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Abstract

Recent advancements in large language models
(LLMs) have shown promise in feature engi-
neering for tabular data, but concerns about
their reliability persist, especially due to vari-
ability in generated outputs. We introduce
a multi-level diagnosis and evaluation frame-
work to assess the robustness of LLMs in fea-
ture engineering across diverse domains, fo-
cusing on the three main factors: key vari-
ables, relationships, and decision boundary val-
ues for predicting target classes. We demon-
strate that the robustness of LLMs varies sig-
nificantly over different datasets, and that
high-quality LLM-generated features can im-
prove few-shot prediction performance by up
to 10.52%. This work opens a new direc-
tion for assessing and enhancing the reliabil-
ity of LLM-driven feature engineering in var-
ious domains. Our source code is available at
https://github.com/DohaLim/Robustness-eval.

1 Introduction

Recent breakthroughs in large language models
(LLMs) have opened new possibilities in tabular
learning, such as feature engineering, question an-
swering, and table comprehension (Fang et al.,
2024). The extensive pretrained knowledge of
LLMs, when equipped with only a few examples,
can automate costly data science workflows man-
ually handled by domain experts. Notably, recent
studies have shown that LLM-driven feature en-
gineering can help outperform traditional tabular
prediction methods, especially in a few- or zero-
shot settings (Han et al., 2024; Hegselmann et al.,
2023; Hollmann et al., 2023).

Despite these promising results, the open-ended
nature of LLM-generated outputs has raised con-
cerns about their robustness (Huang et al., 2023).
Existing approaches for feature generation focus on
either feature-feature relationships with predefined
operators (Hollmann et al., 2023) or feature-target

Figure 1: LLMs vulnerable to generating features of
varying quality (left). Measures for high-quality features
leading to performance improvement (right).

relationships with unbounded rule conditions (Han
et al., 2024). They rely on in-context learning by
LLM with arbitrary domain knowledge and a few
samples, which inherently entails risks of incon-
sistency and unreliability in outputs. Accordingly,
evaluating the reliability of LLM-generated fea-
tures remains a significant challenge.

For example, in Figure 1, given the task of pre-
dicting diabetes for a new patient, an LLM is asked
to generate a set of new features describing feature-
target relationships (i.e., between patient informa-
tion and diabetes). An ensemble classifier then uses
these new features to make a final prediction. The
LLM-generated features produced by the state-of-
the-art approach (Han et al., 2024), however, could
be ineffective (e.g., ‘Glucose ≤ 100 and Insulin
≤ 10’ for Diabetes = yes) depending on the qual-
ity of input samples and the LLM’s inherent knowl-
edge. This variability can introduce noise into the
resulting prediction probabilities, potentially de-
grading the overall classifier performance.

4630



Figure 2: Overall procedure of our framework involves a multi-level scheme of variables, relations, and values to
diagnose reliability and evaluate features generated by LLMs in feature engineering on different domains and inputs.

For more practical and reliable LLM-generated
features, it is crucial to understand the consistency
of their performance on feature engineering un-
der varying contexts. Although significant strides
have been made in evaluating the robustness of
LLM (Chang et al., 2024; Kenthapadi et al., 2024),
there remains insufficient exploration of these as-
pects in feature engineering, especially in the con-
text of feature-target relationships. A recent work
ELF-GYM (Zhang et al., 2024) has attempted
to compare LLM-generated features with human-
crafted ones, but further investigation is lacking
regarding the capabilities and limitations of LLMs
with varying domain knowledge and examples.

To address this gap, we propose a framework
that systematically diagnoses and evaluates the ro-
bustness of LLMs in feature engineering for tabular
data. We focus on how consistently LLMs maintain
reliability in engineering features for tabular pre-
diction, the most prevalent task in tabular learning.
Specifically, drawing inspiration from real-world
practices of domain experts, we identify three core
elements considered in feature engineering: golden
variable, golden relation, and golden value. Our
framework incorporates a novel multi-level scheme
to analyze LLM-generated features, specifically
addressing the following research questions.

• RQ1 (Golden Variable): Can LLMs identify key
variables highly correlated with target classes
given varying domain knowledge?

• RQ2 (Golden Relation): Can LLMs understand
the causal relationship (i.e., correlation polarity)
between golden variables and target classes?

• RQ3 (Golden Value): Can LLMs set the deci-
sion boundary values of golden variables that
differentiate the target classes?

Figure 2 shows the overall procedure of the pro-
posed diagnosis and evaluation framework. Based
on the multi-level scheme, we first conduct a relia-
bility diagnosis to assess the consistency in LLM
responses across varying contexts at each level.
This serves as a fine-grained proxy to measure the
trustworthiness of an LLM in generating features
for a given dataset. The robustness of an LLM
given a dataset directly influences the quality of the
generated features; less robust models may produce
features of varying quality, leading to prediction
performance degradation. Thus, we further con-
duct an evaluation on the generated features to in-
vestigate how high-quality features can enhance the
effectiveness of LLM-driven feature engineering
and ultimately improve the prediction performance.

Summary We demonstrated the efficacy of the
proposed framework through comprehensive exper-
iments on six LLMs and eight benchmark datasets
In brief, the multi-level diagnosis results show that
the robustness of LLMs in feature engineering
varies significantly across datasets with diverse do-
mains, and the multi-level evaluation contributes
to the improvement of few-shot prediction perfor-
mance. Our key contributions and findings are
summarized as follows:

• To the best of our knowledge, this is the first work
to address the robustness of LLMs in feature
engineering with feature-target relationships for
tabular prediction in the multi-level scheme.

• With reliability diagnosis, we confirm the sig-
nificant variations in the robustness of LLMs in
feature engineering across different datasets.

• Our analysis reveals that simply adding more
descriptions or examples does not necessarily
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lead to performance gains, whereas providing
high-quality examples is critical for improving
the robustness of LLMs in feature engineering.

• We empirically demonstrate that utilizing high-
quality features identified through our evaluation
scheme enhances the prediction performance of
the state-of-the-art method by up to 10.52%.

2 Related Work

2.1 Few-shot Tabular Learning

Tabular data, consisting of distinct data instances
(i.e., rows) and their variables (i.e., columns), is
one of the most prevalent data types in real-world.
Achieving high and robust predictive performance
can provide significant benefits in data science ap-
plications (Ruan et al., 2024). A longstanding chal-
lenge of learning on tabular data involves reason-
ing over structured and semantically sparse data,
where each variable has a fixed type (e.g., numeri-
cal or categorical) with potentially unbounded val-
ues and a domain-specific context within the pre-
dictive modeling task.

Recently, LLMs, initially trained on extensive
textual corpora, have demonstrated significant capa-
bilities in generalizing to unseen tasks (Brown et al.,
2020), prompting investigations into their utility
for tabular data learning. Early approaches focused
on converting tabular data into serialized textual
prompts, enabling direct handling by LLMs (Dinh
et al., 2022; Hegselmann et al., 2023; Wang et al.,
2023, 2024; Zhang et al., 2023). Despite its ef-
fectiveness in few-shot settings, the reliance on an
expensive LLM for the entire inference process,
coupled with limited interpretability, poses practi-
cal challenges. Consequently, the research focus
has been shifted toward utilizing LLMs primarily
as feature engineers rather than employing them in
an end-to-end, black-box prediction.

2.2 LLMs for Feature Engineering

Feature Selection Recent studies have explored
the use of LLMs for extracting domain-relevant
knowledge to aid in feature selection tasks. Choi
et al., 2022 proposed leveraging LLMs as a knowl-
edge source to guide feature selection with the
induced feature importance. Building on this
idea, Jeong et al., 2024 introduced three different
prompts that directly utilize the textual outputs gen-
erated by LLMs for feature selection tasks. Ad-
ditionally, Li et al., 2024 demonstrated that this
text-based approach is not only more robust than

traditional data-driven approaches based on sta-
tistical inference from samples but also delivers
competitive performance across diverse scenarios,
including resource-limited settings.

Feature Generation To move beyond the
straightforward selection of predefined features,
researchers have increasingly leveraged LLMs to
generate features. A line of research focuses on
feature-feature relationships, by utilizing prede-
fined operators (e.g., add or multiply). Hollmann
et al., 2023 integrated LLMs into the AutoML pro-
cess to iteratively generate additional features by
leveraging the dataset’s semantic and contextual
descriptions, enhancing model performance by em-
bedding domain knowledge. Zhang et al., 2024
proposed a framework that assesses the quality
of LLM-generated features by comparing them to
human-engineered ones. They quantified the gap
between the two feature sets in terms of semantic
and functional similarity and identified its impact
on downstream task performance.

On the other hand, another line of research em-
phasizes feature–target relationships, aiming to
generate feature-wise rules directly related to each
target class. Han et al., 2024 employed LLMs
to create binary features through rule generation
and parsing, achieving significant improvements
in downstream tabular prediction tasks. However,
the core challenge in this approach is that select-
ing and transferring meaningful rule conditions
involves navigating a large combinatorial search
space grounded in a given table schema and do-
main logic. Moreover, due to the limited input
sequence lengths in LLM, tabular inference perfor-
mance remains highly sensitive to subtle variations
in prompts and potentially spurious correlations in
samples (Wen et al., 2024; Gardner et al., 2024).

However, no studies to date have systematically
evaluated the robustness of LLMs in feature engi-
neering, specifically in the scope of feature-target
relationships, leaving a critical gap in understand-
ing their consistency and reliability. This gap is
especially important given the complex and po-
tentially unbounded search space for feature en-
gineering, which often leads models to produce
overly broad or unstable responses. In response,
our framework focuses on analyzing the reliabil-
ity of LLMs in feature–target settings, where prior
work has reported strong performance but robust-
ness has not been thoroughly studied.
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3 Methodology

3.1 Preliminary
Given a tabular dataset D = {(xi, yi)}Ni=1 of
N labeled samples, each sample xi includes an
original feature set of d dimensional variables,
F = {fj}dj=1. We utilize LLMs to transform the
original feature set F into a new feature set F ′

through prompted feature engineering, F LLM−−−→ F ′.
The transformed feature set F ′ is then used as input
to a classifier to predict the target class y. A general
pipeline of relevant works is summarized as:

1. Prompting for LLM: The first step involves
providing a well-structured input prompt to the
LLM. This input typically includes a task de-
scription, variable descriptions, and a few sam-
ples with original features and true labels.

2. Feature Selection/Generation via LLM: Once
prompted, LLMs either select relevant features
from the dataset (feature selection) or generate
new feature representations (feature generation).
For example, an LLM-driven feature rule can
transform an original feature such as Glucose
into a new feature rule Glucose ≥ 100.

3. Featurization: The next step is to transform the
new feature of samples into structured input for
classification modeling. For example, the new
feature rules {Age ≥ 40, Glucose ≥ 100,
. . .} can form a corresponding binary feature set
[0, 1, . . .] of a sample.

4. Model Training: The final step involves train-
ing a machine learning model using the new
feature set. This phase assesses the effective-
ness of LLM-generated features by evaluating
predictive performance.

3.2 Overview
To evaluate the robustness of LLMs in feature en-
gineering, we propose a multi-level diagnosis and
evaluation framework built upon three fundamental
aspects of domain expertise, which are essential for
reliable feature engineering.

• Level 1 (Identifying Key Variables): LLMs
are tested on their ability to recognize the most
important variables for a given task. Domain
experts can readily identify important variables
that are crucial for prediction, such as Glucose
in diabetes classification. We introduce pertur-
bations in variable descriptions and samples to
examine whether LLMs can consistently rank
the correct variables.

• Level 2 (Understanding Variable-Class Rela-
tionships): This level evaluates whether LLMs
can correctly determine the causal relationship
between variables and target classes. While ex-
perts understand that high Glucose levels are
positively correlated with diabetes, an LLM
might generate incorrect associations depending
on input variations. We test robustness by alter-
ing sample quality and variable value mixing.

• Level 3 (Setting Decision Boundaries): Do-
main knowledge is often reflected in the ability to
determine boundary values that separate classes.
For example, experts might set a Glucose thresh-
old above 100 to indicate diabetes. We as-
sess whether LLMs can provide stable decision
boundaries under different input perturbations.

Based on the multi-level scheme, we first assess
the reliability of LLM responses to evaluate their
ability to handle variations in input conditions. This
assessment helps determine the robustness of LLM-
driven feature engineering across different models
and datasets. Furthermore, we utilize the multi-
level scheme as a framework for feature evaluation,
ensuring that LLM-generated features align with
domain knowledge and maintain high quality.

In this study, we demonstrate how each factor in
the multi-level scheme can be derived from statisti-
cal information in datasets. In real-world scenarios,
diagnosis and evaluations can be easily performed
based on criteria established by domain experts.

3.3 Multi-level Reliability Diagnosis
At each level, we introduce variations in the in-
put and measure how LLM-generated responses
change. The variations include differences in vari-
able descriptions, ordering, sample quality, and
mixing strategies. This setup allows us to cate-
gorize LLM outputs into high-score cases, where
the predictions align with domain knowledge, and
low-score cases, where inconsistencies emerge. By
analyzing the response patterns under different con-
ditions, we gain insights into how robust LLMs are
in performing feature engineering tasks.

3.3.1 Level 1: Golden Variable
Definition Among the variables in F , we define
Fgolden as the subset of variables most strongly as-
sociated with the target class y:

Fgolden = {fj | |Covariance(fj , y)| ≥ γ}.
Specifically, covariances between each variable and
the target class are computed and ranked by their

4633



absolute values (Lazar et al., 2012). The elbow
method is then used to determine a threshold γ by
identifying the largest gaps. Categorical variables
are represented by the one-hot encoded feature hav-
ing the highest absolute covariance.

Prompt An LLM is asked to rank the variables
in order of importance, provided with a task de-
scription, variable descriptions, and examples:

. . . , rank variables according to their importance to
solve the task, . . . , [Task] [Variables] [Examples]

The detail of information for variables and example
conditions can be varied to measure reliability at
level 1. See Appendix C for the complete prompt.

Reliability Score (RS1) Using the rankings ob-
tained from the LLM’s responses and the identified
golden variables, a rank score is computed to eval-
uate how well the golden variables are positioned
in the higher ranks.

The rank score for each golden variable f ∈
Fgolden is defined as:

SRank(f) = 1− Rank(f)− 1

|F | ,

where Rank(f) represents the rank of variable f in
the LLM’s response, and |F | is the total number
of variables in the dataset. The overall reliability
score for Level 1 is calculated as the average rank
score of all golden variables.

3.3.2 Level 2: Golden Relation
Definition The golden relation between golden
variables Fgolden and target class y is defined by the
direction of their correlation:

Rgolden =

{
Positive, if Covariance(f, y) > 0,

Negative, if Covariance(f, y) < 0.

Prompt An LLM is asked to identify the rela-
tionship between key variables and target classes,
provided with a task description, variable descrip-
tions, and examples.

. . . , analyze the causal relationship or tendency be-
tween each variable and class, . . . , [Task] [Variables]
[Examples]

The number of examples, sampling methods for
examples, and variable corruption can be varied to
measure reliability at level 2. See Appendix C for
the complete prompt.

Reliability Score (RS2) To measure the accu-
racy of LLM-generated variable-class relations, we
define a correctness function based on the exact
match principle. Given a feature f ∈ Fgolden, its
golden relation RLLM from LLM, and true golden
relation Rgolden, we define a correctness score as:

Scorrect(f,RLLM, Rgolden) = 1(RLLM=Rgolden).

The overall reliability score for Level 2 is com-
puted as the average correctness score across all
golden variables.

3.3.3 Level 3: Golden Value
Definition Since domain experts typically have
insights into distinguishing classes based on key
variable values, we define the golden value as
the specific variable value that best separates the
classes. Specifically, for numerical variables f with
range [fmin, fmax], the golden value is the value v
that maximizes the AUC score:

Vgolden = argmaxv∈[fmin,fmax]AUC.

For categorical variables, the golden value is the
value most correlated with the target class.

Prompt An LLM is asked to fill in the feature
condition, provided with a task description, vari-
able descriptions, and examples.

. . . , fill in the variable conditions for each class to
solve the task. [Task] [Variables] [Examples]

The number of examples, sampling methods for
examples, and variable corruptions can be varied
to measure reliability at level 3. See Appendix C
for the complete prompt.

Reliability Score (RS3) Given a variable f ∈
Fgolden, the value VLLM returned from LLM, and
true golden value Vgolden, the correctness of pre-
dicted threshold value is evaluated using normal-
ized error as follows:

RS3 = 1− |N(VLLM)−N(Vgolden)|,

where N() is the min-max normalization. The
overall reliability score is computed as the average
correctness score across all golden variables.

3.3.4 Diagnosis Result Highlights
We preview the diagnosis results before fully dis-
cussing in Section 4.1. In Figure 3, the average
reliability scores of models in the default setting
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Figure 3: Variation of reliability scores (averaged over
three levels) for different LLMs and datasets.

Figure 4: The change of variance and bias of reliability
score with varying input for GPT-3.5-Turbo.

vary across datasets. This demonstrates the uncer-
tainty in the reliability of LLMs for feature engi-
neering, which depends on their prior knowledge of
the dataset domain. Figure 4 highlights how bias
(i.e., correct responses) and variance (i.e., con-
sistent responses) in an LLM’s reliability fluctuate
across datasets with varying inputs, emphasizing
the necessity of evaluating the quality of LLM’s
feature engineering results.

3.4 Multi-level Feature Evaluation
To address the uncertainty in the robustness of
LLMs on different datasets, we introduce a sim-
ple yet effective method for verifying the quality
of transformed feature set F ′ through the multi-
level evaluation scheme. The corresponding results
and analyses, examined using the state-of-the-art
feature engineering method (Han et al., 2024), are
presented in Section 4.2.

3.4.1 Level 1: Golden Variable
Feature Score (FS1) To evaluate the correctness
of feature selection, we measure the F1-score of
the variables in the transformed feature set FLLM
against Fgolden:

FS1 =
2× P ×R

P +R
, where

P =

∑
f∈FLLM

Scorrect(f, FLLM, Fgolden)

|FLLM|

R =

∑
f∈Fgolden

Scorrect(f, FLLM, Fgolden)

|Fgolden|
3.4.2 Level 2: Golden Relation
Feature Score (FS2) Transformed feature sets
are evaluated based on their alignment with the
class-specific variable relations. Given a variable

f , LLM-generated relation RLLM, and ground-truth
relation Rgolden, the overall score for golden rela-
tion evaluation is defined as:

FS2 =
1

|Fgolden|
∑

f∈Fgolden

Scorrect(f,RLLM, Rgolden)

3.4.3 Level 3: Golden Value
Feature Score (FS3) The correctness of pre-
dicted threshold value is evaluated using normal-
ized error as follows:

FS3 = 1− |N(VLLM)−N(Vgolden)|,

where N() is the min-max normalization. For
categorical variables, FS3 = 1 if value ∈ Vgolden
or 0.5 otherwise.

4 Experiments

4.1 Reliability Diagnosis
4.1.1 Reliability Diagnosis Setting
LLMs We employ GPT-3.5-Turbo as the base
model, following the state-of-the-art feature en-
gineering method (Han et al., 2024). Consider-
ing the versatility and usability in various scenar-
ios, we also employ lightweight models, which
are Gemma-2-9B, Llama-3.1-8B, Mistral-7B,
Qwen2.5-7B, Deepseek-7B to compare their reli-
ability scores with those of the base model.

Datasets We utilized eight binary classification
datasets commonly adopted in recent studies on
tabular feature engineering and prediction, en-
suring consistency with prior research. These
datasets were selected based on several criteria,
including diverse application domains—such as
healthcare (e.g., Blood (Yeh et al., 2009), Dia-
betes (Smith et al., 1988), Heart (Fedesoriano,
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Level 1 Level 2 Level 3

Figure 5: Variation of reliability scores of each level for different models and datasets.

2021)), finance (e.g., Adult (Asuncion and New-
man, 2007), Bank (Moro et al., 2014), Credit-
g (Kadra et al., 2021)), and agriculture (e.g., Cul-
tivar (Rodrigues de Oliveira and Mario Zuffo,
2023))—as well as varying dataset sizes (e.g., My-
ocardial (Golovenkin et al., 2020), comprising 111
variables). Additionally, we incorporated an out-of-
distribution scenario using Cultivar, representing a
domain that LLMs are unlikely to have encountered
during pre-training.

4.1.2 Reliability Diagnosis Results
Figure 5 shows the reliability diagnosis results of
each level across models and datasets. To further
understand the factors that affect reliability scores,
we conduct a series of analyses at each level. (Fig-
ures 6–8 show representative results; see Appendix
B.3 for the full results).

Which Model Performs Best in the Zero-shot
Setting? We compare LLMs by providing de-
tailed variable descriptions without examples
across levels. Even within the same dataset, models
exhibit distinct strengths at each level. GPT-3.5-
Turbo outperforms in identifying golden variables
at Level 1, particularly excelling in Credit-g. How-
ever, its performance drops significantly in Level 2,
where it must infer relationships between variables
and the target class. Conversely, Gemma-2-9B
shows strong performance in Credit-g at Levels 2
and 3. Llama-3.1-8B excels in Level 2, especially
in Cultivar, but performs worse in Bank compared
to other levels. Qwen-2.5-7B consistently performs
well across all three tasks in Blood and Diabetes,
though it exhibits large performance gaps across
levels in Bank and Adult. Deepseek-7B performs
the worst, often responding with “neutral” when
asked about correlations in Level 2. Mistral-7B

Figure 6: Impact of additional descriptions and exam-
ples on reliability scores at Level 1.

also struggles in Level 2 and 3, producing hallu-
cinated responses when faced with datasets con-
taining many variables (e.g., Myocardial) or out-of-
distribution scenarios (e.g., Cultivar).

To analyze how different input conditions affect
LLM responses, we conduct experiments using
GPT-3.5-Turbo under controlled variations in the
following robustness analyses. Specifically, we fur-
ther adjusted the number of shots, sampling meth-
ods, and variable corruption strategies.

Does Adding More Descriptions and Examples
Improve Robustness? Figure 6 compares relia-
bility scores in terms of bias when either descrip-
tions or examples are added under the simplest
description setting (i.e., variable name only) in
zero-shot. Across most datasets (e.g., Adult, Bank,
Blood, Cultivar, Heart), adding examples improves
the reliability score more effectively than descrip-
tions. In some cases (e.g., Blood and Cultivar),
additional descriptions even degrade performance.
For datasets with a large number of variables, such
as Myocardial, both descriptions and examples neg-
atively impact the reliability score. These findings
indicate that additional information does not al-
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Figure 7: Effects of varying the number of examples on reliability scores at each level for GPT-3.5-Turbo.

ways lead to better outcomes. Figure 7 shows the
different types of robustness change patterns by
dataset, when few-shot samples are given with de-
tailed variable descriptions.

• Negative Impact of Few-Shot: In some cases, the
few-shot approach produced lower scores than
zero-shot. For example, in the credit-g dataset,
few-shot resulted in lower scores and greater
variability (Level 1). Similar patterns were ob-
served in the myocardial, credit-g, and blood
datasets (Level 2). In myocardial, heart, and
blood, adding sample data did not help and some-
times led to decreased scores (Level 3). This find-
ing implies that the provided samples sometimes
functioned as noise.

• No Effect: Several datasets showed little to no
difference between zero-shot and few-shot per-
formance. For instance, adult, diabetes, and my-
ocardial showed no significant change (Level
1). Adult and cultivar maintained stable perfor-
mance across both methods (Level 2). Bank did
not benefit from the sampling approach, showing
no notable score changes (Level 3). This indi-
cates that methods other than few-shot prompt-
ing might be required to help the model learn
meaningful variable–target relations.

• Dependence on Sampling: Some datasets bene-
fited from few-shot prompting, but the effective-
ness depended heavily on the sample quality. For
example, bank, blood, cultivar, and heart showed
performance improvements (Level 1). For bank,
diabetes, and heart, the presence of samples im-
proved scores, albeit inconsistently depending
on the sampling method (Level 2). Datasets such
as diabetes, adult, credit-g, and cultivar exhibited
improved scores when samples were provided,
although credit-g was particularly sensitive to the
quality of those samples (Level 3). This under-
scores the importance of sample selection that
aids the model’s reasoning.

Figure 8: Impact of the number of shots and example
quality on reliability scores at Levels 2 and 3.

Does Sampling Matter More than the Number
of Shots? Figure 8 shows the impact of the num-
ber of shots and the sampling method at Levels
2 and 3. Across most datasets, sampling qual-
ity exerts a stronger influence on robustness than
the number of shots, with larger effects observed
in Heart and Cultivar at Level 2 and in Credit-g
and Bank at Level 3. Besides, in-depth analy-
sis between worst/best sampling and random sam-
pling reveals additional dataset-specific patterns.
At Level 1, low-quality examples in Bank sub-
stantially degraded performance when identifying
key variables. At Level 2, high-quality samples in
Credit-g led to significant gains when inferring vari-
able–class relations. At Level 3 the gap between
high- and low-quality examples is substantial when
identifying golden values. In Bank and Blood, how-
ever, this gap decreases as the number of shots in-
creases, indicating that more examples can mitigate
the negative effect of poor-quality examples.

4.2 Feature Evaluation

4.2.1 Feature Evaluation Setting
We evaluate the performance of binary classifica-
tion in the eight datasets. We also used Commu-
nities (Redmond, 2009) to show extendability of
our framework in a multi-class classification task
(see Appendix B.2). We compare three conven-
tional classifiers, (1) Logistic regression (LogReg),
(2) XGBoost (Chen and Guestrin, 2016), and (3)
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Table 1: Few-shot classification performance evaluation results. We used only the top 3 feature sets or excluded the
bottom 3 feature sets based on the average evaluation scores of three levels.

Data Shot LogReg RandomForest XGBoost FeatLLM Ours (Top 3) Ours (w/o Bottom 3) Improvement (%)

Credit-g
4 56.77± 11.93 51.35± 8.5 50.0± 0.0 52.27± 8.38 57.77± 5.37 55.65± 7.08 ▲10.52
8 49.7± 12.84 57.06± 8.59 49.84± 6.37 58.87± 4.69 62.89± 5.72 61.49± 7.65 ▲6.83
16 64.48± 9.71 64.27± 11.32 59.49± 10.36 56.47± 4.51 57.51± 1.87 58.74± 8.04 ▲4.02

Myocardial
4 54.28± 5.09 57.93± 2.64 50.0± 0.0 54.08± 3.28 56.35± 12.34 55.46± 4.77 ▲4.20
8 54.25± 8.33 52.78± 2.67 55.44± 5.34 51.6± 7.06 54.04± 6.16 52.26± 7.69 ▲4.73
16 56.39± 5.57 50.96± 5.98 55.21± 5.96 58.54± 1.84 61.96± 3.64 60.92± 2.09 ▲5.84

Cultivar
4 41.93± 9.19 44.14± 4.23 50.0± 0.0 55.84± 4.99 55.14± 6.45 55.63± 8.79 ▼0.38
8 48.67± 7.27 49.2± 4.68 48.44± 1.56 56.95± 3.52 60.43± 6.79 57.45± 5.37 ▲6.11
16 53.86± 8.89 50.28± 5.77 57.08± 5.59 57.57± 2.67 57.49± 3.22 58.3± 2.46 ▲1.27

Bank
4 67.65± 16.53 64.28± 5.0 50.0± 0.0 74.34± 1.71 75.17± 1.6 76.07± 2.87 ▲2.33
8 75.05± 1.57 63.36± 7.13 58.52± 10.73 76.09± 2.57 77.87± 0.38 78.03± 1.66 ▲2.55
16 77.6± 2.18 77.69± 2.51 68.75± 10.87 79.57± 1.01 79.59± 2.72 79.5± 2.96 ▲0.03

Heart
4 52.19± 1.59 79.92± 7.71 50.0± 0.0 73.82± 6.06 77.69± 2.7 77.18± 3.53 ▲5.24
8 60.86± 8.74 81.84± 2.88 53.76± 11.81 70.88± 13.15 76.9± 7.8 70.99± 10.31 ▲8.49
16 65.45± 13.36 85.5± 2.39 82.99± 1.69 80.31± 7.69 83.57± 9.29 81.08± 5.33 ▲4.06

Diabetes
4 47.04± 12.37 56.67± 11.65 50.0± 0.0 79.55± 0.35 79.65± 0.97 79.74± 0.5 ▲0.24
8 52.73± 5.8 64.19± 6.21 39.2± 14.42 80.48± 0.21 79.71± 0.24 80.41± 0.76 ▼0.09
16 64.78± 14.34 67.3± 6.02 72.69± 2.33 79.85± 0.83 80.94± 2.11 80.25± 1.52 ▲1.37

Blood
4 42.75± 16.56 48.66± 12.56 50.0± 0.0 56.34± 6.66 54.57± 10.59 55.89± 6.51 ▼0.80
8 60.27± 8.9 57.67± 8.98 55.87± 5.1 66.63± 0.69 62.28± 7.24 66.71± 0.84 ▲0.12
16 68.59± 3.81 51.9± 8.84 63.43± 8.09 67.61± 1.9 67.98± 0.31 67.08± 1.71 ▲0.55

Adult
4 58.3± 7.89 70.28± 5.32 50.0± 0.0 87.58± 0.29 86.48± 1.21 87.55± 0.83 ▼0.03
8 58.97± 8.93 57.27± 21.03 59.19± 7.96 87.29± 0.31 86.35± 0.3 86.95± 0.15 ▼0.39
16 67.61± 10.76 77.93± 2.79 68.17± 9.31 87.59± 0.9 85.53± 1.74 87.61± 0.97 ▲0.02

RandomForest (Ho, 1995), and the state-of-the-art
feature engineering method FeatLLM (Han et al.,
2024) ensembling with ten feature sets. The pri-
mary aim of our study is to evaluate the robustness
and reliability of LLM-generated features, partic-
ularly in the SOTA setting proposed by FeatLLM.
Therefore, we employed our framework built upon
FeatLLM, which has demonstrated superior perfor-
mance over other baselines (e.g., TabLLM (Hegsel-
mann et al., 2023)). In our framework, we simply
averaged the Levels 1–3 evaluation scores of each
feature set and selected the top 3 or excluded the
bottom 3 feature sets out of the ten feature sets. As
in the prior work, these feature sets were ensembled
with equal weights for the final prediction.

4.2.2 Feature Evaluation Result

Table 1 summarizes the average AUC scores and
standard deviations obtained from three runs—each
with a different random seed for the training set
selection—across all datasets. We observe that
our framework ranks as the top performer on non-
robust datasets when compared with FeatLLM.
These results highlight the efficacy of our approach
in scenarios where the model is particularly sen-
sitive to input variations. In Appendix B.1, we
further discuss the relationship between reliability
diagnosis results and feature evaluation results.

5 Conclusion

We present a multi-level framework for evaluating
the robustness of LLMs in tabular feature engineer-
ing. Our analysis reveals that the few-shot pre-
diction performance of LLMs varies significantly
across different datasets, highlighting the need for
consistent and reliable methods in real-world appli-
cations. By focusing on golden variables, relations,
and values, we demonstrate that high-quality fea-
tures generated by LLMs can lead to substantial
performance improvements. Our findings empha-
size the importance of robustness in LLM-driven
feature engineering and provide valuable insights
for enhancing its reliability and effectiveness.
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Limitations

Despite the promising findings of this work, we ac-
knowledge several limitations that can guide future
research. First, the robustness of LLMs in fea-
ture engineering remains highly dependent on the
characteristics of the underlying dataset. The vari-
ability observed across different domains suggests
that LLMs may struggle with datasets that deviate
significantly from their pre-trained knowledge.

Additionally, while our multi-level evaluation
framework with various sampling and corruption
strategies provides insights into model-dataset re-
liability, it does not fully mitigate the risks asso-
ciated with variation in quality and the selection
of few-shot samples for inference. LLMs are still
susceptible to generating features with incorrect
relationships or suboptimal decision boundaries,
depending on the given samples, which can nega-
tively impact prediction performance.

Second, our study primarily evaluates LLM-
driven feature engineering using binary features
adopted by the state-of-the-art LLM-driven fea-
ture engineering method. While this approach is
simple and effective, real-world applications often
require more complex and intricate feature repre-
sentations, where LLMs may exhibit even greater
instability. Future research should explore strate-
gies to address these challenges, such as focusing
on zero-shot feature engineering or incorporating
generated features of varying forms, allowing the
proposed multi-level scheme to be further general-
ized and expanded.

Lastly, although our multi-level scheme is specif-
ically designed to reveal the general-purpose
model’s ability to handle variations in input con-
ditions across diverse datasets, we intentionally
kept the framework domain-agnostic to maximize
its applicability. Nevertheless, we recognize that
evaluating domain-specific LLMs could provide
valuable insights into whether domain internaliza-
tion enhances robustness in feature engineering.
Such evaluations could further inform best prac-
tices and strengthen the reliability of LLM-driven
methodologies across specialized application areas.
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A Implementation Details

A.1 Datasets
Table 2 shows the basic information of each dataset
used in our experiments. The numbers in paren-
theses under # of features represent the number
of categorical and numerical features, respectively.
Similarly, the numbers in parentheses under # of
golden features represent the number of categorical
and numerical golden features.

Table 2: Dataset statistics.

Data # of samples # of features Label ratio (%) # of golden features

Adult 48842 14 (7/7) 76:24 3 (2/1)
Bank 45211 16 (8/8) 88:12 2 (1/1)
Blood 748 4 (0/4) 76:24 3 (0/3)
Communities 1994 103 (1/102) 34:33:33 19 (19/0)
Credit-g 1000 20 (12/8) 70:30 2 (1/1)
Cultivar 320 10 (3/7) 50:50 2 (1/1)
Diabetes 768 8 (0/8) 65:35 4 (0/4)
Heart 918 11 (4/7) 45:55 5 (3/2)
Myocardial 1700 111 (94/17) 22:78 7 (1/6)

A.2 LLMs and Baselines
For various LLM backbones, the temperature for
LLM inference is set to nonzero (i.e., 0.5). For
experiments involving open-source models, we use
vLLM 0.9.2 (Kwon et al., 2023) with two A6000
GPUs. We vary the data availability to conduct
evaluations with 4-shot, 8-shot, and 16-shot config-
urations. The test performance is measured using a
logistic/linear regression model, selected via grid
search with 5-fold cross-validation. To evaluate
classification tasks, we use the area under the ROC
curve (AUROC) as the primary metric.

The number of conditions included in the feature
rule is determined as:

max(golden variables, variables × 0.5).

This ensures a balance between model interpretabil-
ity and robustness.

A.3 Sampling
Examples with varying levels of quality are used
to evaluate the robustness of LLM responses. The
examples provided to the LLM can act as either
informative signals or noise. To evaluate how ro-
bust the LLM’s prior knowledge is, we modify the
quality of the provided examples and conduct ex-
periments. Sampling is divided into best-case and
worst-case scenarios based on the distance between
each sample’s feature and the golden value Vgolden.

N(Vf ) =
Vf − fmin

fmax − fmin
.

Figure 9: Variance and bias of average reliability score
of GPT-3.5-Turbo.

Figure 10: Performance improvement of ours over
FeatLLM with different numbers of examples.

When Rgolden is positive and N(Vf ) >
N(Vgolden), the distance is defined as:

distance = |N(Vf )−N(Vgolden)|.

When N(Vf ) ≤ N(Vgolden), the distance incor-
porates a penalty:

distance = |N(Vf )−N(Vgolden)|+ penaltypos.

The penalty is defined as:

penaltypos = |N(fmax)−N(Vgolden)|.

B Additional Results

B.1 Feature Evaluation Results
Figures 9 and 10 indicate the correlation between
robustness and overall performance. For datasets
that exhibit large performance fluctuations depend-
ing on the input, adopting well-designed ensemble
rules can lead to notable improvements. This un-
derscores the importance of diagnosing which in-
puts serve as genuine “information” as opposed to
mere “data.” Our findings demonstrate that domain
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knowledge serves as a valuable guide for pinpoint-
ing critical variables and mitigating irrelevant com-
plexity. In practice, diagnosing before fully trusting
a model—by uncovering its weaknesses and evalu-
ating its robustness—offers a principled approach
to optimizing performance. By strategically com-
bining diagnostic insights with expert knowledge,
practitioners can effectively enhance LLM relia-
bility and achieve more consistent results across a
range of datasets. In Figure 11, we further demon-
strate the relationships between the multi-level eval-
uation scores and AUC scores across datasets.

B.2 Results on the Communities Dataset
For a multi-class classification setting, we report
additional results of GPT-3.5-Turbo on the Commu-
nities dataset (Table 3), reliability diagnosis results
(Figures 12 and 13), and performance improvement
results with varying shots (Figure 14).

B.3 Box Plots of Reliability Diagnosis Score
We include additional reliability diagnosis results
of GPT-3.5-Turbo (Figures 15–22) across datasets
and levels.

C Prompt Examples

In Figures 23–25, we include example prompts
designed for our multi-level reliability diagnosis
in Heart dataset. In Figure 26, we also include an
example prompt for rule evaluation proposed by
FeatLLM (Han et al., 2024).
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Figure 11: Relationship between feature evaluation score and AUC score.

Figure 12: Effects of varying the number of examples on reliability scores at each level (with Communities).

Figure 13: Variance and bias of average reliability score
(with Communities).

Figure 14: Performance improvement of ours over
FeatLLM with different shots (with Communities).

Table 3: Few-shot classification performance evaluation results on the Communities dataset.

Data Shot LogReg RandomForest XGBoost FeatLLM Ours (Top 3) Ours (Top 5) Improvement (%)

Communities
4 47.95± 2.07 54.94± 7.06 50.0± 0.0 73.82± 2.93 72.26± 8.69 74.77± 5.88 ▼0.99
8 55.81± 10.46 64.09± 4.39 68.82± 3.26 74.88± 3.73 74.64± 5.46 76.5± 3.25 ▲1.62
16 59.23± 13.75 68.82± 0.69 66.03± 0.96 73.88± 2.87 73.91± 3.79 74.77± 2.64 ▲0.89
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Figure 15: Full results of reliability diagnosis on Adult.
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Figure 16: Full results of reliability diagnosis on Bank.
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Figure 17: Full results of reliability diagnosis on Blood.
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Figure 18: Full results of reliability diagnosis on Credit-g.
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Figure 19: Full results of reliability diagnosis on Cultivar.
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Figure 20: Full results of reliability diagnosis on Diabetes.
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Figure 21: Full results of reliability diagnosis on Heart.
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Figure 22: Full results of reliability diagnosis on Myocardial.
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You are an expert. Given the task description and the list of features, you are ranking them
according to their importances to solve the task. The ranking should be in descending order,
starting with the most important feature.

Task: Does the coronary angiography of this patient show a heart disease? Yes or no?

Features:

• Age: age of the patient (numerical variable)

• Sex: sex of the patient (categorical variable with categories [M, F])

• ChestPainType: chest pain type (categorical variable with categories [ATA, NAP, ASY, TA])

• RestingBP: resting blood pressure [mm Hg] (numerical variable)

• Cholesterol: serum cholesterol [mm/dl] (numerical variable)

• FastingBS: fasting blood sugar [1: if FastingBS > 120 mg/dl, 0: otherwise] (numerical
variable)

• RestingECG: resting electrocardiogram results (categorical variable with categories [Normal,
ST, LVH])

• MaxHR: maximum heart rate achieved (numerical variable)

• ExerciseAngina: exercise-induced angina (categorical variable with categories [N, Y])

• Oldpeak: oldpeak = ST [Numeric value measured in depression] (numerical variable)

• ST_Slope: the slope of the peak exercise ST segment (categorical variable with categories
[Up, Flat, Down])

Your response should be a numbered list with each item on a new line.

Format for Response:

Rank:
FeatA
FeatB....

Answer:

Figure 23: Example prompt for reliability diagnosis level 1 for Heart dataset.
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You are an expert. Given the task description and the list of features and data examples, analyze
the causal relationship or tendency between each feature and class based on general knowledge
and common sense within a short sentence.

Task: Does the coronary angiography of this patient show a heart disease? Yes or no?

Features:
• ChestPainType: chest pain type (categorical variable with categories [ATA, NAP, ASY, TA])
• MaxHR: maximum heart rate achieved (numerical variable)
• Oldpeak: oldpeak = ST [Numeric value measured in depression] (numerical variable)
• ST_Slope: the slope of the peak exercise ST segment (categorical variable with categories

[Up, Flat, Down])
• ExerciseAngina: exercise-induced angina (categorical variable with categories [N, Y])

Examples:

Age is 63. Sex is M. ChestPainType is NAP. RestingBP is 130. Cholesterol is 0.
FastingBS is 1. RestingECG is ST. MaxHR is 160. ExerciseAngina is Y.
Oldpeak is 3.0. ST_Slope is Flat.
Answer: no
Age is 39. Sex is M. ChestPainType is ATA. RestingBP is 120. Cholesterol is 204.
FastingBS is 0. RestingECG is Normal. MaxHR is 145. ExerciseAngina is N.
Oldpeak is 0.0. ST_Slope is Up.
Answer: no
Age is 55. Sex is M. ChestPainType is ASY. RestingBP is 160. Cholesterol is 289.
FastingBS is 0. RestingECG is LVH. MaxHR is 145. ExerciseAngina is N.
Oldpeak is 0.8. ST_Slope is Flat.
Answer: yes
Age is 58. Sex is M. ChestPainType is NAP. RestingBP is 160. Cholesterol is 211.
FastingBS is 1. RestingECG is ST. MaxHR is 92. ExerciseAngina is N.
Oldpeak is 0.0. ST_Slope is Flat.
Answer: yes

Format for Response:

Causal Relationship for class "no":
ChestPainType in ATA has a [positive/negative] correlation with class no
MaxHR has a [positive/negative] correlation with class no
Oldpeak has a [positive/negative] correlation with class no
ST_Slope in Up has a [positive/negative] correlation with class no
ExerciseAngina in N has a [positive/negative] correlation with class no

Causal Relationship for class "yes":
ChestPainType in ASY has a [positive/negative] correlation with class yes
MaxHR has a [positive/negative] correlation with class yes
Oldpeak has a [positive/negative] correlation with class yes
ST_Slope in Flat has a [positive/negative] correlation with class yes
ExerciseAngina in Y has a [positive/negative] correlation with class yes

Answer:

Figure 24: Example prompt for reliability diagnosis level 2 for Heart dataset.
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You are an expert. Given the task description and the list of features and data examples, you are
filling in the feature conditions for each class to solve the task.

Task: Does the coronary angiography of this patient show a heart disease? Yes or no?

Features:
• ChestPainType: chest pain type (categorical variable with categories [ATA, NAP, ASY, TA])
• MaxHR: maximum heart rate achieved (numerical variable)
• Oldpeak: oldpeak = ST [Numeric value measured in depression] (numerical variable)
• ST_Slope: the slope of the peak exercise ST segment (categorical variable with categories

[Up, Flat, Down])
• ExerciseAngina: exercise-induced angina (categorical variable with categories [N, Y])

Examples:

Age is 39. Sex is M. ChestPainType is ATA. RestingBP is 120. Cholesterol is 204.
FastingBS is 0. RestingECG is Normal. MaxHR is 145. ExerciseAngina is N.
Oldpeak is 0.0. ST_Slope is Up. Answer: no
Age is 63. Sex is M. ChestPainType is NAP. RestingBP is 130. Cholesterol is 0.
FastingBS is 1. RestingECG is ST. MaxHR is 160. ExerciseAngina is Y.
Oldpeak is 3.0. ST_Slope is Flat. Answer: no
Age is 55. Sex is M. ChestPainType is ASY. RestingBP is 160. Cholesterol is 289.
FastingBS is 0. RestingECG is LVH. MaxHR is 145. ExerciseAngina is N.
Oldpeak is 0.8. ST_Slope is Flat. Answer: yes
Age is 58. Sex is M. ChestPainType is NAP. RestingBP is 160. Cholesterol is 211.
FastingBS is 1. RestingECG is ST. MaxHR is 92. ExerciseAngina is N.
Oldpeak is 0.0. ST_Slope is Flat. Answer: yes

Format for Response:

Condition for class "no":
ChestPainType is in [Value]
MaxHR is greater than [Value]
Oldpeak is less than [Value]
ST_Slope is in [Value]
ExerciseAngina is in [Value]

Condition for class "yes":
ChestPainType is in [Value]
MaxHR is less than [Value]
Oldpeak is greater than [Value]
ST_Slope is in [Value]
ExerciseAngina is in [Value]

Format for [Value]:
• For the categorical variable only: [List of Categories]
• For the numerical variable only: [Value]

Answer:

Figure 25: Example prompt for reliability diagnosis level 3 for Heart dataset.
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You are an expert. Given the task description and the list of features and data examples, you are
extracting conditions for each answer class to solve the task.

Task: [TASK]

Features: [FEATURES]

Examples: [EXAMPLES]

Let’s first understand the problem and solve the problem step by step.
Step 1. Analyze the causal relationship or tendency between each feature and task description
based on general knowledge and common sense within a short sentence.
Step 2. Based on the above examples and Step 1 results, infer 10 different conditions per answer,
following the format below. The condition should make sense, well match examples, and must
match the format for [Condition] according to value type.

Format for Response:
10 different conditions for class “no”:
- [Condition]
...
10 different conditions for class “yes”:
- [Condition]
...

Format for [Condition]:
• For the categorical variable only:
[Feature] is in [list of Categories]

• For the numerical variable only:
[Feature] (> or >= or < or <=) [Value]
[Feature] is within range of [Value start, Value end]

Answer: Step 1.

Figure 26: Prompt for default feature engineering in FeatLLM.
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