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Abstract
The alignment of large language models
(LLMs) aims to ensure their outputs adhere
to human values, ethical standards, and le-
gal norms. Traditional alignment methods of-
ten rely on resource-intensive fine-tuning (FT),
which may suffer from knowledge degrada-
tion and face challenges in scenarios where
the model accessibility or computational re-
sources are constrained. In contrast, training-
free (TF) alignment techniques–leveraging in-
context learning, decoding-time adjustments,
and post-generation corrections–offer a promis-
ing alternative by enabling alignment without
heavily retraining LLMs, making them adapt-
able to both open-source and closed-source
environments. This paper presents the first
systematic review of TF alignment methods,
categorizing them by stages of pre-decoding,
in-decoding, and post-decoding. For each
stage, we provide a detailed examination from
the viewpoint of LLMs and multimodal LLMs
(MLLMs), highlighting their mechanisms and
limitations. Furthermore, we identify key chal-
lenges and future directions, paving the way
for more inclusive and effective TF alignment
techniques. By synthesizing and organizing
the rapidly growing body of research, this sur-
vey offers a guidance for practitioners and ad-
vances the development of safer and more reli-
able LLMs.

1 Introduction

The advent of Large Language Models (LLMs)
(Hurst et al., 2024; Achiam et al., 2023; Touvron
et al., 2023; Chiang et al., 2023) and Multimodal
Large Language Models (MLLMs) (Bai et al.,
2023; Chen et al., 2025; Ye et al., 2024) has marked
a paradigm shift in human-machine interaction, en-
abling tasks ranging from complex reasoning to
cross-modal understanding.

However, as these models permeate critical do-
mains such as healthcare, education, and public
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discourse, their widespread adoption has ignited
a dual-edged societal response: urgent concerns
over risks and growing demands for enhanced ca-
pabilities. On one hand, LLMs bring about various
risks like generating harmful content (Soice et al.,
2023), perpetuating biases and compromising pri-
vacy (Salecha et al., 2024; Staab et al., 2024; Ab-
dulhai et al., 2024). On the other hand, users and
industries increasingly demand models that adapt
to dynamic knowledge (Zhang et al., 2023; Si et al.,
2023; Beukman et al., 2023), excel in specialized
tasks (Li et al., 2024a; Chen et al., 2024a), and
deliver personalized services (Richardson et al.,
2023; Zhuang et al., 2024). These dual imperatives,
namely mitigating risks and fulfilling functional de-
mands, underscore the necessity of aligning LLMs
with human values, ethical standards, and practical
requirements. Alignment is no longer a technique
alone but a prerequisite for responsible and effec-
tive deployment.

As a critical problem in artificial intelligence
and natural language processing, LLM align-
ment has attracted considerable research attention
(Shen et al., 2023; Wang et al., 2024d; Gabriel,
2020; Ouyang et al., 2022). Traditional align-
ment methods primarily rely on fine-tuning (FT),
where model parameters are adjusted using cu-
rated datasets. While effective in specific scenarios,
these approaches face one or more of the follow-
ing three critical limitations: (1) Severe Knowledge
Degradation: FT may overwrite pretrained knowl-
edge, leading to catastrophic forgetting of general
capabilities. (2) Resource Intensity: Collecting
high-quality alignment data and retraining LLMs
requires prohibitive computational and human re-
sources. (3) Access Constraint: Proprietary models
(e.g., GPT-4, Gemini) restrict parameter access,
rendering FT infeasible.

To address these challenges, training-free (TF)
alignment has emerged as a versatile paradigm.
Instead of modifying model parameters, TF meth-
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Pre-Decoding TF
Alignment (§3.1)

Simple Prompt
Engineering

URIAL (Lin et al., 2023), AdaShield (Wang et al., 2024c),
ICD (Wei et al., 2024), Anthropological Prompting (AlKhamissi et al., 2024),
CoSA (Zhang et al., 2024a), SKIG (Sel et al., 2024), BBA (Zhao et al., 2024),
RapGuard (Jiang et al., 2024), Self-Reminders (Xie et al., 2023),
ICDPO (Song et al., 2025a), VILMO (Duan et al., 2024)

Enhanced Prompt
Strategy

OPO (Xu et al., 2023), AUTOCAP (Zhang et al., 2024d),
Prioritization (Zhang et al., 2024e), PRETTY (Zhan et al., 2024),
BPO (Cheng et al., 2024), PEARL (Fu et al., 2024a), PICA (Liu et al., 2024d),
MIXALIGN (Zhang et al., 2024c), DUAT (Huang et al., 2024d),
P-Aligner (Song et al., 2025b), ARL2 (Zhang et al., 2024b),

Detector-Based
VLMGUARD (Du et al., 2024), CIDER (Xu et al., 2024a),
Token Highlighter (Hu et al., 2024), HarmAug (Lee et al., 2024)

In-Decoding TF
Alignment (§3.2)

Hidden States
Adjustment

CMRM (Liu et al., 2024b), VLM-Guard (Liu et al., 2025)

Logits Difference
Calculation

DeRa (Liu et al., 2024c), InRa (Zhu et al., 2025b), MOD (Shi et al., 2024),
Linear Alignment (Gao et al., 2024b), Proxy Tuning (Liu et al., 2024a),
δ -UNLEARNING (Huang et al., 2024b), GOOD (Fang et al., 2024),
CoCA (Gao et al., 2024a), IVG (Liu et al., 2024e), MCA (Fu et al., 2024b),
Linear Alignment (Gao et al., 2024b)

Guidance-Based

InferAligner (Wang et al., 2024b), GenARM (Xu et al., 2025),
Nudging (Fei et al., 2024), RDS (Zeng et al., 2025), PAD (Chen et al., 2024b),
Trustworthiness (Qian et al., 2024), Chat Vector (Huang et al., 2024c),
Category-Specific Steering (Bhattacharjee et al., 2024),
OPAD (Zhu et al., 2025a), SCANS (Cao et al., 2025), IAR (Li et al., 2025b),
WSD (Song et al., 2025c), CARDS (Li et al., 2025a),
CAVGAN (Li et al., 2025c), ARGS (Khanov et al., 2024)

Dynamic Search
Strategy

RAIN (Li et al., 2024b), DeAL (Huang et al., 2024a), PAS (Zhu et al., 2024),
TreeBoN (Qiu et al., 2024), DARWIN (Hung et al., 2024)

Post-Decoding TF
Alignment (§3.3)

Filtering/Correcting
Outputs

LLM SELF DEFENSE (Phute et al., 2024), RA-LLM (Cao et al., 2024),
Aligner (Ji et al., 2024a), ETA (Ding et al., 2024), ECSO (Gou et al., 2024),
PRIVQA (Chen et al., 2023), DPS (Zhou et al., 2024b)

Figure 1: Taxonomy of training-free (TF) alignment methodologies for LLMs, categorized into pre-decoding,
in-decoding, and post-decoding strategies.

ods intervene at different stages of the generation
pipeline: (1) Pre-Decoding TF Alignment: guiding
models by modifying inputs or prompts. (2) In-
Decoding TF Alignment: adjusting token selection
during generation. (3) Post-Decoding TF Align-
ment: filtering or refining outputs to meet safety
and utility criteria. The overview of TF alignment
methods at different stages is shown in Figure 1,
which helps to gain a comprehensive understanding
of the process.

While TF alignment demonstrates notable ad-
vantages, our analysis reveals critical challenges
and promising further directions, including (1)
maintaining general capabilities, (2) exploring cost-
effective frameworks, (3) overcoming generaliza-
tion of TF alignment, (4) developing controllable
TF alignment methods. This survey not only seeks
to inspire further research interests in this area but
also aims to guide the evolution of LLMs toward
benefiting human society.

In summary, the main contributions of this paper
are as follows:

• First Review of TF Alignment: To the best of
our knowledge, this is the first comprehensive
review of TF alignment methods for LLMs.

• New Taxonomy Framework: We present a sys-
tematic framework for TF alignment approaches,
which organizes and categorizes the existing
work in a structured way, covering pre-decoding
interventions, in-decoding adjustments, and post-
decoding refinement.

• Prospective Research Roadmap: We outline
critical and challenging future directions for TF
alignment, addressing key areas such as cost-
effective framework, and controllable alignment.
This roadmap provides a foundation for advanc-
ing TF alignment research towards more robust
and inclusive LLMs.

2 Preliminary

This section systematically explores four pivotal
dimensions of TF alignment, including alignment-
related concepts, the rationale for choosing TF
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alignment, scenarios where TF alignment is prefer-
able, and methods to evaluate TF alignment ap-
proaches.

2.1 What are LLM Alignment and TF
Alignment?

LLM alignment is the process of ensuring that lan-
guage models behave in ways that align with hu-
man expectations, societal values, legal standards,
and ethical principles. This review focuses on TF
alignment, which encompasses functional align-
ment and normative alignment.

Functional alignment emphasizes the model’s
ability to perform tasks accurately and reliably. It
can be further divided into two categories: (1) Task-
specific Alignment: Tailoring the model for specific
applications (e.g., Zhan et al. (2024)) to optimize
the objective towards particular requirements. (2)
General Capability Alignment: Ensuring the model
maintains updated knowledge and strong general-
ization abilities across diverse tasks and scenarios
(e.g., Zhang et al. (2024c)).

Normative alignment focuses on ethical, safety,
and user-centric aspects. It also contains two main
components: (1) Public Safety and Ethical Align-
ment: Ensuring model outputs comply with safety
standards, ethical norms, and regulatory guidelines
to avoid harmful content and data privacy violations
(e.g., Fang et al. (2024)). The goal is to mitigate po-
tential risks and prevent adverse impacts on society.
(2) Personalized Alignment: Adapting the model’s
interaction style and outputs to individual prefer-
ences and usage patterns, balancing safety proto-
cols with personalized experiences (e.g., Chen et al.
(2024b)).

In conclusion, functional alignment ensures the
model performs tasks effectively, while normative
alignment guarantees that its operation remains
safe and ethical.

2.2 Why Opt for TF Alignment?
Building upon the superficial nature of alignment
tuning demonstrated by LIMA (Zhou et al., 2023),
the extended empirical discovery in URIAL (Lin
et al., 2023) demonstrates that TF alignment can
match or even surpass FT-aligned LLM perfor-
mance. TF alignment technology warrants deeper
analysis to advance future LLM research. There-
fore, we undertake a systematic investigation into
TF alignment.

As listed in introduction, traditional alignment
methods based on FT have one or more critical

limitations in practice1. In contrast, TF alignment
provides a versatile and efficient alternative. The
core advantages of TF alignment are as follows.
Cost Efficiency and Environmental Sustainabil-
ity (1) No Training Overheads: TF methods reduce
computational costs (e.g., GPU hours) and hyper-
parameter tuning burdens since they eliminate the
need to train LLMs. (2) Reduced Data Dependency:
Unlike supervised fine-tuning (SFT), they often re-
quire no labeled datasets, minimizing annotation
labor and data collection costs.
Operational Flexibility and Model Compatibil-
ity (1) Plug-and-Play: Techniques like in-context
learning can be applied “on the fly” (Min et al.,
2022), enabling rapid iteration (e.g., switching
alignment objectives without retraining). (2) Low
Storage Overhead: Unlike parameter-efficient fine-
tuning (PEFT) methods (e.g., LoRA (Hu et al.,
2021), TF alignment introduces low additional stor-
age costs. (3) Black-Box Adaptability: Most TF
alignment methods operate without accessing in-
ternal model parameters, making them compatible
with both open- and closed-source models (e.g.,
Llama, GPT-4, Claude).
Slight Knowledge Degradation By avoiding pa-
rameter updates or making minor adjustments, TF
alignment methods better preserve the original
knowledge of LLMs.

2.3 How to Evaluate LLM Alignment?

The evaluation of LLM alignment effectiveness can
be categorized into three primary paradigms based
on assessment methods.
Benchmark-Driven Evaluation This quantitative
approach utilizes standardized test suites with pre-
defined metrics to measure alignment performance.
For instance, MMLU (Hendrycks et al., 2020) and
XSum (Narayan et al., 2018) benchmarks assess
general capability retention after alignment, while
perplexity measurements (Shannon, 1948) evaluate
prediction quality by quantifying the cross-entropy
between model outputs and reference distributions.
Human-Centric Evaluation This paradigm em-
ploys human judgment through two primary modal-
ities: crowdsourcing annotation and expert analy-
sis. Large-scale evaluations often leverage plat-
forms like Amazon Mechanical Turk2 to collect

1For example, modern adapter-based FT techniques can
significantly reduce computational cost and are less energy-
intensive, but the data dependency issue and the closed-source
model accessibility issue still exist.

2https://www.mturk.com
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judgments from workers. Also, domain-specific
evaluations can be conducted by experts perform-
ing granular behavioral analyses.
Model-Assisted Evaluation Emerging automated
methods employ auxiliary LLMs as evaluators
through two principal strategies: prompt-based as-
sessment and self-examination techniques. The
former implements critic models (e.g., GPT-4)
for direct quality scoring via instructional prompt-
ing, while the latter verifies alignment consistency
through generated explanations that expose model
reasoning patterns.

3 TF Alignment Methods

TF alignment methods can intervene at different
stages of the generation pipeline without heavily
retraining LLMs. Hence we categorize them into
Pre-Decoding, In-Decoding, and Post-Decoding
TF alignment, analyzing their application to uni-
modal LLMs and MLLMs. Figure 2 shows TF
alignment methods at different stages, as well as
their specific mechanisms.

3.1 Pre-Decoding TF Alignment

Pre-decoding TF alignment methods align mod-
els by modifying or detecting inputs before decod-
ing without changing models’ internal parameters.
These approaches are lightweight and especially
suitable for black-box LLMs.

Simple Prompt Engineering One of the sim-
plest yet effective alignment strategies involves
crafting specific prompts to elicit desired responses.
ICL has emerged as a powerful tool for align-
ing LLMs with human preferences, a technique
known as In-Context Alignment (ICA). For instance,
URIAL (Lin et al., 2023) demonstrates that just
three in-context examples and a single system
prompt can effectively align pre-trained LLMs,
achieving performance comparable to FT meth-
ods while significantly reducing costs. Similarly,
Anthropological Prompting (AlKhamissi et al.,
2024) and VILMO (Duan et al., 2024) leverage
specific prompts to enhance alignment. Besides,
ICDPO (Song et al., 2025a) leverages ICL and in-
stant scorer to enhance the final performance. To
tackle the inflexibility of existing alignment meth-
ods when confronted with diverse social norms
across different cultures and regions, CoSA (Zhang
et al., 2024a) introduces safety configs, which al-
low models to dynamically adapt during inference

based on these configurations, thereby catering to
varying requirements.

Although MLLMs introduce a novel visual
modality, enabling the embedding of harmful
content within images to circumvent security
mechanisms, the prompt engineering strategy
in pre-decoding remains applicable. To de-
fend against structured-based jailbreak attacks,
AdaShield (Wang et al., 2024c) includes both man-
ual static and adaptive defense prompts, the latter
being iteratively optimized through collaboration
between the target MLLM and an LLM-based de-
fense prompt generator. Similarly, to address the
limitation that static safety guidelines fail to ac-
count for specific risks in different multimodal con-
texts, ICD (Wei et al., 2024), RapGuard (Jiang
et al., 2024), and BBA (Zhao et al., 2024) generate
scenario-specific security prompts. They leverage
multimodal reasoning to dynamically identify and
mitigate risks.

Prompts can also act as self-reminders (Xie et al.,
2023), packaging user queries and prompting Chat-
GPT to respond responsibly. SKIG (Sel et al.,
2024) designs multi-dimensional prompts that stim-
ulate the model’s sense of responsibility, exploring
the consequences of decisions from multiple stake-
holders’ perspectives. This approach enhances the
model’s moral reasoning ability.

Enhanced Prompt Strategy Beyond simple
prompts, this category encompasses methods that
enhance prompts through additional techniques or
iterative refinement. Certain human values to be
aligned often vary with time and place, OPO (Xu
et al., 2023) uses retrieval-augmented-generation
(RAG) can address the ever-changing nature of
alignment in human values. AUTOCAP (Zhang
et al., 2024d) integrates Chain-of-Thought (CoT)
reasoning paths across languages to improve cross-
lingual alignment (Shi et al., 2022; Tanwar et al.,
2023; Qin et al., 2023). P-Aligner (Song et al.,
2025b) automatically rewrites user instructions
with pre-defined principles, significantly boosting
downstream LLM alignment. Other methods focus
on feeding inputs in a more structured way. For ex-
ample, Zhang et al. (2024e) introduce goal priority
through few-shot prompting, instructing the LLM
to prioritize safety over helpfulness. PRETTY
(Zhan et al., 2024) improves alignment by adding
task-related prior markers to the input prefix, nar-
rowing the performance gap between TF models
and FT models. BPO (Cheng et al., 2024) op-

4448



Figure 2: A conceptual framework illustrating training-free (TF) alignment strategies for large language models
(LLMs), categorized into pre-decoding, in-decoding, and post-decoding stages.

timizes user prompts to suit LLMs’ input under-
standing, ensuring user intents are realized without
updating internal parameters. PEARL (Fu et al.,
2024a) paraphrases questions in expressions pre-
ferred by the model, ensuring better alignment with
user expectations.

Additionally, the decomposition of complex
problems into subproblems has proven effective.
For example, MIXALIGN (Zhang et al., 2024c)
and DUAT (Huang et al., 2024d) break down dif-
ficult problems into subtasks and designs corre-
sponding prompts step-by-step, fully utilizing the
generation and reasoning abilities of LLMs to dy-
namically solve knowledge alignment challenges.
Another way uses prompts at the first stage, fol-
lowed by additional operations to further refine the
output. PICA (Liu et al., 2024d) operates in two
stages: first, the model generates prior response
tokens via ICL while extracting an ICL vector;
second, this ICL vector guides the model to gen-
erate desired responses without requiring further
demonstrations. This approach ensures consistent
alignment while minimizing the need for extensive
prompting.

Detector-Based VLMGUARD (Du et al., 2024)
utilizes unlabeled user prompt data for malicious
prompts detection, effectively distinguishing be-
tween malicious and benign samples without addi-
tional manual annotation. CIDER (Xu et al., 2024a)
detects malicious image inputs by analyzing the
semantic similarity between text and image modali-

ties. Token Highlighter (Hu et al., 2024) locates the
jailbreak-critical tokens and use soft removal tech-
nique to align. To reduce the cost (e.g., substantial
memory requirements and latency) of detector with
billions of parameters, HarmAug (Lee et al., 2024)
distills a large teacher safety guard model into a
smaller one.

Key Insights Pre-decoding methods aim to re-
formulate queries, append exemplars, or lever-
age detectors before feeding inputs into LLMs,
ensuring model outputs align with human stan-
dards. These approaches offer advantages of sim-
plicity and broad applicability, working seamlessly
with both open-source and closed-source models.
However, they suffer from generalization limita-
tions due to reliance on few-shot examples or
manual prompt engineering. For instance, CoSA
(Zhang et al., 2024a) introduces safety configu-
rations to enable dynamic inferential adaptation,
yet this only addresses safety scenarios—cross-
scenario generalization, cultural variance, and
model-agnostic adaptability remain underexplored.
Additionally, most prompt engineering techniques
are constrained by context window limits (e.g.,
LLaMA-2-13B’s 4096-token boundary (Machlab
and Battle, 2024)) or suffer semantic drift (Ji et al.,
2023) due to excessively long inputs. The sub-
sequent in-decoding and post-decoding methods
tackle these limitations from alternative perspec-
tives.
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3.2 In-Decoding TF Alignment

Aligning LLMs before decoding often appears
ideal following the principle of “an ounce of pre-
vention is worth a pound of cure”. However, not all
undesired behavior can be fully addressed at this
stage. This motivates in-decoding TF alignment,
which adjusts model behaviors during decoding.
These methods typically modify hidden states or
logits, through remapping hidden states, calculat-
ing logits difference, exacting guidance signals, or
employing search strategies.

Hidden States Adjustment The disjoint training
protocols between visual and linguistic modules in
VLMs induce latent space fragmentation, where
their representations form distinct cluster regions
with significant distributional discrepancy, mani-
festing diminished safety-aligned capabilities. To
address these issues, CMRM (Liu et al., 2024b)
and VLM-Guard (Liu et al., 2025) mitigate this by
pulling hidden states back into the representation
space optimized by LLMs, thus restoring secure
alignment capabilities.

Logits Difference Calculation Several methods
modify the logits of tokens during generation to
align outputs with desired behaviors. (Liu et al.,
2024c,a; Shi et al., 2024; Fang et al., 2024; Zhu
et al., 2025b) combine the logits of the alignment
model and a reference model to guide generation,
achieving FT-like effects without parameter up-
dates. δ -UNLEARNING (Huang et al., 2024b)
learns an offset from logits comparisons between
smaller models, applying it to larger black-box
LLMs to adjust their predictive behavior. Addition-
ally, CoCA (Gao et al., 2024a) calibrates the output
distribution by amplifying the model’s response to
safety prompts. The method calculates logits differ-
ence before and after safety prompt insertion, en-
suring robust alignment. Recently, IVG (Liu et al.,
2024e) uses implicit and explicit value functions
to guide language model decoding at token and
chunk-level respectively, efficiently aligning LLMs
purely at inference time. Contrastive decoding has
also been adopted. For example, MCA (Fu et al.,
2024b) constructs expert and adversarial prompts
to promote or suppress aligned targets dynamically.
Lately, Linear Alignment (Gao et al., 2024b) relies
on a novel parameterization for policy optimization
under divergence constraints and estimates the pref-
erence direction using self-contrastive decoding.

Guidance-Based For guidance-based ap-
proaches, (Qian et al., 2024; Wang et al., 2024b;
Huang et al., 2024c; Bhattacharjee et al., 2024;
Cao et al., 2025; Li et al., 2025b) extract guidance
vectors to adjust the activation states of the target
model during inference, achieving alignment.
To predict next-token rewards for efficient and
effective autoregressive generation, GenARM (Xu
et al., 2025) and CARDS (Li et al., 2025a)
leverage the reward model to guide frozen LLMs
toward expected distribution. PAD (Chen et al.,
2024b) and ARGS (Khanov et al., 2024) leverage
token-level rewards to guide the decoding process,
dynamically guiding the base model’s predictions.
Nudging (Fei et al., 2024) and WSD (Song et al.,
2025c) combine a large base model with a much
smaller aligned model. CAVGAN (Li et al.,
2025c) utilizes generative adversarial network to
learn the security judgment boundary inside the
LLM to achieve efficient alignment. RDS (Zeng
et al., 2025) designs a root classifier based on
the discriminative capacity of queries, and then
reorders the token and prioritizes the benign
token. To directly align model outputs with human
preferences, OPAD (Zhu et al., 2025a) guides the
generation of a final output that aligns with the
target principle in a token-by-token manner.

Dynamic Search Strategy Search strategies
have also been frequently used for alignment.
RAIN (Li et al., 2024b) mirrors human behavioral
patterns, which allows LLMs to evaluate their own
generation and use the evaluation results to guide
rewind and generation for self-alignment. Simi-
larly, DeAL (Huang et al., 2024a) views decod-
ing as a heuristic-guided search process and facili-
tates the use of a wide variety of alignment objec-
tives. TreeBoN (Qiu et al., 2024) combines tree
search strategies with Best-of-N (BoN) sampling,
iteratively expanding high-quality partial responses
while pruning low-quality candidates to improve
alignment quality and efficiency. DARWIN (Hung
et al., 2024) achieves the right balance between
exploration and exploitation of rewards during de-
coding with evolutionary heuristics. Additionally,
Zhu et al. (2024) proposed PAS, which includes
direction search and distance search. They focuse
on the alignment with personal traits and develop
an activation intervention optimization method to
enhance LLMs’ ability to efficiently align with in-
dividual behavioral preferences using minimal data
and computational resources.
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Key Insights In-decoding TF alignment methods
enable dynamic, fine-grained output control via
hidden state adjustment, logit modification, tree
search strategies, etc. For MLLMs, projecting
hidden states into LLM-optimized representation
spaces shows promise in resolving multimodal in-
tegration challenges. While highly effective for
alignment and alleviating certain generalization is-
sues, this paradigm often requires access to model
internals, restricting applicability in black-box sys-
tems. Moreover, techniques like Trustworthiness
and Category-Specific Steering (Qian et al., 2024;
Bhattacharjee et al., 2024), which modify hidden
or activation states, can inadvertently compromise
the model’s pre-existing task-specific knowledge.
These trade-offs directly inform the research direc-
tions outlined in Section 4.2.

3.3 Post-Decoding TF Alignment
In-decoding TF alignment methods often require
access to token logits and vocabulary, restricting
their applicability to models from the same series.
To overcome these limitations, post-decoding TF
alignment methods are proposed, which operate on
the generated outputs without accessing the model
internals.

Post-decoding TF alignment methods often
adopt strategies to filter or correct outputs. Phute
et al. (2024) utilize inherent language comprehen-
sion of LLMs to self-examine generated text. RA-
LLM (Cao et al., 2024) uses an alignment check
function, enhancing robustness by randomly dis-
carding portions of the input request to mitigate
adversarial perturbations. For correction-based ap-
proaches, Aligner (Ji et al., 2024a) trains a separate
model to learn the residual between the initial and
aligned outputs. This plug-and-play method re-
distributes initial answers into more helpful and
harmless responses.

Multimodal applications introduce additional
challenges, such as visual inputs that may contain
toxicity. ETA (Ding et al., 2024) uses a multimodal
evaluator to assess visual inputs with the CLIP
score. If need to align, ETA can operate shallow
alignment (interference prefix) and deep alignment
(sentence-level best-of-N searching). ECSO (Gou
et al., 2024) also reviews responses first. If deemed
unsafe, it converts images into text via query-aware
transformation, enabling the pre-aligned LLM to
handle both text-based and image-embedded ma-
licious content for safe output generation. Chen
et al. (2023) propose an instruction based on self-

moderation, deciding whether to respond based on
privacy concerns. DPS (Zhou et al., 2024b) inte-
grates LLM security checkers to filter responses,
defending against visual attacks while maintain-
ing clean input performance. This reduces harmful
content while preserving model performance.

Key Insights Analogous to pre-decoding ap-
proaches, post-decoding TF alignment methods
are model agnostic. Also, they mitigate the gener-
alization constraints seen in pre-decoding stages,
offering heightened versatility. In MLLM contexts,
integrating visual-textual data enables dynamic de-
fense mechanisms, though this amplifies alignment
complexity. A notable trade-off is the latency intro-
duced by filtering or correction processes.

3.4 Quantitative Analysis

To have an insight into diverse alignment methods,
we conduct experiments on llama2-7b-chat with
safety alignment for illustration.
Datasets Following SCANS (Cao et al., 2025), we
select AdvBench and TruthfulQA (Lin et al., 2021)
datasets to evaluate the safety and helpfulness of
alignment methods. Building on this, we incorpo-
rate a more challenging dataset, SafeEdit (Wang
et al., 2024a), to assess how the aligned models
perform against adversarial attacks.
Methods For FT alignment methods, we select
SafeDecoding (Xu et al., 2024b), a relatively new
method that accounts for jailbreak attacks and
demonstrates superior performance. For TF align-
ment methods, we select one recent approach for
each of three stages (Lin et al., 2023; Cao et al.,
2025, 2024).
Results The results are shown in Table 1. No-
tably, TF alignment methods can match or even
exceed the safety and helpfulness performance of
FT alignment methods. For example, SCANS
outperforms SafeDecoding on SafeEdit and Truth-
fulQA datasets. It also shows performance com-
parable to SafeDecoding on AdvBench. This re-
flects the effectiveness of TF alignment as a sup-
plement to FT alignment, demonstrating that TF
methods merit deeper investigation, particularly in
scenarios where FT alignment faces practical con-
straints (e.g., incompatibility with closed-source
models, significant knowledge degradation during
fine-tuning). However, TF alignment methods also
exhibit certain limitations. For example, TF meth-
ods like URIAL and RA-LLM compromise the
model’s helpfulness, which certainly damages the
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Model Type AdvBench ↑ SafeEdit ↑ TruthfulQA ↓
llama2-7b-chat Defaults 99.78 37.60 5.05
SafeDecoding FT Alignment 100.00 94.60 54.44

URIAL Pre-Decoding TF Alignment 99.34 66.60 15.94
SCANS In-Decoding TF Alignment 99.34 97.80 0.80

RA-LLM Post-Decoding TF Alignment 100.00 98.00 36.12

Table 1: The numerical comparison of the performance of llama2-7b-chat with different safety alignment methods
when facing with malicious questions, adversarial attacks and safe questions. On AdvBench and SafeEdit datasets,
numerical values denote the Defense Success Rate, where ↑ indicates that higher values are preferable. On
TruthfulQA, the numerical values represent the Benign Refusing Rate, and ↓ signifies that lower values are more
desirable.

helpful performance on TruthfulQA, albeit such
damage is less severe compared to the FT method
SafeDecoding. More challenges will be described
in the next section. We also analyze practical de-
ployment considerations for different TF alignment
methods in Table 2 of Appendix A.

Please refer to Appendix A for more details on
datasets, evaluation criteria, result analysis, and
comparison of different TF alignment methods.

4 Discussion

While the above TF alignment methods demon-
strate notable advantages, significant challenges
still exist. Meanwhile, there are many opportuni-
ties to make TF alignment more effective, efficient,
and adaptive.

4.1 Open Challenges
While TF alignment offers practical advantages,
our systematic analysis reveals three fundamen-
tal challenges that constrain its broader adoption:
(1) Degradation of General Capabilities: While
most TF alignment methods preserve model knowl-
edge integrity better than FT alignment methods,
certain in-decoding methods (Qian et al., 2024;
Bhattacharjee et al., 2024) potentially compromise
general performance. Because these methods ad-
just the hidden states or activation states of the
target model during inference, such operations un-
dermine the model’s inherent knowledge for other
tasks. This interference disrupts the pre-trained
model’s generalized ability to handle diverse tasks,
as the adjusted states may no longer align with
the optimal representations learned for cross-task
scenarios. Consequently, the model’s performance
in non-target tasks might deteriorate, highlighting
the trade-off between task-specific adaptation and
maintenance of general capabilities in alignment
strategies. (2) Increased Inference Overhead: TF
alignment approaches often introduce additional

latency. Whether through input detection, logits
adjustment, or modification of generated responses,
the additional computational steps result in higher
latency. (3) Difficult to Generalize: TF alignment
cannot leverage extensive alignment data. As a re-
sult, it may fail to generalize effectively to unseen
or more challenging scenarios (e.g. adversarial at-
tacks), as it lacks exposure to diverse or complex
cases.

4.2 Future Directions

Maintain General Capabilities Develop mecha-
nisms to maintain or enhance the general capabil-
ities of LLMs while performing alignment, such
as incorporating auxiliary loss functions that bal-
ance alignment objectives with model performance.
Another promising way is exploring lightweight in-
terventions in hidden states or logits that minimize
disruption to the model’s original outputs, lever-
aging techniques like sparse interventions. For in-
stance, when adjusting hidden states, task-relevant
neurons (Leng and Xiong, 2025; Tang et al., 2024)
can be identified, eliminating the need to modify
the entire state space and thereby preserving a sig-
nificant portion of the original performance.

Explore Unified Metrics and Cost-Effective
Frameworks To compare various alignment
methods more thoroughly, unified computational
overhead metrics to evaluate memory usage,
CPU/GPU utilization, and time taken for align-
ment steps need to be established. Additionally,
cost-effective algorithms for input detection, log-
its adjustment, and response modification to re-
duce latency should be designed. For instance,
HarmAug (Lee et al., 2024) distills a large teacher
safety guard model into a smaller one. Also, it
is necessary to investigate on-the-fly optimization
strategies (Zhu et al., 2025a) that dynamically adapt
computational resources based on complexity of
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tasks or efficiency requirements of users.

Overcome Insufficient Generalization When
addressing the diverse scenarios of different cul-
tures, applications, or users, it is essential to es-
tablish corresponding principles for guidance. For
instance, CoSA (Zhang et al., 2024a) introduces
safety configs, which allow models to dynamically
adapt during inference based on these configura-
tions, thereby catering to varying requirements.
However, this only accounts for different safety
scenarios, while the generalization across other
scenarios and diverse cultures, as well as the adapt-
ability of various models, remains equally worthy
of exploration. Additionally, incorporating coun-
terfactual samples into prompts can break spurious
correlations, compelling the model to learn causal
features and thereby enhancing its generalization
capability. Meta-learning (Finn et al., 2017; Khoee
et al., 2024) techniques can also be leveraged, en-
abling TF alignment methods to quickly adapt to
new, unseen scenarios with minimal additional data.
Furthermore, explore hybrid approaches that com-
bine the strengths of FT (rich alignment data) and
TF alignment (no parameter updates) to achieve
better generalization.

TF Alignment for Uni-Modal Model Although
some efforts have been made in the field of TF
alignment for MLLMs, they are currently limited
to scenarios where the input is multimodal (e.g.,
image and text) and the output is purely textual.
Extending alignment to cases where the output
includes multimodal content, such as images, in-
troduces new challenges and complexities (Xiong
et al., 2024; Team, 2024; Xie et al., 2024; Zhou
et al., 2024a), making it a promising and worth-
while direction for future research. Ji et al. (2024b)
have made initial strides in aligning all-modality
models with human intentions through FT meth-
ods. However, research on TF alignment for such
Uni-Modal Models is still lacking.

Controllable TF Alignment Interpretability can
help address this problem (Wu et al., 2024). It lo-
cates and edits fine-grained features, which can be
used to align LLMs to human values. For exam-
ple, by feeding prompts with negative and positive
prefixes into LLMs, Leong et al. (2023) analyze in-
ternal contextualized representations to identify the
toxicity direction of each attention head. However,
many interpretability studies are primarily based
on toy or theoretical models. Developing more

practical interpretability TF alignment methods is
necessary. Another way is to use principle-based
guidance. OPAD (Zhu et al., 2025a) designs a
principle-guided reward function to align model
outputs with human preferences without FT. More-
over, considering the advantages of TF alignment
in customization, explore the use of controllable
TF alignment for personalized scenarios (Zhu et al.,
2025a; Chen et al., 2024b).

5 Conclusion

In this paper, we present a comprehensive sur-
vey of training-free (TF) alignment methods for
LLMs, making three significant contributions to
the field. First, we establish a conceptual frame-
work for the TF alignment. Second, we propose a
novel taxonomy that categorizes TF alignment tech-
niques into three distinct paradigms: pre-decoding
interventions, in-decoding adjustments, and post-
decoding refinement strategies. Finally, we iden-
tify promising research directions, emphasizing the
need for effective, efficient, and adaptive TF align-
ment methods.

This survey is expected to serve both as an intro-
ductory guide for newcomers and a reference man-
ual for practitioners, aiming to accelerate progress
in developing efficient, ethical, and human-aligned
LLM systems. We hope that our investigation will
inspire novel research addressing the critical chal-
lenges and future directions of TF alignment.

Limitations

While this survey provides a systematic overview
of TF alignment methods for LLMs, several inher-
ent limitations in its scope need more discussion:
Firstly, in this review, base models must be suf-
ficiently capable of responding effectively to TF
alignment techniques, which means that these mod-
els might require prior fine-tuning. Secondly, we
pay more attention to safety TF alignment due to
page limitation, which makes it infeasible to pro-
vide a detailed overview of all TF alignment ap-
proaches. Thus, we choose to focus intensively on
one category. Finally, experiments just conducted
on llama2-7b-chat because the nature of our lit-
erature survey. It is hoped that our preliminary
exploration will inspire further researches on TF
alignment.
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A Appendix

Taking safety alignment as an example, the analysis
in Table 1 compares the safety alignment perfor-
mance of different methods applied to llama2-7b-
chat. Detailed information regarding datasets, eval-
uation criteria, results analysis, and comparisons
of various TF alignment methods is presented as
follows.

A.1 Dataset and Evaluation Criteria

Following SCANS (Cao et al., 2025), we se-
lected AdvBench and TruthfulQA (Lin et al., 2021)
datasets to evaluate the safety and helpfulness of
aligned models. Building on this, we incorporated
the more challenging SafeEdit (Wang et al., 2024a)
dataset to assess how the aligned models perform
against adversarial attacks. AdvBench consists of
456 harmful queries. SafeEdit, comprising 500 ad-
versarial attacks across 9 unsafe scenarios, is used
to evaluate the robustness of these alignment meth-
ods under extreme adversarial conditions. Besides,
TruthfulQA is used as the test set for evaluating
helpfulness, consisting of 753 benign questions.

We comprehensively assess the effectiveness of
different alignment methods from two crucial di-
mensions: the Defense Success Rate, which re-
flects safety, and the Benign Refusing Rate, which
reflects helpfulness. Regarding the Defense Suc-
cess Rate, we employ the safety judgement classi-
fier proposed by Wang et al. (2024a) to evaluate
whether a response is safe. When evaluating the Be-
nign Refusing Rate, we utilize the classic keyword
detection method. If responses to safety questions
following the application of an alignment method
contain more refusal-related keywords, the method
demonstrates lower utility.

A.2 More Numerical Analysis

Data from Table 1 reveals that TF alignment meth-
ods can rival or even surpass the safety and help-
fulness performance of FT alignment methods. For
example, while SCANS demonstrates safety perfor-
mance comparable to that of FT-based SafeDecod-
ing, it exhibits superior usefulness. Furthermore,
all TF alignment methods presented in the table
demonstrate higher levels of helpfulness. These
findings underscore that TF alignment methods
merit further investigation and refinement, particu-
larly in contexts where FT alignment methods face
constraints, such as severe knowledge distortion
and model accessibility.

Specifically, URIAL demonstrates poor perfor-
mance on the SafeEdit dataset because the method
uses only three examples as prompts, which are
fed into the LLM alongside the question. This ap-
proach fails to generalize well to more challenging
adversarial attack problems, as discussed in Sec-
tion 4.1. Additionally, comparing the performance
of different methods on TruthfulQA can partially
reflect the degree of impairment to the model’s in-
herent capabilities. It is evident that FT alignment
methods cause the most severe knowledge impair-
ment, while TF alignment methods exhibit a milder
impact by comparison. For further comparison,
experiments can be conducted on datasets such as
MMLU and XSum (as discussed in Section 2.3).

A.3 When and How to Choose TF Alignment?
We conclude that TF alignment methods are par-
ticularly well-suited for the following scenarios:
(1) Resource-Constrained Settings: When compu-
tational resources or training data are limited, TF
alignment methods offer a lightweight and cost-
effective solution. (2) Black-Box Models: When
the model parameters are inaccessible (e.g., closed-
source or proprietary models), TF alignment meth-
ods provide a viable alternative to FT. (3) Rapid
Deployment: When quick adaptation is required,
TF alignment methods like in-context learning or
decoding-time adjustments enable immediate align-
ment without lengthy FT processes. (4) Preserving
Knowledge: When FT alignment risks the degrad-
ing the model’s pre-existing knowledge, TF align-
ment methods mitigate this issue. (5) Stylistic or
Normative Alignment: Empirical evidence from
URIAL demonstrates that when the goal is to in-
fluence stylistic elements, e.g., tone, politeness, or
to ensure ethical compliance without altering fac-
tual content, TF alignment can achieve comparable
or superior performance of FT alignment purely
through ICL with base LLMs.

However, this does not mean that one method
can be applied to all the above scenarios, for ev-
ery method has its own strengths and limitations.
Therefore, Table 2 systematically compares the
underlying characteristics, compatibility (model
accessibility and plug-and-play capability), stor-
age and real-time efficiency, and generalization
of different TF alignment methods. We can ob-
serve that all in-decoding TF alignment methods
are inapplicable to closed-source LLMs, yet they
exhibit strong generalization capability. Addition-
ally, TF alignment methods introduce latency due
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Category Characteristic
Compatibility Efficiency

GeneralizationModel
Accessibility Plug-and-Play Storage

Efficiency
Real-Time
Efficiency

Pre-Decoding
TF Alignment

Simple Prompt
Engineering " " " % %

Enhanced Prompt
Strategy " " "– % %

Detector-Based " " " % "

In-Decoding
TF Alignment

Hidden States
Adjustment % % " % "

Logits Difference
Calculation % % " % "

Guidance-Based % % " % "
Dynamic Search

Strategy % % % % "

Post-Decoding
TF Alignment

Filtering/Correcting
Outputs " " " % "

Table 2: A Comparative Analysis of Different TF Alignment Methods. (Note:"and%denote the method has/hasn’t
the corresponding property. "–denotes differential storage requirements, where enhanced prompt strategies such as
RAG-based architectures or Chain-of-Thought augmented frameworks necessitate storage allocation, whereas other
methods remain storage-free.)

to increased prompt length, inference-time adjust-
ments, or input-output detection, resulting in sub-
optimal real-time efficiency.

We hope these comparisons can enable practi-
tioners to gain a nuanced understanding of each
approach and make well-informed decisions when
selecting alignment strategies.
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