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Abstract

Partially Relevant Video Retrieval (PRVR)
aims to retrieve untrimmed videos partially rele-
vant to a given query. The core challenge lies in
learning robust query-video alignment against
spurious semantic correlations arising from in-
herent data uncertainty: 1) query ambiguity,
where the query incompletely characterizes the
target video and often contains uninformative
tokens, and 2) partial video relevance, where
abundant query-irrelevant segments introduce
contextual noise in cross-modal alignment. Ex-
isting methods often focus on enhancing multi-
scale clip representations and retrieving the
most relevant clip. However, the inherent data
uncertainty in PRVR renders them vulnerable
to distractor videos with spurious similarities,
leading to suboptimal performance. To fill this
research gap, we propose Robust Alignment
Learning (RAL) framework, which explicitly
models the uncertainty in data. Key innova-
tions include: 1) we pioneer probabilistic mod-
eling for PRVR by encoding videos and queries
as multivariate Gaussian distributions. This
not only quantifies data uncertainty but also
enables proxy-level matching to capture the
variability in cross-modal correspondences; 2)
we consider the heterogeneous informativeness
of query words and introduce learnable confi-
dence gates to dynamically weight similarity.
As a plug-and-play solution, RAL can be seam-
lessly integrated into the existing architectures.
Extensive experiments across diverse retrieval
backbones demonstrate its effectiveness.

1 Introduction

Text-to-Video Retrieval (T2VR) has been a long-
standing challenge in vision and language research,
allowing humans to associate textual concepts with
video entities (Wang et al., 2025; Jin et al., 2023;
Bogolin et al., 2022; Yang et al., 2022, 2024b).
However, the mainstream T2VR methods (Li et al.,
2024; Wu et al., 2023; Wang et al., 2023) assume
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Figure 1: (a) Toy examples of spurious semantic corre-
lations. (b—c) Retrieval scores of our method vs. GMM-
Former v2. GMMFormer v2 fails to handle uncertainty,
assigning the highest score to a distractor video.

that videos are pre-trimmed and text queries fully
correspond to the videos (Dong et al., 2023). In
real-world scenarios, videos are often untrimmed
and the given queries can be incomplete and am-
biguous, describing only a portion of the target
video. This realistic demand leads to the emergence
of Partially Relevant Video Retrieval (PRVR) task
(Wang et al., 2024e; Dong et al., 2022), which aims
to find untrimmed videos that are only partially
relevant to a given text query.

PRVR presents a fundamental challenge of spu-
rious semantic correlations due to the query ambi-
guity and partial video relevance. As illustrated in
Figure 1 (a), such spurious correlations manifest in
two aspects: the query “ Monica tells Ross never
knew he did that" relates to multiple video seg-
ments featuring similar actions in different contexts
(query ambiguity), while the target video contains
diverse content described by multiple sentences
(video partial relevance). These factors make it dif-
ficult to establish a robust query-video alignment.
Existing PRVR methods primarily attempt to miti-
gate query ambiguity by learning multi-scale clip
representations, thereby maximizing the query-clip
similarity within positive query-video pairs (Dong
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et al., 2023; Wang et al., 2024e). However, they
implicitly assume a deterministic query-clip map-
ping and overlook the inherent data uncertainty in
PRVR, thereby reducing inherently complex se-
mantic mappings to deterministic pointwise align-
ments. Besides, without moment-level annotations,
these methods struggle to learn optimal clip rep-
resentations, leading to performance bottlenecks.
Furthermore, they may be influenced by distractor
videos with similar segments and provide incorrect
retrieval results, as shown in Figure 1 (b).

To address the above issues, we propose Ro-
bust Alignment Learning (RAL), which explicitly
models and utilizes uncertainty in data to enhance
retrieval robustness. Our RAL builds upon the
insight that PRVR should not be treated as point-
wise query-clip feature alignment but rather as a
probabilistic alignment problem that accounts for
uncertainty. Inspired by probabilistic distributional
representations (Jin et al., 2022), we model both
video and query embeddings as Gaussian distri-
butions, where the variance quantifies the inher-
ent aleatoric uncertainty in each instance. Based
on the distributional representations, we naturally
construct Gaussian-based text and video proxies,
which serve as multiple potential alignment candi-
dates, enabling the model to capture diverse cross-
modal relationships. Furthermore, most retrieval
methods compute similarity scores by applying
mean-pooling over words in the word-frame simi-
larity matrix (Zhang et al., 2023, 2025b). We find
this approach exacerbates retrieval bias as not all
words contribute equally to retrieval, meaningless
words (e.g., “a”) can distort the similarity estima-
tion. To address this, we introduce confidence-
aware alignment that dynamically assigns confi-
dence weights to query words.

As shown in Figure 2, our RAL consists of two
key components: (1) Multimodal Semantic Ro-
bust Alignment (MSRA) quantifies the semantic
distribution in each modality by representing sam-
ples as multivariate Gaussian distributions. Given
video and query embeddings, we first employ multi-
granularity aggregation to obtain holistic semantics
with sufficient contexts before estimating Gaussian
parameters. Considering the incompleteness of the
query relative to the video, we construct text dis-
tribution from a query support set that combines
all video-related queries. Then, we conduct cross-
modal learning with these distributional representa-
tions to joint video and text domains. To be specific,
MSRA is optimized with two losses: a distribu-

tion alignment loss £pa enforcing probabilistic
alignment between video and text distributions for
robust cross-modal consistency, and a proxy match-
ing loss Lpyr leveraging multiple alignment candi-
dates to capture diverse semantic relationships. (2)
Confidence-aware Set-to-Set Alignment (CSA)
is to enhance query-video matching by dynami-
cally adjusting the contribution of each query word.
Instead of treating all words equally, CSA predicts
a confidence score for each word and uses it to
weight the word-frame similarity matrix. This ef-
fectively mitigates the influence of meaningless
words and improves video retrieval.

Our contribution can be summarized as follows:

* We propose a novel robust alignment learn-
ing method for PRVR. It explicitly models
and utilizes the data uncertainty and considers
multiple potential matching relationships to
enhance retrieval robustness.

* We propose a confidence-aware dynamic
weighting mechanism for query words, which
effectively mitigates the matching noise
brought by meaningless words, improving re-
trieval precision.

* Extensive experiments on benchmark datasets
(i.e., TVR (Lei et al., 2020) and ActivityNet
(Krishna et al., 2017)) demonstrate that our
RAL significantly improves existing methods,
achieving state-of-the-art results on PRVR.

2 Related Work

Partially Relevant Video Retrieval PRVR aims
to retrieve untrimmed videos partially relevant to a
given query. Compared to traditional T2VR, this
task is more aligned with real-world application
scenarios. Existing research (Dong et al., 2022;
Wang et al., 2024e.d; Jiang et al., 2023; Nishimura
et al., 2023; Dong et al., 2023; Song et al., 2025;
Cho et al., 2025; Zhang et al., 2025b) primarily
tackled PRVR by constructing multi-scale clip rep-
resentations. Specifically, MS-SL (Dong et al.,
2022) applies sliding windows to form clip rep-
resentations and performs similarity calculations
at both clip and frame levels. GMMFormer (Wang
et al., 2024e) uses multiple Gaussian windows
to constrain inter-frame interactions, thereby im-
plicitly generating multi-scale clip features. Its
improved version, GMMFormer v2 (Wang et al.,
2024d), introduces a learnable feature fusion mech-
anism to aggregate multi-scale clips. Despite
promising advancements, these methods suffer
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from performance bottlenecks due to ignoring the
spurious semantic correlations caused by data un-
certainty and simplifying the complex semantic
alignment, which motivates our robust alignment
learning method.

Uncertainty in Multimodal Learning Uncer-
tainty modeling has been widely explored in multi-
modal learning (Gao et al., 2024). HIB (Oh et al.,
2019) first introduces probabilistic embeddings to
capture the uncertainty in image representations.
Similar ideas have been applied to tasks such as sen-
timent analysis (Gao et al., 2024) and instance seg-
mentation (Zhang and Wonka, 2021). In the field
of cross-modal retrieval, PCME (Chun et al., 2021)
pioneers the use of probabilistic embeddings to cap-
ture the uncertainty of visual concepts. UATVR
(Fang et al., 2023) further combines deterministic
and probabilistic embeddings to explore optimal
matching granularity in T2VR. T-MASS (Wang
et al., 2024a) introduces a text-mass-based method,
treating text embeddings as stochastic variables.
However, these methods are typically designed for
trimmed videos and exhibit limited effectiveness in
PRVR. Inspired by this, we propose robust align-
ment learning specifically designed for PRVR.

3 Method

3.1 Preliminaries

In this paper, we tackle the task of PRVR. Given a
text query ¢ and a gallery of untrimmed videos V,
the goal of PRVR is to rank all videos v € V so that
the video partially corresponding to the text query g
is ranked as high as possible. Existing methods pri-
marily rely on multi-scale clip modeling to capture
one-to-one correspondences between queries and
untrimmed videos implicitly (Wang et al., 2024e;
Dong et al., 2023). Here, we first review the com-
mon retrieval pipeline. For a query-video pair
(¢,v), unimodal encoders extract frame features
V e RVr*4 and word features Q € RE*? where
Ny and L denote the number of frames and words,
respectively. Both features are projected into d-
dimension feature space for cross-modal retrieval.
Then, the clip modeling module (e.g., sliding win-
dows (Dong et al., 2022) and Gaussian windows
(Wang et al., 2024e)) is applied on V to form the
clip embeddings {ci, ..., cn, }. Meanwhile, atten-
tion pooling summarizes Q into a sentence embed-
ding q. The final retrieval score S(g,v) is com-
puted as the maximum cosine similarity between

sentence and clip embeddings:

S(g,v) = max(cos(q,¢€1),...,cos(q,cn,)).
ey
To enforce cross-modal alignment, existing meth-
ods typically optimize a combination of InfoNCE
contrastive loss £,,.. (Miech et al., 2020) and triplet
ranking loss L, (Dong et al., 2022):

Ebase = Al'cnce + )\QEtT’ipa (2)

where A\ and \q are hyperparameters to balance
the losses. Lpqse encourages high query-clip sim-
ilarity S(q,v) within positive query-video pairs
while pushing apart negatives.

Motivation. In other words, this common
pipeline implicitly assumes a deterministic map-
ping between a query and a video clip. However,
this assumption is problematic given the query am-
biguity and partial video relevance, i.e., uncertainty
in data. To address limitations, we are devoted to
explicitly modeling the data uncertainty and lever-
aging it to augment the query and video representa-
tions, thereby improving the robustness of retrieval.

3.2 Multimodal Semantic Robust Alignment

Considering the query ambiguity and partial video
relevance, we first propose an MSRA module
to quantify the aleatoric uncertainty within both
modalities. By modeling this uncertainty, we can
better capture the variability in cross-modal cor-
respondences and leverage it to strengthen cross-
modal learning, enabling more robust representa-
tions of text and video.

(1) Uncertainty Modeling. According to uncer-
tainty estimation theories (Chun et al., 2021; Gao
et al., 2024), the aleatoric uncertainty can be pre-
dicted with deep learning models as the Gaussian
variance. Inspired by this, we model the uncer-
tainty in PRVR by treating feature representations
as Gaussian distributions. Given the preliminary
embeddings X" of input m (m € {q,v}), we esti-
mate the mean vector 1™ € R? and variance vector
o™ ¢ R? through two fully connected layers:

P =™ (X)), o™ = hg'(g™(X™)), (3)

where h}}'(+) and h7'(-) are the mean and variance
estimators for input m, and g™ (-) serves as the fea-
ture aggregator. Furtherly, we define the probabilis-
tic representation z™ as a multivariate Gaussian
distribution with d variable:

p(z™|X™) ~ N (™, o), 4)
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Figure 2: Overview of the proposed framework. It mainly consists of two components: (1) Multimodal Semantic
Robust Alignment (MSRA) and (2) Confidence-aware Set-to-Set Alignment (CSA). Given an untrimmed video and a
query, we first extract the frame features V and word features Q by video and text encoder, respectively. For MSRA,
we collect a query support set containing all queries related to the video, obtaining its features Q4 with rich contexts.
Then, we apply multi-granularity aggregation to obtain holistic semantics, and generate distributional representations
parameterized by mean vector p and variance vector o. A proxy matching loss Lpyr and a distribution alignment
loss Lpp are used to unify the video and text domains. For CSA, we adopt a confidence predictor to assign
confidence weights to each word, which is used to adjust the word-frame similarity matrix for video retrieval.

where I is the identity matrix. The uncertainty-
aware representation p(z"|X") allows the model
to capture variability in semantic alignment.

Query Support Set: For text modality, a single
query provides an incomplete description of the
video, limiting the reliability of its probabilistic
representation. To this end, we replace the stan-
dalone query embedding Q with an enriched query
support set embedding Q,, for better textual uncer-
tainty modeling. Specifically, for each video v, we
construct a query support set D by aggregating
all associated queries ¢,. The Q, is obtained by
concatenating the embeddings of all ¢, in D":

Qs - ”%E’D”(Qn)a D' = {Qn|Qn = U}a )

where Q,, denotes text embedding of query ¢y, ||
denotes row-wise concatenation, and < indicates
labeled correspondence between query and video.
Therefore, X? = Q, and X = V in Eq. (3).
Multi-granularity Aggregation: Estimating
Gaussian distributions requires an effective aggre-
gator ¢"™(-) to extract holistic features. To en-
sure representation fidelity, we introduce multi-
granularity aggregation for the sequential V and
Qs, which preserves local-global contextual cues
before projecting them into a probabilistic space.
Specifically, we apply mean pooling and linear
mapping to obtain a global feature x""9 and gated
attention (Lin et al., 2017; Vaswani, 2017) to ex-

tract fine-grained local semantics x™ . Formally,

x"™9 = FC™(MeanPool (X)),

x"™! = Softmax(wyTanh(WX™)) - X™,
(0)
where W; € R4 and wy € R? are trainable
parameters. Then, we integrate local and global in-
formation, obtaining the multi-granularity holistic
representations of X™ as:

g™(X™) = LayerNorm(x™9 + x™!).  (7)

(2) Joint Video and Text Domain. After obtaining
the probabilistic distributions for video and text, we
use two complementary loss functions to enforce a
structured joint embedding space.

Distribution Alignment Loss: To establish con-
sistency between video and text distributions, we
introduce a distribution alignment loss £p4, which
minimizes the Kullback-Leibler (KL) divergence
between their probabilistic representations. Addi-
tionally, an auxiliary KL regularization item is used
to encourage both distributions to approach a stan-
dard normal prior A/(0, I) (Wang et al., 2024b).
Lpa is defined as:

Loa =KL (p(ax?)p(z"}x")
+ Y KL (p(z"x™)N(0,T)). ®)

mée{q,v}

Proxy Matching Loss: In PRVR, multiple
semantic relationships exist between queries and
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untrimmed videos, making one-to-one matching
insufficient. We therefore adopt a proxy match-
ing loss Lpng, which considers multiple candidate
alignments to enhance robustness in representation
learning. Using the reparameterization technique
(Kingma, 2013), we generate K proxy embeddings
from the learned distributions as:

' =p"+o"m e, k=A{1,..,K}, 9)

where €* ~ A(0,I) and 27" is the k-th proxy em-
bedding for input m. pu™, o™ are the mean and
standard deviation calculated by Eq. (3). This al-
lows the model to sample diverse but semantically
related embeddings, promoting the robustness of
semantic alignment.

For each text proxy ZZ, the positive video set
P = {22}X | consists of K video proxies from
v, and the negative video set P = {2)}; 1,7 # v
includes proxies from other videos in the batch.
We then employ a multi-instance InfoNCE loss
(Miech et al., 2020; Fang et al., 2023) to maximize
the similarity between positive pairs while pushing
apart negatives:

1
Lpym = — 5 log
B 2

(gv)eB

cos(z],2%) /7’

Zz;e{?uﬁ} €

where 7 is a temperature factor and B is mini-batch.

3.3 Confidence-aware Set-to-Set Alignment

With query and video representations, V =
{v; };\Zl and Q = {q,;},, we can obtain simi-
larity matrix S € RE*N7 via dot product, where
each element represents similarity between the ¢-th
query word and the j-th video frame. First, we cap-
ture the most relevant frame for each query word
through max-pooling, and take the cosine similarity
between them as the word-video similarity s;:

s; = max(cos(q;, v1), - - -, co8(qi, vn,)), (11)

To further obtain query-video similarity scores,
existing methods often apply mean-pooling over
{s;}L,. However, some words (e.g., function
words) can introduce noise to cross-modal align-
ment. To overcome these limitations, we propose
to dynamically assign word-level confidence scores
g={g iL:1 € R’ through a learnable predictor.
By using the predicted g, we weight the similarities

s; to compute the final query-video similarity:

L

S(g,v) =Y _gisi, 8=MLP(Q),

i=1

(12)

where MLP consists of two linear layers and an ac-
tivation function. The S(g, v) is directly supervised
by the basic retrieval loss Lpqse (Dong et al., 2022;
Wang et al., 2024e). Therefore, the full model
including MSRA and CSA modules is jointly end-
to-end optimized by the total loss:

L = Lpgse + A3Lpa + Lpy,  (13)
where A3 and )4 are hyperparameters to balance
the losses.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. We adopt two large-scale
video datasets, i.e., ActivityNet Captions (Activ-
ityNet) (Krishna et al., 2017) and TV Show Re-
trieval (TVR) (Lei et al., 2020). Notably, timestamp
annotations are unavailable for PRVR. TVR con-
tains 21,793 videos collected from six television
shows. Each video is associated with five natural
language sentences describing different moments.
The average video length is about 76 seconds. Ac-
tivityNet contains 20,000 YouTube videos, with
an average duration of about 118 seconds. Each
video has about 3.7 moments with corresponding
sentence descriptions. We abide by the popular
data partition used in (Dong et al., 2022).

Following (Wang et al., 2024e; Jiang et al.,
2023), we use rank-based metrics to evaluate the
model, namely R@ M (M =1, 5, 10, 100). R@ M
measures the proportion of queries that correctly
retrieve the target videos in the top M results. We
also report the sum of all R@ M scores (SumR) for
overall comparisons. All metrics are reported as
percentages (%).

Implementation Details. Following existing
methods (Dong et al., 2022), we use ResNet (He
et al., 2016) and I3D (Carreira and Zisserman,
2017) for visual feature extraction and RoBERTa
(Liu et al., 2019) for text feature extraction on Ac-
tivityNet and TVR. In Lpjs, we set the number of
proxies to K = 6. The loss coefficients are set to
A1=0.05, X\o=1, A3=0.001, and A4,=0.004. We use
the Adam optimizer with a learning rate of le-4,
a batch size of 128, and train for 100 epochs. An
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Table 1: Performance comparison. Models are sorted in ascending order in terms of SumR on TVR.

Model Venue TVR ActivityNet
R@l R@5 R@10 R@100 SumR R@1 R@5 R@10 R@100 SumR
T2VR models:
DE++ (Dong et al., 2021) TPAMI'21 88 219 302 674 1283 53 184 292 680 121.0
CLIPACIip (Luo et al., 2022) ArXivi2l 99 243 343 725 1410 59 193 304 716 1273
Cap4Video (Wu et al., 2023) CVPR'23 103 264 368 740 1475 63 204 309 726 1302
UMT-L (Li et al., 2023) ICCV'23 137 323 437 837 1734 69 226 351 762 1408
InternVideo2 (Wang et al., 2024c) ECCV'24 138 329 444 842 1753 175 234 361 765 1435
VCMR models w/o moment localization:
XML (Lei et al., 2020) ECCV'20 100 265 373 813 1551 53 194 306 731 1284
ReLoCLNet (Zhang et al., 2021) SIGIR'21 107 28.1 381 803 1571 57 189 300 720 1266
QCLPL(Zhang et al., 2025a) TCSVT'25 110 289 396 813 1608 65 204 318 743 133.1
JSG (Chen et al., 2023) ACMMM'23 113 291 396 809 161.0 67 225 348 762 1403
PRVR models:
MS-SL (Dong et al., 2022) ACMMM'22 135 321 434 834 1724 7.1 225 347 758 140.1
PEAN (Jiang et al., 2023) ICME'23 135 328 441 839 1742 74 230 355 759 1418
GMMFormer (Wang et al., 2024e) AAAT24 139 333 445 849 1766 83 249 367 761 1460
BGM-Net (Yin et al., 2024) TOMM'24 141 347 459 852 1799 72 238 360 769 1439
DL-DKD (Dong et al., 2023) ICCV’'23 144 349 458 849 1799 80 250 374 771 1476
ARTVL (Cho et al., 2025) AAAT25 156 363 477 863 1859 83 246 374 780 1483
GMMFormer v2 (Wang et al., 2024d) ~ ArXiv'24 162 37.6 488 864 1891 89 27.1 402 787 1549
MGAKD (Zhang et al., 2025b) TOMM25 160 37.8 492 875 1905 79 257 383 77.8 1496
MS-SL + RAL - 145 343 458 845 1791 74 234 354 767 1430
GMMFormer + RAL - 158 364 479 860 1861 84 251 372 770 1477
GMMPFormer v2 + RAL - 182 404 521 880 1988 89 277 404 791 156.1
Uncertainty R@1 advanced PRVR models, MS-SL, GMMFormer,
60 .
os ] RBlolohmromer A hgieiom and GMMFormer v2. The experimental results re-
Performance Gap Uncertainty || o, veal two key findings: (1) our method consistently
0.4 enhances all baseline models and achieves substan-
40 . .
tial performance gains across two datasets; (2) our
0.3
G il T 30 method sets a new state-of-the-art performance for
02] " PRVR, with a SumR of 198.8 on TVR, remarkably
surpassing the previous best model (GMMPFormer
011 10 v2) by 9.7. These findings validate the effectiveness
ool 1, of our approach across the different architectures.
’ o 25 50 75 100 125 150 175 200

Query Index

Figure 3: Performance comparison between our model
and GMMFormer v2 under different levels of uncer-
tainty in queries. Our model consistently outperforms
GMMFormer v2, especially under extreme uncertainty.

early stopping strategy is applied, terminating train-
ing if SumR does not improve within 10 epochs.
All experiments are conducted on a single A800
GPU. To gain insight into the effectiveness and gen-
eralization ability of our proposed approach, we
integrate MSRA and CSA modules into three base-
lines: MS-SL (Dong et al., 2022), GMMFormer
(Wang et al., 2024¢), and GMMFormer-v2 (Wang
et al., 2024d). More implementation details are
provided in the supplementary.

4.2 Performance Comparison

Effectiveness on PRVR Task. Our method allows
seamless integration into the various baseline mod-
els. As shown in Table 1, we apply it to three

In the following parts, we adopt GMMFormer v2 as
our default benchmark model for further analysis
and comparisons.

Model Robustness on Uncertain Samples. To
verify the robustness and stability of our proposed
method, we conduct more comparisons on queries
with different uncertainty levels and observe the
R@1 score. For clarity, we select a subset of TVR
test set (i.e., queries with M/V ratio €[0.2,0.4]
(Dong et al., 2022)) and group every 5 queries into
a set. The uncertainty level of each query set is
quantified using the geometric mean (Gao et al.,
2024) of 09 in Eq. (3). By observing the experi-
mental results in Figure 3, we can find that: (1) our
method consistently outperforms GMMFormer v2
across different uncertainty levels; (2) the perfor-
mance gap between our method and GMMFormer
v2 widens as uncertainty increases; (3) under ex-
treme uncertainty, GMMFormer v2 collapses, with
R@]1 approaching zero, while our model remains
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Figure 4: Performance on different types of queries.
Queries are grouped according to their M/V ratio r. The
smaller 7 indicates less relevant content while more
irrelevant content to the query.

stable, achieving an R@1 of nearly 20. These find-
ings demonstrate the effectiveness of our method
in mitigating the impact of data uncertainty, ensur-
ing robust query-video alignment even in highly
ambiguous cases.

M/V Performance Analysis. In PRVR, queries
capture only partial aspects of the video content.
Here, we analyze the performance across queries
with different M/V ratios r, namely the proportion
of query-relevant moment to the total video length.
A smaller r indicates that the target video contains
less relevant content. This semantic imbalance be-
tween the query and the video makes retrieval more
challenging. Following (Dong et al., 2022), we cat-
egorize the test queries into three groups: short
(r € (0,0.2]), medium (r € (0.2,0.4]), and long
(r € (0.4,1.0]). As shown in Figure 4, our model
consistently outperforms others, demonstrating its
effectiveness and robustness across queries with
varying relevance levels.

4.3 Further Analysis

Model Robustness Under Noise. Performance
under noisy conditions poses a greater challenge
to model robustness (Yang et al., 2024a; Pan et al.,
2024). Following (Yang et al., 2021), we insert
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Figure 5: Performance of different methods under dif-
ferent levels of noise on TVR. Our model exhibits the
smallest performance drop as noise level increases.

Table 2: Ablation studies on model structure on TVR.

MSRA CSA R@l R@5 R@10 R@100 SumR ASumR

162 376 488 86.4 189.1 -
v 17.5 392  50.7 87.4 194.8 +5.7
' 170 385 51.0 88.1 194.5 +5.4
v v 182 404 521 88.0 198.8 +9.7

a randomly generated segment with a duration of
h x p seconds at the beginning of the test video,
where h represents the duration of the test video
and p denotes the noise level. As shown in Figure
5, our model consistently outperforms comparison
methods under different noise levels and exhibits
the smallest performance drop as noise intensity
increases. This highlights the superior resilience of
our uncertainty-aware alignment strategy to noisy
inputs.

Analysis on Model Structure. We provide an
ablation study on TVR in terms of uncertain learn-
ing (w.t.f. MSRA) and confidence-aware alignment
(w.t.f. CSA) in Table 2. Firstly, we show the base-
line GMMFormer v2 (top row). Based on it, we
introduce the MSRA module (2nd row), obtaining
5.7 boost at R@1. This shows the superiority of
introducing multimodal learning on distributional
representations over plain semantic features. We
also evaluate the effect of the CSA module (3rd
row). By comparison, considering the word-level
confidence of the query significantly improves the
performance. This is because meaningless words in
the query can capture unrelated background frames,
misleading retrieval. By jointly using the designed
MSRA and CSA, our method acquires an improve-
ment of 9.7 on SumR (4th row). These ablations
demonstrate the effectiveness of each component
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Figure 6: Query-video cosine similarities between test
queries on TVR and their top-10 retrieved videos .

of our method in improving PRVR baselines.

In Figure 6, we show the cosine similarities be-
tween queries on TVR and the top 10 retrieved
videos given by different models. By and large,
our model produces similarities above 0.5, while
other models range from 0.2 to 0.5. Our complete
model not only demonstrates superior retrieval per-
formance but also retrieves videos with higher simi-
larities, indicating that the model can achieve more
stable and confident query-video alignment.

Analysis on Distribution Optimization. In Ta-
ble 3, we conduct ablation studies concerning the
learning objectives on the MSRA module. L£p4
minimizes the KL distance between the distribu-
tions of each query-video pair. Lpj)s promotes
the semantic similarity of random video and text
proxies in a contrastive learning framework. By
observing Table 3, we have drawn the following
conclusions: (1) although removing any loss term
leads to a performance decline, both variants are
still superior to the baseline without distribution
optimization. (2) the joint usage of Lp 4 and Lpys
achieves the best performance, showing the com-
plementarity and effectiveness of constraints on the
multimodal distributions and random proxies.

We further discuss the number of sampling prox-
ies for Lpys in Table 3. For “w/o sampling”, we
directly use the mean of Gaussian distribution as a
proxy during the training. This gives a sub-optimal
performance due to fixing features rather than ex-
ploiting data uncertainty. As the number of proxies
K increases from 2 to 6, our method enables bet-
ter performance by gradually augmenting the data
representation based on uncertainty. Considering
the trade-off between the performance and compu-
tational cost, we choose K'=6 in our final model.

Analysis on Uncertainty Modeling. Table 4
highlights the effect of our key design choices in

Table 3: Ablation studies on distribution optimization
and proxy number on TVR.

Loss R@l R@5 R@10 R@100 SumR
w/o Lpa 177 399 518 88.0 197.4
w/o Lpy 174 39.7 516 87.8 196.5

Proxy R1 RS R10 R100  SumR

w/o sampling 17.6  39.8  51.7 87.6 196.7

K=2 179 40.1 518 87.7 197.5

K=4 18.0 403 518 87.9 198.0

K=6 182 404 521 88.0 198.8

Table 4: Effect of different uncertainty modeling meth-
ods on TVR.

Method R@l R@5 R@I0 R@100 SumR
X7 =Q 176 398 515 879 1969
gr(X™) =x™t 179 402 512 874 1967
gr(X™)=x™9 180 40.1 516 882 1979
Ours 182 404 521 880 1988

uncertainty modeling. First, we examine the im-
pact of our query support sets. By reducing the
query support set to a single query, the text distri-
bution fails to capture broader contextual seman-
tics. This results in a severe semantic mismatch
between the text and video distributions, disrupting
the optimization process and significantly degrad-
ing performance. Next, we explore the role of
multi-granular feature aggregation in quantifying
data uncertainty. The global aggregation summa-
rizes the holistic context while local aggregation
supplements fine-grained details. The results re-
veal that the combination of global-local aggrega-
tion contributes to robust uncertainty modeling and
achieves the best performance.

4.4 Qualitative Results

Challenging Retrieval Cases. To further investi-
gate the impact of data uncertainty, we analyze two
challenging retrieval cases with data uncertainty.
As shown in Figure 7, we display two queries that
refer to different moments within the ground-truth
(GT) video and compare the Top-1 retrieval results
of our model and GMMFormer v2. We find GMM-
Former v2 fails in both cases, retrieving distractor
videos containing similar actions (spreading out
cards or shuffling a deck of cards), while ranking
GT video at position 9th and 15th. In contrast, our
model effectively excavates semantic relationships
in data and retrieves GT video at Rank-1.
Confidence-aware Alignment. Here, we inves-
tigate how our proposed CSA improves retrieval
performance. Figure 8a shows the word-frame sim-
ilarity matrix, where words like “to be” are aligned
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Queryl: A woman behind the desk spreads out cards in front of House.
Uncertainty: 0. 38

GMMFormer v2:

GT video ranked 9th.

Query2: A young brunette woman quickly shuffles a deck of cards on a desk.
Uncertainty: 0. 43

GMMFormer v2:

GT video ranked 15th.

Ours:

Figure 7: PRVR results on TVR: top-1 retrieved video by our method and GMMFormer v2 (Wang et al., 2024d).
Green and red boxes indicate the ground truth and distractor videos, respectively.

Query: Martha was helping Cross to be laid down in bed.
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Figure 8: Visualization of CSA mechanism. (a) Word-
frame similarity shows uninformative words (e.g., “to
be”) align with irrelevance frames (gray box). (b) With
CSA, uninformative words receive lower confidence,
improving retrieval. (c) Fixed average weight causes
performance drop, with GT video ranked 6th.

with frames of low relevance to the query (high-
lighted in gray box). By introducing CSA (Figure
8b), the words “to be” receive a lower confidence,
resulting in the correct retrieval of the GT video. In
contrast, when confidence is replaced with a fixed
average weight (Figure 8c), the GT video drops to
the 6th rank, demonstrating the importance of dy-
namical confidence weighting for precise retrieval.

4.5 Versatility on T2VR

T2VR can be viewed as a simple case of PRVR,
where videos are trimmed to correspond to queries.
In Table 5, we apply our RAL to T2VR task, com-
paring it with CLIP4Clip (Luo et al., 2022) under
two different visual backbones. It can be found
that combining RAL with CLIPAClip improves the
R@1 by about 6.1% and 6.6% under ViT-B/32
and ViT-B/32, respectively. The results further
demonstrate the effectiveness and versatility of our
framework in enhancing cross-modal alignment.

5 Conclusion

In this paper, we investigate the fundamental chal-
lenge of spurious semantic correlations, which

Table 5: Text-to-video performance of our method on
MSR-VTT dataset for the T2VR task.

Method R@]1 R@5 R@10 MdR| MnR|
CLIP4Clip (ViT-B/32) | 445 714 81.6 2.0 15.3
+RAL 472 73.6 83.1 2.0 12.5
CLIP4Clip (ViT-B/16) | 47.1 74.1 81.8 2.0 14.9
+RAL 50.2 76.1 85.2 1.0 12.7

arises from query ambiguity and partial video rel-
evance. We propose a novel Robust Alignment
Learning (RAL) framework that explicitly models
data uncertainty by representing both video and
text features as probabilistic distributions, enabling
more robust cross-modal alignment. We introduce
a query support set that aggregates multiple descrip-
tions of the same video, and multi-granularity fea-
ture aggregation to quantify data uncertainty more
effectively. Additionally, we design a confidence-
aware set-to-set alignment mechanism to assign
adaptive weights to query words, improving re-
trieval precision. Extensive experiments on bench-
mark datasets demonstrate the effectiveness and
versatility of our RAL, achieving significant im-
provements in both PRVR and T2VR.

Limitations

In the validation experiments on the TVR dataset,
we conducted an attribution analysis of retrieval
failure cases and identified a prominent pattern:
cross-modal alignment bias caused by missing
named entities. For instance, in the query “Beckett
confronts a friend at the bar", the discrepancy be-
tween the model’s retrieved result and the ground-
truth (GT) video stems from the model’s failure
to associate the textual character entity “Beckett"
with the corresponding visual representation in the
video. Specifically, the GT video contains dis-
tinctive visual cues associated with this charac-
ter—such as a red jacket and curly hair. In con-
trast, the retrieved distractor video, although set in
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a similar bar scene, lacks these fine-grained iden-
tity indicators. Our current approach does not ex-
plicitly model the correspondence between named
entities in the query and specific characters in the
video, leading to retrieval ambiguity. This limita-
tion highlights a potential direction for future re-
search: incorporating identity-aware modeling to
associate textual mentions of characters with their
visual counterparts in the video (Song et al., 2024b;
Zhou et al., 2025b,a). This could involve integrat-
ing entities attribute information from knowledge
graphs and using attention mechanisms to guide the
model toward identity-relevant visual cues, thereby
enhancing its applicability in real-world retrieval
scenarios (Zhang et al., 2024; Song et al., 2024a).
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Example Appendix

This supplementary document includes the follow-
ing:
(i) Additional information about our implemen-
tation details (Section A);

(if) Additional experimental results and analysis
(Section B), including the variation trend of
uncertainty and performance during training
(Section B.1), the impact of loss coefficients
(Section B.2), and studies on the retrieval ef-
ficiency of different PRVR methods (Section
B.3);

(7ii) Additional qualitative examples of our method
and discussions on future work (Section C).

A Implementation Details

Figure 9 elaborates on the experimental details for
applying the proposed URAL framework on ex-
isting baselines, including MS-SL (Dong et al.,
2022), GMMFormer (Wang et al., 2024e), and
GMMFormer v2 (Wang et al., 2024d). Specifically,
URAL is incorporated solely into the frame-level
branch of the baselines. This design choice is mo-
tivated by considerations of: (1) the frame-level
branch provides fine-grained temporal information,
which is essential for handling the uncertainty in-
herent in cross-modal alignment while avoiding
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Figure 9: Integration of RAL with PRVR baselines,
where MSRA and CSA stand for the proposed multi-
modal semantic robust alignment and confidence-aware
set-to-set alignment modules, respectively. RAL is inte-
grated into the frame-level branch, and the final retrieval
score is a combination of frame-level and clip-level
scores.

(b) GMMFormer + URAL
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unnecessary computational overhead; (2) frame-
level features are more conducive to integrating
our proposed modules, such as the confidence-
aware set-to-set alignment module. In our imple-
mentation, we retain the original video and text
encoders from the baselines to ensure fair com-
parison. The extracted video frame features Vs
and query word features Q) are fed into the MSRA
(Multimodal Semantic Robust Alignment) module,
which explicitly models and mitigates uncertainty
to enhance cross-modal alignment. The result-
ing robust Q and V; are subsequently processed
by CSA (Confidence-aware Set-to-set Alignment)
module for query-video alignment with adaptive
confidence weighting. The CSA module gener-
ates reliable frame-level retrieval scores S¢(q,v),
which are then summed with the clip-level scores
Sc(g,v) to produce the final retrieval result.

B More Experimental Results

B.1 Uncertainty Mitigation During Training

To investigate the variation in video and query un-
certainty during training and its impact on perfor-
mance, we quantify the uncertainty every 5 train-
ing epochs and report the corresponding SumR
performance on the test set. We observe that the
uncertainty of both videos and queries decreases

Uncertainty SumR Uncertainty SumR

Query uncertainty i SumR |300 200

-l Video uncertainty 0.6)
.\.*kkl——k. 250 250

0.4 200 0.4 200

0.6}

=
@

0 150

0.2] 0.2
I 0 I I I
o — 150 ol == == == o= = =/ = = Js50

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Epoch Epoch

(a) ActivityNet (b) TVR

=3
1
=y
o

0

Figure 10: The variation trend of data uncertainty and
retrieval performance during training. As training pro-
gresses, reduced uncertainty leads to improved retrieval
accuracy.
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Figure 11: The impact of the loss coefficients, A3 and A4,
of distribution alignment loss £p 4 and proxy matching
loss Lpps.

as training progresses, and the model’s retrieval
performance improves. This indicates that mitigat-
ing uncertainty is crucial for improving retrieval
accuracy. Additionally, we find that videos exhibit
higher uncertainty than queries. The presence of
redundant content in untrimmed videos is a major
challenge for PRVR. This highlights an important
direction for future research.

B.2 Hyper-parameter Analysis

In addition to the basic retrieval loss Lpqse (Dong
et al., 2022), our model incorporates auxiliary dis-
tribution alignment loss £p 4 and proxy matching
loss Lpys to enhance alignment. In Figure 11, we
study the sensitivity of two loss coefficients, A3
and A4, on the TVR dataset. The initial settings are
A3 = 0.001 and A4 = 0.00025 to keep each loss
item at the same magnitude. We adjust these hyper-
parameters within a certain range to assess their
impact. As shown in Figure 11, our model main-
tains stable performance and reaches the optimal
balance at A3 = 0.004 and A4 = 0.001.
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Queryl: Howard puts his cellphone into his back pocket.

GT video ranked 4th.

GMMFormer v2:
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Ours: GT video ranked 1st.
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(a) TVR

Query2: The black cat grabs the yarn ball and start playing with it.

GT video ranked 3th.

&
A

GMMFormer v2:

Ours: GT video ranked 1st.

(b) ActivityNet

Figure 12: More visualization results on TVR and ActivityNet. Top-1 retrieved videos from our method and
GMMFormer v2 (Wang et al., 2024d) are shown. Green and red boxes indicate the ground truth and distractor

videos, respectively.

Table 6: Comparison in terms of FLOPs (G) and pa-
rameters (M). A denotes our relative changes over the
baseline (GMMFormer v2) for different metrics.

MS-SL GMMFormer GMMFormer v2 Ours A

FLOPs  1.29 1.95 5.43 575 +0.32
Params  4.85 12.85 32.27 3553 +3.26
SumR 1724 176.6 189.1 198.8 +9.7

Table 7: Comparisons in terms of runtime (ms) of PRVR
models.

Database Size 500 1,000 1,500 2,000 2,500
MS-SL (Dong et al., 2022) 489 6.11 8.06 1042 12.93
GMMFormer (Wang et al., 2024e) 268 293 340 394 456
GMMFormer v2 (Wang et al., 2024d) 3.95 432 502 581 6.73
Ours 461 505 586 679 7.86

B.3 Retrieval Efficiency

To evaluate model efficiency, we compare several
PRVR methods in terms of floating-point opera-
tions (FLOPs) and model parameters. Our method
builds upon GMMFormer v2 as the baseline while
introducing uncertainty learning and confidence-
aware alignment. As shown in Table 6, while our
model increases FLOPs by 0.32G and parameters
by 3.26M, it achieves a substantial 9.7% improve-
ment in SumR. This highlights a favorable trade-off
between computational cost and performance gain.

For retrieval efficiency in practical situations,
we measure the retrieval speed (in milliseconds) as
shown in Table 7. Specifically, we construct a video
subset from the TVR dataset and measure the av-
erage runtime to complete the retrieval process for
a single text query under different database size
settings. Despite introducing confidence-aware
alignment during retrieval, our model’s runtime
remains comparable to GMMFormer v2. More-
over, as the database size increases, the runtime
increases marginally, demonstrating the potential

Query: Beckett takes a sip of her drink from a coffee mug.

GT Video:

Figure 13: Failure case on TVR. red boxes indicate the
top-1 retrieved video by our method and GMMFormer
v2 (Wang et al., 2024d). Green box indicates the ground
truth video.

for large-scale applications.

C More Visualization Results

C.1 Qualitative Retrieval Results

Figure 12 presents two additional visualization ex-
amples from TVR (Lei et al., 2020) and ActivityNet
(Krishna et al., 2017) datasets, comparing the top-1
retrieval results of our model against GMMFormer
v2 (Wang et al., 2024d). In both cases, GMM-
Former v2 fails to retrieve the target videos, instead
selecting distractor videos with similar scenes, such
as a “cellphone” and a “black cat”, while ranking
the ground-truth (GT) videos at the 4th and 3rd
positions, respectively. In contrast, our model ef-
fectively uncovers semantic relationships and suc-
cessfully ranks the GT videos at 1st. For example,
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in Figure 12 (a), our model is sensitive to the ac-
tion “puts his cellphone”, whereas GMMFormer
v2 retrieves a distractor video featuring a differ-
ent action, “pull out phone". In Figure 12 (b), the
“yarn ball” is a subtle but crucial visual cue that
GMMFormer v2 overlooks, whereas our model
successfully detects it for accurate retrieval. These
qualitative results demonstrate that our approach
significantly enhances retrieval accuracy by captur-
ing critical semantic details in query and video.

C.2 Failure Cases and Future Work

Figure 13 presents a failure case from the TVR
dataset, comparing the top-1 retrieval results of our
model and GMMFormer v2. The query describes
a common scenario of drinking coffee. Although
both models fail to retrieve the GT video as the
top-1 result, our model correctly captures the key
phrase in the query (i.e., “takes a sip of her drink")
and retrieves a highly relevant video, ranking the
GT video in 2nd place. In contrast, GMMFormer
v2 retrieves a video of “a man carrying a coffee
cup” and ranks the GT video only at 8th place.

Further analysis reveals that a critical factor dis-
tinguishing the GT video from our retrieved video
is the presence of “Beckett", a named entity in the
query. Our approach does not involve the corre-
spondence between named entities in the query
and specific individuals in the video, leading to
retrieval ambiguity. This limitation highlights a
potential direction for future research: incorporat-
ing identity-aware modeling to associate textual
mentions of people with their visual counterparts
in videos, making it better suited for real-world
retrieval scenarios.
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