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Abstract

Many studies focus on data annotation tech-
niques for training effective PRMs. However,
current methods encounter a significant issue
when applied to long CoT reasoning processes:
they tend to focus solely on the first incorrect
step and all preceding steps, assuming that all
subsequent steps are incorrect. These methods
overlook the unique self-correction and reflec-
tion mechanisms inherent in long CoT, where
correct reasoning steps may still occur after ini-
tial reasoning mistakes. To address this issue,
we propose a novel data annotation method for
PRMs specifically designed to score the long
CoT reasoning process. Given that under the
reflection pattern, correct and incorrect steps
often alternate, we introduce the concepts of
Error Propagation and Error Cessation, en-
hancing PRMs’ ability to identify both effective
self-correction behaviors and reasoning based
on erroneous steps. Leveraging an LLM-based
judger for annotation, we collect 1.7 million
data samples to train a 7B PRM and evaluate
it at both solution and step levels. Experimen-
tal results demonstrate that compared to exist-
ing open-source PRMs and PRMs trained on
open-source datasets, our PRM achieves su-
perior performance across various metrics, in-
cluding search guidance, BoN, and F1 scores.
Compared to widely used MC-based annota-
tion methods, our annotation approach not only
achieves higher data efficiency but also deliv-
ers superior performance. Detailed analysis is
also conducted to demonstrate the stability and
generalizability of our method.

1 Introduction

Mathematical reasoning has become a crucial met-
ric for evaluating the intelligence of LLMs (Achiam
et al., 2023; Team et al., 2024; Touvron et al., 2023),
garnering substantial attention from researchers in
recent years. While numerous studies have focused

*Equal contribution.
†Corresponding authors.

on enhancing LLMs’ mathematical reasoning capa-
bilities (Wei et al., 2022; Liu et al., 2024), LLMs
continue to exhibit limitations in practical applica-
tions, including calculation errors, flawed deriva-
tions, and logical errors. PRMs help address these
challenges by providing fine-grained evaluation sig-
nals for the intermediate steps in the LLM reason-
ing process, indicating the correctness of each step.

In the short chain-of-thought (CoT) pattern,
LLMs lack self-reflection abilities. This means
that once a mistake is made, all following steps
are likely to be wrong. The PRM only needed to
identify correct-to-correct and correct-to-incorrect
transitions. Therefore, conventional PRM data con-
struction methods (Lightman et al., 2023; Luo
et al., 2024) use all steps from correct solutions,
but only use steps up to the first error step in in-
correct solutions. However, as shown in Appendix
D, long CoT LLMs often make mistakes during
reasoning, but they can later correct themselves or
come up with alternative solutions. Therefore, cap-
turing this incorrect-to-correct pattern is crucial for
PRMs to better evaluate the intermediate steps in
long CoT reasoning.

Currently, the Monte Carlo (MC) method (Wang
et al., 2024a) is widely used for automatically la-
beling intermediate steps. However, when dealing
with long CoT patterns, the MC method has the
following drawbacks: (1) Inaccurate labeling of in-
termediate reasoning steps. MC method rolls out
multiple paths from an intermediate step. If one
path reaches the correct answer, it assumes the step
is correct. However, long CoT reasoning processes
often involve self-correction or reflection, so the
final answer doesn’t always reflect the correctness
of intermediate steps. (2) High computational cost.
The MC method requires multiple rollouts for each
intermediate step. In the long CoT pattern, nu-
merous intermediate steps and lengthy rollouts can
greatly increase the computational burden.

To address the shortcomings of current PRM de-
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signs and MC methods in long CoT scenarios, we
propose a new data annotation approach. First, we
introduce two fundamental rules specifically for
long CoT: Error Propagation and Error Cessa-
tion. These rules capture two key patterns: rea-
soning based on incorrect steps and self-correction
after making mistakes. We then incorporate these
rules into the LLM judge’s prompt to guide the
model in annotating intermediate steps of the rea-
soning process. Finally, we use the annotated data
to train the PRM.

Experimental results demonstrate that compared
to existing open-source PRMs and PRMs trained
on open-source datasets, our PRM achieves the best
performance at both the solution level and the step
level. At the solution level, we use the traditional
Best-of-N (BoN) method to see how well PRMs
can select the best answer from several options.
Since BoN doesn’t make full use of the process re-
ward signals that PRMs provide, we also propose
a new metric that measures whether incorporating
these signals into step-level search increases the
probability of discovering the correct solution. At
the step level, we establish a test set through the
cross-validation of two distinct annotation methods
(o1 model (OpenAI, 2024) and manual annotation),
enabling rigorous assessment of PRMs in evalu-
ating the correctness of individual solution steps.
Across both solution-level and step-level evalua-
tion metrics on the MATH500 and AIME24, our
PRM consistently outperforms all baselines. Fur-
thermore, we conduct a comprehensive compari-
son with the MC-based data annotation method,
demonstrating that our method not only achieves
greater data efficiency but also delivers superior
performance. An in-depth analysis of our method
is also conducted to further demonstrate its stability
and generalizability.

In summary, our contributions are as follows:

• To the best of our knowledge, we are the first
to present a PRM data construction method
for long CoT reasoning. We introduce context-
aware Error Propagation and Error Cessa-
tion mechanisms to effectively capture both
wrong-to-wrong and wrong-to-right patterns.

• We evaluate our method using both solution-
level and step-level metrics, demonstrating its
effectiveness in evaluating overall solutions
as well as individual reasoning steps.

• Additional analysis demonstrates that our

method has notable advantages in robustness,
data efficiency, and generalization ability.

2 Related Work

Long Chain-of-Thought Reasoning Language
Models LLMs have demonstrated remarkable
reasoning capabilities for complex tasks. One piv-
otal method to improve the reasoning ability of
LLMs is Chain-of-Thought (CoT) (Wei et al., 2022;
Wang et al., 2025, 2024b), which significantly im-
proves performance by guiding LLMs to generate
intermediate reasoning steps. Initial research (Wei
et al., 2022; Kojima et al., 2022; Zhang et al., 2022)
on CoT mainly focuses on developing effective
prompt engineering techniques. Openai o1 (Ope-
nAI, 2024) is the first to introduce inference time
scaling law, which employs reinforcement learning
to encourage models to generate additional reason-
ing tokens, thereby overcoming more challenging
tasks. In long CoT paradigm, LLMs can decom-
pose problems, explore multiple pathways, and au-
tomatically correct reasoning errors. Several efforts
(Team, 2024a; Guo et al., 2025; Team, 2025; Muen-
nighoff et al., 2025) have successfully replicated
this powerful reasoning ability. However, PRMs
specifically tailored for this long CoT paradigm
remain underexplored.

Application of Reward Models in Mathematical
Reasoning Mathematical reasoning in LLMs has
seen significant progress with the introduction of re-
ward models. Two types of reward models are com-
monly used: Outcome Reward Model (ORM) and
Process Reward Model (PRM). ORMs assess en-
tire solutions by assigning scores to final answers,
while PRMs assign scores to individual steps, offer-
ing granular feedback. Research (Lightman et al.,
2023; Wang et al., 2024a) demonstrates that PRMs
generally outperform ORMs, underscoring their
greater potential to enhance reasoning accuracy
through guided search (Park et al., 2024; Zhang
et al.; Snell et al., 2024) and reinforcement learn-
ing (Gao et al., 2024; Setlur et al., 2024). How-
ever, the effectiveness of PRMs depends heavily
on the availability of high-quality training data,
which traditionally requires costly human annota-
tion (Lightman et al., 2023; Uesato et al., 2022).
To address this challenge, recent work (Wang et al.,
2024a; Luo et al., 2024; Wang et al., 2024c; Chen
et al., 2024; Zhang et al., 2025) explore automated
data collection methods, improving efficiency with
MC estimation-based techniques. Despite these
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advances, the substantial computational demands
of MC-based methods remain a significant barrier
when dealing with long reasoning chains, hinder-
ing the accumulation of sufficient training data.

3 Disadvantages of Current PRMs

Previous works on training PRMs primarily focus
on the first incorrect step and assume that all sub-
sequent steps are reasoned based on this erroneous
step, thus deeming them all incorrect. However, in
a long CoT pattern, self-correction behaviors often
occur, where correct reflective steps can still fol-
low an incorrect step. This results in a distribution
shift between the PRM training data and the data
encountered during inference in long CoT scenar-
ios, potentially affecting performance. Therefore,
we aim to investigate: Does the self-correction be-
havior of long CoT models impact the performance
of current PRMs?

To answer this question, we construct two test
sets: an Error-Free Set (EF Set) and a Reflection-
Based Set (RB Set). The final answers of so-
lutions for both sets are correct. The key dif-
ference lies in the correctness of the intermedi-
ate reasoning steps. All reasoning steps in the
Error-Free Set are correct, while solutions in the
Reflection-Based Set contain erroneous interme-
diate steps and perform self-correction. We eval-
uate several open-source PRMs on these two test
sets: Qwen2.5-Math-PRM-7B (Zhang et al., 2025),
MathShepherd-PRM-7B (Wang et al., 2024a), and
Skywork-PRM-7B (o1 Team, 2024), focusing on
the accuracy of PRMs in determining whether the
solutions are correct.

Our experimental results, as presented in Table 1,
reveal significant performance disparities between
the two test sets across all evaluated PRMs. The
most effective model, Qwen2.5-PRM-7B, demon-
strates a 10% performance gap between the two test
sets, while other models show even larger dispari-
ties, even exceeding 50%. These findings suggest
that PRMs exhibit reduced effectiveness in evaluat-
ing reasoning processes that incorporate intermedi-
ate reflection.

Model EF Set RB Set
Qwen2.5-MATH-PRM-7B 0.98 0.88
MathShepherd-PRM-7B 0.79 0.27
Skywork-PRM-7B 0.93 0.59

Table 1: The prediction accuracy of open-source PRMs.

4 Method

In this section, we introduce a framework for con-
structing PRM data tailored to reflective reasoning.
First, we introduce how to train a long CoT model
that can autonomously segment its output based on
semantics. Then, we describe our detailed step-by-
step annotation guidelines and the implementation
of PRM training. The overall framework of our
method is shown in Figure 1.

4.1 Dividing Reasoning Process into Steps

Currently, no open-source LLMs satisfy both re-
quirements: (1) generating long CoT reasoning
processes, and (2) including separators ensuring
semantic integrity at each step. While using dou-
ble line breaks as delimiters to segment reason-
ing chains is a common practice, it compromises
semantic coherence. Moreover, in the long CoT
paradigm, this approach results in numerous seg-
mentation steps, increasing the annotation work-
load.

To address this challenge, we develop a special-
ized generator based on Supervised Fine-Tuning
(SFT). For constructing the SFT dataset, inspired
by (Zheng et al., 2024), we adopt a two-step ap-
proach to segment open-source long CoT data. We
first replace all line breaks with spaces and then uti-
lize LLMs to resegment the reasoning process. Our
segmentation balances cognitive cohesion (merg-
ing conceptually related steps) and modular inde-
pendence (ensuring each step represents a distinct
reasoning unit), while controlling step count and to-
ken length. A Detailed solution segmentation case
is shown in Appendix A.

4.2 Annotation Standards for Reflective
Reasoning

In the long CoT reasoning process, it is common for
LLMs to revisit previous steps for self-correction
and reflection, which is important for improving
reasoning ability. However, previous annotation
methods typically focus only on identifying the
first erroneous step and assessing the correctness
of preceding steps. These approaches overlook
effective reflections after the first error in reflective
reasoning, which hampers comprehensive process
supervision.

We classify steps following an error into two
types: (1) Reasoning on faulty assumptions, which
compounds mistakes and leads further from the
solution; (2) Corrective steps, which identify and
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Figure 1: The overall framework of our method.

address errors, guiding the reasoning back on track.
Based on our categorization, we introduce two new
annotation rules designed to capture these post-
error reasoning dynamics:

• Error Propagation: If the previous steps are
incorrect and the current step neither intro-
duces a new approach nor corrects the previ-
ous mistakes, but instead builds upon the erro-
neous steps, the current step is also considered
incorrect.

• Error Cessation: If the previous steps are in-
correct but the current step introduces a new,
error-free approach or corrects the previous
mistakes, the current step is considered cor-
rect.

Based on the annotation rules above, we assign
appropriate labels to each step in the reasoning
process. In addition, while our primary focus is on
mathematical reasoning problems, these rules can
also be applied to other domains such as coding,
the 24-point game, and more.

4.3 LLM Judgement

Reflective models like the o1 (OpenAI, 2024) se-
ries have demonstrated outstanding performance in
complex reasoning tasks. The results of the manual
inspection in Appendix E indicate that reasoning
LLMs are capable of effectively solving annotation

tasks. Therefore, we incorporate the rules in Sec-
tion 4.2 into the prompt (see Appendix B), allowing
the reflective LLM to evaluate the correctness of
each step.

4.4 Process Reward Model

Since the label for each step is a binary score, we
use standard classification loss to train our PRM:

LPRM =
K∑

i=0

ŷilogyi + (1− ŷi)log(1− yi) (1)

where yi represents the golden label of the i-th step
si, ŷi = PRM(prompt, s<=i) is the predicted
score for si by PRM, and K is the total number of
steps of the solution.

5 Experiments

In this section, we present the experimental results
of our PRM in comparison with (1) open-source
PRMs and PRMs trained on open-source datasets
(Section5.2), and (2) PRMs trained on data gener-
ated through MC-based methods (Section5.3).

5.1 Experiment Settings

5.1.1 Dataset
Training: For training the PRMs and the gener-
ator, we construct the prompt set by combining
the MATH training set with AIME problems from
1983 to 2023.
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Model MATH500 AIME2024 Step-Level Testset
PRM@64 PRM@8-step PRM@64 PRM@8-step Precision Recall F1

PRM-PRM800K 0.712 0.682 0.133 0.067 0.640 0.963 0.758
PRM-MS 0.758 0.706 0.233 0.100 0.613 0.994 0.758
Qwen2.5-PRM-7B 0.776 0.738 0.167 0.133 0.634 0.972 0.768
MathShepherd-7B 0.778 0.702 0.267 0.100 0.863 0.376 0.523
Skywork-PRM-7B 0.754 0.740 0.133 0.100 0.936 0.351 0.512
Ours 0.816 0.750 0.267 0.167 0.850 0.806 0.828

Table 2: The solution-level and step-level performance of Qwen2.5-7B-SFT∗ using our PRM and other baselines.

Evaluation: Our test set consists of MATH500
(Hendrycks et al., 2021) combined with AIME2024
(MAA, 2024). Additionally, we employ the gen-
erator to produce 800 solutions for prompts in the
test set, forming our step-level test set, which is
used to evaluate the accuracy of PRM in assess-
ing each step of the reasoning process. The labels
for this set are determined through a combination
of cross-validation with the o1 model and manual
annotation. For more information, please refer to
Appendix E.

5.1.2 Generator

We segment about 2,000 samples in open-source
datasets (Min et al., 2024) using method described
in Section 4.1, and fine-tuned the Qwen2.5-7B-
base (Team, 2024b) to obtain Qwen2.5-7B-SFT∗.

5.1.3 Metrics

Our evaluation of PRMs includes solution-level
and step-level analyses. At the solution level, we
assess PRMs’ ability to identify high-quality solu-
tions using PRM@N and PRM@N-step. At the
step level, we examine PRMs’ accuracy to identify
the correctness of individual steps with F1-related
metrics.
Best of N. Consistent with previous work (Light-
man et al., 2023; Wang et al., 2024a,c; Luo et al.,
2024), we use Best-of-N for evaluation, which se-
lects the highest-scoring response from N candi-
date responses. We define this evaluation metric
as PRM@N. The score of each response is deter-
mined by the score at the final step.
Online Search. During each step, N candidates are
sampled, and the step with the top score is selected
to proceed with the generation. We define this
metric as PRM@N-step.
Classification Metrics. To evaluate the classifica-
tion performance at the step level, we use precision,
recall, and F1 score as our metrics.

5.1.4 Baselines
Our baseline models are categorized as follows:

• Fine-Tuned PRMs: PRMs fine-tuned on
open-source datasets, including: (1) PRM-
PRM800K: Fine-tuned with the PRM800K
dataset from OpenAI (Lightman et al., 2023).
(2) PRM-MS: Fine-tuned with the Math Shep-
herd dataset from DeepSeek (Wang et al.,
2024a).

• Open-Source PRMs: Existing open-
source models, including: (1) Qwen2.5-
MATH-PRM-7B (abbreviated as Qwen2.5-
PRM-7B) (Zhang et al., 2025). (2)
DeepSeek-MathShepherd-7B (abbreviated as
MathShepherd-7B) (Wang et al., 2024a). (3)
Skywork-PRM-7B (o1 Team, 2024).

5.2 Main Results

Solution Level According to the results shown
in Table 2, we find that: (1) Our PRM consistently
outperforms other PRMs in PRM@64. Specifically,
on MATH500, it achieves an accuracy of 81.6%,
which is 3.8% higher than the second-best PRM,
demonstrating enhanced capability in identifying
high-quality solutions. (2) Our PRM performs the
best in PRM@8-step. This indicates that our PRM
is capable of providing better intermediate signals,
which guide the generator to produce higher-quality
solutions.

Step Level The step-level experimental results in
Table 2 indicate that: (1) Our PRM performs the
best in step-level evaluation, achieving the high-
est F1 score. (2) Both open-source PRMs and
PRMs trained on current open-source datasets ex-
hibit an imbalance between precision and recall.
PRM-PRM800K, PRM-MS, and Qwen2.5-PRM-
7B tend to classify incorrect steps as correct, while
MathShepherd-7B and Skywork-PRM-7B are more
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prone to classifying correct steps as incorrect. In
contrast, our PRM demonstrates the most balanced
performance.

5.3 Comparison with MC-based Methods

Although MC-based method has been widely used,
it contains significant noise. Their effectiveness re-
lies on the ability of completion models. Correct
steps may be misjudged as incorrect when comple-
tion models fail to produce correct solutions within
limited rollouts. Reflective reasoning paradigm ex-
acerbates the annotation noise. Incorrect steps may
be misjudged as correct due to subsequent reflec-
tive and error-correction behaviors (Lanham et al.,
2023).

5.3.1 Experiment Setup

For each prompt in the training set, we select
8 solutions generated by Qwen2.5-7B-SFT∗ for
MC-based annotation, with the total number of
steps approaching 1 million. We employ Qwen2.5-
7B-SFT∗ to perform 8 completions for each step
to assess their correctness. Following previous
work (Wang et al., 2024a), we create hard labels
based on the sampled completions and train PRM-
MC-1M. The annotation process consumes approx-
imately 23,040 A100 GPU hours. To ensure a fair
comparison with PRM-MC-1M, we select the sub-
set of our training data corresponding to solutions
used in PRM-MC-1M training to train PRM-ours-
1M. The PRM trained on the entire training set is
referred to as PRM-ours-1.7M.

5.3.2 Results

Figure 2 presents the experimental results, which
reveal that: (1) PRM-ours-1M achieves superior
PRM@N scores compared to PRM-MC-1M consis-
tently, demonstrating the improved quality of pro-
cess supervision signals generated by our method.
(2) PRM@N for PRM-ours-1.7M consistently out-
performs PRM-ours-1M, indicating robust scala-
bility of our approach. The PRMs trained using
our method can effectively leverage more process
supervision signals in larger training datasets.

Additionally, leveraging LLM for data annota-
tion significantly improves efficiency compared to
the MC-based method, enabling faster data annota-
tion and more rapid training iterations.

Metric PRM-MC-1M PRM-ours-1M
Qwen LLaMA Gap Qwen LLaMA Gap

PRM@8 0.752 0.386 0.366 0.786 0.466 0.320
PRM@16 0.758 0.370 0.388 0.776 0.464 0.312
PRM@32 0.762 0.400 0.362 0.786 0.478 0.308
PRM@64 0.760 0.436 0.324 0.786 0.518 0.268

Table 3: PRM@N of different models using PRM-MC
and PRM-ours, along with the performance gaps.

6 Analysis

6.1 Robustness Compared to MC-based
Method

This section aims to demonstrate that our method
can provide more robust process supervision sig-
nals compared to commonly used MC-based meth-
ods. First, we show that there is a strong correla-
tion between the signals obtained via the MC-based
method and the completion model, and the corre-
lation strengthens with increasing reasoning chain
length. Second, we will compare the performance
gap when the same PRM provides process reward
signals to different models.

Correlation between Signals and Completion
Model We first fine-tune LLaMA3.1-8B-Base
(Dubey et al., 2024) using the SFT data described
in Section 5.1.2 to get LLaMA3.1-8B-SFT∗, both
Qwen2.5-7B-SFT∗ and LLaMA3.1-8B-SFT∗ are
employed as completion models for our analysis.
Subsequently, we randomly sample 1,000 solu-
tions generated by Qwen-2.5-7B-SFT∗ and use
both completion models to annotate step-level hard
labels following Math-Shepherd. Our analysis re-
veals that only 79% of the solution steps receive
identical annotations from both models. Moreover,
we observe a negative correlation between solution
length and inter-model consistency. As illustrated
in Figure 3, the consistency rate between the two
completion models decreases as the number of solu-
tion steps increases. This finding suggests that MC-
based annotation methods become progressively
less reliable as reasoning chains extend.

Performance Gap when Providing Signals for
Different Models We evaluate PRM-MC-1M
and PRM-ours-1M by using them to provide re-
ward signals during the inference processes of
LLaMA3.1-8B-SFT∗ and Qwen2.5-7B-SFT∗ on
MATH500. The results in Table 3 show that PRM-
MC-1M introduces a significantly larger perfor-
mance gap between the two models compared to
PRM-ours-1M. This suggests that our method pro-
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Figure 2: PRM@N of Qwen2.5-7B-SFT∗ using PRMs trained on data annotated by MC-based and our method.

Figure 3: We categorize 1,000 solutions into 10 equal-
sized bins based on their step counts, with Bin 1 con-
taining solutions with the fewest steps and Bin 10 con-
taining those with the most steps. Within each bin, we
calculate the proportion of steps where both completion
models assign identical hard labels.

duces a more robust PRM, capable of providing
consistent reward signals across different language
models. Moreover, PRM-ours-1M demonstrates su-
perior PRM@N compared to PRM-MC-1M across
both Qwen2.5-7B-SFT∗ and LLaMA3.1-7B-SFT∗.
This consistent performance advantage across dif-
ferent models validates the adaptability of our PRM
on different generators.

6.2 Data Distribution

This section examines the distributional differences
between our training data and existing open-source
datasets.

As illustrated in Figure 4, our dataset exhibits a
significantly higher number of steps per solution
and greater token consumption per step compared
to open-source datasets. This distributional diver-
gence primarily stems from our annotated data,

Datasets Metrics FE FES Ours

MATH500

PRM@8 0.764 0.770 0.786
PRM@16 0.774 0.788 0.776
PRM@32 0.776 0.792 0.786
PRM@64 0.780 0.792 0.792

AIME2024

PRM@8 0.133 0.133 0.167
PRM@16 0.133 0.133 0.167
PRM@32 0.167 0.167 0.233
PRM@64 0.200 0.167 0.233

Table 4: PRM@N of Qwen2.5-7B-SFT∗ using PRMs
trained under different experimental settings.

which comprises long reasoning chains that incor-
porate reflective processes. These chains inherently
demand more elaborate step-by-step reasoning and
extended cognitive operations.

We believe that this distributional discrepancy
causes PRMs trained on open-source data to gen-
erate less effective process reward signals for re-
flective reasoning chains. This limitation appears
to be one of the key factors contributing to their
inferior performance compared to our PRM at both
the solution level and step level.

6.3 Enhanced Data Utilization Beyond
First-Error Steps

This section aims to demonstrate the advantages of
our method over the traditional paradigm, which
typically only considers the first error step. Our ap-
proach extracts more training signals from each so-
lution while maintaining the same sample size. We
design a comparative study with three experimental
settings: (1) Baseline: Our method; (2) First-error
truncation (FE): Using identical training samples
as (1) but only considering steps until the first error
occurs; and (3) First-error truncation with supple-
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Figure 4: Distribution of the number of steps in each solution and the number of tokens contained in each step
across different datasets. We randomly select 1,000 samples from each dataset for statistical analysis.

mentary data (FES): Extending (2) with additional
training samples to align the total training signals
in (1).

The experimental results in Table 4 reveal two
key findings. First, given an equal number of
solution samples, our method achieves superior
performance on both MATH500 and AIME2024
by utilizing additional process supervision signals
from each solution. Second, when aligning the
number of signals, our method achieves compara-
ble results to the traditional paradigm while using
fewer solutions. Notably, on the more challeng-
ing AIME2024, our method even demonstrates a
slight advantage. The enhanced effectiveness on
AIME2024 can be attributed to its inherently chal-
lenging nature, which demands more sophisticated
reflective reasoning processes.

6.4 Out-of-Distribution Performance

To demonstrate the generalizability of our method,
we conduct evaluations on both elementary and
advanced mathematical problems. Our evaluation
select 500 questions from GSM8K (Cobbe et al.,
2021) representing simple math problems, and 675
questions from Olympiad Bench (OBen) (He et al.,
2024), which contains challenging, competition-
level problems.

As can be seen from Table 5, most PRMs demon-
strate comparable performance on GSM8K. While

Model GSM8K OBen
PRM-PRM800K 0.914 0.394

PRM-MS 0.954 0.441
Qwen2.5-PRM-7B 0.950 0.458
MathShepherd-7B 0.954 0.455
Skywork-PRM-7B 0.954 0.446

Ours 0.950 0.510

Table 5: PRM@64 on GSM8K and OBen of Qwen2.5-
7B-SFT∗ using different PRMs.

our PRM performs marginally below PRMs trained
on Math-Shepherd and Skywork-PRM-7B, this
slight difference might be attributed to the inclusion
of GSM8K examples in their training set. Notably,
when evaluated on the more challenging OBen
dataset, our method exhibits substantially superior
performance compared to all baseline approaches,
highlighting its strength in handling sophisticated
math problems. More information about the perfor-
mance advantages of our PRM on complex datasets
can be found in Appendix H.

7 Conclusion

In this paper, we introduce a PRM data annota-
tion technique designed for reflective reasoning
processes. We propose concepts of Error Propa-
gation and Error Cessation, which enable precise
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identification of steps based on flawed premises and
highlight moments of meaningful reflection. Ad-
ditionally, leveraging LLMs for annotation helps
reduce the resource burden caused by extended rea-
soning chains. Experimental results demonstrate
our PRM outperforms current open-source PRMs
and PRMs trained on open-source datasets at the
solution and step levels. Compared to commonly
used MC-based methods, our method also exhibits
comprehensive superiority.

8 Limitaions

Despite achieving superior performance in solution-
level and step-level metrics compared to other base-
lines, there are several limitations to our approach.
(1) Scalability: While our PRM provides more ac-
curate signals in our diverse evaluation test, due to
constraints in training data and computational re-
sources, we are unable to validate the advantages
of our method in broader experimental settings. Fu-
ture work could explore how the accuracy and gen-
eralization of PRM scale as the number of prompts
and generated solutions increases. (2) Dependency
on LLM Capabilities: Our labeling method re-
quires the LLM judges to have strong reasoning
capabilities. Consequently, the accuracy of label-
ing is limited by the inherent abilities of the model
itself. However, with ongoing improvements in
open-source reflective models (Team, 2024a; Guo
et al., 2025; Muennighoff et al., 2025), this issue
could be mitigated. Future work could also inves-
tigate the performance of small reflection models
used for annotation.
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A Solution Reformatting

We use the method described in Section Section4.1
to segment the open-source sample. An example
of the solution reformation is shown in Figure 5.
After segmentation, sentences at the same step are
shown in the same color.

B Prompt Template for LLM Annotation

The prompt template for LLM judger is shown in
Figure 7.

C Training Details

C.1 SFT

The detailed training parameters for generator are
provided in Table 6.

Hyperparameter Value
learning rate 1e-5
epochs 3
batch size 24
max length 16384

Table 6: Hyperparameters of SFT

C.2 PRM Training

The detailed training parameters in PRM training
are provided in Table 7.

Hyperparameter Value
learning rate 1e-6
epochs 1
batch size 256
max length 10240

Table 7: Hyperparameters of PRM training

D Case Study: An Annotation Result of
LLM judger

To better illustrate the PRM training data, an ex-
ample case is presented in Figure 8. The model’s
reasoning process consists of 11 steps. The "con-
tent" field represents the model’s reasoning at each
step, "Score" indicates the evaluation by o1 for that
step (1 for correct, 0 for incorrect), and "Reason"
provides the rationale behind o1’s scoring.

E Human Annotation Details

We employ individuals with bachelor’s and gradu-
ate degrees to manually assess the annotation ac-
curacy of different LLMs on the step-level test set.
First, we provide training for the annotators to en-
sure they have a comprehensive understanding of
the prompts used for LLM-based annotation in Ap-
pendix B. To facilitate a thorough comprehension
of errors in the reasoning process, we classify math-
ematical reasoning errors into two categories: op-
eration errors and conceptual errors. Operation er-
rors encompass mistakes in formula calculations,
derivations, and similar computational inaccura-
cies. In contrast, conceptual errors involve incor-
rect reasoning directions, such as misinterpreting
the problem or improperly applying mathematical
formulations.

For each entry in the step-level test set, annota-
tors receive a file containing five fields: the ques-
tion, the ground-truth answer, each step of the so-
lution, the rationale provided by the LLM judge
for each step, and the judgment result for each step.
A step is considered correctly scored if both the
rationale and the scoring outcome are deemed rea-
sonable. Conversely, if either the rationale or the
scoring outcome is found to be unreasonable, the
scoring is marked as incorrect. The annotation ac-
curacy of different LLMs is shown in Table 8.

Model Annotation Accuracy
gpt-4o-2024-08-06 0.668
claude-3.5-sonnet 0.726
o1 0.963

Table 8: The annotation accuracy of different models.

F Generalization of our PRM

To further assess the generalization capability
of our PRM, we conducted experiments on the
AIME24 dataset under challenging conditions.
Specifically, for each problem, we employ the
DeepSeek-R1-Distill-Qwen-1.5B model to gener-
ate 32 candidate solutions. From these, we select
10 solutions per problem, ensuring that no more
than 2 of the 10 are correct. This selection strat-
egy increases the task difficulty for the PRM, as
it must identify the correct solutions from a pool
dominated by incorrect ones.

We evaluated the performance of various PRMs
using two rule-based segmentation methods :
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• Segmentation based on Reflection Words
(SRW): This method segments the response
content using reflection words and merges
short segments to form more coherent units.

• Segmentation based on Double Newlines
(SDN): Double newline characters serve as
delimiters to segment the response.

Experimental results are shown in Table 9. No-
tably, even when the generation model is not our
SFT model and segmentation is performed using
simple rule-based approaches, our PRM consis-
tently achieves superior performance in terms of
PRM@10 on the AIME24 dataset. These results
demonstrate the robustness and strong generaliza-
tion ability of our PRM across different segmenta-
tion strategies and generation models.

Model SRW SDN
Qwen2.5-PRM-7B 0.367 0.333
MathShepherd-7B 0.267 0.300
Skywork-PRM-7B 0.300 0.300
Ours 0.533 0.500

Table 9: The PRM@10 of different PRMs under differ-
ent segmentation methods.

G Performance on Larger Models

To strengthen our conclusions, we select Qwen2.5-
14B-Base as the base model and apply our method
to train a new PRM. As there are currently no open-
source PRMs with comparable parameter sizes
for direct comparison, we establish baselines by
training Qwen2.5-14B-Base on the open-source
PRM800K and MathShepherd datasets. The exper-
imental results of various models on the PRM@64
metric are presented in Table 10. Our dataset
achieves the best performance.

Dataset MATH OBen AIME24
PRM800K 0.810 0.502 0.233
MathShepherd 0.770 0.455 0.200
Ours 0.964 0.536 0.333

Table 10: The performance of different PRM trainsets
on Qwen2.5-14B-Base.

H Robust Performance Scaling with
Dataset Complexity

While our PRM demonstrates modest improve-
ments on simpler datasets, its true potential
emerges when applied to more challenging prob-
lems that demand extensive reasoning and iterative
refinement.

To quantify reasoning complexity across differ-
ent datasets, we analyzed three key indicators: (1)
average tokens, (2) average reasoning steps, and (3)
average reflection tokens (RT). Reflection tokens
encompass specific terms indicating reflection pro-
cesses, such as "rethink" and "reconsider", with the
vocabulary set derived from (Liu et al., 2025). To
measure our method’s effectiveness, we calculated
our PRM’s relative advantage, defined as the differ-
ence between our PRM’s PRM@64 and the mean
PRM@64 of all baseline methods.

As illustrated in Table 11, there is a clear correla-
tion between dataset complexity and our method’s
performance advantage. Specifically, as problems
require longer reasoning chains and more frequent
reflection steps, the performance gap between our
PRM and baseline methods widens significantly.
This scaling behavior provides strong evidence that
our approach is particularly effective for complex
reasoning tasks that demand extended CoT reason-
ing.

GSM8K MATH500 OBen AIME24
Difficulty Level Grade-school High-school Competition Competition
Average Tokens 2339 5376 8150 12908
Average Steps 6.9 13.1 17.8 25.8
Average RT 2.5 5.7 8.3 12.0
Advantage 0.4% 6.0% 7.1% 8.0%

Table 11: Statistical metrics of reasoning processes
across different datasets, and the advantage of our PRM
compared to other PRMs on different datasets.
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Problem: The chord AB subtends an arc of the circle equal to 120◦ ). Point C lies on this
arc, and point D lies on the chord AB. Additionally, AD = 2, BD = 1, and DC =

√
2. Find

the area of triangle ABC.
Solution after reformation: Alright, let’s see here. I’ve got this geometry problem to solve.
So, there’s a circle with a chord AB that subtends an arc of 120 degrees. There’s a point C
on this arc, and a point D on chord AB such that AD is 2, BD is 1, and DC is sqrt(2). I need
to find the area of triangle ABC. First, I should probably draw a diagram to visualize this. So,

I’ve got a circle, chord AB with points A and B on the circle, and the arc from A to B that’s
120 degrees. Point C is somewhere on that arc, and point D is on AB such that AD is 2 and
BD is 1, making AB a total of 3 units. DC is sqrt(2), which is interesting.

Since AB subtends an arc of 120 degrees, that means the central angle corresponding to arc
AB is 120 degrees. In a circle, the measure of an inscribed angle is half the measure of the
central angle that subtends the same arc. So, angle ACB, which is inscribed and subtended by
arc AB, should be 60 degrees.

Wait, no. Actually, angle ACB is not necessarily 60 degrees. Let me think again. The central
angle is 120 degrees, so the inscribed angle subtended by the same arc would be half of that,
which is 60 degrees. But angle ACB is an inscribed angle subtended by arc AB, so yes, it
should be 60 degrees.

But hold on, point C is on the arc AB, so angle ACB is indeed 60 degrees. Now, I need to
find the area of triangle ABC. To find the area, I can use the formula (1/2)*base*height, or
(1/2)*ab*sin(C), where a and b are sides and C is the included angle.

But I don’t know the lengths of sides AC and BC yet. Maybe I can find those using the Law
of Sines or Cosines.

First, I need to find the lengths of AC and BC. Since I have a circle with chord AB of length
3, and central angle 120 degrees, I can find the radius of the circle.

The formula for the length of a chord is 2*r*sin(theta/2), where theta is the central angle in
radians. Wait, theta is in degrees here, so I need to be careful with units.

Let me convert 120 degrees to radians. 120 degrees is (120/180)*pi = (2/3)pi radians.

So, chord length AB = 2*r*sin((120)/2) = 2*r*sin(60 degrees). Sin 60 degrees is sqrt(3)/2, so
AB = 2*r*(sqrt(3)/2) = r*sqrt(3).

But AB is given as AD + DB = 2 + 1 = 3 units. So, r*sqrt(3) = 3, which means r = 3/sqrt(3)
= sqrt(3). Okay, so the radius of the circle is sqrt(3).

Figure 5: An Example of solution reformation (part 1).
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Now, I need to find AC and BC. Since C is on the arc AB that’s 120 degrees, the angle at
the center is 120 degrees, so the arc AC and arc CB must add up to 120 degrees. But I don’t
know their individual measures yet. Wait, point C is a specific point on the arc AB, but I

don’t have more information about its position. Maybe I need to use point D and the given
lengths to find more information.

Point D is on AB such that AD = 2 and DB = 1, and DC = sqrt(2). So, triangle DBC has
sides DB = 1, DC = sqrt(2), and angle at D I don’t know yet.

Coordinates of A: (sqrt(3), theta)

Coordinates of B: (-sqrt(3)/2, 3/2)

Coordinates of C: (sqrt(2),1)

Using shoelace formula again:

Area = (1/2)|x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|

Plug in:

= (1/2)|sqrt(3)*(3/2 - 1) + (-sqrt(3)/2)*(1 - 0) + sqrt(2)*(0 - 3/2)|

= (1/2)|sqrt(3)*(1/2) - sqrt(3)/2 - 3*sqrt(2)/2|

= (1/2)| (sqrt(3)/2 - sqrt(3)/2) - 3*sqrt(2)/2 |

= (1/2)| 0 - 3*sqrt(2)/2 |

= (1/2)*(3*sqrt(2)/2)

= (3*sqrt(2))/4

Okay, so maybe it’s correct. The area of triangle ABC is (3*sqrt(2))/4.

Figure 6: An Example of solution reformation (part 2).
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You are a mathematical expert. The user will provide a math problem, a step-by-step solution
process, and the GT answer. First, you need to extract the short final answer from the GT
Answer. Then, carefully check the user’s step-by-step solution process and assign a score of
either 0 or 1 for each step.
You need to carefully examine the correctness of each step and provide a brief explanation. If
there is an error in the current solution step, such as a calculation error, a derivation error, or
a logical error, the score should be 0. If the current solution step is error-free, follow these
rules to assign a score:

1. Error Propagation: If there is an error in the preceding steps and the current step
doesn’t provide a new problem-solving idea or perform a proper correction, the score
should be 0. For example, if STEP K contains an error, and STEP K+1 continues
analyzing based on STEP K’s error, then STEP K+1 is also considered incorrect, and the
score should be 0.

2. Error Cessation: If there is an error in the preceding steps, but the current step
introduces a new, correct solution approach, the score should be 1. If the current step
corrects the error from the previous steps, the score should also be 1. For example,

• STEP K contains an error.
• STEP K+1 continues the analysis based on the error.
• STEP K+2 corrects the previous error or introduces a problem-solving idea.

In this case, STEP K and STEP K+1 should be scored as 0, and STEP K+2 should be
scored as 1.

3. Final Step: For the final step in the solution, if the answer obtained does not match the
short answer, the score should be 0. If it matches the short answer, the score should be
1.

Your response format should be in json format:
[

{
"STEP 0": 1(int),
"Reason": xxxx(str)

},
{

"STEP 1": 1(int),
"Reason": xxxx(str)

}
...

]

Note: When analyzing the solution process, it is important to remain objective and rational,
and not be misled by the description of the solution steps.

Figure 7: The prompt template for LLM judger.
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Problem: A cross-country team completed a training run, and each student’s performance
was measured. Evelyn ran 4.5 distance units in 1.25 time units. Briana ran 4 distance units in
2.5 time units. Carla ran 5.2 distance units in 4.25 time units. Debra ran 2.8 distance units in
5.6 time units. Angela ran 1.4 distance units in 6.8 time units. Based on these results, which
student had the second highest average speed?
Solution:

• Step 1

– Content: Okay, so I’ve got this cross-country team’s training run data. There are
five students: Evelyn, Briana, Carla, Debra, and Angela. Each has recorded their
distance and time. I need to figure out who has the second highest average speed.

– Score: 1.
– Reason: This step correctly introduces the problem, identifying the five students

(Evelyn, Briana, Carla, Debra, and Angela) and the need to determine who has the
second highest average speed.

• Step 2

– Content: First, I need to understand what average speed means. Average speed is
the total distance traveled divided by the total time taken. So, I need to look at each
student’s data and see how far they went and how long it took them. The data gives
me the distance traveled and time taken for each student.

– Score: 1.
– Reason: This step correctly explains that average speed is calculated by dividing

the total distance traveled by the total time taken.

• Step 3

– Content: Let’s start with Evelyn. She traveled 4.5 distance units in 1.25 time units.
Briana traveled 4 distance units in 2.5 time units. Carla traveled 5.2 distance units
in 4.25 time units. Debra traveled 2.8 distance units in 5.6 time units. Angela
traveled 1.4 distance units in 6.8 time.

– Score: 1.
– Reason: Correctly lists all the data points given in the problem: Evelyn (4.5

distance units in 1.25 time units), Briana (4 distance units in 2.5 time units), Carla
(5.2 distance units in 4.25 time units), Debra (2.8 distance units in 5.6 time units),
and Angela (1.4 distance units in 6.8 time units).

• Step 4

– Content: To find average speed, I need to calculate the total distance each ran and
the total time it took, then divide distance by time. Based on the given data, it
seems like each student maintained a constant speed since we only have their final
distance and time measurements.

– Score: 1.
– Reason: This step correctly explains the approach to calculate average speed by

dividing distance by time for each student.

Figure 8: An example of an annotation result from the LLM judger (part 1).
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• Step 5

– Content: So, for Evelyn, from time 0 to 1.25 units, she went from 0 to 4.5 units,
so her speed would be 4.5 divided by 1.25. Let me calculate that: 4.5 / 1.25 = 3.6
units per time unit. Similarly, Briana went from 0 to 4 units in 2.5 time units, so
her speed is 4 / 2.5 = 0.625 units per time unit.

– Score: 0.
– Reason: This step incorrectly calculates Briana’s speed, 4/2.5=1.6.

• Step 6

– Content: Carla went from 0 to 5.2 units in 4.25 time units, so her speed is 5.2 /
4.25 = approximately 1.225 units per time unit. Debra went from 0 to 2.8 units in
5.6 time units, so her speed is 2.8 / 5.6 = 0.5 units per time unit. Angela went from
0 to 1.4 units in 6.8 time units, so her speed is 1.4 / 6.8 ≈ 0.205 units per time unit.
So, comparing these speeds, Evelyn has the highest average speed at 3.6 units per
time unit, second is Carla at 1.225, then Briana at approximately 0.625, Debra at
0.5, and finally Angela at approximately 0.205.

– Score: 0.
– Reason: Based on the incorrect calculation results in Step 5, the ranking is

performed. This step is also considered incorrect.

• Step 7

– Content: Wait a minute, but I should make sure I’m interpreting the data correctly.
Maybe these numbers represent different aspects of the run. If these numbers
represent the entire run, then the distance would be the total distance traveled, and
the time would be the total time taken. Let’s double-check: Evelyn is 3.6, Briana is
0.625, Carla is approximately 1.225, Debra is 0.5, Angela is 0.205. Since 3.6 >
1.225 > 0.625 > 0.5 > 0.205, then the second should be Carla.

– Score: 0.
– Reason: Based on the incorrect calculation results from Step 5, the ranking is

performed incorrectly.

• Step 8

– Content: Wait, let’s recheck to prevent mistakes. For Evelyn: 4.5 / 1.25, or 4.5 /
(5/4) = 4.5 * (4/5) = (4.5 * 4)/5 = 18/5 = 3.6, yes. For Briana: 2.5 / 4 = 25/40 =
0.625, yes. For Carla: 5.2 / 4.25 ≈ 1.2235, yes. For Debra: 2.8 / 5.6 = 0.5, yes.
Angela: 1.4 / 6.8 ≈ 0.205, yes. The calculations are correct, and the order seems
correct.

– Score: 0.
– Reason: When calculating Briana’s average speed, the numerator and denominator

are reversed.

Figure 9: An example of an annotation result from the LLM judger (part 2).
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• Step 9

– Content: Wait, wait, is the calculation really correct? Let’s analyze carefully. 4.5 /
1.25 = 3.6 — that’s okay. But 4 / 2.5 = 0.625? That’s wrong — 2.5 should not be
greater than 4. 4 / 2.5 = 1.6 units per time unit, not 0.625 like I incorrectly
calculated before! So the correct ordering of speeds is: 3.6 (Evelyn) > 1.6 (Briana)
> 1.224 (Carla) > 0.5 (Debra) > 0.206 (Angela).

– Score: 1.
– Reason: Correctly recalculates and verifies all average speeds: Evelyn (3.6), Briana

(1.6), Carla (1.225), Debra (0.5), and Angela (0.205). Properly rank them in
descending order and correctly identify that Briana has the second highest average
speed.

• Step 10

– Content: To confirm, let’s list the average speeds again: Evelyn: 4.5 / 1.25 = 3.6,
Briana: 4 / 2.5 = 1.6, Carla: 5.2 / 4.25 ≈ 1.225, Debra: 2.8 / 5.6 = 0.5, Angela:
1.4 / 6.8 ≈ 0.205, So, ordering them: 3.6 (Evelyn), 1.6 (Briana), 1.225 (Carla), 0.5
(Debra), 0.2059 (Angela). Therefore, the second highest is Briana with
approximately 1.6.

– Score: 1.
– Reason: Provides a final confirmation of the calculations and ranks, correctly

stating that the second highest average speed belongs to Briana.

• Step 11

– Content: Ha, I know the final answer, the student with the second highest average
speed is Briana. Final answer: Briana.

– Score: 1.
– Reason: Correctly states the final answer as Briana.

Figure 10: An example of an annotation result from the LLM judger (part 3).
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