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Abstract

In the "human-bot symbiotic" information
ecosystem, social bots play key roles in spread-
ing and correcting disinformation. Understand-
ing their influence is essential for risk control
and better governance. However, current stud-
ies often rely on simplistic user and network
modeling, overlook the dynamic behavior of
bots, and lack quantitative evaluation of correc-
tion strategies. To fill these gaps, we propose
MADD, a Multi-Agent-based framework for
Disinformation Dissemination. MADD con-
structs a more realistic propagation network
by integrating the Barabási–Albert Model for
scale-free topology and the Stochastic Block
Model for community structures, while design-
ing node attributes based on real-world user
data. Furthermore, MADD incorporates both
malicious and legitimate bots, with their con-
trolled dynamic participation allows for quan-
titative analysis of correction strategies. We
evaluate MADD using individual and group-
level metrics. We experimentally verify the
real-world consistency of MADD’s user at-
tributes and network structure, and we sim-
ulate the dissemination of six disinformation
topics, demonstrating the differential effects of
fact-based and narrative-based correction strate-
gies. Our code is publicly available at https:
//github.com/QQQQQQBY/BotInfluence.

1 Introduction

In the era of human-bot symbiosis, social bots are
prevalent on social networks and actively involved
in information sharing (Alrhmoun and Kertész,
2023; Cresci, 2020). Malicious bots are strategi-
cally deployed to spread disinformation and disrupt
healthy online discussions (Bhale and Thirupura-
sundari, 2024; Qiao et al., 2025). Conversely, le-
gitimate bots are increasingly employed for the
task of disinformation correction (Ferrara, 2023;
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Costello et al., 2024). Therefore, developing ro-
bust network propagation simulation frameworks
that quantitatively analyze the interaction between
these opposing bots in information dissemination
can help us better govern disinformation.
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Figure 1: (a) Digital network model: Simulates dynamic
user state transitions using probability parameters α and
β. (b) Agent-based simulation model: Dynamically
update and disseminate the opinions of user agents in a
simple dissemination network.

Prior work in simulating disinformation propa-
gation mainly follows two main paradigms: digi-
tal network-based propagation dynamics modeling
and large language model (LLM)-based agent sim-
ulation. As shown in Figure 1(a), digital network-
based models (Pastor-Satorras et al., 2015; Gopal
et al., 2022; Govindankutty and Gopalan, 2023)
simulate information diffusion through user state
transitions. Although computationally efficient,
this conventional approach oversimplifies reality by
ignoring user demographics and individual behav-
ioral differences, limiting its ability to capture key
phenomena such as repeated exposure and group
polarization. Figure 1(b) illustrates the emerging
LLM-based agent simulation paradigm (Liu et al.,
2024c,b), which improves user behavior modeling
through semantic features and opinion propagating.
However, it still faces notable limitations, redun-
dant and irrelevant user attributes interfere with
core propagation modeling, while inaccurate recon-
struction of real-world network topologies causes

4688

https://github.com/QQQQQQBY/BotInfluence
https://github.com/QQQQQQBY/BotInfluence


deviations from actual scenarios.
Furthermore, current simulation research on so-

cial bots’ involvement in disinformation dissemina-
tion and correction still faces significant limitations
(Qiao et al., 2024; Averza et al., 2022). For exam-
ple, while Qiao et al. (2024) simulate bot-driven
disinformation spread, they neglect the construc-
tion of intervention scenarios and lack systematic
effectiveness evaluation. These shortcomings high-
light the urgent need for a more comprehensive sim-
ulation framework that integrates core demographic
features, realistic propagating network topologies,
and a robust evaluation metrics, thereby enhancing
the authenticity of dissemination modeling.

To address the aforementioned limitations, we
propose MADD, a Multi-Agent-based framework
for Disinformation Dissemination, designed to
model both the dissemination and correction of
disinformation by social bots. MADD integrates
the scale-free property of Barabási-Albert Model
(BAM, (Schweimer et al., 2022)) and the commu-
nity structure of Stochastic Block Model (SBM
(Abbe, 2018)) to construct a more realistic prop-
agation network. It includes five node attributes,
carefully designed based on real-world user data.
Furthermore, we design three types of agents: reg-
ular users, malicious bots (spreading disinforma-
tion), and legitimate bots (correcting disinforma-
tion), enabling dynamic interactions. Using group
and individual-level evaluation metrics, we validate
the framework’s effectiveness across six diverse
disinformation topics and demonstrate the practical
efficacy of fact-based and narrative-based correc-
tion strategies. Our study contributes the following:

(1) We introduce MADD, an innovative multi-
agent framework for disinformation dissemi-
nation that incorporates refined real-user at-
tributes and a propagation network that combines
Barabási–Albert growth with Stochastic Block
Model community structure to approximate real-
world social graphs.

(2) To our knowledge, this is the first unified
simulation to model the dynamic interplay between
malicious and legitimate bots. We evaluate and
compare fact-based versus narrative-based correc-
tion strategies, and MADD’s modular design makes
it straightforward to extend and test additional cor-
rection strategies.

(3) We meticulously design quantitative evalua-
tion metrics at individual and group levels to sys-
tematically assess the impact of social bots on both
the dissemination and correction of disinformation.

2 Related Work

2.1 Disinformation Dissemination Modeling

Disinformation dissemination modeling is theoreti-
cally significant for cybersecurity defense and infor-
mation ecosystem security (López et al., 2024). Ex-
isting approaches include three main types: digital-
network models, agent-based simulations, and
bot-assisted dissemination models.

Digital-network modeling captures macro-
level propagation by defining node states and tran-
sition probabilities (Cifuentes-Faura et al., 2022),
often via epidemic-style models like SIR (Suscep-
tible, Infected, Recovered) (Zhu and Wang, 2017),
SIS (Susceptible, Infected, Susceptible) (Dong and
Huang, 2018), SEIR (Susceptible, Exposed, In-
fected, Recovered) (Liu et al., 2018), and SEDIS
(Susceptible, Exposed, Disseminated, Infected)
(Govindankutty and Gopalan, 2022). However,
these models ignore memory effects and lack
granular user attribute characterization, lim-
iting their ability to simulate phenomena like re-
peated exposure.

Agent-based simulation modeling (ABM) ad-
dresses upper limitations at the micro level by
finely characterizing individual behavior and inter-
actions, including user attributes and memory (Liu
et al., 2024c,b; Muhammad and Kasahara, 2024).
By integrating role settings with dynamic memory-
feedback, ABM enables detailed simulations of
user cognition and social interactions. However,
ABM still faces challenges: irrelevant and redun-
dant user attributes can reduce accuracy, and the
lack of a systematic network model hinders cap-
turing real-world topology and dynamics.

Bot-assisted dissemination modeling further
considers automated accounts’ impact on dis-
information. For example, Qiao et al. (2024)
simulate bot-driven spread but lack intervention
scenarios and impact assessment. Aerza et al.
(2022) quantify user susceptibility using belief
scores but typically overlook the interplay of user
attitudes and socio-environmental factors. More-
over, many such approaches focus primarily on
exposure counts, neglecting how attitudes interact
with context to shape dissemination and correction.

2.2 Disinformation Correction Strategies

Existing research primarily focuses on two correc-
tion strategies: fact-based and narrative-based
(Song et al., 2025). Fact-based correction
(Boukes and Hameleers, 2023; Nyhan et al., 2020)
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widely used by professional fact-checkers, directly
refutes disinformation with accurate facts and evi-
dence through rational argumentation. Narrative-
based correction (Dahlstrom, 2021; Vafeiadis and
Xiao, 2021) conveys truth by sharing authentic eye-
witness accounts or related stories, enhancing im-
mersion and persuasiveness. This study we system-
atically evaluate the effectiveness of legitimate bots
applying these strategies across six disinformation
topics.

3 Methodology

In this work, we design a Multi-Agent-based frame-
work for Disinformation Dissemination (MADD)
to model the dynamic impact of social bots on disin-
formation dissemination and correction. As shown
in Figure 2, MADD comprises three modules: dis-
information dissemination modeling, correction
strategy, and propagation impact quantification.

3.1 Disinformation Dissemination Modeling
This module consists of three components: user/bot
agent attributes, disinformation and dissemination
rules, and disinformation dissemination network.

3.1.1 User/Bot Agent Attributes
We design three agent types for the dissemination
simulation: regular users, malicious bots (MBots),
and legitimate bots (LBots). For efficiency and to
reduce irrelevant attribute interference, we define
five core attributes related to disinformation spread:
interest community, trust threshold, dissemination
tendency, social influence, and activation time.

User/Bot Agents: For regular users, we initial-
ize their attributes based on real X/Twitter user
data (data collection details in Appendix B.1). For
MBots and LBots, their behavior is primarily con-
trolled by automation, we configure their attributes
using predefined procedures.

Interest Community (IC): To capture each
user’s communities of interest, we introduce in-
terest community scores ICuj for each user u in
community j. This score, ranging from 1 to 10,
measures attention to community-specific content
using LLM evaluation (full prompts in Appendix
B.2). It serves as a basis for community partitioning
in subsequent propagation network construction
and as a key feature for computing dissemination
tendencies.

Trust Threshold (TT): To quantify user ability
to identify disinformation in different communities,
we use LLMs to evaluate the trust threshold T T uj

for each user u within community j. By analyz-
ing users’ historical info and basic attributes via
prompt engineering (full prompt in Appendix B.3),
we evaluate users’ resistance to disinformation in
different communities.

Dissemination Tendency (DT): We combine
the truncated power law distribution (Cha et al.,
2010; Kwak et al., 2010)) and user interest com-
munity scores ICuj to quantify the user’s dissem-
ination tendency among communities. We fit the
truncated power law distribution based on real user
data, and we consider the user interest community
score because user interest influences their likeli-
hood to share information (Zhao and Cui, 2017).
The final dissemination tendency DT uj for user u
in community j is a weighted linear combination:

DT uj =
[
θ · CDF

(
C · (xu)−αe−λ

)

+(1− θ) · ICuj
maxj ICuj

]
· e−ξn,

(1)

where θ ∈ [0, 1] balances the truncated power-law
component (capturing scale-free propagation pat-
terns via its cumulative density function (CDF)
with normalization constant C, share number xu >
xmin, exponent α, and cutoff λ) and the max-
normalized ICuj (which preserves relative differ-
ences across communities). The exponential term
e−ξn models the decreasing tendency to share as
a user encounters the same information more fre-
quently. (α, λ,C) are optimized against real-world
data (fitting details in Appendix B.4).

Social Influence (SI): To quantify the user’s
influence in the disinformation dissemination net-
work, we introduce a social influence attribute to
calculate the node degree centrality in the subse-
quently network. For a community j with n users,
we collect each user u’s follower count fu, forming
the set F = {f1, f2, . . . , fn}. Through normaliza-
tion, the social influence SIuj of user u in com-
munity j is defined as: SIuj = fu∑n

i=1 fi
. A higher

SIuj indicates greater centrality and a stronger
role in the dissemination process.

Activation Time (AT): To capture the tempo-
ral dynamics of user participation in disinforma-
tion dissemination, we employ a discrete-time se-
quence design with L steps, forming a time se-
quence T = {t1, t2, ..., tL}. Based on statistical
analysis of real-world user activity times, we define
a time-varying activation probabilityAT ut ∈ [0, 1]
for each user u, where a higher value indicates an
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Figure 2: Architecture of our proposed MADD.

increased likelihood of exposure to disinformation
at that time step.

3.1.2 Disinformation and Dissemination Rules

We set disinformation by topic and plausibility. Dis-
semination rules is defined by bot ratio and activity
frequency, and dissemination mode.

Disinformation Topic: The topic type of disin-
formation is associated with the community struc-
ture in the propagation network. Given that users
in different communities show variations in their
trust thresholds and tendency to spread specific dis-
information topics (Wei et al., 2025), we introduce
the attribute of disinformation topic.

Disinformation Plausibility (DP): DP refers to
the degree of logical coherence and argumentative
structure of disinformation, where higher plausibil-
ity increases the likelihood of users misinterpreting
it as truthful. Inspired by Wan et al. (2024), we
quantify plausibility DPj of disinformation j by
evaluating emotional expression, propaganda strate-
gies, information framing and logical consistency
(prompt design in Appendix B.5).

Bot Ratio and Activity Frequency: To quan-
tify the dynamic impact of social bots, we adjust
malicious (MRj) and legitimate (LRj) bot injec-
tion ratios and their activity frequencies (MF j

and LF j) within each community j. This setup
helps evaluate the potential impact of different bot
manipulation strategies.

Dissemination Mode: To better model disin-

formation diffusion and reduce noise, we restrict
regular-user actions to Repost and Quote, reserv-
ing original Post actions for MBots and LBots.
Direct reposts are treated as implicit endorsements,
and quoted content is analyzed with LLMs to infer
users’ stances. Detailed interaction and decision-
making strategies are provided in Appendix B.10.

3.1.3 Disinformation Dissemination Network

We combine the Stochastic Block Model (SBM)
(Abbe, 2018; Nowicki and Snijders, 2001) and
Barabási-Albert Model (BAM) (Schweimer et al.,
2022; Barabási and Albert, 1999) to construct
disinformation propagation networks. The SBM
captures community structure with dense intra-
community and sparse inter-community connec-
tions, while BAM introduces the scale-free prop-
erties and preferential attachment in real networks.
Our construction process first assigns users to com-
munities using interest community scores ICuj ,
then generate scale-free subgraphs within com-
munities based on social influence scores SIuj .
Algorithm 1 outlines the network-construction pro-
cedure. The resulting network naturally emerges
with influential users (high-degree) as dissemina-
tion hubs and ordinary users (low-degree) as pe-
ripheral participants. (Implementation details in
Appendix B.6.)

Our propagation network represents users as
nodes and potential information diffusion pathways
as edges. By adjusting parameters such as com-
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munity assignment and social influence of central
nodes, we construct a network that simultaneously
captures community structure and scale-free prop-
erties, providing a structured foundation for sub-
sequent disinformation dissemination simulations.
Appendix Figure 17 illustrates our extensions to
disinformation-dissemination modeling, showing
how user, information attributes, and the network
model are incorporated into the simulation.

Algorithm 1 Building Disinformation Dissemina-
tion Networks Based on SBM-BAM
1: Specify the Inputs and Outputs
2: Inputs: Total nodes N . Initial number of nodes in each

community m0. Number of communities J . User interest
community scores ICuj . Predefined threshold for com-
munity assignment τ . Number of edges each new node
forms m (m ≤ m0).

3: Outputs: Constructed dissemination network G =
(V, E).

4: Initialize sets Cj ← ∅ for all j ∈ {1, . . . , J}
5: (1) Node Community Assignment (SBM Component):

6: for u← 1 to N do
7: Load u’s interest community scores ICuj for all j ∈

{1, . . . , J}
8: for j ← 1 to J do
9: if ICuj ≥ τ then

10: Add u to node set of community Cj

11: end if
12: end for
13: end for
14: (2) Initialize Intra-Community Connections (BAM

Component):
15: for j ← 1 to J do
16: Initialize community j’s graph Gj = {Vj , Ej}, where

Vj are the first m0 users assigned to community j
17: Create a complete graph on Vj and set Ej to these

edges
18: end for
19: (3) Iterative Network Growth (BAM Component):
20: for j ← 1 to J do
21: for u in Cj do
22: for existing node e in Vj do
23: Compute social influence score:

SIe =
Fe∑

i∈Vj
Fi

where Fe is the follower count of e
24: end for
25: Select m nodes from Vj based on SIe to form

Vselected
26: for each selected node n in Vselected do
27: Add edge (n, u) to Ej
28: end for
29: Add node u to Vj
30: end for
31: end for
32: return The network G = (V, E)

3.2 Correction Strategy

We design fact-based and narrative-based correc-
tion strategies, to assess intervention effectiveness

across communities. Specifically, we deploy mali-
cious bots to spread disinformation and legitimate
bots to deliver correction information. By com-
paring against control groups, we evaluate the
effectiveness of different correction strategies and
intervention timings.

Correction Strategy: To systematically evalu-
ate effectiveness of different correction strategies,
we manually design guiding content for two types
of corrective messages, which can subsequently be
rewritten and disseminated by legitimate bots with
the assistance of LLMs (examples of both strategies
are provided in Appendix B.7):

(1) Fact-based Correction: Directly refuting
disinformation by citing authoritative data, such as
verified data and scientific evidence.

(2) Narrative-based Correction: Weakening
the emotional appeal of disinformation through
emotionally engaging narratives, such as personal
stories and metaphors.

Intervention Timing: To examine the impact
of intervention timing, we define three intervention
stages: early, mid-stage, and late, corresponding to
different time steps in the disinformation diffusion
process (details in Appendix B.8).

Control Group: To evaluate the effects of the
two correction strategies and three intervention tim-
ings, we establish a control group that does not
implement any strategies. By comparing the prop-
agation dynamics between the experimental and
control groups, we quantify the effectiveness of
different strategies across communities.

3.3 Propagation Impact Quantification
We assess the impact of disinformation dissemi-
nation at both individual and group levels. The
simulation and evaluation algorithm process is pre-
sented in Appendix B.10.

3.3.1 Individual Level

Trust Threshold Dynamics: To evaluate the dy-
namic impact of repeated exposure to disinfor-
mation and corrective information on users’ trust
thresholds, we model changes in trust threshold
using "enhancement" and "decay" terms. Specif-
ically, we use the initial trust threshold T T uj as
a baseline and dynamically update the new trust
threshold ˆT T uj based on users’ cumulative expo-
sure to corrective and disinformation (Kemp et al.,
2024). In modeling the dynamic adjustment of trust
thresholds, we take into account both the user’s in-
dividual interests and the influence of posts from
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neighboring users with varying levels of social in-
fluence. Considering the common psychological
principle of diminishing marginal utility, we fur-
ther describe the evolution of trust thresholds after
multiple exposures as a process driven by both ex-
ponential growth and exponential decay (Daley and
Kendall, 1964; Loomba et al., 2021):

Enuj = γ
(
1− e−β

∑
k∈Ncorr

SIkF
′
kj

)

Deuj = (1− γ)
(
1− e

−δ
∑

k∈Ndis
SIkFkj

)

ˆT T uj = clip (T T uj + Enuj −Deuj , 0, 1) ,

(2)

where Enuj (Enhancement term) models the rein-
forcing effect from exposure to corrective content,
while Deuj (Decay Term) captures the diminishing
effect due to disinformation exposure. γ balances
correction and disinformation influence, while β
and δ control the changing rate. Ncorr and Ndis are
neighbors. SIk is neighbor k’s social influence
score. F ′

kj and Fkj are the persuasive strength of
corrective and disinformation content (evaluated
by LLMs, Appendix B.9). Subsequently, user u’s
disinformation discernment ability DAuj , which
depends on their trust threshold ˆT T uj and disinfor-
mation plausibility DPj , is calculated as follows:

DAuj = 1− (1− ˆT T uj)DPj . (3)

3.3.2 Group Level
At the group level, we assess the impact of disin-
formation using four user status ratios within com-
munity j at time t: (1) Susceptible Ratio (SRj

t ):
Proportion of users unexposed to disinformation.
(2) Exposed Ratio (ERj

t ): Proportion of users hav-
ing encountered disinformation at least once. (3)
Infected Spreaders Ratio (IRj

t ): Proportion of
spreaders exposed to and believing disinformation,
actively propagating it. (4) Uninfected Spreaders
Ratio (URj

t ): Proportion of spreaders exposed to
but not believing disinformation, distributing cor-
rective information.

4 Experiments

4.1 Experiment Setup

We employ DeepSeek-V3 (Liu et al., 2024a) as the
base model, balancing response quality and com-
putational efficiency. The experiment simulates six
communities: Business, Education, Entertain-
ment, Politics, Sports, and Technology. Regular-
user attributes are drawn from real user data, with
approximately 100 regular users distributed across

communities. Bot agents mimic regular-user be-
haviors, including programmable activation times
and dissemination tendencies. Furthermore, we set
up 15% malicious bots (Ferrara et al., 2016) and
5% legitimate bots in each community network
to spread false and corrective information, respec-
tively. Detailed parameter definitions, value ranges,
and data sources are available in Appendix A.

4.2 MADD and Real-World Consistency
Evaluation

To confirm the MADD framework’s trustworthi-
ness, we perform a double verification: we first
verify that user attributes and network configura-
tions statistically match real social networks, and
and then we validate our simulations by comparing
the spread trends of disinformation with existing
empirical studies.

Consistency of Attributes and Network Setup:
Figure 3(a) shows that the distribution of user in-
terest communities aligns with the structural char-
acteristics of real-world social networks, exhibit-
ing dense intra-community links and sparse inter-
community links (Yang and Leskovec, 2012). Fig-
ure 3(b) reveals that the network’s degree distribu-
tion, based on real user social influence, follows
a power law pattern. Furthermore, Appendix C.1,
Figure 9 indicates users’ dissemination tendencies
conform to the heavy-tailed distribution observed
in real networks (Goel et al., 2016). Figure 10
shows user trust threshold scores approximately
follow a normal distribution, consistent with the
conclusion from previous studies that most users
hold a neutral stance (Ecker et al., 2022).

(a) Interest Community. (b) Node Degree.

Figure 3: Interest Community and Node Degree Distri-
butions. In (a), the X and Y axis labels represent the
first two letters of each of the six communities.

Simulation Results of MADD: To validate the
consistency of MADD’s simulation with the real
world, we simulate the diffusion of disinformation
across six topics within the entire network con-
structed by six communities over 72 time steps.
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Each topic initiates within its most relevant commu-
nity. Figure 4 illustrates the changing proportions
of user statuses within each community (recorded
every 12 time steps), while Figure 5 shows the
disinformation’s spread across the entire network.
Notably, our model simulates user activation tim-
ing, leading to lower activity at time steps 12, 36,
and 48 compared to 24, 48, and 72, which explains
some of the fluctuations observed in Figure 4.

Figure 4 shows that the proportion of "infected"
spreaders in each community exhibits a trend of
rapid initial increase followed by a gradual decline,
peaking at approximately the 24-th time step. This
aligns with existing empirical studies (Vosoughi
et al., 2018; Shao et al., 2018; Tucker et al., 2018)
and classical epidemic spreading models like SIR
(Govindankutty and Gopalan, 2024; Gopal et al.,
2022). Notably, the proportion of "uninfected"
spreaders is higher than that of "infected" spreaders,
indicating that a larger proportion of users can more
successfully identify disinformation based on their
trust thresholds and judgments about the plausibil-
ity of the disinformation. Furthermore, the peak
time for the proportion of "uninfected" spreaders
mostly occurs later than that of "infected" spread-
ers, suggesting that the spread of corrective infor-
mation or rational responses is slower. In contrast,
the "Politics" differs from other communities. The
proportion of "infected" spreaders in this commu-
nity does not exhibit the typical unimodal pattern
but shows significant fluctuations at different time
steps, likely due to the sensitive and debated nature
of political information (Shin et al., 2018). This
simulation highlights the challenge of predicting
political topics on social networks.

Figure 5 illustrates the evolving proportions of
infected, uninfected, and exposed users across the
entire network for different disinformation topics.
Most topics take 60-72 time steps for network-
wide spread. In contrast, within closely related
communities (Figure 4), spread is much faster,
around 24 time steps. This suggests faster diffu-
sion within communities but slower propagation
across them due to the inherent community struc-
ture of the network. The increasing of all user
states further suggests the ongoing diffusion of dis-
information throughout the network. Capturing the
critical turning point at which the "infected" rate
begins to decline necessitates longer simulations.
However, considering the computational cost of
extended simulations, especially the LLM token
usage for modeling user opinions in multi-level

Figure 4: Proportion of user status in each community
over time.

networks, subsequent experiments will focus on
simulating spread within single communities to
efficiently evaluate correction strategies.

Figure 5: Proportion of user status change across the
entire network over time.

4.3 Group-Level: Effectiveness Evaluation of
Correction Strategies

To evaluate two correction strategies, we imple-
ment them for early propagation in Figure 6 and
compare the resulting changes in the proportion
of infected spreaders over time against a control
group (without external correction strategies). Ob-
serving Figure 6, we find that fact-based correction
is significantly more effective than narrative-based
correction in ‘Business’, ‘Politics’, and ‘Technol-
ogy’. For ‘Education’ and ‘Sports’, both strategies
show comparable effectiveness in curbing disin-
formation spread. However, neither strategy sig-
nificantly impacts ‘Entertainment’, likely due to
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Figure 6: Comparison of early intervention effects of
two correction strategies.

its inherent subjectivity and diverse interpretations,
limiting the impact of debunking.

Appendix C.2, Figures 11 and 12 illustrate lim-
ited corrective effects of the two strategies in the
mid and late propagation stages across most com-
munities. Moreover, in certain communities like
‘Politics’, we even observe negative impacts, likely
due to substantial prior disinformation exposure
causing users to distrust debunking and strengthen
their original views, leading to an echo chamber
(Garimella et al., 2018).

4.4 Individual-Level: Dynamic Changes in
User Trust Thresholds

To assess the potential impact of different correc-
tion strategies on user trust thresholds, Figure 7 vi-
sualizes the dynamic evolution of user trust thresh-
olds over time steps in the early intervention sce-
nario, specifically displaying the mean and stan-
dard deviation of all user trust thresholds at each
time step. Observing Figure 7, we find that even
in the control group where no external correction
strategies are implemented, the user trust threshold
for disinformation still exhibits a continuous up-
ward trend, although its rate of increase is slower
than in the simulations where correction strategies
are applied. This observation indicates that even
in the absence of intervention, a certain proportion
of spontaneous debunking users exists within the
network, who can mitigate the negative impact of
disinformation to some extent.

Our further analysis comparing the impact of
fact-based and narrative-based correction strategies

on trust thresholds (relative to the control group)
indicates that fact-based correction results in larger
trust threshold increases across most communities.
However, the "Politics" community displays a dis-
tinctive pattern, showing the smallest overall in-
crease and the most significant fluctuations. Specif-
ically, while fact-based corrective strategies signif-
icantly increased the trust threshold of this com-
munity initially, they eventually led to a downward
trend in trust thresholds as disinformation contin-
ued to hedge against the spread of corrective infor-
mation (Vosoughi et al., 2018). This phenomenon
may stem from the highly controversial nature of
political information itself, coupled with the often
greater emotional appeal of disinformation, prompt-
ing users to shift their positions repeatedly. In ad-
dition, the persistence of cognitive bias and group
polarization in political communities (Van Bavel
et al., 2021) pose a substantial barrier to the ef-
fective dissemination and reception of corrective
information.

Figure 7: Effects of correction strategies on user trust
thresholds during early-stage intervention

Appendix C.3, Figures 13 and 14 illustrate the
changes in user trust thresholds when correction
strategies are implemented in the mid and late
stages. We observe that their effect on increas-
ing user trust thresholds for evaluations is ex-
tremely limited. Furthermore, in the "Entertain-
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ment," "Business," and "Politics" during the mid-
stage, and in the "Sports" during the late-stage,
the control group (without correction strategies)
actually shows higher user trust thresholds than
the experimental group (with correction strategies).
This phenomenon likely stems from two main rea-
sons: the intervention timing is delayed and echo
chamber effects may have already formed within
some user groups. Consequently, the aforemen-
tioned experimental results underscore the critical
importance of intervening in the early stages of
disinformation spread and implementing effective
correction strategies.

Trust Threshold Validity Assessment: We val-
idate the effectiveness of our proposed trust thresh-
old calculation method (Equation 2) by compar-
ing it with an LLM-based evaluation method. Fig-
ure 8(a) demonstrates a high degree of consistency
in the trust threshold evolution trends of the both
methods across different time steps. Furthermore,
Figure 8(b) reveals that our approach achieves a
76% average reduction in token consumption com-
pared to the LLM method. The experimental re-
sults indicate that MADD not only maintains eval-
uation accuracy comparable to LLMs but also sig-
nificantly improves computational efficiency and
effectively reduces resource overhead. These find-
ings demonstrate the practical value of our pro-
posed dynamic trust threshold estimation method
in accurately characterizing user trust properties.

(a) Trust Thresholds. (b) Token Consumption.

Figure 8: Comparative Analysis of Trust Threshold
Distributions and Token Consumption

5 Conclusion

In this work, we address key limitations in current
disinformation dissemination research, including
oversimplified user and network models and the
lack of quantitative evaluation of correction strate-
gies. To overcome these challenges, we propose
MADD. MADD simulates realistic online social
dynamics by incorporating five key user attributes
relevant to disinformation spread and modeling net-

work structure with scale-free and community prop-
erties. We then utilize individual and group level
metrics to rigorously assess how MBots spreading
disinformation and LBots providing corrections im-
pact regular users. Our comparative experiments
demonstrate the effectiveness of various correction
strategies in curbing disinformation, offering valu-
able insights for future research.

Limitations

Our study has several limitations in the experimen-
tal design that need to be addressed.

First, when evaluating correction strategies, we
validate within a single community rather than the
entire network to avoid prohibitive token costs.
While sufficient for preliminary insights, future
work should build larger-scale network models and
extend the simulation horizon to more fully assess
the mechanisms by which social bots facilitate dis-
information and how interventions propagate.

Second, there remains a potential concern that
the LLM used as a user agent may exhibit topic-
specific biases, which could influence simulation
outcomes. For example, even under identical sim-
ulation settings, the extent of information spread
may vary across topics due to the LLM’s inher-
ent preferences or assumptions. To mitigate such
model-driven bias, future research should prioritize
the selection of more neutral or balanced topics,
thereby improving the objectivity and robustness
of the simulation results.
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A Experimental Parameter Settings

We present the parameter variables, their value
ranges, definitions, and sources necessary for repli-
cating the current simulation in Table 2, facilitating
reproducibility for researchers. We construct six
distinct community networks— Entertainment,
Technology, Sports, Business, Politics, and Edu-
cation, which collectively form the integrated prop-
agation network. Correspondingly, we define six
categories of disinformation topics, each closely
aligned with one specific community. Thus, both
the number of communities and disinformation cat-
egories are uniformly denoted by J , while an in-
dividual community or disinformation type is in-
dexed by j.

B Methodology

B.1 Real-World Data

Data collection sources: We select six representa-
tive vertical communities from the ‘Communities’
module on the X/Twitter platform as data sources:
Entertainment, Technology, Sports, Business, Poli-
tics, and Education. For each community, we sys-
tematically collect:

(1) Users’ basic profile information: user name,
self-introduction of the user, number of posts by
the user, number of followers, number of follows,
creation time, whether verified or not.

(2) A sample of 200 content posts, including
original posts, retweets, and quotes.

Data filtering strategies: Given that some users
exhibit a high posting frequency—reaching the
200-post threshold within a short period—we ap-
ply a time window from February 7 to February
10, 2025 (a total of three days) to filter the data.
This approach allows for the analysis of time-series
characteristics such as user sharing frequency and
activation times while ensuring consistency. Fur-
thermore, to enhance simulation efficiency, we ran-
domly sample approximately 100 users from the
collected data of each community to participate
in the subsequent simulations. As shown in Table
1, we provide detailed statistics of each commu-
nity after applying the time-based filtering and user
sampling, including:

(1) The number of users in each community.
(2) The number of valid posts, retweets and

quotes within the specified time frame.
This data processing strategy ensures the reliabil-

ity and comparability of our subsequent analysis.

Potential limitations: The collected dataset size
is relatively small compared to real-world social
networks, and our analysis covers only six commu-
nities, whereas the actual number of online com-
munities is much larger. In addition, we filter only
three days of user activity and limited the dataset to
200 text entries per user, which allows us to capture
only short-term interests rather than long-term user
preferences.

B.2 Interest Community Prompt

Although Appendix B.1 describes how users are
collected from the "Communities" module on the X
platform, this doesn’t imply that the collected users
are solely interested in the community from which
they are sampled. Gathering users from the six ma-
jor communities is to ensure the presence of active
users within those domains, but it doesn’t restrict
their interests to just one community. Therefore,
it’s necessary for us to further evaluate the diversity
of their interest communities. This step ensures
that the subsequently constructed propagation net-
work topology has multiple communities, and that
a subset of users with cross-community interests
can serve as a path for information transfer between
these communities.

We design a prompt to evaluate users’ inter-
est communities based on their historical posts,
retweets, quotes, and basic profile information. Be-
low is the detailed prompt.

Interest Community Intensity Prompt

Please evaluate the user’s interest inten-
sity in different communities based on
their [User Data], including historical posts,
retweets, quotes, and basic profile informa-
tion. The interest communities include En-
tertainment, Technology, Sports, Business,
Politics, and Education. Based on the pro-
vided user data, assign a score (1-10) for
each domain and briefly explain the reason-
ing behind the rating. If certain domains
lack sufficient data support, please mark
them as "Insufficient Data" and explain the
reason. Your response must strictly follow
the [Output Format].

[User Data:]
Personal Description:
{personal_description}
Historical Posts:{historical_posts}
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Table 1: Statistical information in each community. We present the mean and standard deviation of users’ original
posts, retweets, and quotes.

Community Entertainment Technology Sports Business Politics Education
Number of Users 113 112 104 101 102 96
Number of Posts 24.05±21.54 14.38±13.09 31.70±24.25 34.17±21.17 36.01±28.96 23.96±15.65

Number of Retweets 32.63±21.54 11.35±4.31 24.72±12.95 36.64±14.59 48.23±31.65 14.03±6.25
Number of Quotes 10.95±7.87 6.08±3.30 11.42±7.53 4.82±2.62 23.51±12.85 8.03±2.15

Historical
Retweets:{historical_retweets}
Historical Quotes:{historical_quotes}
[Evaluation Guidelines:]
1. Assign a rating of 1-10 points to each
community
2. Provide a brief rationale for each rating
3. If there is insufficient data in a com-
munity, mark it as "Insufficient Data" and
explain why.
[Output Requirements:]
1. Strictly valid JSON format only
2. No additional text outside the JSON
structure
3. All 6 communities must be included
4. Use double quotes for all strings
5. Escape special characters properly
6. Response must strictly follow the [Output
Format]
[Output Format:]
Required JSON Output Format:
{"Interest Community Scores": [

{"Community": "Entertainment",
"Score": "Score 1",
"Reasoning": "Reasoning 1"},
{"Community": "Technology",
"Score": "Score 2",
"Reasoning": "Reasoning 2"},
...
{"Community": "Education",
"Score": "Score 6",
"Reasoning": "Reasoning 6"}

]}

B.3 Trust Threshold Prompt
We assess users’ trust thresholds when encounter-
ing disinformation across different communities
based on the semantic features of their historical
posts, reposts, and comments, as well as their pub-
licly available basic attributes. Our prompt de-
sign fully considers multiple dimensions of user-

generated content, including linguistic style and
sentiment tendencies, source citations, interaction
patterns, and fundamental user attributes, ensur-
ing a comprehensive and precise evaluation. The
following is a detailed Prompt case.

Trust Threshold Evaluation Prompt

Please evaluate the user’s trust threshold
when encountering disinformation across
different communities — Entertainment,
Technology, Sports, Business, Politics, and
Education — based on [User Data], includ-
ing historical posts, reposts, quotes, and ba-
sic attributes. The trust threshold represents
a user’s expectation regarding the truthful-
ness of received information. Provide a trust
threshold score (0-1 scale) for each commu-
nity, where:
- [0.8-1.0] = Highly resilient to disinforma-
tion
- [0.5-0.79] = Moderately resilient to disin-
formation
- [0.0-0.49] = Potentially vulnerable to dis-
information
[User Data:]
- Basic Attributes:
• Follower Count:{follower_count}
• Following Count: {following_count}
• Personal Description:
{personal_description}
- Content Data:
• Historical Posts: {historical_posts}
• Historical Retweets:
{historical_retweets}
• Historical Quotes: {historical_quotes}
[Evaluation Guidelines:]
1. Linguistic Style and Sentiment Tenden-
cies:
- Critical thinking markers (e.g., "requires
verification", "source needed")
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Table 2: Parameter Definitions, Values, and Sources. In the “Value” column, values before the "/" represent the
parameter range, and values after the "/" indicate the selected setting.

Module Parameter Value Definition Source

Attributes

ICuj [1, 10] The degree of interest of user u in community j LLM
T T uj [0, 1] The probability that user u perceives information j as disinformation. LLM
DT uj [0, 1] The tendency of user u to disseminate information j Equation 1
SIuj [0, 1] The social influence of user u in community j Real data calculation
AT ut {0.1, ...} The probability that user u is activated at time step t Real data statistics
θ (0, 1)/0.5 The balance parameter of interest community and truncated power-law score Predefined
α (1, +∞) The exponential part of the truncated power-law distribution Real data fitting
λ (0, +∞) The truncation intensity of the truncated power-law distribution in Eq. 1 Real data fitting
T [1, 72] The length of the time step in the simulation Predefined

Disinfo DPj [0, 1] The plausibility score of the disinformation j LLM

Bot List
MBj 0.15 * N The number of malicious bots in the dissemination network Predefined
LRj 0.05 * N The number of legitimate bots in the dissemination network Predefined
MF j [1, 18] The number of times the malicious bot is activated within the total simulated time step Predefined
LF j [1, 12] The number of times the legitimate bot is activated within the total simulated time step Predefined

Network

N 689 The number of dissemination network nodes Real data
m0 5 The initial number of fully connected nodes in the BAM process Predefined
m [1, 4] The number of edges introduced by newly added nodes in the BAM process Predefined
τ 8 The threshold for the allocation of communities that users are interested in Predefined

Correct
EI [12, 72] The time step range of early intervention Predefined
MI [36, 72] The time step range for mid-term intervention Predefined
LI [48, 72] The time step range of late intervention Predefined

Quantify

γ (0, 1)/0.5 The balance parameter between enhancement and decay term in Eq. 2 Predefined
β (0, 1)/0.5 The rate of change of the enhancement term in Eq. 2 Predefined
δ (0, 1)/0.5 The rate of change of the decay term in Eq. 2 Predefined
F ′
kj [0, 1] The persuasiveness of corrective info j towards user k in Eq. 2 LLM

Fkj [0, 1] The persuasiveness of disinfo j towards user k in Eq. 2 LLM
ˆT T uj [0, 1] The updated trust threshold of user u’s repeated exposure in community j Equation 2
DAuj [0, 1] The probability that user u successfully identifies disinfo j Equation 3
SRj

t [0, 1] Proportion of users unexposed to disinfo j at time t Simulation changing
ERj

t [0, 1] Proportion of users having encountered disinfo j at least once at time t Simulation changing
IRj

t [0, 1] Proportion of spreaders believe disinfo j at time t Simulation changing
URj

t [0, 1] Proportion of spreaders unbelieve disinfo j at time t Simulation changing

- Sentiment polarity distribution (skepticism
vs. credulity markers)
- Hedging language frequency
2. Education Level:
- Technical terminology accuracy
- Complex sentence ratio
- Academic reference frequency
3. Source Reliability:
- Authoritative source citation rate (gov/a-
cademia)
- Low-credibility source retweets
4. Basic Attributes:
- Personal descriptions, follower-to-
following ratio analysis
- Disinformation report history
[Output Requirements:]
1. Strictly valid JSON format only
2. No additional text outside the JSON
structure

3. All 6 communities must be included
4. Use double quotes for all strings
5. Escape special characters properly
6. Trust threshold (0-1 scale)
7. Response must strictly follow the [Output
Format]

[Output Format:]
Required JSON Output Format:
{"Trust Threshold Scores": [

{"Community": "Entertainment",
"Score": "Score 1",
"Reasoning": "Reasoning 1"},
{"Community": "Technology",
"Score": "Score 2",
"Reasoning": "Reasoning 2"},
...
{"Community": "Education",
"Score": "Score 6",
"Reasoning": "Reasoning 6"}
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]}

B.4 Truncated Power-Law Distribution
Fitting

Based on real-world data, we fit truncated power-
law distribution functions Puj = C · (xu)−αe−λ,
where xu represents the total number of retweets
and quotes by a user. We employ maximum likeli-
hood estimation (MLE) to optimize the truncated
power-law exponent α and the lower bound xmin,
subsequently calculating the normalization con-
stant C as C = α−1

x1−α
min

. The exponential term e−λ

acts as a cutoff to prevent infinite values. Our analy-
sis of the collected real user data yielded a fitted dis-
tribution Puj(xu) = 1.006 · x−1.146

u e−0.006, xu ≥
16. Recognizing biases in the real-world data, the
fitted truncated power-law distribution function
achieves higher accuracy for xi ≥ 16. To miti-
gate the impact of estimation errors for xi < 16,
we reduce the θ parameter in Equation 1.

B.5 Disinformation Plausibility Prompt

Disinfo Plausibility Evaluation

Excluding all background knowledge, rigor-
ously evaluate the plausibility of the [Input]
below by analyzing:
1. Emotional Expression (e.g., exagger-
ated language, manipulative appeals)
2. Propaganda Strategies (e.g., cherry-
picking, strawman arguments)
3. Information Framing (e.g., bias via
omission, misleading context)
4. Logical Consistency: (e.g., contradic-
tions, unsupported claims, or logical falla-
cies)
[Input]: {DisinformationText}
[Output Requirements:]
1. Strictly valid JSON format optionally
2. No additional text outside the JSON
structure
3. Use double quotes for all strings
4. Response must strictly follow the [Output
Format]
[Output Format]:
Required JSON Output Format:
{ "PlausibilityScore": [0-1],

"Reasoning": "brief explanation"}

B.6 Disinformation Dissemination Network
Construction

We employ the Stochastic Block Model (SBM) and
the Barabási–Albert Model (BAM) to construct a
disinformation dissemination network G = {V, E}
that exhibits both scale-free properties and com-
munity structure. This approach ensures that the
network follows to the preferential attachment
mechanism while also reflecting the characteristic
of dense intra-community connections and sparse
inter-community links. The construction process
consists of the following steps:

(1)Node Community Assignment (SBM Com-
ponent): Given a network with N users and J com-
munities, each user u is assigned to one or more
communities based on their community interest
scores ICuj , which are evaluated by LLMs, and a
predefined threshold τ . Specifically:

• If ICuj ≥ τ , user u is assigned to commu-
nity j, and thus belongs to the set of assigned
communities {Cj}.

• Since a user’s interest community scores ICuj
may exceed the threshold for multiple com-
munities, they can be assigned to more than
one community.

The threshold τ is designed to reflect the struc-
tural characteristic of strong intra-community con-
nectivity and limited inter-community links, ensur-
ing a realistic simulation of information diffusion
patterns.

(2)Initialize Intra-Community Connections
(BAM Component): Within each community j, we
first construct a fully connected subgraph Gj =
{Vj , Ej} for each community j, consisting of an
initial set of m0 seed nodes. New nodes u are then
iteratively introduced into the community, forming
connections according to:

• The preferential attachment rule of the BAM.

• Add new nodes u to community j based on
the social influence SIej of the existing nodes
e ∈ Vj in the propagation network, where
SIej is defined as:

SIej =
Fe∑
i∈Vj

Fi

Fe represents the follower count (or another
influence metric) of node e.
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This process leads to the formation of a scale-
free network in which high-degree nodes (i.e.,
influential users) act as hubs for information
dissemination, while low-degree nodes resem-
ble ordinary users’ social interaction patterns.

(3) Iterative Network Growth:
The iterative addition of new nodes u continues

until the community j reaches its designated size.
The complete procedure for constructing the dis-
information dissemination network is detailed in
Algorithm 1.

B.7 Corrective Strategy Example
We use an example of disinformation in the po-
litical community to illustrate how two correction
strategies can be employed to curb the spread of dis-
information and guide the public toward accurate
information.

Disinformation Case: "Trump said the House
select committee that investigated the Jan. 6, 2021,
Capitol attack deleted and destroyed all of the in-
formation that they collected over two years."

Fact-based Corrective Strategy: Correcting
disinformation by conveying officially released
statements.

Fact-based Corrective Strategy

Case 1" The House Select Committee that
investigated the Jan. 6, 2021, attack on the
U.S. Capitol publicly released a final 845-
page report and more than 100 transcripts of
testimony, along with memos, depositions
and documents. Much of the committee’s
work remains available online.

Case 2: House Republicans in March 2024
released a report accusing the committee
of suppressing and deleting some pieces of
evidence, but they have not gone as far as
Trump in claiming that "all" evidence was
destroyed.

Narrative-based Corrective Strategy: Correct-
ing disinformation by sharing personal experiences
of relevant individuals.

Narrative-based Corrective Strategy

Case 1: The House committee members,
consisting of seven Democrats and two Re-
publicans, stated that certain videos and sen-

sitive materials were excluded from the of-
ficial record to protect witnesses. All other
materials were properly preserved, includ-
ing over 100 testimony transcripts, writ-
ten depositions, and documents that remain
publicly available online.

Case 2: "As a member of the committee, we
were under tremendous pressure in those
days," a Democratic MP recalled, with a
hint of exhaustion. "In order to protect those
who bravely stood up to testify, we had to
make difficult decisions, and rule out ex-
tremely sensitive videos and materials. I al-
ways remember a young witness who trem-
bled and burst into tears when she described
the experience. Imagine what secondary
harm would have caused her if those im-
ages were revealed? We must protect her,
which is our most basic responsibility. As
for other records, I can assure you that, in-
cluding those over a hundred testimonies,
and those publicly written records and doc-
uments, each kept intact, and anyone can
check and learn the truth."

B.8 Intervention Timing Setting

Early Intervention: Early intervention initiates
corrective actions shortly after the onset of disin-
formation spread, aiming to limit its initial prop-
agation and exposure before it gains significant
traction.

Mid-Stage Intervention: Mid-stage interven-
tion implements corrective actions after some dis-
information spread. This allows observation of
initial diffusion patterns and targeted correction
of affected individuals and influential spreaders to
mitigate further amplification.

Late Intervention: Late intervention deploys
corrective measures when disinformation has al-
ready been circulating within the network for an
extended period. Although the disinformation may
have established a stronger foothold by this stage,
the late intervention still aims to: reduce its persis-
tence, correct the beliefs, and mitigate long-term
negative impacts.
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B.9 Persuasiveness Evaluation Prompt

Persuasiveness Evaluation Prompt

You are a social network user. The summary
of the content you have posted or forwarded
and quoted in the past three days is as fol-
lows:
[history Info]: {history_info}
Evaluate the persuasiveness of the given [In-
put] information for you. The evaluation
must result in a normalized score between
[0,1] with clear justification.
[Input]: {text_information}
Your assessment should synthesize the fol-
lowing dimensions and give normalized
scores between [0–1] and brief reasons:
1. Relevance: how well it fits with your
interests, career, or topics of concern
2. Bias: Whether the information is highly
consistent with your views or is deliberately
biased
3. Novelty & Informativeness: Whether the
new ideas or data are provided compared to
existing knowledge
[Output Requirements:]
1. Assign a score of [0,1] points
2. Include both quantitative score and brief
reasoning
3. Strictly valid JSON format only
4. No additional text outside the JSON struc-
ture
5. Use double quotes for all strings
6. Escape special characters properly
7. Response must strictly follow the [Output
Format]
[Output Format:]
Required JSON Output Format:
{ "Score": [0,1],

"Reasoning": "brief_explanation" }

B.10 Simulation and Evaluation Algorithm

We present the simulation workflow for disinforma-
tion in the MADD framework in Algorithm 2. The
susceptible ratio (SR), exposed ratio (ER), infec-
tion spreader ratio (IR), and uninfection spreader
ratio (UR) are obtained by calculating the propor-
tion of susceptible users (SU), exposed users (EU),
infection spreaders (IS), and uninfection spreaders
(US) as determined by Algorithm 2, out of the total
number of users.

B.11 Interaction and Decision-Making of
Agents

Interaction and Decision-Making Strategy of
Malicious and Legitimate Bots: We assign each
bot agent the same five categories of attribute in-
formation as human users, including a predefined
interest community. In terms of propagation behav-
ior, the bots exhibit the following characteristics:
their trust threshold and dissemination tendency
are both set to 1, ensuring that they always trust
and actively propagate either disinformation (for
malicious bots) or corrective information (for le-
gitimate bots). Their social influence is randomly
sampled to match the influence levels of certain
human users, and their active time is determined
based on the predefined time range specified in Ta-
ble 2. The bots’ action policy is straightforward:
once their activation time is reached, malicious bots
will proactively disseminate misinformation, while
legitimate bots will distribute corrective content.

Interaction and Decision-Making Strategy of
Human Users: During their activation time, hu-
man users receive and read information propagated
by their neighboring nodes. Their decision-making
process is governed: (1) their dissemination ten-
dency determines whether they are willing to share
the received information; and (2) their trust thresh-
old is used to evaluate whether they trust the con-
tent. On the premise of confirming whether the
information is trusted, users will choose one of
two dissemination methods—either retweeting or
quoting—to share the content. This strategy is de-
signed to realistically simulate human interaction
behaviors and cognitive judgment processes in the
context of information diffusion.

C Experimental Results

C.1 MADD and Real-World Consistency
Evaluation

Figure 9 demonstrates that the probability distribu-
tion of users’ dissemination tendencies exhibits a
distinct heavy-tailed characteristic: while the ma-
jority of users show low propagation activity, a
small subset displays exceptionally high dissemi-
nation propensity. Although the relatively limited
sample size may introduce some outliers, the over-
all distribution pattern remains consistent with pre-
viously documented user dissemination behaviors
in the literature (Goel et al., 2016).

Figure 10 presents the distribution of users’ trust
thresholds toward disinformation. For all topic cat-
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Figure 9: User dissemination tendency exhibits a heavy-
tailed pattern.

egories, the trust threshold distribution follows an
approximately normal pattern, indicating that most
users adopt a neutral stance of "neither fully be-
lieving nor completely rejecting" towards disinfor-
mation, with trust threshold scores predominantly
clustered around 0.5. This finding is consistent
with established research outcomes (Ecker et al.,
2022).

Figure 10: Trust threshold follow normal distribution
fitting.

C.2 Group-Level: Effectiveness Evaluation of
Correction Strategies

Figures 11 and 12 respectively illustrate the com-
parative intervention effects of two correction
strategies (fact-based and narrative-based correc-
tion) implemented during the mid (T=[36-72]) and
late (T=[48-72]) stages of disinformation spread.
The results indicate that the intervention effects

of both correction strategies are not significant for
most communities. Notably, in some communi-
ties, such as "Politics" and "Business," we observe
negative intervention effects, manifested as an in-
crease in the spread of related disinformation after
correction. This phenomenon may be because pro-
longed exposure to disinformation leads users to
form stable incorrect cognitive frameworks, and
the introduction of corrective information is inter-
preted by some users as a "threat to their original
viewpoints," thereby triggering a psychological re-
actance effect (Diaz Ruiz and Nilsson, 2023) and
forming an echo chamber effect (Garimella et al.,
2018).

Figure 11: Comparison of mid intervention effects of
two correction strategies.

Figure 12: Comparison of late intervention effects of
two correction strategies.
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C.3 Individual-Level: Dynamic Changes in
User Trust Thresholds

Figures 13 and 14 illustrate the changes in user
trust thresholds when correction strategies are im-
plemented in the mid and late stages. We observe
that their effect on increasing user trust thresh-
olds for evaluations is extremely limited. Fur-
thermore, in the "Entertainment," "Business," and
"Politics" communities during the mid-term in-
tervention phase, and in the "Sports" community
during the late-term intervention phase, the con-
trol group (without correction strategies) actually
shows higher user trust thresholds than the exper-
imental group (with correction strategies). This
phenomenon likely stems from two main reasons:
firstly, the intervention timing is delayed, and sec-
ondly, echo chamber effects may have already
formed within some user groups. When disinforma-
tion has already spread widely across the network
and deeply influenced users’ cognitive belief sys-
tems, correction strategies introduced at this point
often struggle to effectively reverse established
negative perceptions. Therefore, these findings
strongly confirm the critical importance of inter-
vening in the early stages of disinformation spread
and implementing effective correction strategies.

Figure 13: Effects of Correction Strategies on User
Trust Thresholds During Mid-Stage Intervention

Figure 14: Effects of Correction Strategies on User
Trust Thresholds During Late-Stage Intervention

C.4 Case Study: Change of the Trust
Threshold of the Case User

In Figure 15, we show an example of a user’s Trust
Threshold over time under a fact-based early in-
tervention strategy. Overall, the trust threshold
undergoes a dynamic change: first rising sharply,
then declining, and finally stabilizing.

The initial rapid increase is primarily because
the user receives highly credible corrective informa-
tion from high-influence nodes, which significantly
enhances their ability to discern information. How-
ever, as disinformation gradually increases in the
network, the user’s trust threshold begins to decline
slowly, reflecting some cognitive interference. As
legitimate bots continue their correction efforts in
the later stages, the proportion of true information
in the user’s environment increases, causing the
trust threshold to rise again and eventually stabi-
lize. This indicates that the user has developed a
strong resistance to disinformation on this topic.

C.5 Effect of Legitimate Bot Ratio on
Correction

Figure 16 illustrates the infection rate dynamics
from time steps 12 to 72 under a fact-based early
intervention strategy with varying proportions of
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User Attribute

"Interest Community": Business

"neighbor_nodes": [485, 509, ...537]

"neighbor_nodes_social_influence": {

            "485": 0.0186,

            "509": 0.5641,

...

            "537": 0.0181

        }

"dissemination tendency": {"Business": 0.5407}

"trust threshold": {"Business": 0.70}

Figure 15: The changing trend of the trust threshold of the case users

legitimate bots.
Overall, the infection rate consistently declines

over time, but the speed and scale of this decline
are directly tied to the strength of the intervention.

• No Intervention (0% L-Bots): Without any
legitimate bots, the infection rate remains high
(around 22.7%) and declines slowly. This
highlights that users’ natural ability to cor-
rect disinformation is limited when there is no
active intervention.

• With Intervention (5% to 30% L-Bots): As
the proportion of legitimate bots increases
from 5% to 30%, the infection rate drops
much faster during the middle stages (time
steps 24 to 48), proving the effectiveness of
stronger corrective intervention.

Interestingly, the infection rates across all three
intervention scenarios converge in the later stages
(time steps 48 to 72). This is likely because the re-
maining infected users have low initial confidence,
making them less susceptible to change. Further-
more, since bot intervention is concentrated in the
early stages, the later dynamics are driven more
by users’ own cognitive adjustments, leading to a
similar rate of change across all groups.

C.6 System Resources Analysis

We present in Table 3 the key metrics for the control
group (simulation involving only malicious bots),
including the number of LLM calls, inference time,
and token usage. Since the simulation relies on
external LLM APIs, response speeds may vary,

Figure 16: Effect of Legitimate Bot Ratio on Correction

and inference time is not strictly proportional to the
number of calls.

D Licenses

All source code and scripts associated with
this paper are released in our public repository
at github.com/QQQQQQBY/BotInfluence. The
repository includes a standard MIT License, repro-
duced in the LICENSE file. This license permits use,
modification, and redistribution under the specified
terms.
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Algorithm 2 Simulation and Evaluation Process
1: Inputs: Time steps T , Disinfo set J , Corrective info set C, Malicious BotsMB, Legitimate Bots
LB, Regular Users RU , Active users at time t, ACt, Initial received/shared info (Ru, Su for each
user u).

2: Outputs: Trust thresholds T T , Susceptible users SU , Exposed users EU , Infection Spreaders IS,
Uninfection Spreaders US.

3: Initialize: SU ← RU , EU ← ∅, IS ← ∅, US ← ∅
4: Start Simulation:
5: for disinfo j ∈ J do
6: for each time t ∈ T do
7: for each active user u ∈ ACt do
8: 1. Load Share Info:
9: if u ∈MB then

10: Spread disinfo ˆinfo = j to neighbors Nu

11: else if u ∈ LB then
12: Spread corrective info ˆinfo = c, c ∈ C to neighbors Nu

13: else if (u ∈ RU) ∧ (Ru ̸= ∅) then
14: info← Lastest received info (Ru)
15: if random( ) < DT u,j then
16: Action ˆinfo← LLM(info, history,ActionList)
17: end if
18: 2. Share Info:
19: Share ˆinfo to neighbors Nu, update Su ← Su ∪ { ˆinfo}
20: end if
21: for each neighbor v ∈ Nu ∩RU do
22: 3. Receive Info:
23: UpdateRv ← Rv ∪ ˆinfo

24: Discern Ability DA ˆinfo
v,t ← LLM(Check Belief(T T u,DP ˆinfo)) based on Eq. 3

25: Update T T v,j via:
26: T T v,j ← Eq. 2 Dynamic adjustment
27: Update state sets SU t,j , EU t,j , ISt,j , USt,j
28: end for
29: end for
30: end for
31: end for
32:

33: return SU , EU , IS, US, T T
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Figure 17: Supplementary expansion of Figure 2. Attribute-driven network dynamics and disinformation dissemina-
tion in MADD.

Table 3: Statistics on the consumption of simulated resources for each community (LLM call volume, inference
time, Token consumption)

Metric Politics Business Education Entertainment Sports Technology

LLM Calls / Avg. per User 374,212 / 366.9 275,478 / 272.8 259,344 / 2,702 325,702 / 2,882 256,483 / 2,466 234,723 / 2,096
Inference Time / Avg. per User 19.02 h / 671 s 17.53 h / 625 s 16.82 h / 631 s 14.73 h / 469 s 12.59 h / 435 s 12.27 h / 394 s
Token Usage / Avg. per User 9,983,935 / 97,881 8,773,767 / 86,869 7,684,069 / 80,042 9,893,845 / 87,556 7,115,933 / 68,422 7,503,570 / 66,996
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