
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 4674–4687
November 4-9, 2025 ©2025 Association for Computational Linguistics

FroM: Frobenius Norm-Based Data-Free Adaptive Model Merging

Zijian Li† Xiaocheng Feng†‡* Huixin Liu†

Yichong Huang† Ting Liu† Bing Qin†‡*

†Harbin Institute of Technology ‡Peng Cheng Laboratory
{lizijian, xcfeng, hxliu, ychuang, tliu, qinb}@ir.hit.edu.cn

Abstract

With the development of large language mod-
els, fine-tuning has emerged as an effective
method to enhance performance in specific sce-
narios by injecting domain-specific knowledge.
In this context, model merging techniques pro-
vide a solution for fusing knowledge from mul-
tiple fine-tuning models by combining their pa-
rameters. However, traditional methods often
encounter task interference when merging full
fine-tuning models, and this problem becomes
even more evident in parameter-efficient fine-
tuning scenarios. In this paper, we introduce an
improvement to the RegMean method, which
indirectly leverages the training data to approx-
imate the outputs of the linear layers before and
after merging. We propose an adaptive merg-
ing method called FroM, which directly mea-
sures the model parameters using the Frobenius
norm, without any training data. By introduc-
ing an additional hyperparameter for control,
FroM outperforms baseline methods across var-
ious fine-tuning scenarios, alleviating the task
interference problem.

1 Introduction

In recent years, significant advancements have been
made in the fields of artificial intelligence and
natural language processing, with large language
models (LLMs) emerging as a focal point of at-
tention (Achiam et al., 2023; Guo et al., 2025).
Among the various approaches, the pretraining
and fine-tuning paradigm has emerged as the foun-
dational framework for LLM technology (Zhao
et al., 2023; Han et al., 2021; Parthasarathy et al.,
2024). With a growing number of fine-tuned down-
stream models, model merging has emerged as an
effective approach to integrate models trained un-
der different hyperparameter settings or for multi-
task learning (Jin et al., 2022). Moreover, model
merging is commonly implemented in a data-free

*Corresponding authors.

LLM

FFT or PEFT

Fine-tuning

Model Merging

Merged LLM

Math CodeChat

···

Figure 1: Illustrative diagrams of fine-tuning and model
merging.

method, making it particularly advantageous for
privacy-sensitive applications like federated learn-
ing (McMahan et al., 2017; Wang et al., 2020).

Most existing model merging methods are based
on linear operations such as weighted averaging
(Wortsman et al., 2022) and task arithmetic (Ilharco
et al., 2022). Weighted averaging combines param-
eters from multiple fine-tuned models, while task
arithmetic enables multi-task learning and forget-
ting by adding and subtracting task vectors derived
from parameter differences. Nevertheless, these
methods encounter a fundamental challenge: sim-
ple linear combinations of parameters often lead
to task interference (Yadav et al., 2024). This
issue is especially evident in parameter-efficient
fine-tuning (PEFT) scenarios (Ding et al., 2023),
such as Low-Rank Adaptation (LoRA) (Hu et al.,
2021). Compared to full fine-tuning (FFT), the
sparse structure of low-rank matrices in these meth-
ods further aggravates task interference (Tang et al.,
2023; Stoica et al., 2024). Figure 1 presents a

4674

schematic illustration of the fine-tuning and model
merging processes.

To address this challenge, we take inspiration
from the nonlinear weighted optimization method
of RegMean (Jin et al., 2022) and introduce a novel
method, Frobenius Norm-Based Data-Free Adap-
tive Model Merging (FroM). Our method improves
upon the RegMean method, which derives a closed-
form solution by approximating the linear layer
outputs of the models using the inner product ma-
trix of the training data. However, RegMean still
encounters challenges due to its reliance on access
to training data, which may not always be avail-
able. To address this limitation, FroM adopts a
data-free approach that directly measures model
parameters using the Frobenius norm, and employs
adaptive coefficients to adjust the discrepancies
between task vectors. Our approach reduces the
reliance on training data, while outperforming base-
lines in both full fine-tuning and LoRA scenarios,
effectively mitigating the task interference issue.

Our main contributions are as follows:

1. We propose an adaptive model merging
method, FroM, which utilizes the Frobenius
norm to measure the differences between mod-
els to be merged, without any training data.

2. Compared to baseline methods, our approach
is broadly applicable to FFT and PEFT mod-
els, such as LoRA, and achieves optimal or
suboptimal results in various scenarios.

2 Related Work

Fine-tuning of LLMs. Fine-tuning is a method
for optimizing pre-trained LLMs for specific tasks.
Through fine-tuning, LLMs not only excel in gen-
eral tasks but can also meet the requirements of
particular application scenarios (Wei et al., 2021;
Sanh et al., 2021; Chung et al., 2024). From the
perspective of the amount of parameters updated,
fine-tuning can be categorized into two approaches:
FFT and PEFT. FFT updates all parameters of the
pre-trained model, which often yields excellent
performance on specific tasks. However, this ap-
proach is both time-consuming and computation-
ally intensive. As models become larger and more
complex, conducting FFT has become more chal-
lenging, particularly in environments with limited
computational resources (Lv et al., 2023). Alterna-
tively, PEFT focuses on updating a small number
of parameters to reduce computational costs and

storage requirements, making it more widely used
in resource-constrained settings or customized sce-
narios (Xu et al., 2023b; Han et al., 2024). One
of the most widely used methods within PEFT is
LoRA (Hu et al., 2021), which significantly reduces
computational and storage costs by fine-tuning
low-rank matrices, achieving highly effective fine-
tuning with a limited number of parameters.

Model Merging. (Lu et al., 2024) introduce sev-
eral collaboration strategies for LLMs, highlighting
model merging as a technique that prevents models
from getting trapped in local optima and improves
multi-task collaboration ability. Traditional meth-
ods typically rely on weighted averaging of model
parameters. (Wortsman et al., 2022) introduce
Model Soups, which apply both a weighted averag-
ing method and a greedy merging strategy. (Matena
and Raffel, 2022) adopt a different approach by uti-
lizing the Fisher Information Matrix for parameter-
level model merging, applying a weighted merging
strategy to enhance model integration. Focusing
on the outputs of linear layers, (Jin et al., 2022)
propose RegMean, a method that indirectly uti-
lizes the training data through the inner product
matrices to derive a closed-form solution for merg-
ing model parameters. Meanwhile, (Ilharco et al.,
2022) present a novel paradigm called task arith-
metic, in which task vectors capture the ability shift
of different fine-tuned models compared to the pre-
trained model across various tasks. This allows
for operations like forgetting and learning through
arithmetic manipulation of the task vectors.

However, the task vectors of different models
may inevitably lead to some degree of task in-
terference. Prior research has demonstrated that
weight disentanglement is crucial to the success
of task arithmetic (Ortiz-Jimenez et al., 2023). To
address this, (Yadav et al., 2024) introduce TIES-
Merging, a strategy that minimizes redundant pa-
rameters and selects signs to reduce interference
during model merging. In addition, the DARE
method proposed by (Yu et al., 2024) involves the
random dropping of incremental parameters and
rescaling operations. By integrating with other
model merging algorithms, it enhances the perfor-
mance of the model after fusion. According to the
research by (Tang et al., 2023; Stoica et al., 2024),
existing merging methods are more challenging to
apply to LoRA fine-tuned models compared to FFT
models. Our method builds upon RegMean and in-
troduces improvements that eliminate the need for

4675

obtaining the inner product matrix of training data.
It can also be solved using a closed-form solution,
supporting the integration of either FFT models or
LoRA adapters.

3 Method

3.1 Motivation

The RegMean method naturally aims to make the
output of the merged model close to the outputs of
the original models. It cleverly uses the inner prod-
uct matrix derived from the training data through a
closed-form solution, while avoiding data privacy
issues that may arise from directly using the train-
ing data. However, this brings about additional
requirements for model release, as open-source
models typically do not provide the inner product
matrix. This limitation significantly impacts the
applicability of the RegMean method.

Therefore, we propose a different approach: in-
stead of measuring the output discrepancies be-
tween the merged model and the original mod-
els, why not directly measure the model weights
themselves? However, directly measuring model
weights is equivalent to the weighted averaging
method, which has limited effectiveness. We draw
inspiration from research on model pruning, where
compression is achieved by removing connections
with small weights (Han et al., 2015). This aligns
with our intuition that larger task vectors gener-
ally contain more information. We adopt a holistic,
layer-wise metric based on the squared Frobenius
norm, which measures the overall magnitude of
weight matrices and serves as an effective indica-
tor of model differences. For this reason, we use
the Frobenius norm of the task vector to quantify
model differences and raise it to the power of k
to serve as a weighting coefficient, with k as a
hyperparameter controlling this balance.

3.2 Merging of FFT Models

We use the objective function in Equation 1 to mea-
sure the performance difference between the task
vectors before and after merging.

L(θ) =
n∑

i=1

∥θi∥kF ∥θ − θi∥2F (1)

where n denotes the number of fine-tuned models,
θi represents the task vector of the i-th model, θ
is the task vector after merging, and k is a hyper-
parameter. When k = 0, the objective function

Data-Free: ✗

RegMean FroM

Linear Layer

Align outputs

Any Layer

Align weights

Q K V

LoRA
B

LoRA
A

· · ·

Data-Free: ✓

min �
i=1

n
WX−WiX F

2
min �

i=1

n
θi F

k θ−θi F
2

Figure 2: Comparison between the RegMean and FroM
Methods, where X represents the input to the linear
layer.

of FroM serves as an upper bound for that of Reg-
Mean:

∑n
i=1 ∥WX −W iX∥2F ≤

∑n
i=1 ∥W −

W i∥2F · ∥X∥2F =
∑n

i=1 ∥θ−θi∥2F · ∥X∥2F , where
∥X∥2F acts as a scaling factor. Moreover, by set-
ting k > 0, FroM enables more flexible control
in determining an appropriate trade-off point. The
comparison between the RegMean and FroM Meth-
ods is illustrated in Figure 2.

Since the above function is convex, a closed-
form solution (i.e., the point where the gradient is
zero) can be derived. The objective function can be
restructured, resulting in:

L(θ) =
n∑

i=1

∥θi∥kF Tr
(
(θ − θi)

⊤(θ − θi)
)

(2)

=

n∑

i=1

∥θi∥kF Tr
(
θ⊤θ − 2θ⊤θi + θ⊤

i θi

)

(3)

The last term in the parentheses is a constant; there-
fore, the derivative with respect to θ is:

∂L(θ)
∂θ

= 2

n∑

i=1

∥θi∥kFθ − 2

n∑

i=1

∥θi∥kFθi (4)

By setting ∂L(θ)
∂θ = 0, the closed-form solution

is derived, as shown in Equation 5. In fact, we
observe that as k → 0, the final result corresponds
to the simple averaging method, whereas as k →
+∞, the result converges to the method that selects
the weight with the largest norm. Therefore, this

4676

approach can be viewed as a balance between these
two methods.

θ∗ =

∑n
i=1 ∥θi∥kFθi∑n
i=1 ∥θi∥kF

(5)

3.3 Merging of LoRA

The task arithmetic-based approach poses chal-
lenges in integrating LoRA (Tang et al., 2023; Sto-
ica et al., 2024), making it difficult both to merge
and to control the rank of the merged model. To
address this issue, we modify the objective func-
tion based on Equation 1, incorporating LoRA-type
structures while measuring weight differences us-
ing the Frobenius norm. The revised objective func-
tion is given in Equation 6, where θi refers to the
task vector in its original form before being flat-
tened into a one-dimensional vector. When merg-
ing parameters layer-wise across different models,
we employ LoRA-type structures, specifically uti-
lizing the A and B matrices as components op-
timized in a manner similar to the LoRA mecha-
nism. Moreover, by explicitly specifying the rank
of A and B (i.e., the row count of A and the col-
umn count of B), we enable dynamic rank adjust-
ment. This approach not only increases flexibility
in model merging but also facilitates a certain de-
gree of compression during model storage.

L(A,B) =

n∑

i=1

∥θi∥kF ∥BA− θi∥2F (6)

Since Equation 6 is a non-convex function, it
may have multiple local minima. Therefore, in-
spired by the Alternating Direction Method of Mul-
tipliers in convex optimization theory and analo-
gous to LoRM (Salami et al., 2024), we propose an
alternating optimization algorithm. Specifically, by
initializing A from a normal distribution with mean
0 and variance σ2, and treating either A or B as
an invariant, we iteratively update B and A using
Equation 7 and Equation 8, respectively. In these
equations, † denotes the Moore-Penrose inverse
(see Appendix A for the proof). This procedure for
approximating a local minimum of the objective
function is shown in Algorithm 1. Due to the po-
tential computational errors in the calculation of
the MP inverse, an early stopping mechanism is
implemented, which halts the iteration when the
loss begins to increase.

B =

(
n∑

i=1

∥θi∥kFθiA
⊤
)(

n∑

i=1

∥θi∥kFAA⊤
)†

(7)

A =

(
n∑

i=1

∥θi∥kFB⊤B

)†(n∑

i=1

∥θi∥kFB⊤θi

)

(8)

3.4 Complexity

We next analyze the computational complexity of
the two merging methods discussed above. We let
n denote the number of models to be merged, and
d represent the number of parameters in the FFT
models. Therefore, the complexity of merging FFT
models is O(nd). For the merging of LoRA (i.e.,
Algorithm 1), we simplify the analysis by assuming
that LoRA is applied to every layer (in practice, it
is typically applied to only a subset of layers). We
let L denote the number of layers in the model
and T the number of iterations, assuming that each
layer’s weight matrix has dimensions (d1, d2), with
the corresponding LoRA matrices B and A are of
sizes (d1, r) and (r, d2), respectively. The first
term in Equation 7 involves matrix multiplication
with complexity O(d22r). The second term involves
both matrix multiplication and matrix inversion,
with respective complexities O(d2r

2) and O(r3).
Thus, the overall complexity becomes: O(d22r +
d2r

2 + r3) = O(d22r), since r ≪ min(d1, d2).
Similarly, the complexity of Equation 8 is O(d21r).
Therefore, the overall complexity of the algorithm
is: O(nLTr(d21 + d22)).

4 Experimental Setup

Merging of FFT Models. We test two differ-
ent model architectures, each based on the same
foundational model, across three distinct FFT
tasks: Instruction-Following, Mathematical Rea-
soning, and Code-Generating. First, we adopt
the experimental setup of (Yu et al., 2024), uti-
lizing models based on Llama-2-13B (Touvron
et al., 2023): WizardLM-13B (Xu et al., 2023a),
WizardMath-13B (Luo et al., 2023), and llama-2-
13b-code-alpaca1. Second, we utilize models based
on Qwen2.5-7B2 (Yang et al., 2024): Qwen2.5-

1https://huggingface.co/layoric/llama-2-13b-code-alpaca
2https://huggingface.co/Qwen/Qwen2.5-7B

4677

Algorithm 1 Alternating Optimization-Based
Model Merging Algorithm Utilizing LoRA-Type
Structures

1: Initialize matrix A ∼ N (0, σ2)
2: Initialize early stopping flag early_stopping

3: Set iteration count iters
4: min_loss←∞ {Initialize minimum loss}
5: for i = 0 to iters− 1 do
6: Compute matrix B using Equation 7
7: Compute matrix A using Equation 8
8: if early_stopping then
9: Compute loss using Equation 6

10: if loss < min_loss then
11: min_loss← loss
12: else
13: break
14: end if
15: end if
16: end for
17: Save matrices A and B

7B-Instruct3, Qwen2.5-Math-7B-Instruct4, and
Qwen2.5-Coder-7B-Instruct5. For testing, we em-
ploy the Task Arithmetic (Ilharco et al., 2022),
TIES-Merging (Yadav et al., 2024), and our FroM
methods, additionally incorporating the DARE
method (Yu et al., 2024) in combination with TIES-
Merging and FroM for comparative evaluation. We
do not include the RegMean method in our com-
parison, as we are unable to obtain the inner prod-
uct matrices of all model training datasets, which
highlights a significant practical limitation of Reg-
Mean. For both evaluation settings involving differ-
ent base models, we set the linear weighting coeffi-
cient α to 1.0 (see Appendix B.2 for details), and
use k = 1.0 in our FroM method. For the choice
of the hyperparameter k in practical applications,
refer to Section 5.3.

Regarding benchmark selection, we follow the
setup of (Yu et al., 2024), utilizing AlpacaEval
(Li et al., 2023) to assess the models’ instruction-
following abilities, GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) to evalu-
ate their mathematical reasoning skills, and Hu-
manEval (Chen et al., 2021) and MBPP (Austin

3https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
4https://huggingface.co/Qwen/Qwen2.5-Math-7B-

Instruct
5https://huggingface.co/Qwen/Qwen2.5-Coder-7B-

Instruct

et al., 2021) for testing code generation capabilities.
Further details can be found in Appendix B.

Merging of LoRA. We fine-tune a binary clas-
sification head on top of the Meta-Llama-3-8B6

model. First, we initialize the classifier by training
it on the MNLI dataset from the GLUE bench-
mark (Wang et al., 2019). Then, we fine-tune the
model using the binary text entailment datasets
from the GLUE benchmark, specifically QNLI,
RTE, and WNLI, with the LoRA approach. For
each task, we train the model for 10 epochs and
select the best checkpoint for evaluation. We not
only test the merging of LoRA across three tasks
but also examine the merging of the three opti-
mal checkpoints for the same task. We apply the
Task Arithmetic, RegMean, TIES-Merging, DARE
method (which combines the TIES-Merging ap-
proach), KnOTS method (which integrates the first
three methods) (Stoica et al., 2024), and FroM
method (with k = 0.9). The linear weighting co-
efficient is set to α = 0.7, determined via a linear
search. Further details, including the search results
and relevant settings, are provided in Appendix B.

5 Main Results

5.1 Merging of FFT Models

The merging results of the WizardLM-13B,
WizardMath-13B, and llama-2-13b-code-alpaca
models based on Llama-2-13b are shown in Ta-
ble 1. As observed, for the merging of the first
two models, our FroM method achieves better av-
erage performance, outperforming the previous op-
timal baseline by 0.73%. Similarly, when merg-
ing WizardLM-13B and llama-2-13b-code-alpaca,
FroM also achieves the highest average score. For
the merging of the latter two models, however,
the Task Arithmetic and TIES-Merging methods
demonstrate better performance. In the case of
merging three models, the Task Arithmetic method
performs best on the AlpacaEval benchmark, but
shows moderate performance across the other four
datasets. For tasks related to Mathematical Reason-
ing and Code-Generating, both our FroM method
and its integration with DARE exhibit strong per-
formance, with the latter achieving the best av-
erage performance, surpassing the previous opti-
mal baseline by 1.68%. Therefore, although the
FroM method does not consistently outperform
the baseline across every benchmark, a careful se-

6https://huggingface.co/meta-llama/Meta-Llama-3-8B

4678

Models Merging
Methods

Instruction-
Following

Mathematical
Reasoning Code-Generating Avg.

AlpacaEval GSM8K MATH HumanEval MBPP

LM / 51.09 45.11 5.92 32.93 31.20 33.25
Math / / 59.97 11.60 / / 35.78
Code / / / / 24.39 28.00 26.20

LM
& Math

Task Arithmetic 50.55 41.62 6.56 / / 32.91
TIES-Merging 50.42 51.55 7.22 / / 36.40
DARE+TIES-Merging 53.03 52.69 8.32 / / 38.01
FroM 50.82 57.39 8.00 / / 38.74
DARE+FroM 53.65 53.75 7.58 / / 38.33

LM
& Code

Task Arithmetic 53.23 / / 32.93 30.60 38.92
TIES-Merging 46.33 / / 0.00 0.00 15.44
DARE+TIES-Merging 47.67 / / 0.00 0.00 15.89
FroM 52.33 / / 34.76 33.40 40.16
DARE+FroM 50.40 / / 35.37 32.60 39.45

Math
& Code

Task Arithmetic / 58.45 12.32 5.49 7.00 20.82
TIES-Merging / 58.00 12.28 9.15 19.00 24.61
DARE+TIES-Merging / 57.32 12.10 6.10 18.40 23.48
FroM / 58.15 11.98 4.88 17.40 23.10
DARE+FroM / 58.07 12.30 8.54 16.80 23.93

LM
& Math
& Code

Task Arithmetic 52.84 42.00 6.20 15.85 18.20 27.02
TIES-Merging 46.24 47.08 5.32 0.00 0.00 19.73
DARE+TIES-Merging 48.30 55.50 9.18 25.00 27.00 33.00
FroM 49.65 56.48 8.20 25.61 31.40 34.27
DARE+FroM 49.12 55.34 8.06 29.09 31.80 34.68

Table 1: Merging results of WizardLM-13B, WizardMath-13B, and llama-2-13b-code-alpaca models based on
Llama-2-13B. Bold and underlined text indicate the optimal and suboptimal results, respectively.

Models Merging
Methods

Instruction-
Following

Mathematical
Reasoning Code-Generating Avg.

AlpacaEval GSM8K MATH HumanEval MBPP

LM / 16.24 79.08 14.40 79.88 65.40 51.00
Math / / 75.74 1.12 / / 38.43
Code / / / / 30.49 39.00 34.74

LM
& Math

Task Arithmetic 2.25 18.95 6.04 / / 9.08
TIES-Merging 0.00 0.68 0.00 / / 0.23
DARE+TIES-Merging 0.00 0.15 0.00 / / 0.05
FroM 1.95 17.51 4.08 / / 7.85
DARE+FroM 0.00 0.45 0.00 / / 0.15

LM
& Code

Task Arithmetic 42.76 / / 21.34 29.60 31.23
TIES-Merging 0.00 / / 0.00 0.00 0.00
DARE+TIES-Merging 0.00 / / 0.00 0.00 0.00
FroM 36.98 / / 30.49 42.00 36.49
DARE+FroM 0.00 / / 0.00 0.00 0.00

Math
& Code

Task Arithmetic / 0.38 0.00 0.00 0.00 0.09
TIES-Merging / 1.36 0.00 0.00 0.00 0.34
DARE+TIES-Merging / 0.38 0.00 0.00 0.00 0.09
FroM / 17.36 0.00 1.22 0.80 4.85
DARE+FroM / 0.38 0.00 0.00 0.00 0.09

LM
& Math
& Code

Task Arithmetic 0.00 0.45 0.00 0.00 0.00 0.09
TIES-Merging 0.00 0.08 0.00 0.00 0.00 0.02
DARE+TIES-Merging 0.00 0.23 0.00 0.00 0.00 0.05
FroM 1.22 20.55 0.84 2.44 2.80 5.57
DARE+FroM 0.00 0.61 0.00 0.00 0.00 0.12

Table 2: Merging results of Qwen2.5-7B-Instruct, Qwen2.5-Math-7B-Instruct, and Qwen2.5-Coder-7B-Instruct
models based on Qwen2.5-7B. Bold and underlined text indicate the optimal and suboptimal results, respectively.

4679

lection of the hyperparameter k enables a well-
balanced trade-off, ultimately leading to superior
performance compared to other baseline methods.

For the base model Qwen2.5-7B, we present
the results of merging the models Qwen2.5-7B-
Instruct, Qwen2.5-Math-7B-Instruct, and Qwen2.5-
Coder-7B-Instruct, as shown in Table 2. Unexpect-
edly, the performance of the merged models deteri-
orates significantly, except when merging Qwen2.5-
7B-Instruct and Qwen2.5-Coder-7B-Instruct us-
ing the Task Arithmetic or FroM methods, which
yield comparatively better results. When the other
two models are integrated with Qwen2.5-Math-7B-
Instruct, a substantial decline in performance is
observed. Based on the specific test outputs, we ob-
serve that the majority of the model’s responses are
either incoherent or irrelevant to the given task.
This suggests a significant degree of task inter-
ference between Qwen2.5-Math-7B-Instruct and
the other two models. After extensive fine-tuning
on different datasets, the linear mode connectivity
(Ainsworth et al., 2022; Zhou et al., 2023b) among
these models tends to be disrupted, leading to the
failure of linear weighting methods. This finding in-
dicates that not all fine-tuned models derived from
the same base model are equally suitable for model
merging. Furthermore, the merging results using
the TIES-Merging and DARE methods are close
to zero (with outputs consisting entirely of garbled
text), indicating that these methods aggravate task
interference. In contrast, our FroM method demon-
strates greater robustness when merging both two
and three models.

Since the training data of these FFT models are
not fully released, it is impossible to directly com-
pare the FroM and RegMean methods in Table 1
and Table 2. That said, we fully agree that includ-
ing RegMean as a baseline is crucial for a more
comprehensive comparison. To this end, we con-
duct additional experiments with RegMean, with
detailed results presented in Appendix C.

5.2 Merging of LoRA
For the LoRA merging experiments, we train a
shared classification head on the MNLI dataset.
The performance of this classification head on
other datasets is presented in the first row of Ta-
ble 3. The accuracy across different tasks exceeds
50%, demonstrating a reasonable degree of gener-
alization, considering that for binary classification
tasks, the probability of randomly selecting the
correct answer is 50%. We further fine-tune on

the QNLI, RTE, and WNLI datasets, selecting the
best-performing checkpoints for subsequent exper-
iments.

The testing results for different LoRA merging
methods are summarized in Table 3. It is evi-
dent that the application of the TIES-Merging and
DARE methods results in a decline in model accu-
racy, indicating that these approaches may not be
universally effective across all downstream tasks
and may perform particularly poorly on simpler
ones. On the other hand, our FroM method con-
tinues to demonstrate effectiveness, with its aver-
age performance surpassing other baselines. No-
tably, for the QNLI task, our method even exceeds
the baseline accuracy, highlighting that our ap-
proach enhances the generalization capability of
the merged model resulting from multi-task learn-
ing.

Merging Methods QNLI RTE WNLI Avg.

Baseline

/ 53.74 59.21 54.93 55.96

Fine-tuning

QNLI 94.05 56.32 43.66 64.68
RTE 54.75 71.49 64.79 63.68
WNLI 54.26 62.82 54.69 57.26

3-Model Merging

Task Arithmetic 90.10 67.51 52.11 69.91
RegMean 69.84 66.34 53.52 63.23
TIES-Merging 65.50 65.70 61.97 64.39
DARE+TIES-Merging 54.26 60.65 56.34 57.08
KnOTS+Task Arithmetic 94.44 66.43 50.70 70.52
KnOTS+TIES-Merging 93.65 64.98 52.11 70.25
KnOTS+DARE+TIES-Merging 59.07 63.54 60.56 61.06
FroM 94.51 64.26 53.52 70.76

Table 3: Test results of three models fine-tuned using
LoRA on QNLI, RTE, and WNLI datasets with differ-
ent merging methods. Bold text indicates the optimal
results.

We also test the merging of the three best check-
points from the same dataset. As shown in Figure 4,
our FroM method achieves the best performance,
surpassing the accuracy of the original fine-tuning
across all three datasets. For comparison, the origi-
nal KnOTS method performs comparably to our ap-
proach, while Task Arithmetic yields significantly
inferior results. The other methods demonstrate rel-
atively moderate performance. This further demon-
strates the effectiveness of our method in merging
checkpoints for the same task.

5.3 Ablation Study

For the WizardLM-13B, WizardMath-13B, and
llama-2-13b-code-alpaca models, we test the effect

4680

0.0 0.125 0.25 0.5 1.0 2.0 4.0 8.0
k

25

30

35

40

45

50

55

60
Ac

cu
ra

cy
 (%

)
Instruction-following

gsm8k WizardLM-13B

0.0 0.125 0.25 0.5 1.0 2.0 4.0 8.0
k

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Mathematical Reasoning
gsm8k
MATH

gsm8k (best)
MATH (best)

0.0 0.125 0.25 0.5 1.0 2.0 4.0 8.0
k

10

15

20

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

Coding-generating
HumanEval
MBPP

HumanEval (best)
MBPP (best)

Figure 3: Results of merging WizardLM-13B, WizardMath-13B, and LLaMA-2-13B-Code-Alpaca models with
different values of k. The optimal results before merging are represented by the gray dashed line.

QNLI RTE WNLI
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Fine-tuning
Task Arithmetic
TIES-Merging

DARE+TIES-Merging
KnOTS+Task Arithmetic
KnOTS+TIES-Merging

KnOTS+DARE+TIES-Merging
FroM(Ours)

Figure 4: Accuracy comparison after merging the three
optimal LoRA checkpoints on QNLI, RTE, and WNLI
datasets.

0 0.125 0.25 0.5 1 2 4 8
k

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

QNLI
RTE
WNLI
Avg.

Figure 5: Results of merging the three LoRAs. The
average accuracy is depicted by a dashed line.

of varying the value of k in Equation 1. Specif-
ically, we select k = 0 and integer powers of 2
ranging from 2−3 to 23, and plot the results under
these different conditions. As shown in Figure 3,
the performance is generally poor when k → 0 or
k → +∞. The best results occur when k is set to
0.5 or 1.0, with accuracy on all benchmarks closely
matching the optimal performance of the fine-tuned

models.
We also test the effect of varying the value of k

on LoRA fusion, as shown in Figure 5. The optimal
average accuracy is achieved when k is set to 1.0.
As the value of k increases, the performance of
the fused model improves on the QNLI dataset but
decreases on the RTE and WNLI datasets. This
change can be attributed to the larger size of the
QNLI dataset, which results in greater influence of
its fine-tuned model parameters during merging.

6 Conclusion

In this paper, we propose a novel merging ap-
proach called FroM, which utilizes the Frobenius
norm to quantify weight discrepancies between
models without any training data. This method
adjusts adaptively through a hyperparameter, and
the merged parameters are derived using a closed-
form solution. For the experimental part, we first
test our method on three models based on Llama-2-
13B, and the results show that FroM outperforms
existing baseline methods. Next, while baseline
methods struggle to effectively integrate three fine-
tuned models based on Qwen2.5-7B, our approach
outperforms the baseline methods, demonstrating
its effectiveness and robustness. Finally, when
merging LoRA adapters, FroM also shows supe-
rior performance over other methods. Overall, the
proposed FroM method demonstrates outstanding
performance in both FFT and LoRA scenarios, ef-
fectively alleviating the task interference issue in
model merging and showcasing strong applicabil-
ity. We hope this work inspires future research in
the model merging field, helps address existing task
interference issues, and provides a new perspective
for tackling these challenges.

4681

Limitations

The limitations of our FroM method can be summa-
rized as follows: (1) the necessity for a more com-
prehensive theoretical analysis of the algorithm,
and (2) the crucial selection of the hyperparameter
k. Future research directions with significant po-
tential include providing an interpretable metric for
task interference. By analyzing the upper bound
of the model’s performance, it may be possible to
assess and determine whether the model merging
process is feasible.

Acknowledgments

Xiaocheng Feng and Bing Qin are the co-
corresponding authors of this work. We thank
the anonymous reviewers for their insightful com-
ments. This work was supported by the Na-
tional Natural Science Foundation of China (NSFC)
(grant 62276078, U22B2059), the Key R&D Pro-
gram of Heilongjiang via grant 2022ZX01A32, and
the Fundamental Research Funds for the Central
Universities (XNJKKGYDJ2024013).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa. 2022. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint
arXiv:2209.04836.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio,
Paul Röttger, Dan Jurafsky, Tatsunori Hashimoto,
and James Zou. 2023. Safety-tuned llamas:
Lessons from improving the safety of large lan-
guage models that follow instructions. arXiv preprint
arXiv:2309.07875.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220–235.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao
Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang,
Liang Zhang, et al. 2021. Pre-trained models: Past,
present and future. AI Open, 2:225–250.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
arXiv preprint arXiv:2403.14608.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2022. Dataless knowledge fu-
sion by merging weights of language models. arXiv
preprint arXiv:2212.09849.

Jia LI, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju

4682

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024. Numinamath. [https://huggingface.co/
AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf).

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Jinliang Lu, Ziliang Pang, Min Xiao, Yaochen Zhu, Rui
Xia, and Jiajun Zhang. 2024. Merge, ensemble, and
cooperate! a survey on collaborative strategies in
the era of large language models. arXiv preprint
arXiv:2407.06089.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao,
Qipeng Guo, and Xipeng Qiu. 2023. Full parameter
fine-tuning for large language models with limited
resources. arXiv preprint arXiv:2306.09782.

Kaifeng Lyu, Haoyu Zhao, Xinran Gu, Dingli Yu,
Anirudh Goyal, and Sanjeev Arora. 2024. Keeping
LLMs aligned after fine-tuning: The crucial role of
prompt templates. arXiv preprint arXiv:2402.18540.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–
17716.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas-
cal Frossard. 2023. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Ad-
vances in Neural Information Processing Systems,
36:66727–66754.

Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar,
Aafaq Khan, and Arsalan Shahid. 2024. The ulti-
mate guide to fine-tuning llms from basics to break-
throughs: An exhaustive review of technologies, re-
search, best practices, applied research challenges
and opportunities. arXiv preprint arXiv:2408.13296.

Riccardo Salami, Pietro Buzzega, Matteo Mosconi, Ja-
copo Bonato, Luigi Sabetta, and Simone Calderara.
2024. Closed-form merging of parameter-efficient
modules for federated continual learning. arXiv
preprint arXiv:2410.17961.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

George Stoica, Pratik Ramesh, Boglarka Ecsedi,
Leshem Choshen, and Judy Hoffman. 2024. Model
merging with svd to tie the knots. arXiv preprint
arXiv:2410.19735.

Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu,
Bo Du, Yixin Chen, and Dacheng Tao. 2023. Pa-
rameter efficient multi-task model fusion with partial
linearization. arXiv preprint arXiv:2310.04742.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Interna-
tional Conference on Learning Representations.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dim-
itris Papailiopoulos, and Yasaman Khazaeni. 2020.
Federated learning with matched averaging. arXiv
preprint arXiv:2002.06440.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, et al. 2022. Model soups: averag-
ing weights of multiple fine-tuned models improves
accuracy without increasing inference time. In In-
ternational conference on machine learning, pages
23965–23998. PMLR.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023a. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023b. Parameter-efficient
fine-tuning methods for pretrained language models:
A critical review and assessment. arXiv preprint
arXiv:2312.12148.

4683

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2024. Ties-merging: Re-
solving interference when merging models. Ad-
vances in Neural Information Processing Systems,
36.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023a. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi
Yan, and Wei Hu. 2023b. Going beyond linear mode
connectivity: The layerwise linear feature connec-
tivity. Advances in neural information processing
systems, 36:60853–60877.

4684

Appendix

A Proof of the expression

The objective function given in Equation 6 can be reformulated as follows:

L(A,B) =
n∑

i=1

∥θi∥kF ∥BA− θi∥2F

=
n∑

i=1

∥θi∥kF Tr
(
(BA− θi)

⊤(BA− θi)
)

=
n∑

i=1

∥θi∥kF Tr
(
A⊤B⊤BA− θ⊤

i BA−A⊤B⊤θi + θ⊤
i θi

)

=
n∑

i=1

∥θi∥kF Tr(A⊤B⊤BA)− 2
n∑

i=1

∥θi∥kF Tr(A⊤B⊤θi) +
n∑

i=1

∥θi∥kF Tr
(
θ⊤
i θi

)

Treating matrix A as a constant, we differentiate matrix B with respect to it, noting that the final term is a
constant, which yields:

∂L(A,B)

∂B
= 2

n∑

i=1

∥θi∥kFBAA⊤ − 2
n∑

i=1

∥θi∥kFθiA
⊤

Let ∂L(A,B)
∂B = 0, then:

B =

(
n∑

i=1

∥θi∥kFθiA
⊤
)(

n∑

i=1

∥θi∥kFAA⊤
)†

Similarly, treating matrix B as a constant, we differentiate with respect to matrix A, yielding:

∂L(A,B)

∂A
= 2

n∑

i=1

∥θi∥kFB⊤BA− 2

n∑

i=1

∥θi∥kFB⊤θi

Let ∂L(A,B)
∂A = 0, then:

A =

(
n∑

i=1

∥θi∥kFB⊤B

)†(n∑

i=1

∥θi∥kFB⊤θi

)

4685

B Experimental Details

B.1 Fine-tuning Settings
For the integration of LoRA adapters, the hyperpa-
rameters are set as follows: the ranks of matrices
A and B are fixed at 16, the batch size is set to
32, and the learning rate is set to 1e− 5. We first
train a classification head using the MNLI dataset.
Since MNLI is a three-class task, we modify it
to a binary classification output by combining the
neutral and contradiction categories into a sin-
gle not_entailment class. For each task within
the QNLI, RTE, and WNLI datasets, we train the
models for 10 epochs and select the checkpoint
with the highest accuracy for subsequent LoRA
adapter integration.

B.2 Test Details
For the integration of FFT models, we perform a
linear search over the linear weighting coefficient
α used to merge the three Llama-2-13B-based mod-
els. The results are presented in Table 4. Based on
these results, we select α = 1.0 as the final linear
weighting coefficient to achieve a more balanced
outcome. For the Qwen2.5-7B-based models, due
to their poor merging performance, we also adopt
α = 1.0 without extensive tuning.

Regarding the evaluation, we conducted tests
using AlpacaEval, GSM8K, MATH, HumanEval,
and MBPP datasets. In the case of AlpacaEval, the
model’s performance is evaluated using the gpt-3.5-
turbo model. Additionally, the final success rate
metric selected is length_controlled_winrate,
rather than win_rate. When merging models from
the Qwen-2.5 series, we minimized the use of line
breaks in the prompts. Excessive line breaks nega-
tively impact the model’s responses, leading to the
generation of repetitive and meaningless text.

When merging LoRA adapters, we also employ
a linear search strategy to determine the optimal
linear weighting coefficient α and the hyperparam-
eter k used in our FroM method. Based on this
search, we select α = 0.7 and k = 0.9. Detailed
results are presented in Table 5 and 6.

C Additional Comparison with RegMean

We evaluate scenarios involving the merging of
three and four models, in order to better demon-
strate the generalization capability of our FroM
method. Specifically, we fine-tune the Meta-Llama-
3-8B base model on four tasks using supervised
fine-tuning: Instruction Following, Mathematical

α AlpacaEval GSM8K MATH HumanEval MBPP Avg.

0.5 49.76 61.79 10.32 6.71 4.60 26.64
0.6 53.88 63.53 9.60 8.54 3.00 27.71
0.7 55.35 62.40 7.92 10.37 7.20 28.65
0.8 56.58 60.05 7.18 11.59 13.80 29.84
0.9 57.00 55.57 5.62 4.88 17.00 28.01
1.0 52.84 42.00 6.20 15.85 18.20 27.02

Table 4: Results of the linear search for the linear
weighting coefficient used in merging Llama-2-13B-
based models.

α QNLI RTE WNLI Avg.

0.5 70.18 68.23 53.52 63.98
0.6 81.59 67.87 57.75 69.07
0.7 90.10 67.51 52.11 69.91
0.8 93.78 66.06 49.30 69.71
0.9 94.84 64.98 46.48 68.77
1.0 78.69 68.23 57.75 68.22

Table 5: Results of the linear search for the linear
weighting coefficient used in merging LoRA adapters.

k QNLI RTE WNLI Avg.

0.5 92.00 65.34 50.70 69.35
0.6 92.84 66.06 49.30 69.40
0.7 93.54 64.98 52.11 70.21
0.8 94.07 64.62 53.52 70.74
0.9 94.51 64.26 53.52 70.76
1.0 94.82 63.18 52.11 70.04

Table 6: Results of selecting different values of k in
LoRA merging for our FroM method.

Reasoning, Code Generation, and Safety. The
corresponding datasets are Alpaca-cleaned (Taori
et al., 2023), NuminaMath-CoT (LI et al., 2024),
Code Alpaca (Chaudhary, 2023), and Saferpaca
(Bianchi et al., 2023). For evaluation across
these four dimensions, we use IFEval (Zhou et al.,
2023a), GSM8K, HumanEval, and DirectHarm4
(Lyu et al., 2024), where the metric is the propor-
tion of safe responses. We merge three and four
models to better evaluate the generalization ability
of these methods. The results are shown in Table 7.
Since RegMean leverages a large amount of train-
ing data, FroM does not outperform RegMean but
still achieves better results than the other methods.

The results of the linear search for the linear
weighting coefficient and the hyperparameter used
in FroM within the range [0.5, 1.0] are presented in
Table 8 and Table 9. The final choices are α = 0.6
and k = 0.5.

4686

Merging Methods IFEval GSM8K HumanEval DirectHarm4 Avg.

Baseline

/ 21.34 38.36 35.37 57.75 38.21

Fine-tuning

/ 41.13 42.76 45.73 93.00 55.66

3-Model Merging

Task Arithmetic 44.48 48.29 44.51 / 45.76
TIES-Merging 44.48 39.42 43.90 / 42.60
DARE 26.38 0.00 0.00 / 8.79
DARE+TIES-Merging 26.38 0.00 0.00 / 8.79
RegMean 43.65 52.08 45.12 / 46.95
FroM 44.48 49.89 46.34 / 46.90
DARE+FroM 37.05 33.74 2.44 / 24.41

4-Model Merging

Task Arithmetic 43.17 51.55 36.59 71.25 50.64
TIES-Merging 43.65 44.73 45.73 64.50 49.65
DARE 26.38 0.00 0.00 70.50 24.22
DARE+TIES-Merging 26.38 0.00 0.00 67.25 23.41
RegMean 43.17 54.97 42.07 97.75 59.49
FroM 45.20 52.01 45.12 65.25 51.90
DARE+FroM 21.94 32.68 0.61 72.50 31.93

Table 7: Merging results of three and four models based on Meta-LLaMA-3-8B, in comparison with RegMean.

α IFEval GSM8K HumanEval DirectHarm4 Avg.

3-Model Merging

0.5 43.88 49.96 43.90 / 45.91
0.6 44.48 48.29 44.51 / 45.76
0.7 41.25 47.38 32.93 / 40.52
0.8 41.61 41.77 20.73 / 34.70
0.9 40.41 37.83 9.15 / 29.13
1.0 37.17 33.36 2.44 / 24.32

4-Model Merging

0.5 43.65 52.08 42.07 64.25 50.51
0.6 43.17 51.55 36.59 71.25 50.64
0.7 39.21 49.51 23.17 74.50 46.60
0.8 39.57 46.47 7.93 73.50 41.87
0.9 29.14 43.06 0.61 64.75 34.39
1.0 21.94 32.68 0.61 72.75 32.00

Table 8: Results of the linear search for the weighting
coefficient used for additional comparison with Reg-
Mean.

k IFEval GSM8K HumanEval DirectHarm4 Avg.

3-Model Merging

0.5 44.48 49.89 46.34 / 46.90
0.6 44.48 48.07 45.73 / 46.09
0.7 43.41 47.01 47.56 / 45.99
0.8 43.88 48.67 45.73 / 46.09
0.9 43.17 47.76 45.73 / 45.55
1.0 43.76 46.25 43.90 / 44.64

4-Model Merging

0.5 45.20 52.01 45.12 65.25 51.90
0.6 45.44 49.66 45.73 64.25 51.27
0.7 46.04 48.52 46.95 64.00 51.38
0.8 44.00 46.40 46.34 69.50 51.56
0.9 43.41 47.99 48.17 66.75 51.58
1.0 42.45 46.40 44.51 65.00 49.59

Table 9: Results of the linear search for k used for
additional comparison with RegMean.

4687

