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Abstract

Pre-trained language models (PLMs) have
achieved remarkable knowledge graph comple-
tion(KGC) success. However, most methods
derive KGC results mainly from triple-level and
text-described learning, which lack the capabil-
ity to capture long-term relational and struc-
tural information. Moreover, the absence of a
visible reasoning process leads to poor inter-
pretability and credibility of the completions.
In this paper, we propose a path-enhanced
pre-trained language model-based knowledge
graph completion method (PEKGC), which em-
ploys multi-view generation to infer missing
facts in triple-level and path-level simultane-
ously to address lacking long-term relational
information and interpretability issues. Further-
more, a neighbor selector module is proposed
to filter neighbor triples to provide the adjacent
structural information. Besides, we propose a
fact-level re-evaluation and a heuristic fusion
ranking strategy for candidate answers to fuse
multi-view predictions. Extensive experiments
on the benchmark datasets demonstrate that our
model significantly improves the performance
of the KGC task.

1 Introduction

Knowledge graphs (KGs) are designed to store
knowledge in graph-structured format, as seen in
Freebase (Bollacker et al., 2008), WordNet (Miller,
1995), and NELL (Carlson et al., 2010). The exten-
sive application of various KGs has greatly bene-
fited numerous downstream tasks, such as question
answering, recommendation systems, and informa-
tion retrieval. However, due to the limited scale
of KGs, whether manually or automatically con-
structed, they invariably suffer from incomplete
coverage and fail to encompass the vast expanse of
real-world knowledge. This limitation has given
rise to the task of knowledge graph completion

*Corresponding author.

(TuYouyou. Nationality, ?) Answer:  China

J

Tu Youyou Nationality <MASK>

Query:

Triple-level
PLM

China

Tu Youyou - Born In - Zhejiang
- Located In - China

Path-level
PLM

Figure 1: An example of PLM-based KGC in triple and
path levels. In this triple, (Tu Youyou, Nationality, ?) is
a query, and the answer is China.

(KGC), which involves predicting missing links by
understanding the existing triples within KGs.

Typically, most mainstream KGC methods fall
into two categories: embedding-based and path-
based. Embedding-based methods (Bordes et al.,
2013; Yang et al., 2015; Dettmers et al., 2018;
Vashishth et al., 2019) focus on mapping entities
and relations into a low-dimensional, continuous
vector space to capture intrinsic connections and
predict missing links in the vector space. By com-
parison, path-based methods (Das et al., 2018; Qu
et al., 2020; Zhu et al., 2021) aim to use paths be-
tween entities to predict and achieve more directly
interpretable results.

Recently, inspired by the success of pre-training
language models (PLMs), such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
and TS5 (Raffel et al., 2020), in NLP tasks, en-
couraging increased interest in probing PLMs to
complete KGs. According to the structure of
the models, PLM-based models can be divided
into two categories: encoder-only models, such
as KG-BERT (Yao et al., 2019) and PKGC (Lv
et al., 2022), and encoder-decoder models, such
as KGTS5 (Saxena et al., 2022) and KGS2S (Chen
et al., 2022). The encoder-only models encode both
the query and all candidate entities to calculate their
matching confidence, while the encoder-decoder
models encode the query and then decode possible
candidate entities. Overall, PLM-based KGC meth-
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ods work by converting triples into serialized text
descriptions sentences and feeding the sentences
to PLMs to complete KGs. As illustrated in Fig-
ure 1, current PLM-based models (referred to as
triple-level PLM) encode the concatenated query
text, “Tu Youyou Nationality [MASK]”, from a “flat”
text-described view and directly generate the an-
swer entity, China.

However, current PLM-based models have flat-
tened triples into a simple triple-level text descrip-
tion presenting three significant limitations: (i) low
expressiveness. The embeddings of entities and
relations are learned at the triple level, which rep-
resents the embeddings as being focused only on
a local perspective (i.e., one-hop structure). Pre-
vious research has indicated that relying solely on
local relational information for KG learning is not
enough (Guo et al., 2019). (ii) inefficient infor-
mation propagation. These models depend exclu-
sively on one-hop neighbors for aggregating and
propagating information, which is inefficient for
transferring semantics and knowledge between en-
tities. (iii) lack of interpretability. KGC results
are generated directly in response to queries with-
out the necessary explanations or reasoning pro-
cess, which harms the credibility of completions.
Therefore, there is an urgent need to leverage rich
structural information of KGs to capture more com-
plex, long-term, or higher-level features to enhance
expressiveness, propagation, and interpretability.

To address the limitations above, in this paper,
we propose a Path-enhanced Pre-trained Language
Model-based Knowledge Graph Completion model
(PEKGC), which employs multi-view generation
by an encoder-decoder architecture to tackle lack-
ing long-term relational structures and poor inter-
pretability issues. To enable PLM-based models
to capture path-level knowledge and bridge long-
term gaps between entities, our model generates
possible entities with reasoning path chains, which
also serve as evidence for the generated answers in
response to queries. Besides, to extract local knowl-
edge, our model simultaneously generates answers
at a triple level. In this way, the model can focus on
multi-level knowledge simultaneously and can be
cross-validated occurring at both levels. To better
use the adjacent structural information and enhance
the inference ability of the model, we also design a
neighbor selector module, which is pre-trained to
filter the most relevant triples to the query as neigh-
borhood information. In addition, we use KG soft
prompts and position soft prompts to distinguish

between KG knowledge and textual knowledge, as
well as to mark the internal relationships of triples.
To further re-evaluate and re-rank the joint results
of both levels, we propose a fact-level re-evaluation
and a heuristic fusion ranking strategy, which can
re-calculate the confidence scores of candidate an-
swers and efficiently re-rank them. In summary,
the major contributions of this work are as follows:

* We propose a multi-level generation paradigm
for knowledge graph completion that can cap-
ture local triple-level knowledge and long-
term relational structures, and also model
the text and structural information, achieving
more directly interpretable results.

* We propose a heuristic fusion ranking strategy
for multi-view generation during inference,
further combining triple-level and path-level
results to achieve better ranking performance.

* Extensive experiments are conducted on
benchmark datasets, demonstrating that the
proposed method outperforms existing state-
of-the-art methods.

2 Related Work
2.1 Knowledge Graph Completion

Traditional KGC methods aim to map entities
and relations into a low-dimensional and contin-
uous vector space to capture inner connections.
These methods can be further subdivided into
translation-based methods (Bordes et al., 2013;
Sun et al., 2018), semantic matching methods
(Yang et al., 2015; Balazevi¢ et al., 2019), convo-
lutional neural network-based (CNN-based) meth-
ods (Dettmers et al., 2018; Ren et al., 2020), and
graph neural network-based (GNN-based) methods
(Schlichtkrull et al., 2018; Vashishth et al., 2019).
However, as the scale of KGs has increased, the
extraction and expression ability of these methods
has gradually encountered bottlenecks.

2.2 Path-based KGC

To bridge the long-term relational gaps between
entities and improve the interpretability of comple-
tion results, some methods introduce the multi-hop
paths into the KGC task, i.e., path-based methods.
These methods can be further subdivided into rule-
based methods (Qu et al., 2020; Sadeghian et al.,
2019), reinforcement learning-based (RL-based)
methods (Das et al., 2018; Lin et al., 2018; Jiang
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et al., 2023), and GNN-based methods (Zhu et al.,
2021; Zhang et al., 2023). Rule-based methods
utilize logical inference and symbolic rules to com-
plete KGs. They usually suffer from poor gener-
alization and high complexity due to their direct
operation on symbols when applied to large-scale
KGs. RL-based methods frame multi-hop path
reasoning as a finite horizon deterministic partially
observed Markov decision process (MDP) and train
an agent to navigate on KGs to locate target enti-
ties. However, these methods suffer from a large
search space during training, poor semantic under-
standing of paths, sensitivity to the reward function,
and sparse rewards. GNN-based methods use rela-
tional paths to encode and transmit the intermediate
knowledge between entities. However, these meth-
ods encounter issues such as over-smoothing when
aggregating high-order structural information, as
well as high computational complexity and a large
search space.

2.3 Pre-trained Language Model-based KGC

Recent research has focused on fine-tuning PLMs
for KGC tasks to leverage the implicit knowledge
of PLMs and the structured knowledge of KGs.
KG-BERT (Yao et al., 2019) is the first to use
BERT for KGC by simply concatenating triples’
names as text-based input. Subsequent methods
can be categorized into two main types based on
their model structures: encoder-only models and
encoder-decoder models. Encoder-only models
such as StAR (Wang et al., 2021), which integrates
graph embedding techniques to introduce struc-
tured knowledge, CoLE (Liu et al., 2022), which
distills selective knowledge between graph embed-
ding and PLMs, and PKGC (Lv et al., 2022), which
employs soft prompts to convert triples into nat-
ural prompt sentences Encoder-decoder models
such as KGT5 (Saxena et al., 2022), which uses
a Seq2Seq generative framework to encode query
and decode candidate entities, GenKGC (Xie et al.,
2022), which introduces entity-aware hierarchical
decoding for fast inference, and KG-S2S (Chen
et al., 2022), which unifies triples into “flat” text
and advance KG soft prompts.

3 Methodology

3.1 Notions

We formally represent a knowledge graph (KG)
as G = (E,R,T), where £ is the set of
entities, R is the set of relations, and T

is the set of triples in the KG. Each triple
can be expressed as | = (ep,re)) € T.
For a triple [, there are a set of relational
paths p = {(en,71,€1,...,7t,€t)|(en,r1,€1) €
T,...,(et—1,7¢,€;) € T} connecting the head en-
tity e, and the tail entity e;. Following (Guo et al.,
2019), we use Biased Random Walks to generate
these paths. Given a query (Tu Youyou, nationality,
?), we can formalize it as (ep,r,?), where ey, is
the head entity of the query, and r is the relation
between the head entity and the tail entity. The task
of link prediction in KGC is to infer the tail entity
e; and, similarly, predict the head entity ej, for a
query (7,7, e;). Following previous work, for each
triple [, we add an inverse triple (e;,7~1, e},) into
KG, where 7! is the inverse relation of r.

3.2 A Seq2Seq Architecture

As illustrated in Figure 2, the proposed PEKGC
model follows a sequence-to-sequence (Seq2Seq)
architecture comprising an encoder and a decoder.
To train the model to capture knowledge from multi-
views, we design two sub-tasks to train the model’s
capability at different levels (i.e., triple and path
levels). Overall, it can be represented as:

N

P(y|xq) = H P(yk|1:Qay<k)a (D
k=1

where z, is the input sequence, consisting of the
concatenated query. For the triple-level generation,
y denotes the concatenated target entities’ names
and descriptions. For the path-level generation,
y denotes the concatenated multi-hop reasoning
relational paths, target entities’ names, and entities’
descriptions.

3.3 Two-level Generation

Triple-level Generation To avoid ambiguity is-
sues of entity names (Chen et al., 2022), we use
entity descriptions to enrich the context informa-
tion of entities. For a query (ep, r, ?), we concate-
nate the head entity’s name x, the head entity’s
description dj,, and the relation’s name x, to form
its representation on the encoding side, that is:

24 = (xp,dy, [SEP], z,, [MASK]),  (2)

where [SEP]| denotes a special separator token, and
[MASK] denotes the “?” at the corresponding po-
sition to distinguish the queries between (e, 7, ?)
and (7,7, ¢e;).
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Figure 2: Overview of proposed PEKGC model, where e, and r, represent entities and relations, respectively.

On the decoding side, the triple-level task aims
to predict the target entity’s name and description
jointly,

Y = (w1, dy). (3)

Similar to tail entity predictions, the represen-
tations of query and answer for predicting head
entities, (7,1, e;), are as follows:

Lqg = ([MASK]7 Ty [SEP]7 Tt, dt)a (4)

Yt = (wn, dp). 5)

Path-level Generation The input of path-level
generation, x4, is the same as triple-level genera-
tion. The goal of its generation is to predict multi-
hop reasoning relational paths from source to target
entities, target entity’s name, and target entity’s de-
scription simultaneously,

yp = (ptaxtvdt)7 (6)

Yp = (P, Th, dp), (7

where p; (pp) is a concatenated sequence of the re-
lational reasoning paths (ep,, r1, €1, ..., 7, e;) from
the source entity ej, to the target entity e;. This
sequence serves as a reasoning chain and evidence
for the answer,

Pt = (xh7x1”17$617"'7$7‘t>xt)7 (8)

where x,, and x., represent the name texts of rela-
tions and entities in the path, respectively.

KG Soft Prompt We insert KG soft prompts into
the encoder’s input to differentiate between KG and
text knowledge and emphasize structural knowl-
edge (Chen et al., 2022). Specifically, we define
a set of additional trainable prompt embeddings,
which are associated with relations of KG. It is
worth noting that the number of relations in the KG
is significantly smaller than that of entities, thus

minimizing the risk of excessive overhead. These
embeddings are denoted as P, € RI®*? where d
is the dimension of the encoder. Each relation (r)
in the input sequence has a corresponding KG soft
prompt (py) that is inserted in front of it.

Position Soft Prompt We define position soft
prompts, P, € R3*?, to indicate and prompt the
positional relationships among the head entity, rela-
tion, and tail entity within a triple. This allows the
model to learn the internal positional relationship
of the triple and effectively distinguish between the
predicted head and tail entities.

Instructions Moreover, to further distinguish
two-level generation tasks, we insert two specific
instruction tags, I; and I,, at the beginning of the
input sequence: “Predict tail / head entity:” for
triple level and “Predict tail / head entity with path:”
for path level. Consequently, the input embedding
with soft prompts and instructions is updated to:

Lg = (Iap(]vxh)dhax&plapraxmp%xm)? (9)

where I denotes the instruction tag, x; denotes the
head entity’s name, dj, denotes the head entity’s
description, x, denotes the relation’s name, p, rep-
resents the KG soft prompt related to r, pg, p1 and
po are position soft prompts, and xs and x,, are
special tokens, [SEP] and [MASK], respectively.

Training Both triple-level and path-level genera-
tion goals are to predict the answer sequence y; or
yp- Therefore, the optimization objective is given
by:

L, = —log P(y|z,). (10)

3.4 Neighbor Selector

To better use the adjacent structural information
around the query, we design an additional neighbor
selector module, which is pre-trained to filter the
most relevant triples to the query as neighborhood

4531



information. For a query, (ep,, r, 7), there are a k-th
order neighborhood subgraph,
N ={(en,r1,€1),...(en, 7k ey, ..., (A1)

(e1,73,€3), s (€n 1, s €n) ),

0<m<[R[,0<n<[E]

Subsequently, we can filter query-relevant neigh-
bors from N}, by a pre-trained encoder-decoder
selector. The input of encoder is:

x = (zp, xy, [MASK], [SEP], x4, xp, z¢), (12)

where x;, and x, are entity and relation names of
the query respectively, and (x4, xp, x.) is the name
of (€q,7p, €c) € Ny, which is a neighbor triple re-
lated to the source entity ey,. The prediction goal of
the selector is y € {yes, no}, where yes indicates
the target entity present in the neighbor triple, con-
sidered a positive sample, while conversely, it con-
stitutes a negative sample. Therefore, considering
reducing the sensitivity of the model in the learning
process to prevent over-fitting, the pre-training loss
of this module is:

L, = —log P(y|z)
+ log(1 +

(13)
(=)

D

1€Qneg,JELpos

)

where 41 is a margin value, €1,,., denotes the decode
scores set of negative samples, and €2,,,; denotes
the decode scores set of positive samples.

This selector allows us to filter the most relevant
triples, N C Nj. Consequently, concatenating
N to x4 of Equation 9 can be updated as:

rq = (Tqs Tn), (14)

where x; is the final input to equation 1, and x,, rep-
resents the textualized representation of the filtered
neighbor triples NV} .

3.5 Re-evaluation and Fusion Ranking

Fact-level Re-evaluation To re-evaluate and re-
order the two group results generated by triple and
path levels, we also pre-train the encoder of model
at fact level. For instance, given a candidate triple
[ = (ep,r, &) generated by triple or path level, its
confidence score is calculated as:

¢(ehr7 ét) = COS(ehT‘7 ét) = €epr - ét7 (15)

where ey, is the max pooling of the combination
encoding of e; and r, &; is the encoding of the

predicted candidate entity é;, and - denotes a dot
product operation.

As aresult, the training objective of the fact-level
encoder is to maximize the confidence scores of
the correct triples {(ep, r, e¢)|(ep, ) € T }:

argmax, ¢ (ep;, ;). (16)

Consequently, we take correct triples as positive
targets and the other entities as negative targets in
the same batch during training. Following (Chen
etal., 2020; Wang et al., 2022), we use the InfoNCE
loss to achieve this goal:

e(@(enr.e)—7)/7

e(@(enr,ec) =) /7 1 Zf\il ed(enr.e)/T’

(17
where v > 0 is a margin factor that encourages
the model to increase the confidence scores of the
correct triples, and 7 is a temperature factor to
adjust the relative importance of negatives. The
loss of head entity prediction is similar.

Ly = —1log

Fusion Ranking Given the extra computing re-
sources consumed by re-evaluation operations, it
is necessary to prune this process. Consequently,
we propose a heuristic fusion ranking strategy to
eliminate unnecessary re-evaluations and improve
performance. First, we introduce two definitions:

Definition 1. (Consistent Prediction) Given a
query with triple-level predicted rank list A, and
path-level predicted rank list Ay, it is a consistent
prediction if there exists Ay, = flpo, where Ay,
and Apo are highest ranking of their list. A set of
consistent predictions is given by:

Ac = { A Ay = Ao} (18)
Definition 2. (Hard Prediction) Given a query with
triple-level predicted rank list A, and path-level
predicted rank list flp, it is a hard prediction if
there exists |flt N flp| < aor |/lt] >8 a,8>0.
A set of hard predictions is given by:

A = {A;UA||AnAy| < a, |Ay| > BY. (19)

Since triple level generates only target entities,
whereas path level generates both entities and rea-
soning paths, the diversity of entities produced at
the path level is generally lower than that of the
triple level. Therefore, setting the parameter 3 at
the triple level can make the model more sensitive.
In addition, consistency prediction indicates that
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WNISRR FB15k-237
Methods Base Model =™ @1 @3 @l0 MRR @1 @3 @10
KG-BERT (Yao et al., 2019) BERT 216 41 302 524 - - - 40
StAR (Wang et al., 2021) RoBERTa  40.1 243 49.1 709 296 205 322 482
GenKGC (Xie et al., 2022) BART - 287 403 535 - 192 355 439
KGTS5 (Saxena et al., 2022) TS5 508 487 - 544 276 210 - 414
CoLE (Liu et al., 2022) BERT 585 532 607 689 387 293 426 57.0
SimKGC (Wang et al., 2022) BERT 666 587 717 80.0 336 249 362 S5l
KG-S2S (Chen et al., 2022) TS5 574 531 595 661 336 257 373 498
CSProm-KG (Chen et al., 2023) BERT 575 522 596 67.8 358 269 393 538
PDKGC (Geng et al., 2023) BERT 577 505 609 713 379 285 415 566
BMKGC (Kong et al., 2024) BERT 669 590 720 80.7 332 247 365 514
COSIGN (Li et al., 2024b) TS 64.1 610 654 714 368 315 434 520
PEMLM (Qiu et al., 2024) BERT 556 509 573 648 355 264 389 538
PEKGC (ours) TS 69.7 649 735 787 392  33.6 46.6 544

Table 1: The performance of PLM-based KGC models on the link prediction task. The Hits@ 1, Hits@3, Hits@10,
and MRR metrics are multiplied by 100. We highlight the best results and underline the second-best results.

the predicted entities from the two views are rela-
tively aligned, which is a simple prediction. There-
fore, we can directly select the path-level ranking
as the final result. Hard prediction indicates sig-
nificant discrepancies between the two views, sug-
gesting a more complex prediction. In these cases,
it is necessary to re-evaluate and re-order all the
candidate entities using the fact-level evaluator. For
other cases that belong to general prediction, we
can use any rank or re-evaluation rank as the final
result. we also choose the path-level rank as the
final result to simplify the actual process.

4 [Experiments

To investigate our model’s effectiveness and effi-
ciency, we evaluate the performance of proposed
model on KGC (link prediction) task, which aims
to produce a ranking list of all entities for a query
((ep,r,?) or (?,7,¢e;)), on benchmark KGs. We
also conduct an ablation study to demonstrate the
impact of each proposed module. Additionally, we
present examples of reasoning paths in a case study
to illustrate that PEKGC effectively generates high-
quality reasoning paths.

4.1 Experiment Setup

Datasets We adopt two benchmark datasets for
the link prediction task, i.e., WN18RR (Toutanova
et al., 2015) and FB15k-237 (Dettmers et al., 2018).
Table 2 lists the details of these two datasets.

Metrics We use the mean reciprocal rank (MRR)
and Hits @k to evaluate the performance of all mod-
els, where Hits @k represents the fraction of posi-
tive triples ranked in the top k positions.

Datasets #Ent  #Rel #Tri #Degree
WNI8RR 40945 11 86835 2.19
FB15k-237 14505 237 272115 19.74

Table 2: Datasets are used in the experiments.

Baselines Based on link prediction task, we com-
pare our approach with twelve PLM-based KGC
methods: KG-BERT (Yao et al., 2019), StAR
(Wang et al., 2021), GenKGC (Xie et al., 2022),
KGT5 (Saxena et al., 2022), CoLE (Liu et al.,
2022), SimKGC (Wang et al., 2022), KG-S2S
(Chen et al., 2022), CSProm-KG (Chen et al.,
2023), PDKGC (Geng et al., 2023), BMKGC
(Kong et al., 2024),COSIGN (Li et al., 2024b), and
PEMLM (Qiu et al., 2024).

4.2 Main Results

Table 1 presents the link prediction results for PLM-
based models on the WN18RR and FB15k-237
datasets. The experimental results confirm that
our PEKGC model achieves satisfactory perfor-
mance compared to the baseline models in most
metrics. In particular, our PEKGC improves the
Hits@1 metric by 6.4% and 6.7% on the WN18RR
and FB15k-237 datasets, respectively, compared
to the previous best PLM-based models. We at-
tribute this to Definition 1 of the fusion ranking
paradigm, which employs cross-verification of two-
level predictions on top-one results, further improv-
ing Hits@1, as shown in Table 4. Furthermore,
the results in the table also suggest that both defi-
nitions should be used together to achieve a more
significant improvement.

We observe that the performance of PEKGC is
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ID | Levels |

Answers

Query: (7, MemberOfDomainRegion, Facer[A dated Briticism]) = Answer: United Kingdom of Great Britain and
Northern Ireland

| Triple Level | United Kingdom of Great Britain and Northern Ireland
1 ember omainRegion ™! sPart—1 . . . .
Facer M <mberOf Pomginfies England HasPart™" United Kingdom of Great Britain and
Path Level
Northern Ireland
Query: (?, MusicArtistsGenre, Dio]) = Answer: Rock Music
‘ Triple Level ‘ Hard Rock & Heavy Rock & Thrash Metal & Doom Metal
. . —1 .
| PathLevel | Dio MUsteATHE G Hard Rock M TG EENE Rock Music
Query: (Asheville, LocationTimeZones, ?) = Answer: Eastern Time Zone
| Triple Level | Eastern Time Zone
. Contains™ ! LocationTimeZones .
Path Level Asheville ©~ —"  Buncombe County — Eastern Time Zone

Table 3: Three examples are predicted at triple and path levels, respectively. The first query comes from the
WN18RR dataset, and the other two come from the FB15k-237 dataset. The inverse relations of existing relations

are denoted by ~1.

Datasets | Models MRR Hits@1
PEKGC 69.7 64.9

WNI18RR -Definition 1 68.4 63.6
-Definition 2 67.8 62.3
PEKGC 39.2 33.6

FB15k-237 | -Definition 1 36.7 29.7

-Definition 2 37.2 30.6

Table 4: Comparison of MRR and Hits@1 between
PEKGC and models without partial fusion ranking.

weaker than some models in Hits@ 10, which can
be attributed to common limitations of encoder-
decoder models. Since these models rely on gen-
erating candidate answers through a decoder, the
diversity of answers is constrained. As a result,
encoder-decoder models generally face a signifi-
cant disadvantage on larger rank scales compared
to encoder-only models, which can match all en-
tities of the KGs by calculating their matching
confidence scores. However, our proposed model
still outperforms previous encoder-decoder meth-
ods across all indicators. These phenomena demon-
strate the effectiveness of the proposed PEKGC,
as it indeed improves the generation abilities of
encoder-decoder models.

4.3 Ablation Study

We conducted an ablation study on two benchmark
datasets to evaluate the effectiveness of the pro-
posed modules. As shown in Table 5, “-Path Level”
refers to training and predicting solely at the triple
level, “-Fact Level” indicates the exclusion of fact-

Datasets | Models MRR Hits@1
PEKGC 69.7 64.9
-Path Level 67.1 62.8
-Soft Prompt 68.5 63.9

WNI18RR -Fact Level 67.8 62.3
-Triple Level 66.4 61.2
-Fusion Ranking  65.8 60.9
-Neighbors 60.0 55.3
PEKGC 39.2 33.6
-Path Level 36.7 30.6
-Soft Prompt 38.2 32.7

FB15k-237 | -Fact Level 37.2 30.6
-Triple Level 36.5 29.5
-Fusion Ranking ~ 36.7 29.7
-Neighbors 38.1 31.0

Table 5: Comparison of MRR and Hits@1 between
PEKGC and models without path-level generation, soft
prompt, fact-level re-evaluation, fusion ranking, or
neighbors.

level re-evaluations, “~-Soft Prompt” involves re-
moving KG and position prompts, and “-Fusion
Ranking” means eliminating the heuristic fusion
ranking paradigm and using fact-level re-evaluation
ranking as the final results in the inference stage.
We can observe that removing any proposed mod-
ules leads to a significant performance drop across
both datasets. Additionally, the final performance
is not good when using only the fusion ranking
without re-evaluating hard predictions, further em-
phasizing the necessity of re-evaluating hard pre-
dictions as outlined in Definition 2. In brief, these
ablations validate the effectiveness of the proposed
modules.
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4.4 Case Study

We present three typical queries answered at both
the triple and path levels to gain insight into the dif-
ference between the two-level generation, as shown
in Table 3. Triple-level predictions provide entity
answers directly, while path-level prediction offers
both entity answers and reasoning paths, which
serve as reasoning chains.

In particular, the second query shows the differ-
ence in accuracy between the two-level generation.
Although “Hard Rock” is a correct answer, “Heavy
Rock”, “Thrash Metal” and “Doom Metal” are
wrong answers produced by the triple-level genera-
tor. The reasons for this phenomenon are twofold:
1) Encoder-decoder models adopt a teacher-forcing
strategy during training, leading to reduced scala-
bility when predicting unseen triples, especially in
1-N or N-N triples. ii) At times, predicting the cor-
rect results directly can be challenging due to the
lack of necessary prior knowledge or a step-by-step
reasoning process. The paths between entities can
provide the required prior knowledge and serve as
a reasoning chain to address this issue. The above
demonstrates the necessity of introducing paths
to enhance the robustness of completions. Addi-
tionally, the paths incorporated into the generation
process play a crucial role in providing human-
understandable interpretability.

4.5 Further Analysis

Running Efficiency Analysis To demonstrate
the efficiency of PEKGC, we compare its average
training time with that of KG-S28S, as illustrated
in Figure 3(a). While PEKGC needs to consider
path and structural information compared to KG-
S28, its average runtime increases by 105ms and
49ms on two datasets, respectively. However, un-
der the condition of sacrificing acceptable runtime
efficiency, PEKGC’s Hits@1 performance is on av-
erage improved by 22.2% and 30.7%, respectively,
compared to KG-S2S.

Additionally, the specific time consumption can
be further decomposed as follows: i) Training time
consumption mainly includes neighbor selection
+ encoder-decoder training time. Neighbor selec-
tion, a binary classifier, takes < 0.1ms per batch,
which is negligible. ii) Inference time consump-
tion mainly includes neighbor selection + encoder-
decoder inference + re-evaluation time. Neighbor
selection takes < 0.1ms per batch. Re-evaluation
consumption is about 0.3ms per batch. Triple-level

WN18RR
W KG-S2S
FB15k-237 B PEKGC
0 50 100 150 200 250 300

Running time (ms)
(a) Training running time.
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71 71

6 | B8 1 one

67 67

~Hits@1 (%) =-MRR (%)

701 07 70.2

64.8 65 665 6.2
65 64/“£_”— 65 65.5
64.6 64.8
63 63
1 3 s 10 0 5 10 20 40
Values of 8

Values of &

(b) The value of «. (¢) The value of 3.

“Hits@1 (%) wMRR (%)

72 74
69.5 697

° e P 678 087

68 593 7 696 66.2

~-Hits@1 (%) =-MRR (%)

646 649
638
66 1 67.1 64 628

62 1 628 55,
60 54
0 1 2 3 4 0 2 4 6 8 10
Number of Paths Number of Neighbors
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Figure 3: The further experimental results of PEKGC.
The last four figures are the results of the WN18RR
dataset.

inference consumption is about 1.2ms per batch,
path-level inference consumption is about 4.8ms
per batch, and the average consumption is about
3ms per batch.

Hyperparameters of Fusion Ranking For the
two parameters in fusion ranking, a larger value
of « or a smaller value of 5 means more candi-
date triples must be re-evaluated. As shown in
Figure 3(b)-3(c), a smaller or too-large value of 3
cannot get better results. Consequently, choosing
the proper range for re-evaluation can reduce the
computational overhead and improve the results.

Path Numbers for Each Triple Figure 3(d)
shows the performance impact of using different
numbers of paths for each triple. We observe that
the introduction of paths improves the model’s per-
formance. However, when the number of paths
is > 2, there is no significant improvement. This
indicates that an appropriate number of paths is
sufficient for satisfactory improvement.

Neighbor Numbers for Each Triple As shown
in Figure 3(e), the addition of neighbor information
greatly improves the performance of the generative
model, but more neighbor triples will increase the
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length of the input sequence and final running time.
We observed that when the number of neighbors is
set to 8, the recall rates and satisfactory results can
be achieved.

5 Conclusion

We propose a multi-view generation framework,
PEKGC, for KGC tasks that captures triple-level
knowledge, long-term path-level knowledge, and
structural neighborhoods, achieving more directly
interpretable results. We propose a heuristic fusion
ranking strategy for multi-view generation during
inference to further combine triple-level and path-
level results to achieve better ranking performance.
Experimental results demonstrate the effectiveness
of our approach. In future work, we aim to address
the challenges of diversity and generalization of
PLM-based models.

Limitations

Our proposed PEKGC model significantly im-
proves the performance of encoder-decoder KGC
models. However, three challenges remain for fu-
ture work: 1) The diversity of generated results is
limited, resulting in a high number of identical and
homogeneous outputs, which affects the models’
universality and robustness; ii) Decoders tend to
favor generating seen entities, leading to challenges
in flexibility and generalization, especially in 1-N
and N-N triples.

Ethics Considerations

In this work, we use publicly available datasets
and do not collect any personally identifiable in-
formation. All datasets and models are utilized
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knowledge graph completion is a widely accepted
and long-standing research task, we do not see any
significant ethical concerns. As for the scientific
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comply with the corresponding intended use and
licenses.
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Values
Hyperparameters
WNI18RR FB15k-237

batch size 64 32
learning rate 0.001 0.001

dropout rate 0.1 0.1

beam size 40 40

margin value p 25 15
margin factor ~y 0.02 0.02
temperature factor 7 0.05 0.05
input max length 512 512
output max length 150 150

description max length 40 80

Table 6: The hyperparameters for two datasets.

A Implementation Details

A.1 Hyperparameter setting

We realize PEKGC on A100 GPU using the T5-
base model (Raffel et al., 2020) with the Adam
optimizer, and follow the standard T5 unsuper-
vised training paradigm. Following KG-S2S (Chen
et al., 2022), we enclose the entities’ descriptions
in square brackets, wrap paths in parentheses, and
use the “|” token as a special separator. Answer
texts are also enclosed by the TS5 special tokens.
During the data preparation phase, we use Biased
Random Walks algorithm (Guo et al., 2019) to gen-
erate related paths for triples in the training set,
tuning the number of paths per triple within the
range of {1, 2, 3, 4}, and tuning the number of
neighbors per triple within the range of {2, 4, 6, 8,
10}. In the training stage, the number of training
epochs is set to 100 and 20, with the entity descrip-
tion lengths set to 40 and 80 for the WN18RR and
FB15k-237 datasets, respectively. The mini-batch
size for the main tasks is chosen from {16, 32,
64}. To maximize the performance of fact-level
re-evaluation, we search for the optimal mini-batch
size within {256, 512, 1024}. The maximum in-
put token length for the encoder is set to 512. We
use a learning rate of 0.001, an encode sequence
dropout rate of 0.1, a margin factor of 0.02, and a
temperature factor of 0.05. In the inference stage,
the model generates the raw text without special
tokens. We set the maximum output length to 150
and the number of samples for beam search to 40.
For hard predictions, we search for a within {1, 2,
3,4, 5,10}, and 8 within {0, 5, 10, 20, 40}. The
optimal parameter values are shown in Table 6.

A.2 Implementation Process

For the sake of clarity, we list the operation process
of our framework as follows: i) Use the Biased
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WNISRR FB15k-237
*

Methods smallmodel /0 o™ His@! His@3 His@10 MRR Hits@1 Hits@3 Hits@10

KICGPT (RotatE) 564 478 61.2 67.7 4.0 321 43.0 58.1

CP-KGC (SimKGC) 673 59.9 72.1 80.4 338  25.1 365 56.1

KG-S25-CD (KG-S2S) 576 526 60.7 67.2 372 288 41.0 53.0

PEKGC (ours) ] 697  64.9 735 78.7 392 33.6 46.6 54.4

Table 7: Comparison between the proposed PEKGC and LLM-based models. The Hits@ 1, Hits@3, Hits@ 10, and

MRR metrics are multiplied by 100. We highlight the best results and underline the second-best results.

Random Walks algorithm to extract the correspond- Models Hits@1
ing paths for all triples. ii) Pre-train the neighbor KG-ChatGLM-6B 16.1
selector referring to Section 3.4. However, as the KG-LLaMA-7B 242
number of neighbor triples may be huge, we first ﬁg:iigﬁ:;?& %gg
sample 500-800 neighbor triples and then use the KG-LLaMA2-13B + Struct ~ 31.5
neighbor selector to filter them to ensure that time PEKGC (ours) 64.9

consumption increases linearly with the scale of
KG. iii) Pre-train the fact-level re-evaluator refer-
ring to Section 3.5. iv) Train PEKGC with the
prepared data, referring to Section 3.3. v) Use
trained PEKGC to generate results at the triple and
path levels. vi) reevaluate and reorder referring to
the heuristic fusion ranking strategy.

B More Analysis Results
B.1 Parameters on the FB15k-237 Dataset

As shown in Figure 4, the experimental results
on the FB15k-237 dataset is consistent with the
WN18RR dataset.

“~Hits@1 (%) -=MRR (%) “=Hits@1 (%) “-MRR (%)

Table 8: Comparison with purely LLM-based methods
on the WN18RR dataset.

* On the WN18RR dataset(ac = 5, 5 = 10), the
ratio of Consistent Predictions : Hard Predic-
tions : General Predictions is 0.257 : 0.699 :
0.044.

* On the FB15k-237 dataset(a = 5,8 = 20),
the ratio of Consistent Predictions : Hard Pre-
dictions : General Predictions is 0.115 : 0.826
: 0.059.

C Comparison with Large Language

s | s P2 393 36 w0 ¥ ¥ 5, MOdel (LLM)-BaSCd MethOdS

36 » 352 - 34.2 352 30

s | sy 36 B0 u " ' As shown in Table 7 and Table 8, we compare
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Figure 4: The further experimental results of PEKGC
on the FB15k-237 dataset.

B.2 Distribution of the Three Prediction Cases

The proportions of the three prediction cases are
summarized as follows:

the performance of the proposed PEKGC model
with three representative LLM-based approaches:
CP-KGC (Yang et al., 2024), KG-S2S-CD (Li
et al., 2024a), and KICGPT (Wei et al., 2023)
and five purely LLM-based models (Yao et al.,
2025). Current LLM-based knowledge graph com-
pletion (KGC) methods still rely on auxiliary as-
sistance from smaller models. For instance, some
approaches require smaller KGC models to pre-
select candidate entities for the LLM to reduce
input complexity and entity set size (Wei et al.,
2023), while others distill knowledge or textual
information from LLMs to facilitate training (Li
et al., 2024a). In general, despite their strong per-
formance, these methods still depend on auxiliary
models to complete the KGC process effectively.
Therefore, research on pre-trained language models
continues to hold significant practical value.

4539



Models MRR Hits@1l Hits@10

MINERVA 44.8 413 51.3
Multihop-KG 47.2 43.7 54.2
PSRL 46.8 43.4 52.6
ComGCN 479 44.3 54.6
NBFNet 55.1 49.7 66.6
AdaProp 56.2 49.9 67.1
PEKGC (ours)  69.7 64.9 78.7

Table 9: Comparison with path-based methods on the
WNI18RR dataset.

Nevertheless, in this section, we compare our
proposed PEKGC model with the three LLM-based
methods mentioned above. The best results in each
case are highlighted in bold. Experimental results
show that our PEKGC outperforms the LLM-based
approaches in most cases, demonstrating the supe-
riority and practical effectiveness of our method.

D Comparison with Path-Based Methods

As shown in Table 9, we compare the performance
of the proposed PEKGC model with six path-based
methods, mainly including reinforcement learn-
ing (RL)-based approaches and graph neural net-
work (GNN)-based approaches: MINERVA (Das
et al., 2018), Multihop-KG (Lin et al., 2018), PSRL
(Jiang et al., 2023), ComGCN (Vashishth et al.,
2019), NBFNet (Zhu et al., 2021), and AdaProp
(Zhang et al., 2023), on the WN18RR dataset.
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