
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 4656–4673
November 4-9, 2025 ©2025 Association for Computational Linguistics

Prejudge-Before-Think: Enhancing Large Language Models at Test-Time
by Process Prejudge Reasoning

Jianing Wang1†, Jin Jiang1,2, Yang Liu1, Mengdi Zhang1, Xunliang Cai1
1 Meituan, Beijing, China

2 Peking University, Beijing, China
lygwjn@gmail.com, jiangjin@stu.pku.edu.cn

{liuyang509, zhangmengdi02, caixunliang}@meituan.com

Abstract

In this paper, we introduce a new process pre-
judge strategy in LLM reasoning to demon-
strate that bootstrapping with process prejudge
allows the LLM to adaptively anticipate the
errors encountered when advancing the subse-
quent reasoning steps, similar to people some-
times pausing to think about what mistakes may
occur and how to avoid them, rather than rely-
ing solely on trial and error. Specifically, we
define a prejudge node in the rationale, which
represents a reasoning step, with at least one
step that follows the prejudge node that has no
paths toward the correct answer. To synthe-
size the prejudge reasoning process, we present
an automated reasoning framework with a dy-
namic tree-searching strategy. This framework
requires only one LLM to perform answer judg-
ing, response critiquing, prejudge generation,
and thought completion. Furthermore, we de-
velop a two-phase training mechanism with su-
pervised fine-tuning (SFT) and reinforcement
learning (RL) to further enhance the reason-
ing capabilities of LLMs. Experimental re-
sults from competition-level complex reason-
ing demonstrate that our method can teach the
model to prejudge before thinking and signifi-
cantly enhance the reasoning ability of LLMs 1.

1 Introduction

Large language models (LLMs) have made great in-
roads in solving natural language processing (NLP)
tasks (Brown et al., 2020; Ouyang et al., 2022;
OpenAI, 2023), but still struggle to produce ac-
curate answers to complex reasoning problems.
Prior research tackles this challenge by designing
well-crafted prompts to elicit the LLM to follow a
step-by-step thinking paradigm, such as in-context
learning (Liu et al., 2023), chain-of-thought (Wei
et al., 2022; Wang et al., 2023b, 2024c), and agen-
tic learning (Park et al., 2023). However, these

1Code and data is released at https://github.com/
wjn1996/Prejudge-Before-Think.

Prejudge in Real World

Key Step: The entrance of the curve
Prejudge Hint: Warning Road Ahead

Note: When driving a car reaching a
curve near to the cliff, a warning sign
which can be viewed as a prejudge hint
to explicitly elicit drivers to slow down to
avoid failing

Prejudge in LLM Reasoning

Key Step: The reasoning step where exists one
next step that has no correct rationales
Prejudge Hint: The denominator cannot be 0

Note: When LLM finishes step 1, the searching
procedure will be performed and find that there
exists Step 2 that has no correct rationale, so it
should provide prejudge hint after Step 1

Q: If $f(a, k) = \frac{(a - k)^2 - 9}{a + 1}$ and $F(f(a,
k))$ represents the sum of real a when $f(a, k)=0$.
Please calculate $F(f(a, 2))$.

...

4
❌Let $f(a, 2)=0$,

we can ... So,
a is 5 or -1.

First, we know
that $f(a, 2)=
\frac{(a - 2)^2
- 9}{a+1}$

...

...

...

4

4
❌

❌

Step1 Step2

Wait, I should
consider that the
denominator cannot
be 0... <|prejudge|>

Let $f(a, 2)=0$, we
can ... So, a is 5
or -1 (remove).

5
✅

5
✅Step1-Prejudge

Step2'

Figure 1: Examples of prejudge in the scenarios of the
real world and LLM reasoning.

approaches akin to the System 1-style fast-thinking
paradigm (Kahneman, 2011) inevitably bring er-
rors to the inherent steps, making it hard to generate
accurate and complete solutions in one breath.

Inspired by human recognition of System 2 (Kah-
neman, 2011), which is denoted as a slow-thinking
paradigm emulates human reasoning through a
slower and deeper thought process (Zelikman et al.,
2024), most of the works have unveiled that extend-
ing the reasoning with verification, critiquing, and
refinement components can significantly enhance
the reasoning capability (Cobbe et al., 2021; Light-
man et al., 2024; Snell et al., 2024; Qi et al., 2024;
Shinn et al., 2023; Gou et al., 2024; Plaat et al.,
2024; Madaan et al., 2023). One major benefit is
that these components can offer precise feedback,
which is a valuable signal that enables the LLM
to adapt or roll back the current of thought oppor-
tunely (Kumar et al., 2024; Wang et al., 2024e;
Chen and Li, 2024). In addition, a series of re-
search (e.g., OpenAI’s o1 (Jaech et al., 2024),
DeepSeek R1 (Guo et al., 2025)) has explored that
post-training in the supervised fine-tuning (SFT) or
reinforcement learning (RL) stage can inject these
capabilities into model parameters and achieve high

4656

https://github.com/wjn1996/Prejudge-Before-Think
https://github.com/wjn1996/Prejudge-Before-Think

grades by scaling test-time cost, which spurred the
development of System 2-like reasoning (Brown
et al., 2024; Snell et al., 2024; Shao et al., 2024;
Rafailov et al., 2023). Despite this success, the
generated responses expose that LLMs tend to fre-
quently prefer trial and error, leading to redundant
error and reflection information, which is not very
advocated in human consciousness.

In this paper, we introduce a new thought mode
named process prejudge 2, which is defined as prior
consideration or judgment about what is about to
happen in the subsequence reasoning steps. In the
real world, this capability aims to help people learn
from past experiences and improve the accuracy of
each thinking step when solving similar problems
in the future. It is usually acquired after repeated in-
teraction with the environment. Take a vivid exam-
ple illustrated in Figure 1, when driving a vehicle
and reaching the entrance of a curve close to a cliff,
an experienced driver will slow down in advance.
This is a prejudge action based on the experience
that the vehicle will fall off the cliff due to iner-
tia. Therefore, a natural question arises: is process
prejudge useful for LLM in reasoning scenarios?

To reach this goal, we first define a prejudge
node in the rationale, which is a specific reasoning
step, and at least one step follows the prejudge node
that has no path toward the correct answer. For ex-
ample in Figure 1, the LLM may make mistakes
at “Step 2” and it can be prevented when prompted
with a prejudge hint as “The denominator cannot
be 0”. To synthesize large-scale step-by-step rea-
soning data with process prejudge, we then propose
an automatic reasoning framework with a dynamic
tree-searching strategy, which is similar to Monto
Carlo Tree Search (MCTS) (Kocsis and Szepesvári,
2006; Silver et al., 2016) but needs only one LLM
to perform thinking, critiquing, prejudging and ver-
ifying during searching.

Ultimately, we construct 234k data from multi-
ple open-source datasets to train the LLM with SFT
and RL techniques. The extensive experiments con-
ducted on mathematics and logic reasoning demon-
strate that the paradigm of prejudge before use can
substantially boost the LLM’s reasoning ability.

2Notely, the “prejudge” in this paper means the “predictive
ability” instead of “prejudice”, we use the word “prejudge”
aim to distinguish it from “predict” in machine learning.

2 Preliminary

2.1 LLM Reasoning with Textual Rationale
Given a LLM πθ(·) which is a transformer-based
pre-trained model to map the input prompt to gen-
erated text, where θ is the parameters. For the
reasoning task, given a question Q, the LLM can
provide a step-by-step reasoning chain consist-
ing of T intermediate step, and the entire chain
can be formed as Z = [z1, · · · , zT], where zi
(i ∈ [1, T]) means the specific step3. The reasoning
chain can be step-by-step generated by the LLM as
zi = πθ(I = I(Q, z1, · · · , zi−1)), where I(· · ·) is
function to concate all generated prefix sequences
to form the input prompt I.

2.2 Bootstrapping with Tree Searching
Suppose that the prefix reasoning steps of Q
are Z1:i−1 = [z1, · · · , zi−1], the set of the
next steps can be obtained by repeated sampling
with the greedy method as {zij |zij ∼ πθ(I =
I(Q, z1, · · · , zi−1))}. Tree searching is an itera-
tive generation process via repeatedly concatenat-
ing each sampled next step with a prefix sequence
to form a new sequence before the next repeated
sampling. Thus, the tree generated from zi−1 can
be formed as Tzi−1 . In this tree, zi−1 represents
the root node in the first layer, and each node in
the second layer is the child node of zi−1 denoted
as {zij}Nj=1, which is also the root node in the cor-
responding tree Tzij , N is the number of repeated
sampling at each layer. The searching process stops
when the final answer is generated, and the last rea-
soning step can be viewed as the leaf node. Similar
to MCTS, each node has a corresponding value
score denoted as v(·) that represents the potential
that reaches the correct answer.

3 Methodology

In this section, we introduce a new reasoning
method named Prejudge Before Think (PBT),
which aims to elicit the LLM pauses to deeply
consider what errors will occur and how to bypass
them instead of excessive trial and error. Hence, we
pose three questions to illustrate how our approach
works:

• R1: Where should the LLM pause to make a
prejudgement when reasoning?

3To elicit the LLM to generate this chain, the question Q
should be articulated through a well-crafted instruction prompt
or template. We omit this component to minimize the use of
variables in writing.

4657

Q: Three vertices of a cube are $P=(7,12,10)$, $Q=(8,8,1)$, and $R=(11,3,9)$. What is the
surface area of the cube? Let's think step by step, and put the final answer within \boxed{}.

Thought Generating
Step1: To find the surface area of the cube, we first must
determine the side length of the cube. First, calculate the distance
between points P and Q, ...<|think|>

Step2: Using the distance formula, we can find the distance
between points \(P \) and \(Q \): ... <|think|>

Q 1 2 Tree
Searching🌲

I
I

3'

4'

5'

6'

...

...

... ...

...

...

...

Prejudge Node

⚠️

LLM
🤖

I=Q+Step1+Step2

v(3')=1
v(4')=0v(6')=0

v(5')=1v(I)=1

Process Estimating

Q LLM
🤖

✅

❌

❌

Q 1 2
I 3'

4'

6' ...

... ...

...

...
Error

Analysis
Prejudge

Hint

Putting all incorrect steps after
current reasoning step

LLM as a critic

LLM
🤖

Reasoning Critiquing

LLM as a judger

Prejudge Estimating
Step2-Prejudge: Wait, I need to ensure that the distance calculated
between the points is actually the edge length of the cube; it should not
be the length of a face diagonal. I should ... <|prejudge|>

Ip
3 3v 4 5 ✅

6 6v 7 8

...

...
Thinking next step Verifying next step

... ✅

Searching for estimating

❌

❶

❷

❸

❹

LLM as a generator

The 2nd searching aims at estimating
if prejudge hint is useful for Step 2 before thinking

Q 1 2 2p

Tree
Searching🌲

Ip=Q+Step1+Step2+Prejudge
...

The 1st searching aims at estimating
Step 2 can be a prejudge node

❺ Thought Expanding

Step3: Distance between P and
Q: is \[d_{PQ} = \sqrt{(8 - 7)^2
+ (8 - 12)^2 + (1 - 10)^2} = ... =
7\sqrt{2} \] <|think|>

Step3-Verify: Since all distances
are equal to \(7\sqrt{2} \), these
points ... Thus:\[7\sqrt{2} =
a\sqrt{2} \implies a = 7 \]<|verify|>

Q 1 2 2p 3 3v

Expanding rationale with
next thinking and verify step

❷❸❹❺
❷❸❹ ...

Continual Dynamic
Searching Util FinishIfor_next=Q+Step1+Step2+Prejudge+Step3+Verify

Figure 2: The automated reasoning framework for synthesizing process prejudge with the dynamic tree-searching.

• R2: How to obtain the trajectory with PBT au-
tomatically without any external annotation?

• R3: How to boost the LLM reasoning capabil-
ity with post-training techniques?

3.1 Prejudge Node in Rationale
To answer the first question, we observe that
humans can use historical experience to help
them make prejudgements before facing potential
risks (Kahneman, 2011). Likewise, the time before
errors occur is more suitable for stimulating the
ability of LLMs to prejudge. Hence, we define this
position as prejudge node.

Formally, given a question Q and the correspond-
ing prefix reasoning steps Z1:i. To detect whether
the LLM needs to make prejudgement after the
step zi, we can perform tree searching from this
step to construct a tree denoted as Tzi , the value
of each tree node can be obtained by hard estima-
tion (Wang et al., 2024e). Specifically, we first use
LLM-as-a-judger to check whether the final answer
is correct, and the value of each leaf node can be
set as 1 (or 0) if the result is correct (or incorrect).
Then, the value of each internal node zk can be
backtracked from the leaf node as:

v(zk) =

{
Judger(zk), if k = T

max({v(zk+1j)}Nj=1)), if k < T
(1)

where Judger(·) ∈ {0, 1} is the function of LLM-
as-a-judger, zk+1j is the child node of zk.

Based on this value score, we can define a pre-
judge value that represents whether LLM should
make prejudgement at the step zi, which can be
calculated as:

vp(zi) = v(zi)× 1(min({v(zi+1j)}Nj=1) = 0),
(2)

where vp(·) is the prejudge value and the step zi
is a prejudge node when vp(zi) = 1, 1(·) is the
indicator function, zi+1j is the child node of zi.
Through this definition, at least one step follows the
prejudge node and has no path toward the correct
answer. This indicates that the LLM may make
errors in the future so that needs to be prejudged.

3.2 Dynamic Tree Searching
We thus introduce how to synthesize the reason-
ing data with prejudge. We present a dynamic
tree searching strategy in the reasoning framework,
which enables only one LLM to find the prejudge
position, generate critical information, and perform
deep thought. The whole framework is shown in
Figure 2, consisting of five stages: thought gen-
erating, process estimating, reasoning critiquing,
prejudge estimating and thought expanding.

Thought Generating Given a question, we first
to let the LLM generate a few steps without boot-
strapping. Inspired by (Wang and Zhou, 2024),
the start sequence has a greater impact on the per-
formance of subsequent reasoning, especially for
smaller models, so a lower temperature coefficient

4658

is selected to ensure the accuracy of reasoning in
the first few steps. By default, we urge the model
to generate two steps as the prefix sequence. Each
thinking step will be ended with a special tag as
“<|think|>”.

Process Estimating Once the prefix sequence
is generated, we improve the temperature coeffi-
cient and perform the first tree-searching process.
This tree-searching aims to estimate whether the
current step is a prejudge node, we can obtain the
corresponding prejudge value vp. Specifically, if
the prejudge value is 0, it means that there is no
need to make prejudgement here, we can randomly
select one child node and concatenate it with the
prefix sequence for the next iteration. Otherwise,
we will continue the following process to obtain
the prejudge hint before the next thinking step.

Reasoning Critiquing This stage aims to gener-
ate error analysis based on the incorrect reasoning
path derived from the tree search. Specifically, we
concatenate the question and prefix sequence with
all incorrect reasoning paths to form a prompt and
use the LLM as a critic (Shinn et al., 2023; Gou
et al., 2024) to generate the corresponding error
analysis. Generally, error analysis summarizes and
induces existing reasoning results, making all rea-
soning steps visible. In contrast, LLM prejudging
guesses possible errors without examining subse-
quent reasoning steps. To achieve this goal, we
design an instruction prompt for the LLM to gen-
erate a prejudging hint based on the error analysis,
and this information will be used to prompt the
LLM to avoid errors. The prejudging hint can be
tagged with a “<|prejudge|>” token at the end of the
text. The specific prompt and generated examples
are shown in Appendix C.3.

Prejudge Estimating After the prejudge hint is
generated, we aim to evaluate its usefulness for the
upcoming reasoning steps. Specifically, we per-
form tree-searching for the second time. Unlike
the tree-searching conducted during the process es-
timation stage, the requirements of the generated
response consist of three components: i) the next
step thought (tagging with “<|think|>”): we expect
the LLM to reconsider the next reasoning step in
light of the prejudge hint; ii) the verification of
the next step thought (tagging with “<|verify|>”):
we introduce an explicit verification step for the
LLM to check if the new thought aligns with the
prejudge hint; and iii) the remaining steps with

Algorithm 1 Algorithm for Prejudge Reasoning
Require: LLM πθ , question Q, and prompt function I(·).
1: Generating the first step via z0 = πθ(I(Q));
2: for iteration i in [0, · · · , T] do
3: Expanding the next steps {zij |zij ∼ πθ(I =

I(Q, z1, · · · , zi−1))};
4: Process Estimating: Perform Judgement to detect

whether each of next steps are prejudge node.
5: Reasoning Critiquing: Generate self-critique informa-

tion to guide the LLM to reach correct answer in the
next step;

6: Prejudge Estimating: Estimate whether the whole rea-
soning chains is correct.

7: end for
8: Obtain all training data and perform the first-time SFT,

obtaining the model πθ1 .
9: Use πθ1 to distill a large-scale prejudge-like data, and

perform the second-time SFT and RL training, obtaining
the model πθ2 .

10: return The LLM model πθ2 .

bootstrapping (tagging with “<|think|>”): we em-
ploy tree-searching to sample all reasoning steps to
determine if the prejudge hint enables the LLM to
arrive at the correct answer, utilizing the rejected
sampling method to select the appropriate prejudge
hint. We have crafted an instruction prompt to en-
courage the LLM to generate the aforementioned
information, with the prompt and generated exam-
ples displayed in Appendix C.4.

Thought Expanding Finally, we expand the rea-
soning chain with a prejudge hint, the selected next
step consideration, and the corresponding verifi-
cation. Then, we continue the next iteration of
dynamic searching until we reach the final answer.

3.3 Two-phase Post-training
Dynamic tree searching involves significant test-
time costs because it necessitates constructing mul-
tiple trees for each query. To equip the more effi-
cient data synthesis pipeline with prejudge reason-
ing, we introduce a two-phase post-training strat-
egy that allows for simultaneous data synthesis and
model training. The whole algorithm is illustrated
in Algorithm 1.

First Phase: Cold Start via Dynamic Search-
ing In the first phase, the aim is to construct
a small amount of data with prejudge reason-
ing. To collect this data, we choose a small
instruct-based LLM to finish the dynamic tree-
searching and obtain all correct rationales by re-
jected sampling. Specifically, we select multiple
training sources from GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), SVAMP (Pa-
tel et al., 2021), AQuA (Ling et al., 2017), Nu-

4659

mina Math (LI et al., 2024), American Invitational
Mathematics Examination (AIME 1983∼2023) 4,
PRM800K (Lightman et al., 2024), and MetaMath
QA (Yu et al., 2024) and thus filter out about
21k complex queries for dynamic tree-searching,
which can derive long CoT responses by zero-shot
prompting (Kojima et al., 2022). Finally, we gather
approximately 39k rationales and utilize these train-
ing samples to train a base LLM through SFT as
the cold start model.

Second Phase: Distillation for Data Scaling
The second phase focuses on self-evolution, aim-
ing to leverage the SFT mode from the first phase
to perform distillation. A large-scale, prejudge-
style rationale will be constructed using a simple
zero-shot prompting (Kojima et al., 2022). To en-
hance the quality of the rationale, we employ the
self-consistency strategy to recall the most reliable
rationale, which can be utilized as the prejudge
estimation stage in dynamic tree-searching. We
thus select the remaining queries from the train-
ing sources, obtaining approximately 195k ratio-
nales. During the training periods, we combine
the curated data generated from both phases and
retrain SFT on the base LLM. For the RL, we per-
form Group Relative Policy Optimization (GRPO)
(Shao et al., 2024) and Directly Preference Opti-
mization (DPO) (Rafailov et al., 2023) algorithms
to investigate how performance improvement.

4 Experiments

4.1 Implementation Settings

In the first phase, we choose Qwen2.5-14B-
Instruct (Team, 2024) as the small instruct-based
LLM to perform dynamic tree-searching. By de-
fault, we use the “\n\n” as the step terminator,
and the maximum sampling step length is 14 for
each query. Complete implementation details of
our dynamic tree-search algorithm are provided in
Appendix B.1. For the cold start SFT, we choose
Qwen2.5-7B/32B (Team, 2024) as the base LLM.
In the second phase, we use the cold start 32B LLM
to perform the distillation, and the number of re-
peated samples in Self-consistency is N = 32. For
the SFT and RL, we choose Qwen2.5-32B as the
base model.

4https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions.

4.2 Benchmarks and Evaluations

We select several competition-level reasoning
benchmarks to demonstrate how LLM perfor-
mance is improved with prejudge reasoning.
These include GSM8K (Cobbe et al., 2021),
MATH-500 (Lightman et al., 2024), AQuA (Ling
et al., 2017), SVAMP (Patel et al., 2021), Theo-
remQA (Chen et al., 2023), AIME-2024 (MAA,
2024), GAOKAO-2023 (Zhang et al., 2023), and
GPQA-Diamond (Rein et al., 2023). We follow pre-
vious works (Wang et al., 2024e) to use Qwen2.5-
72B-Instruct (Team, 2024) as a judger to evaluate
whether the generated answer matches the ground
truth, and the metric is accuracy value.

4.3 Baselines

We select the following baselines to compare with
our method: 1) Chain-of-Thought (CoT) Train-
ing, which aims to distill multiple rationales using
CoT prompts for the supervised fine-tuning (SFT)
training data. 2) Self-Refine (Kumar et al., 2024),
which seeks to correct mistakes based on outcome-
or process-based feedback. We obtain this rationale
by prompting the small LLM with a well-designed
zero-shot instruction. 3) PBT w/o. Verify, a variant
version of our method that removes all verification
components in dynamic tree searching; this means
the LLM only makes prejudgments without any
verification. 4) PBT w. CoT, which combines all
data from prejudge and CoT. We also select GPT-
4o (Hurst et al., 2024) and OpenAI’s o1 (Jaech
et al., 2024) as strong baselines to demonstrate
state-of-the-art performance.

4.4 Main Results

Table 1 presents the performance comparison with
multiple baselines on competition-level complex
reasoning tasks. Through the results, we thus draw
the following conclusion: 1) Our PBT consistently
outperforms CoT training and Self-Refine across
all benchmarks using both 7B and 32B backbones.
Specifically, in the first phase, PBT achieves an av-
erage accuracy of 59.0% and 65.6% for Qwen2.5-
7B and Qwen2.5-32B, representing improvements
of 3.5% and 2.4% over CoT and 2.5% and 1.2%
over Self-Refine. 2) The “verify” components in
PBT are crucial for ensuring the accuracy of pre-
judgment. We can see that all results decline when
this component is removed, except for Qwen2.5-
32B on AIME-2024. 3) Combining CoT data with
PBT can further enhance the accuracy of the 32B

4660

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

Methods GSM8K MATH AQuA SVAMP Theorem AIME GAOKAO GPQA Avg.500 QA 2024 2023 Diamond

OpenAI’s o1 - 94.8 - - - 74.4 - 77.3 -
GPT-4o 94.2 76.8 - 93.9 49.7 9.3 88.1 50.6 -
DeepSeek R1 - 97.3 - - - 79.8 - 71.5 -

dist. Qwen-7B - 92.8 - - - 55.5 - 49.1 -
dist. Qwen-32B - 94.3 - - - 72.6 - 62.1 -

Base Model: Qwen2.5-7B

CoT#1 84.6 65.2 67.7 89.0 39.3 6.7 71.4 19.7 55.5
Self-Refine#1 85.1 66.4 68.3 90.7 40.6 6.7 71.0 23.5 56.5
PBT#1 87.6 68.0 70.1 90.3 41.4 13.3 73.5 27.8 59.0

w/o. Verify 85.9 67.4 68.9 89.7 41.1 10.0 73.1 25.6 57.7
w. CoT 85.6 67.2 68.5 91.7 41.0 13.3 73.4 26.2 58.4

PBT#2 89.4 72.6 71.7 92.0 43.2 16.7 75.5 31.3 61.6

Base Model: Qwen2.5-32B

CoT#1 91.7 77.6 75.2 89.3 48.7 6.7 77.6 38.4 63.2
Self-Refine#1 92.6 77.3 76.8 90.4 49.3 10.0 79.4 39.4 64.4
PBT#1 92.4 78.2 80.3 91.0 50.6 13.3 78.6 40.2 65.6

w/o. Verify 92.1 77.8 79.1 90.7 50.0 13.3 78.3 39.5 65.1
w. CoT 93.9 77.8 79.2 92.3 51.8 16.7 83.7 38.9 66.8

PBT#2 93.1 81.0 81.7 93.7 52.0 20.0 85.6 47.7 69.4

Table 1: Main results (%) over multiple complex reasoning tasks. PBT (prejudge before think) is our method, and
the subscript #1 and #2 denotes the first phase and second phase, respectively.

Methods PBT#1 w. DPO w. GRPO

GSM8K 87.6 90.5 91.7
MATH500 68.0 70.4 71.2
AQuA 70.1 74.0 74.8
SVAMP 90.3 91.5 92.2
Theorem QA 41.4 44.8 45.3
AIME2024 13.3 16.7 26.7
GAOKAO2023 73.5 78.4 79.3
GPQA-Diamond 27.8 28.6 30.1

Avg. 59.0 61.9 63.9

Table 2: The improvement (%) of RL for Qwen2.5-7B.

model. We find that PBT#1 w. CoT outperforms
PBT#1 by 1.2%, indicating that larger models can
benefit from diverse rationales, enabling them to
utilize various styles of rationales to solve prob-
lems. 4) The two-phase strategy can bring obvious
improvement. Compared with PBT#1, PBT#2 can
further improve by 3%, demonstrating the effec-
tiveness of two-phase post-training strategy.

5 Analysis

5.1 Performance Improvement of RL

To investigate performance improvements when
applying RL with pre-judgment reasoning, we uti-
lize two RL techniques to further enhance the SFT
model in the first phase. Results shown in Table 2
demonstrate that the two RL methods substantially

1 4 8 16 32 64
Repeated Samples N

60

65

70

75

80

85

Pa
ss

@
N

(%
)

w/o. prejudge
w. prejudge

1 4 8 16 32 64
Repeated Samples N

70

75

80

85

90

95

Pa
ss

@
N

(%
)

w/o. prejudge
w. prejudge

Figure 3: Effect of prejudge in complex reasoning with
Qwen2.5-7B-Instruct (Left) and Qwen2.5-32B-Instruct
(Right).

outperform the SFT. GRPO achieves the best per-
formance, surpassing DPO by 2.0%, indicating that
online RL is more effective in boosting reasoning
ability than the offline method.

5.2 Effect of Prejudge in Test-time
To explore why prejudgment is effective for com-
plex reasoning, we designed a thought completion
task that demonstrates how the LLM reasons with
prejudgment hints. Specifically, we randomly se-
lect 2,000 queries from the second phase that do
not appear in the first phase and keep only the first
prejudge node with the prejudge hint and the prefix-
generated steps. For each query, we can obtain
two incomplete responses: one that contains only
the thinking step (i.e., remove the prejudge hint)
and the other that contains the prejudge hint (i.e.,

4661

1 2 3 4 5
Number of Prejudge (K)

75
76
77
78
79
80
81
82

Ac
cu

ra
cy

 (%
)

1 2 3 4 5
Number of Prejudge (K)

50
52
54
56
58
60

Ac
cu

ra
cy

 (%
)

Figure 4: Effect of the number of prejudge hints over
GSM8K (Left) and MATH500 (Right).

maintain the prejudge hint). We choose Qwen2.5-
7B/32B-Instruct as the LLM. To observe the per-
formance, we let the LLM complete the reasoning
steps with only the prompt “Let’s think step by step”
concatenated with the query and prefix-generated
steps. We then draw a curve to see the performance
when the test time scales up. Figure 3 shows that
the Pass@N value is, on average, 3% higher with
prejudge hints than without, suggesting that the
rationale provided by the prejudge hint can better
assist the LLM in avoiding mistakes.

5.3 Effect of the Number of Prejudge

In this section, we explore what’s the effect of
the number of prejudge in LLM reasoning. We
sample five different sets Dk from the synthesized
data in the first phase for SFT training, where
k ∈ {1, 2, 3, 4, 5} denotes the number of the pre-
judge node in the corresponding rationale. In other
words, each rationale in Dk has only k prejudge
hint. We perform data processing to ensure that
the number of queries and rationales in each set
is consistent. To this end, each set has about 9k
examples for SFT training. The results displayed
in Figure 4 suggest that adding the number of pre-
judge hints into the training data can significantly
improve the reasoning ability of LLM. We believe
that the increase in the number of prejudges will
indirectly increase the overall length of rationale,
which can further improve the certainty of LLM’s
output when thinking about problems (Jaech et al.,
2024; Guo et al., 2025). In addition, the more pre-
judges there are, the more likely the model will
make prejudges, which can better guide the model
to make incorrect prejudges before thinking.

5.4 Compatibility with o1-like Reasoning

We end this section by investigating the perfor-
mance of mixing with o1-like training data. We
select data that has been widely used recently from
LIMO (Ye et al., 2025), which utilizes less data

Methods LIMO LIMO + PBT Gain

GSM8K 95.1 95.5 +0.4
MATH500 94.8 94.0 -0.8
AQuA 86.9 87.8 +0.9
SVAMP 91.3 92.3 +1.0
Theorem QA 54.6 58.0 +4.6
AIME2024 57.1 54.6 -2.5
GAOKAO2023 81.0 83.6 +2.6
GPQA-Diamond 66.7 63.0 -3.7

Table 3: The performance (%) with o1-like data.

Methods PBT#1 MCTS Math-Shepherd

GSM8K 87.6 79.50 85.1
MATH500 68.0 53.1 66.2
AIME2024 13.3 6.7 13.3
GPQA-Diamond 27.8 19.5 26.2

Table 4: The comparison of performance (%) with Math-
Shepherd and MCTS.

to achieve optimal performance on competition-
level tasks. We gather all queries from AIME
(1983∼2023) to create prejudge reasoning data
through dynamic tree searching and blend them
with LIMO. As shown in Table 3, we can obtain
the following suggestion: Although prejudge be-
fore use is not entirely o1-like data, simply mixing
them can still maintain very high performance, and
some benchmarks can be further improved. This
shows that prejudge can be better integrated into
o1-like reasoning, which also provides a new mode
as a reference for o1-like reasoning community.

5.5 Effectiveness of Dynamic Tree-searching

We provide a comparison with some related search-
ing methods, such as MCTS, Math-Shepherd. In
the experiment, MCTS is directly used for the
sampling generation of the model, while Math-
Shepherd directly reproduces the reward model
training and RL enhancement used in the original
paper. Finally, it is compared with PBT. The result
is shown in Table 4, our PBT can obtain the best
performances. This suggests that moving the sam-
pling phase forward to training can significantly
improve the inference performance of the model,
surpassing the performance of using tree sampling
in the inference phase.

6 Related Works

LLM Reasoning by Learning From Mistakes
Developing the LLM with capabilities for correct-
ing, reflecting, critiquing, and verifying has been

4662

one of the essential strategies for enhancing the
LLM’s reasoning ability. The essence of these
methods is to learn from mistakes. Previous works
aim to design zero-shot prompts or few-shot ex-
amples to encourage the LLM to utilize external
feedback (Madaan et al., 2023; Welleck et al., 2023;
Xi et al., 2023; Wang et al., 2024b). However, these
methods heavily rely on external feedback and limit
the model’s ability to think spontaneously. To rem-
edy this dilemma, most recent works focus on post-
training by injecting these abilities (i.e., correcting,
reflecting, critiquing, and verifying) into model’s
parameters (Gao et al., 2024a; Wang et al., 2023a;
Zhou et al., 2024). Another line of research lever-
ages self-training ways to develop these capabil-
ities (Qu et al., 2024; Kumar et al., 2024; Zheng
et al., 2024; Xi et al., 2024). Unlike them, we
focus on the ability to prejudge, which helps the
LLM take a moment to consider potential mistakes
and think about how to avoid them before acting.
Prejudging is also a way to learn from mistakes
without trial and error.

Post-training in LLM Reasoning With the de-
velopment of OpenAI’s o1 (Jaech et al., 2024) and
Deepseek R1 (Guo et al., 2025), the post-training
with test-time scaling has been powerful and ver-
satile techniques in reasoning enhancement. These
studies typically increase inference computation
by extending the model’s thinking chains with tree
search (Hao et al., 2023; Zhang et al., 2024; Ze-
likman et al., 2024; Nori et al., 2024; Gao et al.,
2024b), process-based optimization (Uesato et al.,
2022; Wang et al., 2024e; Lightman et al., 2024;
Wang et al., 2024a), and self-play (Huang et al.,
2023; Chen et al., 2024; Wang et al., 2024d; Wu
et al., 2024). To enhance the reasoning ability of
small language models, some recent works per-
form distillation by DeepSeek R1 on Qwen2.5-7B
and achieve satisfactory performance (Wen et al.,
2025; Ye et al., 2025). Unlike them, we use a small
Instruct-like LLM and propose a dynamic tree-
searching algorithm to synthesize rationale with
prejudgment and verification and develop a two-
phase post-training strategy to enhance the model’s
reasoning ability. We also investigate the perfor-
mance gains achieved by scaling up the testing time,
which indicates that prejudging before thinking can
effectively elicit the model to avoid mistakes.

7 Discussions

We thus provide discussions about this works.

The relation with Tree-of-Thoughts and MCTS
For Tree-of-Thought (Yao et al., 2023) and
MCTS (Kocsis and Szepesvári, 2006; Silver et al.,
2016), which belong to System 1 mode, aim to im-
prove the self-consistency method by ensembling
multiple step-wise trajectories derived from tree-
searching. Yet, our works focus on exploring a
novel reasoning behavior in System 2 mode (i.e.,
prejudge reasoning) along with self-verify and re-
flection. Hence, we have very different research
motivations. From the perspective of technique,
we found that the Tree-of-thought and MCTS can
only help us find the prejudge node through the
estimated value, but the tree is still static so it can-
not combine self-verify and reflection to dynami-
cally adjust the reasoning path when meeting the
prejudge node and obtain the corresponding pre-
judge hint. Therefore, we introduce a dynamic
tree-searching algorithm, which can be viewed as
the major extension in Tree-of-Thought.

The difference from PBT to Math-Shepherd
For Math-Shepherd (Wang et al., 2024e) and our
work, both of them use tree-searching method to
estimate the value of each step, and we refer to
the value estimation strategy in Math-Shepherd to
help find the prejudge node. However, the main
differences are still obvious: 1) Math-Shepherd fo-
cuses on using tree-search to form step-wise labels
to train a PRM model, which can be viewed as a
reward model or value model in RL, and the exper-
iments demonstrate that the PRM model is effect
for RL. 2) our PBT focuses on LLM (policy) itself
by using the dynamic tree-searching algorithm to
construct prejudge-like trajectories along with self-
verify and reflection, and the two-stage training
strategy is designed to elicit the prejudge behavior
in LLM reasoning via SFT and RL to enhance the
accuracy of complex tasks.

8 Conclusion

In this paper, we present a novel paradigm of "pre-
judge before thinking" inspired by System 2’s slow
thinking mode. We propose synthesizing training
data using a dynamic tree-searching method with a
small LLM and introduce a two-phase post-training
strategy to enhance the model’s reasoning ability
with SFT and RL techniques. We conduct extensive
experiments on multiple competition-level complex
reasoning benchmarks, and the results demonstrate
that the rationale embedded with the prejudged
hints can guide the LLM to avoid making mistakes.

4663

Limitations

Our paper has some limitations, which we leave for
future work:

The computational cost of dynamic tree-
searching The dynamic tree-searching algorithm
incurs a high computational cost in the experiments.
Each query takes about 5 minutes to generate four
entire rationales. We attempted to use few-shot
examples to prompt the strong LLM to generate
the rationale with a preconceived notion, but we
found that the preconceived notion was incorrect
and the responses were not coherent. In the fu-
ture, we will focus on the time efficiency on the
searching strategy.

The reasoning format We found that recent re-
search from Deepseek R1 suggests that large-scale
reinforcement learning based on a backbone can
stimulate the model’s self-reflection and slow think-
ing style. In contrast, our work focuses on data
synthesis to construct System 2-like data. However,
this leads us to a research topic concerning how
to selectively activate specific reasoning modes
through the RL stage. In other words, can we
design a reward function or other strategies that
allow LLMs to make prejudgments and combine
them with some novel modes (e.g., aha moments)
to enhance reasoning capabilities?

Social Impact and Ethics

In terms of social impact, the reasoning data we
utilize are all from publicly available data sources.
Infusing this information into the model’s reason-
ing process will not introduce additional bias. How-
ever, the open-source backbones we used may have
some negative impacts, such as gender and social
bias. Our work would unavoidably suffer from
these issues. We suggest that users should carefully
address potential risks when the proposed method
is deployed online.

References
Bradley C. A. Brown, Jordan Juravsky, Ryan Saul

Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,
and Azalia Mirhoseini. 2024. Large language mon-
keys: Scaling inference compute with repeated sam-
pling. CoRR, abs/2407.21787.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Sijia Chen and Baochun Li. 2024. Toward adaptive
reasoning in large language models with thought roll-
back. In ICML. OpenReview.net.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. 2023. Theoremqa: A theorem-driven question
answering dataset. In EMNLP, pages 7889–7901.
Association for Computational Linguistics.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. In ICML. OpenReview.net.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Bofei Gao, Zefan Cai, Runxin Xu, Peiyi Wang,
Ce Zheng, Runji Lin, Keming Lu, Junyang Lin,
Chang Zhou, Wen Xiao, Junjie Hu, Tianyu Liu,
and Baobao Chang. 2024a. LLM critics help catch
bugs in mathematics: Towards a better mathemati-
cal verifier with natural language feedback. CoRR,
abs/2406.14024.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu,
Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie
Wen. 2024b. Interpretable contrastive monte carlo
tree search reasoning. CoRR, abs/2410.01707.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: large language models can self-correct
with tool-interactive critiquing. In ICLR. OpenRe-
view.net.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen
Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In EMNLP, pages 8154–8173. Association
for Computational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In NeurIPS.

4664

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023. Large
language models can self-improve. In EMNLP, pages
1051–1068. Association for Computational Linguis-
tics.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, Alek-
sander Madry, Alex Baker-Whitcomb, Alex Beu-
tel, Alex Borzunov, Alex Carney, Alex Chow, Alex
Kirillov, Alex Nichol, Alex Paino, Alex Renzin,
Alex Tachard Passos, Alexander Kirillov, Alexi Chris-
takis, Alexis Conneau, Ali Kamali, Allan Jabri, Al-
lison Moyer, Allison Tam, Amadou Crookes, Amin
Tootoonchian, Ananya Kumar, Andrea Vallone, An-
drej Karpathy, Andrew Braunstein, Andrew Cann,
Andrew Codispoti, Andrew Galu, Andrew Kondrich,
Andrew Tulloch, Andrey Mishchenko, Angela Baek,
Angela Jiang, Antoine Pelisse, Antonia Woodford,
Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi
Nayak, Avital Oliver, Barret Zoph, Behrooz Ghor-
bani, Ben Leimberger, Ben Rossen, Ben Sokolowsky,
Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
Bowen Cheng, Brad Lightcap, Brandon Walkin,
Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
Kellogg, Brydon Eastman, Camillo Lugaresi, Car-
roll L. Wainwright, Cary Bassin, Cary Hudson,
Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern,
Channing Conger, Charlotte Barette, Chelsea Voss,
Chen Ding, Cheng Lu, Chong Zhang, Chris Beau-
mont, Chris Hallacy, Chris Koch, Christian Gibson,
Christina Kim, Christine Choi, Christine McLeavey,
Christopher Hesse, Claudia Fischer, Clemens Winter,
Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin
Koumouzelis, and Dane Sherburn. 2024. Gpt-4o sys-
tem card. CoRR, abs/2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney,
Alex Iftimie, Alex Karpenko, Alex Tachard Pas-
sos, Alexander Neitz, Alexander Prokofiev, Alexan-
der Wei, Allison Tam, Ally Bennett, Ananya Ku-
mar, Andre Saraiva, Andrea Vallone, Andrew Du-
berstein, Andrew Kondrich, Andrey Mishchenko,
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar-
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi-
naiev, Botao Hao, Bowen Baker, Brandon Houghton,
Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li,
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher
Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David
Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free-
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl,
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such,
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit,

Geoff Salmon, Giambattista Parascandolo, Gildas
Chabot, Grace Zhao, Greg Brockman, Guillaume
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng,
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren,
Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte,
and Ilge Akkaya. 2024. Openai o1 system card.
CoRR, abs/2412.16720.

Daniel Kahneman. 2011. Thinking, fast and slow. Far-
rar, Straus and Giroux.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In ECML, volume 4212
of Lecture Notes in Computer Science, pages 282–
293. Springer.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In NeurIPS.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,
John D. Co-Reyes, Avi Singh, Kate Baumli, Shariq
Iqbal, Colton Bishop, Rebecca Roelofs, Lei M.
Zhang, Kay McKinney, Disha Shrivastava, Cosmin
Paduraru, George Tucker, Doina Precup, Feryal M. P.
Behbahani, and Aleksandra Faust. 2024. Training
language models to self-correct via reinforcement
learning. CoRR, abs/2409.12917.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif Ra-
sul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin,
Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lam-
ple, and Stanislas Polu. 2024. Numinamath.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In ICLR. Open-
Review.net.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In ACL, pages 158–167. Association for
Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9):195:1–195:35.

MAA. 2024. American invitational mathematics
examination - aime. URL https://maa.org/math
-competitions/american-invitational-mathematics-
examination-aime.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback. In NeurIPS.

4665

Harsha Nori, Naoto Usuyama, Nicholas King,
Scott Mayer McKinney, Xavier Fernandes, Sheng
Zhang, and Eric Horvitz. 2024. From med-
prompt to o1: Exploration of run-time strategies
for medical challenge problems and beyond. CoRR,
abs/2411.03590.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Joon Sung Park, Joseph C. O’Brien, Carrie Jun Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: Interactive sim-
ulacra of human behavior. In UIST, pages 2:1–2:22.
ACM.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In NAACL, Online. Associa-
tion for Computational Linguistics.

Aske Plaat, Annie Wong, Suzan Verberne, Joost
Broekens, Niki van Stein, and Thomas Bäck. 2024.
Reasoning with large language models, a survey.
CoRR, abs/2407.11511.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller llms stronger problem-solvers. CoRR,
abs/2408.06195.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. 2024. Recursive introspection: Teaching
language model agents how to self-improve. In
NeurIPS.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Ste-
fano Ermon, Christopher D. Manning, and Chelsea
Finn. 2023. Direct preference optimization: Your
language model is secretly a reward model. CoRR,
abs/2305.18290.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
GPQA: A graduate-level google-proof q&a bench-
mark. CoRR, abs/2311.12022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In NeurIPS.

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Vedavyas
Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. 2016. Mastering the game of go with deep neu-
ral networks and tree search. Nat., 529(7587):484–
489.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters.
CoRR, abs/2408.03314.

Qwen Team. 2024. Qwen2. 5: A party of foundation
models. Qwen (Sept. 2024). url: https://qwenlm.
github. io/blog/qwen2, 5.

Jonathan Uesato, Nate Kushman, Ramana Kumar,
H. Francis Song, Noah Y. Siegel, Lisa Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins.
2022. Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275.

Chaojie Wang, Yanchen Deng, Zhiyi Lv, Zeng Liang,
Jujie He, Shuicheng Yan, and Bo An. 2024a. Q*:
Improving multi-step reasoning for llms with deliber-
ative planning. CoRR, abs/2406.14283.

Jianing Wang, Qiushi Sun, Xiang Li, and Ming Gao.
2024b. Boosting language models reasoning with
chain-of-knowledge prompting. In ACL, pages 4958–
4981. Association for Computational Linguistics.

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming
Gao, and Julian J. McAuley. 2024c. Instructgraph:
Boosting large language models via graph-centric
instruction tuning and preference alignment. In ACL,
pages 13492–13510. Association for Computational
Linguistics.

Jianing Wang, Yang Zhou, Xiaocheng Zhang, Mengjiao
Bao, and Peng Yan. 2024d. Self-evolutionary large
language models through uncertainty-enhanced pref-
erence optimization. CoRR, abs/2409.11212.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024e. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. In ACL,
pages 9426–9439. Association for Computational
Linguistics.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean
O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu,
Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. 2023a. Shepherd:
A critic for language model generation. CoRR,
abs/2308.04592.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023b. Self-consistency im-
proves chain of thought reasoning in language mod-
els. In ICLR. OpenReview.net.

4666

https://doi.org/10.48550/arXiv.2303.08774

Xuezhi Wang and Denny Zhou. 2024. Chain-of-thought
reasoning without prompting. In NeurIPS.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2023. Generating sequences by learning to
self-correct. In ICLR. OpenReview.net.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An,
Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng,
Shousheng Jia, and Xiangzheng Zhang. 2025. Light-
r1: Curriculum sft, dpo and rl for long cot from
scratch and beyond. Preprint, arXiv:2503.10460.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-
ing Yang, and Quanquan Gu. 2024. Self-play pref-
erence optimization for language model alignment.
CoRR, abs/2405.00675.

Zhiheng Xi, Senjie Jin, Yuhao Zhou, Rui Zheng,
Songyang Gao, Jia Liu, Tao Gui, Qi Zhang, and Xu-
anjing Huang. 2023. Self-polish: Enhance reasoning
in large language models via problem refinement. In
EMNLP, pages 11383–11406. Association for Com-
putational Linguistics.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang,
Guanyu Li, Yiwen Ding, Wei He, Boyang Hong,
Shihan Dou, Wenyu Zhan, Xiao Wang, Rui Zheng,
Tao Ji, Xiaowei Shi, Yitao Zhai, Rongxiang Weng,
Jingang Wang, Xunliang Cai, Tao Gui, Zuxuan Wu,
Qi Zhang, Xipeng Qiu, Xuanjing Huang, and Yu-
Gang Jiang. 2024. Enhancing LLM reasoning via
critique models with test-time and training-time su-
pervision. CoRR, abs/2411.16579.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. CoRR,
abs/2305.10601.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. In arXiv. arXiv.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2024.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. In ICLR. OpenRe-
view.net.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna
Jayasiri, Nick Haber, and Noah D. Goodman. 2024.
Quiet-star: Language models can teach themselves
to think before speaking. CoRR, abs/2403.09629.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024. Rest-mcts*: LLM
self-training via process reward guided tree search.
In NeurIPS.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,
Liang He, and Xipeng Qiu. 2023. Evaluating the
performance of large language models on GAOKAO
benchmark. CoRR, abs/2305.12474.

Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji,
Hongyu Lin, Yaojie Lu, Xianpei Han, Debing Zhang,
and Le Sun. 2024. Critic-cot: Boosting the reason-
ing abilities of large language model via chain-of-
thoughts critic. CoRR, abs/2408.16326.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2024. Solving
challenging math word problems using GPT-4 code
interpreter with code-based self-verification. In ICLR.
OpenReview.net.

4667

https://arxiv.org/abs/2503.10460
https://arxiv.org/abs/2503.10460
https://arxiv.org/abs/2503.10460
https://doi.org/10.48550/ARXIV.2305.10601
https://doi.org/10.48550/ARXIV.2305.10601

Task Domain Source Sampling The 1st Phase The 2nd Phase
#Search #Train #Search #Train

GSM8K MATH (Cobbe et al., 2021) 7,473 7,473 7,473 0 0
MATH MATH (Hendrycks et al., 2021) 3,994 3,994 2,000 1,994 1,200
SVAMP MATH (Patel et al., 2021) 700 700 700 0 0
AQuA MATH (Ling et al., 2017) 97467 7,000 5,350 1,650 210

Numina Math MATH (LI et al., 2024) 34,473 12,000 4,800 22,473 15,800
AIME (1983∼2023) MATH (LI et al., 2024) 919 919 678 241 89

PRM800K MATH (Lightman et al., 2024) 12,000 12,000 7,800 4,200 1,390
MetaMath QA MATH (Yu et al., 2024) 150,000 0 0 150,000 63,077

Table 5: The data statistics of each task. The data for #Train is smaller than #Search because rejected sampling.

A Data Sources

For data collection, we select multiple train-
ing sources from GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), SVAMP (Pa-
tel et al., 2021), AQuA (Ling et al., 2017), Nu-
mina Math (LI et al., 2024), American Invitational
Mathematics Examination (AIME 1983∼2023) 5,
PRM800K (Lightman et al., 2024), and MetaMath
QA (Yu et al., 2024). The details of each source is
shown in Table 5.

B Experimental Setup Details

B.1 Details of Dynamic Tree-Searching
We develop a dynamic tree-searching to release pro-
cess estimation and prejudge estimation. We first
numbered and named the internal nodes of each
tree. In order to facilitate tracing each node, we
adopted a continuous coding strategy. For example,
the node “2-4-1-3” is located at the fourth layer in
the tree, and it is one of the child nodes of “2-4-1”.
the reasoning step at the node “2-4-1-3” can be
viewed as the third repeated sample generated from
“2-4-1”.

Since tree search is an algorithm with exponen-
tially increasing complexity, we agree that the num-
ber of repeated samplings at each layer is different
and, finally, ensure that the number of paths (from
root to all leaf nodes) does not exceed 1024.

C Prompt Engineering

C.1 Prompt Format
In this paper, we choose Qwen2.5-7B and Qwen2.5-
32B as the backbone for post-training, so we design
a new prompt format for the subsequence training.
The format is:

<|im_start|>user
{Question}

5https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions.

Given a problem and the corresponding ground
truths, the task is to verify if the generated
answer can match one of the candidate ground
truths. Please output "TRUE" or "FALSE"
only.

Below is the one you need to verify:
Start of Problem
{PROBLEM}
End of Problem
Start of Generated Answer
{FINAL_ANSWER}
End of Generated Answer
Start of Ground Truth
{GROUND_TRUTH}
End of Ground Truth
Start of Verification

Prompt for LLM-as-a-Judger

Figure 5: The prompt for LLM-as-a-Judger.

Let's think step by step, and put
the final answer within \boxed{}.
<|im_end|>
<|im_start|>assistant

where “{Question}” is the placeholder for complex
query, “<|im_start|>”, “<|im_end|>” are the special
tokens in vocabulary set of Qwen2.5 model.

C.2 Prompt for LLM-as-a-Judger
The prompt for making the LLM-as-a-Judger is
shown in Figure 5. The prompt will be used in dy-
namic tree searching to detect whether each reason-
ing path is correct (i.e., matching the final answer
in the box with the ground truth).

C.3 Prompt for LLM-as-a-Critic
The prompt for generating analysis and prejudge
hint is shown in Figure 7. This prompt will be

4668

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

Question: {Question}
Let's use the self conversation to think step by
step. Do not output '\\n\\n' at will, output '\\n\\n'
only when each complete reasoning step is
completed. After reasoning, please output the
final answer in \\boxed.
If you see a prejudge prompt, you must first
proceed the thinking step ONLY (please be
careful to avoid the mistakes mentioned in the
prejudge). Then verify on this new thinking
step ONLY whether it is correct and
successfully avoided the errors mentioned in
the prejudge. If you find that there are still
some errors, please rethink and improve it until
you think it is correct. Lastly, continually
completing the rest thinking steps. You must
also maintain the conversation style like the
previous thinking step.
The output format must be following:
Thinking Only Next Step
...
Verifying And Correcting Only Next Step
...
Thinking The Rest Steps
...

Prompt for Prejudge Estimating

Figure 6: The prompt for prejudge estimating.

utilized in dynamic tree searching to produce error
analysis for all incorrect rationales and construct a
prejudge hint for the prejudge node.

C.4 Prompt for Prejudge Estimating
The prompt for prejudge estimating is shown in
Figure 6. When the prejudge hint is generated, we
can use this prompt to elicit the LLM to generate
the next thinking step, verify that step, and proceed
with the remaining steps to reach the final answer.

D Case Study

To show how the LLM reasoning by prejudge, we
provide two cases to demonstrate the rationale. The
cases are shown in Figure 8 to Figure 10.

4669

You possess expertise in solving mathematical problems through a systematic, step-by-step reasoning
process during which you are dedicated to preventing repeating any errors analyzed in experiences.
Here is a problem and the corresponding correct answer:

Problem:
```
{Problem}
```
Correct Answers:
```
{Correct_Answer}
```

Now, I will give you the initialized reasoning solution steps, and some corresponding incorrect
completions which aim at continually finishing the rest of the solution steps but reach the wrong
answer. The reasoning situations are in the following:

Initialized Reasoning Steps:
```
{Prefix_Response}
```

{Suffix_Incorrect_Responses}

Please help me and give some following tips:

1) Errors Analysis: Each incorrect completion reaches an incorrect answer due to misconception,
please list the specific mistakes details.
Cautions:
- DO NOT disclose the complete number (e.g., "Completion #1").

2) Prejudge: You will start reasoning from the given initialized step, please generate some detailed
prejudge information to ask yourself to avoid making errors.
Cautions:
- The generated prediction information is intended to guide the next step of reasoning to avoid errors,
it should be closed to the possible errors and the detailed error analysis;
- The generated prediction information prefers to tell yourself what mistakes to avoid, rather than
remind yourself to verify, so DO NOT output any contents like "I should double-check ..." or "I need
to verify ...";
- The generated prejudge should use coherent sentences without explicitly using line breaks or bold
formatting for listing;
- When generating prejudge, please use a self-talk style with only one of the modal particles ("Wait",
"Oh", "Hmmm", "Hold on") to perform smooth out.

Please note that the final output format must be in the following template:
Errors Analysis
...
Prejudge
...

Prompt for LLM-as-a-Critic

Figure 7: The prompt for LLM-as-a-Critic.

4670

The sum of the following seven numbers is exactly 19: $a_1 = 2.56$, $a_2 = 2.61$, $a_3 = 2.65$, $a_4 = 2.71$,
$a_5 = 2.79$, $a_6 = 2.82$, $a_7 = 2.86$. It is desired to replace each a_i by an integer approximation A_i ,
$1\le i \le 7$, so that the sum of the A_i 's is also 19 and so that M , the maximum of the "errors" $\lvert A_i-
a_i \rvert$, is as small as possible. For this minimum M , what is $100M$?

Question

Response
To solve this problem, we start by calculating the sum of the given numbers:

\[a_1 = 2.56, \quad a_2 = 2.61, \quad a_3 = 2.65, \quad a_4 = 2.71, \quad a_5 = 2.79, \quad a_6 = 2.82, \quad a_7 =
2.86 \]<|think|>

The sum of these numbers is:

\[
2.56 + 2.61 + 2.65 + 2.71 + 2.79 + 2.82 + 2.86 = 19
\]<|think|>

> Wait, when rounding the numbers, I must carefully consider which numbers to round up or down to minimize the
maximum error. Avoiding arbitrary choices and ensuring a balanced approach is crucial. Additionally, ensure that the
sum of the rounded numbers equals 19 and verify the error calculations to ensure they are minimized.<|prejudge|>

To find the integer approximations A_i for each a_i such that the sum of the A_i is 19 and the maximum error
M is minimized, we first need to consider the possible integer values for each a_i. The integer nearest to each
a_i is:

\[
A_1 = 3, \quad A_2 = 3, \quad A_3 = 3, \quad A_4 = 3, \quad A_5 = 3, \quad A_6 = 3, \quad A_7 = 3
\]

However, this would result in a sum of:

\[
3 + 3 + 3 + 3 + 3 + 3 + 3 = 21
\]

We need to adjust some of these values to achieve a sum of 19. We will start by examining the deviations of each
a_i from the nearest integers and decide which values to adjust.<|think|>

The nearest integer values are too high, so we need to round down for some values to get the total sum to 19. We
should balance the rounding to minimize the maximum error. Let’s start by rounding down all values and then adjust
if necessary.<|verify|>

> Wait, I should carefully consider the order in which I round the numbers to achieve the sum of 19 and minimize the
maximum error. For each number, I should choose the rounding that results in the smallest possible maximum error,
and verify that the sum of the rounded numbers is exactly 19. Additionally, I need to carefully calculate the
maximum error after rounding up or down each value, ensuring that I don't miss the optimal combination.
<|prejudge|>

We start by rounding each a_i to the nearest integer and then adjust the rounding if necessary to ensure the sum of
the A_i's equals 19. Let's first consider rounding each a_i to the nearest integer:

- $a_1 = 2.56 \rightarrow 3$
- $a_2 = 2.61 \rightarrow 3$
- $a_3 = 2.65 \rightarrow 3$
- $a_4 = 2.71 \rightarrow 3$
- $a_5 = 2.79 \rightarrow 3$
- $a_6 = 2.82 \rightarrow 3$
- $a_7 = 2.86 \rightarrow 3$

Figure 8: The case of prejudge reasoning (part 1).
4671

The sum of these rounded values is:

\[
3 + 3 + 3 + 3 + 3 + 3 + 3 = 21
\]

This sum is too high, so we need to round down some of the values to achieve a sum of 19. We will calculate the
errors for rounding down each value and choose the optimal combination.<|think|>

We need to find a combination of rounding down values to achieve a sum of 19 while minimizing the maximum
error. Let's start by rounding down the smallest values first:

1. If we round down $a_1 = 2.56$ and $a_2 = 2.61$ to 2:
 \[
 2 + 2 + 3 + 3 + 3 + 3 + 3 = 19
 \]

 Errors:
 \[
 \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
 \]
 \[
 \lvert A_2 - a_2 \rvert = \lvert 2 - 2.61 \rvert = 0.61
 \]

 Maximum error is 0.61.

2. If we try rounding down $a_1 = 2.56$ and $a_3 = 2.65$ to 2:
 \[
 2 + 2 + 3 + 3 + 3 + 3 + 3 = 19
 \]

 Errors:
 \[
 \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
 \]
 \[
 \lvert A_3 - a_3 \rvert = \lvert 2 - 2.65 \rvert = 0.65
 \]

 Maximum error is 0.65.

We should continue this process and consider other combinations to ensure the error is minimized.<|verify|>

> Wait, I must ensure that I carefully select which numbers to round up or down to achieve the sum of 19 with the
smallest possible maximum error. Avoiding arbitrary choices and ensuring a balanced approach is crucial.
Additionally, I need to verify that the sum of the rounded numbers equals 19 and calculate the errors accurately to
ensure they are minimized. I should focus on rounding the values with the smallest deviations first and adjust
accordingly to maintain the least overall error.<|prejudge|>

To find the optimal combination of rounding down the values, let's evaluate the deviations and choose the best
rounding strategy:

Figure 9: The case of prejudge reasoning (part 2).

4672

1. If we round down $a_1 = 2.56$ and $a_2 = 2.61$ to 2:
 \[
 \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
 \]
 \[
 \lvert A_2 - a_2 \rvert = \lvert 2 - 2.61 \rvert = 0.61
 \]
 Maximum error is 0.61.

2. If we round down $a_1 = 2.56$ and $a_3 = 2.65$ to 2:
 \[
 \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
 \]
 \[
 \lvert A_3 - a_3 \rvert = \lvert 2 - 2.65 \rvert = 0.65
 \]
 Maximum error is 0.65.

3. If we round down $a_2 = 2.61$ and $a_3 = 2.65$ to 2:
 \[
 \lvert A_2 - a_2 \rvert = \lvert 2 - 2.61 \rvert = 0.61
 \]
 \[
 \lvert A_3 - a_3 \rvert = \lvert 2 - 2.65 \rvert = 0.65
 \]
 Maximum error is 0.65.<|think|>

We see that rounding down $a_1 = 2.56$ and $a_2 = 2.61$ to 2 results in a maximum error of 0.61, which is the
smallest among the evaluated combinations. Let's verify if there are any other better combinations:

- Rounding down $a_1 = 2.56$ and $a_4 = 2.71$ to 2:
 \[
 \lvert A_1 - a_1 \rvert = \lvert 2 - 2.56 \rvert = 0.56
 \]
 \[
 \lvert A_4 - a_4 \rvert = \lvert 2 - 2.71 \rvert = 0.71
 \]
 Maximum error is 0.71.

- Rounding down $a_2 = 2.61$ and $a_4 = 2.71$ to 2:
 \[
 \lvert A_2 - a_2 \rvert = \lvert 2 - 2.61 \rvert = 0.61
 \]
 \[
 \lvert A_4 - a_4 \rvert = \lvert 2 - 2.71 \rvert = 0.71
 \]
 Maximum error is 0.71.

The combination of rounding down $a_1 = 2.56$ and $a_2 = 2.61$ to 2 yields the smallest maximum error of 0.61.
<|verify|>

Therefore, the smallest possible maximum error \(M \) is \(0.61 \).

To find \(100M \):<|think|>

\[
100M = 100 \times 0.61 = 61
\]

Thus, the final answer is \(\boxed{61}\).<|think|>

Figure 10: The case of prejudge reasoning (part 3).

4673

