

Batch Size =1 Batch Size = 8

354 Methods 40 Methods
PA . 35 PA .
304 —*- LoRA o —x= LoRA #7T
P e 3.0 7
w wome PrAd-PA o o I PrAd-PA T
o 257 =+- PrAd-LoRA o 25 =+ PrAd-LoRA g
E 5o o PrefixTuning E ~+= PrefixTuning /", v
g /.,/- 3 20 i
g p g %
815 e 215 el
= 4 = rd
1.0 ydl 1.0 rd
v 4
05 4 05 4
/’/ /'/
0.0 ¢ 0.0 ¢
0 100 200 300 400 0 100 200 300 400
Sequence Length Sequence Length
Batch Size = 16 Batch Size =32
4.0 Methods 4 Methods
PA PA 2
4 e
351 —x- LorA & —x- LoRA it"
..... s I o
5 30 e PrAd-PA v G 3] = PrAdPA y r,%
@ 55|~ PrAdLoRA o Py =+ PrAd-LoRA e
£ “77 —e= Prefix Tuning e E | —e— Prefix Tuning e
8 2.0 e 82 e
c /" c /0'
2 15 > g %
b
£ 7" £ v
1.0 4 e 1 °d
/0/ /0/
05 5 &
e v
0.0 ¢ 04*

0 100 200 300 400 0 100 200 300 400
Sequence Length Sequence Length

Figure 4: The inference latency (s) of different meth-
ods averaged over 50 runs on an NVIDIA A100 40G
with GPT-2 Small. In each run, we encode an input of
"Sequence Length" and generate an output sequence of
the same length. The prefix length in Prefix Tuning and
the bottleneck dimension in the adapters are set as 32.

measured for each method using a single NVIDIA
A100 GPU with 40GB memory. In each run, we
encode an input of "Sequence Length" and gen-
erate an output sequence of the same length. We
insert parallel adapters only in the FFN layer. The
increased latency of adapter-based methods com-
pared with Fine Tuning on GPT-2 Small is depicted
in Figure 3. The results indicate that PA can intro-
duces 15% to 25 % additional inference latency,
while PrAd-PA introduces negligible additional in-
ference latency in most cases. Figure 5 presents
the increased inference latency compared with Fine
Tuning for GPT-2 Large. While PA introduces sig-
nificant additional inference latency during short
sequence and small batch generation, PrAd main-
tains nearly negligible latency impact under iden-
tical conditions. Figures 6 and 7 present the infer-
ence time of the adapter-based PETs at batch sizes
of 1 and 16 respectively, providing empirical evi-
dence for the superior efficiency of our approach
when applied to large-scale models.

C.2 Experiments with DoRA and MaM

The flexibility of the framework allows for easy
derivation of other PrAd variants. To further val-
idate our approach, we perform additional exper-
iments using MaM (He et al., 2021) and DoRA
(Liu et al., 2024). MaM combines Prefix Tuning

4742

WebNLG

BLEU MET TER|
S U A S U A S U A
Fine Tuning 61 .68‘70 27.6737 4533,88 0.444.002 0.302'003 0.375'002 0.362'010 0.737‘017 0.534013
Prefix Tuning 62.41‘44 40.7977 52.95'41 0.444.002 0.362'002 M'om 0.351'003 0-550,008 0.442‘004
SA 62.01 95 38.2753 513641 0442901 0351002 0.399001 0.357 904 0.584004 0.461 o4
PA 6328190 36.0850 50.6933 0450000 0.350001 0.402001 0346002 0.605009 0.465 03
LoRA 634720 382663 52.0736 0.453000 0.353.001 0.406001 0.340002 0.575001 0.448 06
PrAd-SA 629114 380555 513623 04450 0354000 0402002 0357003 0.59% 97 0.465 g0
PrAd-PA 63.1821 369114 513891 0446901 0351001 0400001 0.349001 0.592008 0.454 006
PrAd-LoRA 62.85925 37.5596 51.7264 0.445001 0345002 0.398001 0.347 o2 0.60520 0.465 o9

Table 9: Performance on the task WebNLG with GPT-2 Small. "U" denotes unseen categories, "S" denotes seen
categories, and "A" indicates all categories in the test set of WebNLG.

Batch Size = 1 Batch Size = 8

)
o

20

Methods
PA
—#- Fine Tuning

15 Methods
PA
~#- Fine Tuning

Increased Inference Latency (%)
Increased Inference Latency (%)

10 @ PrAd-PA - PrAd-PA
5 5
0 x-Eumum 0 e B i g R
0 100 200 300 400 500 0 100 200 300 400 500
Sequence Length Sequence Length
Batch Size = 16 Batch Size = 32
Methods
20 20 PA
~# - Fine Tuning
@ PrAd-PA

Methods
PA
10~ -#- Fine Tuning
@ PrAd-PA

Increased Inference Latency (%)
Increased Inference Latency (%)

OO PPN Mo T NN
0 i BB kot s Lottt 06 b e 56 et

0 x-Rumem

0 100 200 300

Sequence Length

400 500 0 100 200 300

Sequence Length

400 500

Figure 5: The increased inference latency (%) com-
pared with Fine Tuning on GPT-2 Large. The bottleneck
dimension in the adapters are set as 16.

and PA and leverages the strengths of both. DoRA
is an enhanced version of LoRA, demonstrating
superior performance across specific task domains.
Conventional DoRA and MaM use adapters both
in the prefill phase and decode phase. By applying
the adapters only in the prefill phase, we develop
PrAd-DoRA and PrAd-MaM. We insert adapters
only in the FFN layer with bottleneck dimension
set as 4 for SST2 and 40 for XSUM. The prefix
length is set 8 for SST2 and 30 for XSUM in MaM
and PrAd-MaM. The experimental results in Table
8 indicate that our methods achieve comparable
performance to existing approaches, demonstrating
their effectiveness.

C.3 Performance on WebNLG
Table 9 presents the detailed results on WebNLG.

Methods "
175 PA =
—#- Fine Tuning e 12
150 @ PrAd-PA e

N
2
\,

Methods

— g
5 z
£ 5
=100 7 T PA
3 5
8 ya E —-%- Fine Tuning
85 2 g @ PrAd-PA
E ¢,
50 Z =
/,.
O 2
25 7
2 A R A N A
00 ¥ 0
0 100 200 300 400 0 100 200 300 400

Sequence Length Sequence Length

Figure 6: The inference latency of adapter-based meth-
ods compared with Fine Tuning on LLaMA-7B. The
batch size is set as 1. The bottleneck dimension in the
adapters are set as 4.

Methods
20 PA

—®- Fine Tuning 2
- PrAd-PA /
/ 125
4 —_
_15 /- g
o / <
° s g 10.0 Methods
3 o s PA
8 10 / § 75 —®- Fine Tuning
8 % 2 @ PrAd-PA
E o :
- o~ 2 50
” £
5 a
Zi 25
l//
o 00
0 100 200 300 400 0 100 200 300 400

Sequence Length Sequence Length

Figure 7: The inference latency of adapter-based meth-
ods compared with Fine Tuning on LLaMA-7B. The
batch size is set as 16. The bottleneck dimension in the
adapters are set as 4.

4743

