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Abstract

Retrieval-Augmented Generation (RAG) sys-
tems are widely adopted in knowledge-
intensive NLP tasks, but current evaluations
often overlook the structural complexity and
multi-step reasoning required in real-world sce-
narios. These benchmarks overlook key factors
such as the interaction between retrieval diffi-
culty and reasoning depth. To address this gap,
we propose GRADE, a novel evaluation frame-
work that models task difficulty along two or-
thogonal dimensions: (1) reasoning depth, de-
fined by the number of inference steps (hops),
and (2) semantic distance between the query
and its supporting evidence. We construct a
synthetic multi-hop QA dataset from factual
news articles by extracting knowledge graphs
and augmenting them through semantic clus-
tering to recover missing links, allowing us
to generate diverse and difficulty-controlled
queries. Central to our framework is a 2D diffi-
culty matrix that combines generator-side and
retriever-side difficulty. Extensive experiments
show that error rates strongly correlate with our
difficulty measures, validating their diagnostic
utility. GRADE enables fine-grained analysis
of RAG performance and provides a scalable
foundation for evaluating and improving multi-
hop reasoning in real-world applications.

1 Introduction

Retrieval-Augmented Generation (RAG) has be-
come a widely adopted strategy for enhancing large
language models (LLMs) with external knowledge
sources (Li et al., 2024; Su et al., 2024). By re-
trieving relevant documents and conditioning gen-
eration on this evidence, RAG systems aim to re-
duce hallucinations and improve factual accuracy
in tasks such as open-domain QA, dialogue, and
summarization (Gao et al., 2023). As LLMs con-
tinue to improve, the quality of generation in RAG
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systems has also advanced. However, the evalu-
ation frameworks used to measure these systems
have not kept pace. Most benchmarks still rely
on simple factoid questions that fail to capture the
reasoning complexity and retrieval difficulty faced
in real-world scenarios (Krishna et al., 2024; Gab-
buro et al., 2024). Consequently, these datasets
offer limited utility in understanding performance
variation across tasks.

Current evaluation often lacks the granularity
needed to assess query difficulty. Tasks are typi-
cally treated as uniformly difficult, without consid-
ering structural aspects such as the number of rea-
soning steps (multi-hop reasoning) or the distribu-
tion of evidence across multiple documents (multi-
chunk retrieval). Moreover, many benchmarks rely
on single-hop, single-chunk queries, and define dif-
ficulty using retriever-centric indicators such as lex-
ical ambiguity or document length (Gabburo et al.,
2024; Salemi and Zamani, 2024). Furthermore,
collapsing retrieval and reasoning onto a single
axis complicates the attribution of errors to the re-
triever, the generator, or their interaction (Lee et al.,
2025). These coarse-grained approaches hinder nu-
anced analysis of RAG systems, making it difficult
to isolate module-specific failure points—such as
retrieval errors versus generation issues (Barnett
et al., 2024).

Recent work has begun to recognize the impor-
tance of task difficulty in evaluating RAG systems.
Some studies have proposed taxonomies that cate-
gorize queries based on retriever-side metrics such
as retrieval recall, query ambiguity, or corpus com-
plexity (De Lima et al., 2024). These approaches
acknowledge that retrieval difficulty varies across
queries and have led to more nuanced analyses of
retriever performance. However, such efforts re-
main largely focused on retrieval alone, without
fully considering the downstream reasoning chal-
lenges faced by RAG models. Recent work (Kr-
ishna et al., 2024) has highlighted the importance
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of evaluating RAG systems in a unified manner
that accounts for both retrieval and reasoning. By
comparing naive and multi-step RAG systems us-
ing their proposed dataset, the authors demonstrate
how evaluation design can directly influence our
understanding of a model’s reasoning capabilities.
In particular, most prior work overlooks the
structural complexity in real-world RAG scenarios.
Many queries in practice require multi-hop reason-
ing across multiple semantically diverse sources,
which poses significant challenges for retrieval and
evidence integration. In practice, answering a com-
plex question often requires synthesizing informa-
tion scattered across multiple, semantically distant
documents (Lu et al., 2019; De Cao et al., 2019).
The cognitive and computational cost of such syn-
thesis grows not just with the number of reason-
ing steps but also with the semantic dispersion of
the supporting evidence. In particular, reasoning
across documents from different topical clusters is
typically more demanding than connecting closely
related passages. For example, answering a multi-
hop question like “What legal implications has the
use of facial recognition technology had in Euro-
pean countries?” requires synthesizing technical
documents on facial recognition systems with legal
texts or policy reports from EU jurisdictions.
Assessing RAG systems ability to handle real-
world complexity requires benchmarks that accu-
rately capture multi-hop reasoning—demanding
both retrieval of diverse, complementary docu-
ments and their integration through coherent, step-
wise inference. While recent benchmarks have be-
gun to include multi-hop queires in RAG systems,
many define “hops” merely in terms of the number
of retrieved evidence chunks, rather than the logical
compositionality of the reasoning required (Tang
and Yang, 2024). Such datasets may model re-
trieval under multi-evidence conditions, but often
fall short of ensuring that the answer genuinely de-
pends on connecting semantically distinct pieces
of information in a structured reasoning chain. In-
stead, many tasks can be solved by stitching to-
gether co-located or loosely related facts, which
risks overestimating a system’s reasoning capabil-
ity (Min et al., 2019; Zhao et al., 2023). Moreover,
because these datasets rarely enforce semantic het-
erogeneity across retrieved documents, they may
underestimate the cognitive and computational de-
mands of real-world multi-hop scenarios—where
information must be integrated across topically di-
verse sources such as technical reports, legal docu-

ments, and policy analyses (Joshi et al., 2024). As
a result, although multi-hop datasets have become
more prevalent, current evaluations still fall short
in diagnosing the reasoning limitations of RAG sys-
tems under practical applications, highlighting the
need for more fine-grained and structurally aware
evaluation frameworks that jointly account for re-
trieval difficulty and reasoning complexity.

In this paper, we introduce GRADE, a fine-
grained difficulty framework that simultaneously
models two orthogonal sources of complexity: (i)
multi-hop depth—the minimum number of reason-
ing steps required to connect the question to the
answer through explicit evidence chains, and (ii)
query-evidence semantic distance—the degree of
semantic divergence between the query and its re-
trieved supporting chunks. In GRADE, task diffi-
culty is defined over a two-dimensional space com-
bining graph-based hop count and query-evidence
semantic distance, where each coordinate point
(i.e., the intersection of a specific hop count and
semantic distance level) corresponds to a group
of queries considered to share the same difficulty
level. This formulation enables a fine-grained char-
acterization of query complexity and supports (1)
the synthetic generation of difficulty-calibrated test
suites with controllable proportions across different
difficulty levels, and (2) module-level ablations that
analyze how retrieval and generation components
contribute to performance at varying difficulty lev-
els. This enables precise troubleshooting and sys-
tematic diagnosis of RAG system weaknesses.

Our main contributions are as follows:

* We propose a pipeline for multi-hop QA gen-
eration that utilizes a knowledge graph aug-
mented through missing link detection pow-
ered by semantic clustering.

We introduce a novel evaluation framework,
GRADE, based on a difficulty matrix that
jointly captures two key dimensions: reason-
ing depth and retrieval difficulty. This in-
tegrated approach offers a structured, fine-
grained perspective on task complexity.

* Our framework facilitates more detailed and
interpretable analysis of RAG system perfor-
mance by jointly considering retrieval and
generation challenges, thereby supporting
more effective error diagnosis and guiding
future system improvements, as illustrated in
Figure 1.
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Figure 1: Overall process of GRADE comprises three stages: (1) Knowledge Graph Construction & Missing
Link Detection, where factual claims are extracted from source documents, verified and decontextualized to
form triples, and the KG is augmented by detecting missing links via semantic clustering; (2) Difficulty-labelled
Question—Answer Generation, where multi-hop reasoning paths in a directed acyclic graph are used to generate QA
pairs, with each query assigned a difficulty label based on reasoning depth and retrieval difficulty; and (3) RAG
System Evaluation & Difficulty Matrix Derivation, where the RAG system’s performance is assessed via cell-wise
error rates across a 2D difficulty matrix considering both generator-side and retriever-side complexity.

We release our code to facilitate reproducibility
and further research. !

2 Related Work

2.1 Limitations of Existing RAG
Benchmarking Protocols

The vast majority of RAG studies assess per-
formance on single-hop, single-chunk factoid
questions, typically taken from open-domain
QA datasets such as Natural Questions, Triv-
1aQA (Lewis et al., 2020; Joshi et al., 2017).
These benchmarks were originally designed to test
whether a system can retrieve a passage that ex-
plicitly contains the answer and generate it with
minimal transformation. As a result, they primarily
reward surface-level lexical overlap rather than cap-
turing deeper reasoning capabilities (Zheng et al.,
2025; Liu et al., 2023).

Each query in these benchmarks is evaluated
using coarse metrics, such as exact match or token-
level F; for generation, and hit@k or recall for
retrieval, implicitly treating all queries as equally
difficult. Notably, existing datasets fail to distin-
guish straightforward questions, whose answers
directly appear within the first retrieved passage,
from complex queries that require synthesizing in-
formation distributed across multiple documents.

"https://github.com/DaeyongKwon98/GRADE

Consequently, these evaluation protocols provide
limited insights into specific failure points within
the RAG pipeline: poor performance might reflect
retrieval failures, generation inaccuracies despite
successful retrieval, or subtle discrepancies in en-
tity normalization (e.g., recognizing “NYC” and
“New York City” as the same entity) (Barnett et al.,
2024). This conflation of retrieval and generation
performance masks system weaknesses and ham-
pers targeted improvements. Thus, more structured
evaluation protocols are needed to disentangle and
individually assess retrieval success and synthesis
accuracy.

Recent analyses indicate that even state-of-
the-art RAG systems, despite achieving near-
perfect performance on conventional single-hop
benchmarks, exhibit significant degradation on
tasks requiring compositional reasoning or multi-
document evidence integration (Liu et al., 2025;
Khodadad et al., 2025). These findings highlight a
critical need for more granular evaluation method-
ologies capable of separately assessing retrieval
and reasoning difficulty, rather than aggregating
performance into a single coarse metric. At the
same time, it is equally important to evaluate
the overall complexity of the combined retrieval-
generation task, as certain queries may simultane-
ously challenge both components (Krishna et al.,
2024).
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2.2 Difficulty Adjustment in Evaluation
Datasets

As QA models continue to improve, it becomes cru-
cial for evaluation datasets to evolve correspond-
ingly in complexity to remain effective. Recent
approaches to increasing evaluation difficulty often
focus on controlled question generation strategies
or adversarial data collection methodologies. For
instance, Adversarial QA utilized a human-in-the-
loop strategy, where annotators iteratively refined
questions until they successfully elicited incorrect
responses from models (Bartolo et al., 2020). This
approach yielded datasets explicitly designed to
surpass the capabilities of existing QA systems,
thereby setting higher performance benchmarks.
Researchers have also explored dynamic ap-
proaches to proactively adjust or predict query diffi-
culty. multHP, a pre-retrieval predictor specifically
designed to estimate the difficulty of multi-hop
questions, allows for dynamic optimization of re-
trieval parameters such as the number of documents
retrieved and supports the creation of balanced eval-
uation sets containing both simpler and more chal-
lenging queries (Samadi and Rafiei, 2023). While
such methods improve dataset quality and make
evaluations more realistic, they often lack explicit
and controllable definitions of question difficulty.

2.3 Multi-Hop QA Evaluation and
Fine-Grained Diagnostics

Multi-hop QA tasks require systems to synthesize
information scattered across multiple documents.
Compared to single-hop queries, they test a model’s
ability to perform compositional reasoning, logical
inference, and multi-step aggregation. To bench-
mark such capabilities, a series of datasets have
been proposed, each aiming to increase the com-
plexity and diagnostic power of QA evaluation.
HotpotQA introduced large-scale multi-hop
questions manually constructed by crowdwork-
ers who referenced two Wikipedia articles (Yang
et al., 2018). HotpotQA was constructed with-
out relying on structured triples and primarily fea-
tures 2-hop questions. While sentence-level su-
pervision enabled precise labeling, the lack of
alignment with retrieval units made it less com-
patible with retrieval-based analysis frameworks.
To address such limitations, 2WikiMultiHopQA
adopted a hybrid design based on structured triples
and unstructured passages, generating questions
through entity overlaps across (subject, relation,

object) triples (Ho et al., 2020). It defined four
question types—comparison, inference, composi-
tional, and bridge comparison—with associated
templates and explicitly mapped contextual sup-
port for each triple. MuSiQue later combined high-
quality single-hop questions into 2—4 hop multi-
hop chains using compositional templates (Trivedi
et al., 2022), and included distractors selected via
semantic similarity to promote deeper reasoning.
More recently, MultiHop-RAG leveraged large lan-
guage models to generate multi-hop questions and
gold evidence, explicitly targeting RAG evalua-
tion (Tang and Yang, 2024). While these datasets
advanced benchmark design, most still lack ex-
plicit control over question difficulty or retrieval
complexity. In contrast, GRADE leverages chunk-
level grounding to compute query-evidence seman-
tic similarity directly over the corpus, enabling au-
tomatic pre-labeling of retrieval difficulty—a key
prerequisite for fine-grained RAG evaluation.

Because RAG systems separate retrieval and gen-
eration modules, evaluation metrics must reflect
errors at different stages of the pipeline. Conven-
tional metrics such as exact match or F; fail to
disentangle whether a wrong answer is due to re-
trieval failure or flawed synthesis. To overcome
this, RAGChecker proposes a suite of diagnostic
scores that evaluate retrieval quality and generation
fidelity independently (Ru et al., 2024). These finer-
grained metrics align better with human judgments
and expose trade-offs in system behavior.

3 Methodology

3.1 Knowledge Graph Construction with
Missing Link Detection

To ensure that models under evaluation do not have
prior exposure to the data, we collected news arti-
cles, strictly from July 2024 onward. Articles were
split into sentences, and a pretrained fact/opinion
classifier was used to retain only factual ones. To
enable reasoning over isolated facts, we applied a
decontextualization step: each sentence was rewrit-
ten into a standalone claim whose meaning is pre-
served outside the original article. This was done
via prompting, followed by a verification stage to
ensure semantic consistency with the source sen-
tence. The knowledge graph is composed of enti-
ties and relationships extracted from factual claims.
Each entity is represented as a node, and each rela-
tionship connecting two entities is represented as
a directed, labeled edge. A triplet (e;, 7, ¢€;) cor-
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responds to a (subject, predicate, object) structure,
mapping directly to a factual claim in the form of a
directed relation between entities. We constructed
the knowledge graph by merging entities with exact
matches across triples.

However, relying solely on exact string matches
is insufficient to capture all the semantically valid
connections needed for multi-hop reasoning. To
address this limitation and better support multi-hop
traversal on the knowledge graph, we performed
the following augmentation steps. All claims were
clustered using a GMM-based soft clustering ap-
proach. Within each cluster, we identified entity
equivalence using an LLM to determine exact and
contextual equivalence. For contextually equiva-
lent entities (e.g., “the Biden administration” and
“the U.S. government”) within semantically simi-
lar clusters, we augmented the knowledge graph
by adding mirrored inbound and outbound edges.
That is, if two entities are considered equivalent
within the same cluster, any existing incoming or
outgoing edges within that cluster connected to one
are also added to the other. This ensures that rea-
soning paths remain consistent regardless of which
entity representation is used. For exactly equiva-
lent entities (e.g., “USA” and “United States™), we
merged them under a canonical form.

3.2 Question Generation

We first enumerated all shortest directed acyclic
paths of length 2 to 5 within the knowledge graph
and discarded redundant paths that shared the same
start and end entities while differing only in in-
termediate nodes. From the remaining paths, we
sampled 400 per hop count to balance reasoning
depth. Afterward, an additional validation step
was done to remove ambiguous QA pairs, result-
ing in approximately 200 datas per hop. Let P =
{(e1,71,€2),...,(€k, Tk, ex+1)} denote a reason-
ing path of length k. We define a Logical Chaining
Question (LCQ) qp as a question for which all sup-
porting facts are contained within the edge set P.

3.3 Difficulty Matrix Construction

Generator-side difficulty was quantified by group-
ing LCQs according to their reasoning path length
k € 2,3,4,5. Since each question was generated
from a k-hop path in the knowledge graph, we as-
sume that higher & correlates with increased compo-
sitional complexity, as answering higher-hop ques-
tions typically requires logically connecting more
pieces of supporting evidence.

Retriever-side difficulty was defined based on the
semantic distance between a question ¢ and its asso-
ciated supporting chunks. Let C; = {c1,...,¢cp}
be the chunk set and s(q, ¢;) be the embedding
similarity between ¢ and chunk c;. We define the
retrieval difficulty score D, as:

D:(q) =1 — min s(q,¢;) (1)

Ciqu

This minimum similarity serves as a bottleneck
indicator: if even one required chunk is poorly
retrieved, the entire reasoning chain may fail.
Difficulty matrix M ¢ R*** is constructed,
where each row corresponds to a hop count k& €
{2,3,4,5} and each column to a quartile bin of
retrieval difficulty scores.

3.4 RAG Evaluation

To evaluate RAG performance under our frame-
work GRADE, we first segmented all articles into
overlapping chunks and embedded them using a
frozen encoder. For each question, we retrieved
the top-10 chunks and passed them to a generator
model to produce an answer. Output responses
were then judged by an LLM-based evaluator.

While this setup corresponds to a standard single-
step RAG, we also conducted additional experi-
ments, reported in Appendix A.4, with Multi-step
RAG and Query-decomposition RAG. These vari-
ants address more complex information needs by
enabling iterative retrieval and refinement or by
decomposing questions into simpler sub-queries.
Incorporating them allows us to evaluate whether
more advanced retrieval strategies yield improve-
ments beyond the baseline.

To further analyze performance across different
levels of difficulty, we categorized questions using
our difficulty matrix. Each cell in the matrix repre-
sents a group of queries with a combined difficulty
level, jointly determined by both generator-side and
retriever-side factors. For each cell, we computed
the average error rate across the contained queries.
The upper-left region of the matrix corresponds
to lower-difficulty queries (e.g., 2-hop with low
D,.), while the bottom-right region corresponds to
higher-difficulty queries (e.g., 5-hop with high D,.).

4 Experiments

4.1 Experimental Setup

Following prior work, we simulate a realistic RAG
scenario in which the knowledge source diverges
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Figure 2: Accuracy trends across increasing hop counts.

from the pretraining data of large language mod-
els (Tang and Yang, 2024). To this end, we con-
struct a news dataset using the mediastack API,
a RESTful interface that aggregates global news
content 2. The dataset comprises articles from a
diverse set of English-language sources spanning
domains such as sports, health, and science. We
focus on articles published between July 2024 and
April 2025—a period beyond the knowledge cut-
off dates of the LLMs we used—thereby minimiz-
ing the likelihood that the base models have seen
this content during training. Articles with fewer
than 512 tokens were excluded to ensure a mini-
mum level of contextual complexity, while those
exceeding 8,192 tokens were removed to avoid ex-
cessively large inputs that could hinder processing
efficiency. For the RAG database, we split each arti-
cle into chunks with a total length of 128 to 256 to-
kens, using a 50-token overlap between consecutive
chunks. We embedded them using four representa-
tive embedding models: OpenAl text-embedding-
3-small, all-mpnet-base-v2, bge-en-large-vi1.5, and
Jjina-embeddings-v3. This selection covers both
closed-source and open-source approaches, en-
suring a balanced and comprehensive evaluation
across different embedding paradigms.

To evaluate performance across a spectrum of
capabilities, we select five representative LLMs:
GPT-40, GPT-40 mini, ol-mini, Claude-4-Sonnet,
and Llama 3.2 3B Instruct 3. This selection
enables a balanced comparison across general-
purpose, lightweight, reasoning-focused, and open-
source LLMs. All prompts are provided in the
appendix A.9 for transparency and reproducibility.

4.2 Main Results

To validate the effectiveness of our proposed dif-
ficulty framework, we evaluated generator-side,
retriever-side, and combined difficulty matrix. We

thtps ://mediastack.com/
3https ://ai.meta.com/blog/

Ho Sports Health
P ol-mini 40  4o-mini ol-mini 40  4o0-mini
2-hop 0.504 0.463 0.646 0.967 0.671  0.806
3-hop 0.595 0483 0433 0.699 0.885 0.956
4-hop 0976 0963  0.769 0950 0.874 0.802
5-hop 0.867 0.798  0.664 0.704  0.838  0.968
Average  0.736  0.677  0.628 0.830 0.817 0.883

Table 1: Pearson correlation between retrieval diffi-
culty D, and error rate, computed separately for each
fixed hop count, across domains and models.

first assessed generator-side difficulty by examin-
ing whether increasing the number of hops corre-
sponds to more challenging multi-hop questions.
Specifically, we compared the average accuracy
across hop counts ranging from 2 to 5. As shown
in Figure 2, both the Sports and Health domains
exhibited a consistent decrease in average accuracy
as the number of hops increased. For example, in
the Sports domain, accuracy dropped from 0.68
at 2-hop to 0.48 at 5-hop—a 20% decrease. In
the Health domain, accuracy declined from 0.58 to
0.49 over the same hop range, showing a 9% drop.
This supports our hypothesis that generator-side
difficulty increases with hop count, as answering
higher-hop questions typically requires logically
connecting more pieces of supporting evidence.

To evaluate retriever-side difficulty, we con-
trolled for generator-side factors by fixing the hop
count, ensuring that variations in performance were
attributable solely to the retriever. For each fixed
hop level, we split the data into four bins based
on the retrieval difficulty score D, as defined ear-
lier, and computed the average accuracy for each
bin. We then calculated the Pearson correlation be-
tween retrieval difficulty and error rate for each hop
level. As shown in Table 1, all models exhibited
a strong positive correlation, averaging above 0.6
in the Sports domain and above 0.8 in the Health
domain. This indicates that the minimum similar-
ity between the query and its most weakly aligned
supporting chunk increases retrieval difficulty D,.,
thereby leading to reduced accuracy.

Finally, to evaluate the combined difficulty
framework GRADE that considers both generator-
side and retriever-side difficulty, we constructed
a 4 x 4 difficulty matrix where the vertical axis
corresponds to reasoning depth (2-5 hops) and the
horizontal axis corresponds to retrieval difficulty
(divided into four bins based on D, scores). For
each cell in the matrix, we computed the average

1lama-3-2-connect-2024-vision-edge-mobile-devices/ error rate and visualized the results in Figure 3.
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Figure 3: Error rates (1-accuracy) across varying levels of reasoning depth (2-5 hops) and retrieval difficulty (low

vs. high) in both Health and Sports domains.

Exact Eql. (E) Context Eql. (C) Overall (E+C)
Health Sports Health Sports Health Sports

2-hop 459 10.7 4.85 9.26 50.8 19.9
3-hop  46.3 11.6 5.19 8.08 51.5 19.7
4-hop 574 23.7 3.05 10.7 60.4 343
5-hop 744 29.5 0.00 791 74.4 37.4

Hop

Table 2: Percentage of queries that require semantic
clustering to resolve missing links, broken down by hop
count and domain.

Across all models and in both the Sports and
Health domains, we observed a general trend: error
rates tended to be lower in the upper-left region
of the matrix (2-hop, low D,.) and higher in the
bottom-right region (5-hop, high D,.), with perfor-
mance degrading steadily along both dimensions
in most cases. Notably, values along the diagonal
from upper-left to bottom-right showed the steepest
increase in error rate, indicating that tasks involv-
ing both deeper reasoning and harder retrieval are
significantly more difficult. All matrices exhib-
ited strong linearity across the four diagonal points,
with Pearson correlation coefficients exceeding
0.9—highlighting the consistency of this trend. For
example, in the Sports domain with ol-mini, the
error rate increased from 0.241 in the upper-left
cell (2-hop, low D,) to 0.571 in the bottom-right
cell (5-hop, high D,), marking a 33% increase. In
the Health domain, the difference was even more
pronounced, with error rates rising from 0.224 to
0.636—a 41.2% increase. While the overall error

rates were higher in Health than in Sports, the gap
between easy and hard questions was more promi-
nent in the Sports domain. These results support
the validity of our difficulty framework, demon-
strating that jointly modeling both generator-side
and retriever-side challenges yields an accurate,
fine-grained, and diagnostic approach to evaluating
multi-hop QA performance in RAG systems. The
results of our experiments with additional models,
embeddings, RAG systems, domains, and chunk
sizes are reported in the Appendix A.

4.3 Analysis on Missing Links

In traditional triplet-based multi-hop QA genera-
tion pipelines, triplets are connected using shared
entities that require an exact match, which often
leads to missing links. For example, different
expressions referring to the same entity, such as
"USA" and "United States," need to be identified
and linked. Similarly, cases where phrases like
"Biden administration” and "U.S. government" re-
fer to the same entity within a specific context also
require connection. These missing links represent
semantically similar but not explicitly connected
entities. To address this, we developed a method
described in Section 3.1 that uses semantic cluster-
ing and LLMs to supplement the knowledge graph
with two types of missing links: exact and contex-
tually equivalent entities. The proportion of data
augmented with these missing links, broken down
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Domain Agg. Func. ol-mini 40  4o-mini
Mean 0445 0394 0461
Sports  Power Mean  0.534  0.398  0.498
Min 0.736  0.677  0.628
Mean 0.314 0412 0416
Health Power Mean  0.903  0.795  0.808
Min 0.830  0.817 0.883

Table 3: Pearson correlation between different aggre-
gation functions of retrieval difficulty D, and error rate,
across domains and models.

by hop count and domain, is presented in Table 4.

We observe that the impact of missing links be-
comes increasingly pronounced as the number of
reasoning hops grows. In the Health domain, the
proportion of data augmented with missing links
increased from 50.8% at 2-hop to 74.4% at 5-hop.
In the Sports domain, it rose from 19.9% to 37.4%.
The Health data showed a particularly high rate
of exact equivalents and a relatively lower rate of
contextually equivalent links. This is likely due to
the frequent occurrence of common entities such as
drugs and diseases in the Health domain. Although
the proportions vary depending on the domain char-
acteristics, these results demonstrate that a signif-
icant portion of multi-hop data benefits from the
inclusion of missing links.

4.4 Ablation Study

To verify that the retrieval-difficulty score used in
GRADE faithfully tracks task complexity, we ab-
lated the aggregation function that collapses the
set of query—chunk embedding similarities into a
single scalar. For every question we computed
(i) the arithmetic Mean, (ii) a power mean with
exponent p = —2 (emphasizing low-similarity en-
tries while retaining signal from the rest), and (iii)
the Minimum similarity. We then measured the
Pearson correlation between each variant and error
rate while holding hop depth constant. As Table 3
shows, Min delivers the strongest alignment with
error rate in the Sports domain surpassing the arith-
metic mean by roughly 29% and the power mean
by 16% on average.

Across the six model-domain pairs, the Min ag-
gregation delivers the highest (or co-highest) Pear-
son correlation with error rate in four cases and
never falls below second place (Table 2). This regu-
larity suggests that overall task difficulty is usually
governed by the single hardest retrieval hop: when

any required chunk is missed, the reasoning chain
cannot be completed and the question is likely an-
swered incorrectly. Because the minimum similar-
ity directly captures this bottleneck, it provides a
upper bound on achievable performance.

The power mean (p = —2) achieves a slightly
lower correlation than the minimum, but consis-
tently outperforms the arithmetic mean in all set-
tings. The power mean smooths over noisy sig-
nals by down-weighting over-retrieved chunks, its
benefit may be particularly visible in domains like
Health, where essential information is expressed
across multiple documents using diverse surface
forms. Nonetheless, since Logical Chaining Ques-
tions (LCQ) require all intermediate chunks to
be retrieved for correct inference, the minimum
similarity remains the most reliable indicator of
retrieval-side difficulty and is adopted as our de-
fault metric in all subsequent analyses.

5 Conclusion

We present GRADE, a novel evaluation framework
for Retrieval-Augmented Generation (RAG) that
jointly considers reasoning depth (generator-side)
and semantic distance (retriever-side) to better re-
flect the structural complexity of real-world multi-
hop question answering. By defining a difficulty
matrix based on hop count and retrieval difficulty,
our approach enables fine-grained analysis of RAG
systems, disentangling the contributions of retrieval
and generation. Experimental results show that
our difficulty metrics strongly correlate with error
rates across multiple RAG models in realistic set-
tings. In addition, our knowledge graph augmenta-
tion—through missing link detection via semantic
clustering—highlights the limitations of traditional
triplet-based pipelines in supporting deeper reason-
ing. Notably, the GRADE difficulty matrix itself
serves as a unified difficulty space, where diagonal
regions represent scenarios jointly challenging for
both retrieval and generation. This holistic perspec-
tive enables more nuanced diagnoses of RAG sys-
tem behavior across the full complexity spectrum.
Overall, GRADE offers a scalable, interpretable
tool for analyzing RAG system failures and guid-
ing future advancements in multi-hop reasoning
architectures.

Future work will extend GRADE to enable
module-level evaluation across the broader RAG
pipeline, including components such as query de-
composition and document filtering.
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Limitations

LLM Dependency in Pipeline Components
Several core components of GRADE—including
claim decontextualization, entity equivalence detec-
tion (both exact and contextual), and answer evalu-
ation—depend heavily on large language models
(LLMs). While this allows for scalable and flexible
data generation, it introduces potential sources of
noise and bias. LLMs may hallucinate facts dur-
ing claim rewriting, inconsistently judge contextual
equivalence between entities, or misclassify correct
answers due to surface-level mismatches in auto-
matic evaluation. These failure modes can propa-
gate through the pipeline, ultimately affecting the
fidelity of the synthetic dataset and the reliability
of difficulty estimation. Future work may bene-
fit from integrating more robust validation mech-
anisms, such as human-in-the-loop verification or
hybrid approaches combining symbolic and statis-
tical techniques.

Dimensionality of the Difficulty Matrix Our
proposed difficulty matrix models task complex-
ity along two axes: reasoning depth and retrieval
difficulty, corresponding to generator- and retriever-
side challenges. However, real-world RAG systems
often involve additional modules such as query de-
composition, routing, or document filtering, which
also significantly influence task difficulty. Incor-
porating these components would require extend-
ing the difficulty space into a higher-dimensional
representation, potentially enabling a richer under-
standing of how different system modules interact
under compositional reasoning.

Limited Scope of Reasoning Types In this work,
we restrict our focus to reasoning types where the
correct answer is explicitly entailed by the content
of the retrieved documents. That is, each query
is designed such that the answer can be derived
directly through logical chaining of facts present
within the corpus, without requiring speculative or
implicit inference. While this approach ensures
controllability and verifiability of reasoning paths,
it excludes more complex or open-ended reason-
ing types—such as analogical, causal, or common-
sense inference—that are not strictly grounded in
the retrieved evidence. Expanding the GRADE
framework to support such reasoning paradigms
remains a compelling direction for future work.

Ethics Statements

Our framework leverages large language models
(LLMs) in various stages, including claim decon-
textualization, entity equivalence detection, and
automatic evaluation. While LLMs provide scala-
bility and flexibility, they are also known to reflect
societal biases or produce harmful content, includ-
ing discriminatory or offensive expressions (Gal-
legos et al., 2024). As such, our method may in-
advertently introduce such risks into the generated
dataset or evaluation outputs. Although we attempt
to mitigate this by sourcing factual news content
and excluding opinionated material, residual bias
or inappropriate generation remains a concern. We
encourage future work to incorporate stronger con-
tent filtering, human oversight, and bias mitigation
strategies, particularly in downstream applications.
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A Appendix

A.1 Additional Main Results

To verify the generalizability of our proposed diffi-
culty framework, we replicated the main exper-
iments using a science-focused corpus. As in
the Sports and Health domains, we selected fac-
tual science articles published after July 2024 and
constructed a new knowledge graph following the
methodology described in Section 3.1.

Figure 4 presents the 2D difficulty matrices
for three models—o1-mini, GPT-40, and GPT-4o-
mini—evaluated on the science corpus. Across
all models, the diagonal entries (i.e., cells where
hop count and retrieval difficulty increase together)
exhibit a clear upward trend in error rate. For ex-
ample, ol-mini shows error rates of 0.226 (2-hop,
low D,), rising steadily to 0.504 (5-hop, high D).
This pattern is mirrored in GPT-40 (0.306 to 0.474)
and GPT-40-mini (0.355 to 0.556), reaffirming that
our difficulty framework captures compounding
complexity from both axes. These diagonals pro-
vide strong empirical support for the framework’s
discriminative power.

Overall, the diagonal consistency observed
across all three models underscores the robustness
of our difficulty framework, while deviations from
monotonicity in off-diagonal cells point to complex
interactions between retrieval and reasoning. These
findings highlight the utility of our 2D framework
not only as a ranking tool for task difficulty, but
also as a diagnostic surface for probing nuanced
model behaviors under hybrid conditions.

A.2 Qualitative Results

While conventional symbolic pipelines rely on ex-
plicit triplet connections, many real-world reason-
ing chains involve latent semantic associations not
captured by direct edges. To address this, we incor-
porate entity equivalence—both exact and contex-
tual—via semantic clustering, enabling reasoning
over missing links that would otherwise be invisi-
ble to standard multi-hop traversal.

Table 4 illustrates two representative cases. In
the first example, two entities (“elevated ketamine
levels in his blood” and “elevated ketamine lev-
els”) are treated as contextually equivalent within
the same semantic cluster, allowing the model to
infer “respiratory depression” as the consequence
of ketamine exposure. The second example high-
lights exact equivalence, where mentions like “bird
flu (H5N1)” and “H5NI virus” refer to the same

Contextually Same Example

Triples:

(matthew perry, had, elevated ketamine levels in his blood)
(elevated ketamine levels, led to, respiratory depression)
Question: What condition did actor Matthew Perry experi-
ence due to elevated ketamine levels in his blood?
Answer: Respiratory depression

Exact Same Example

Triples:

(human spillover cases, will persist, bird flu (h5nl))
(h5n1 virus, indicates, potential reduction in its lethality)
Question: What does the persistence of human spillover
cases of bird flu (H5N1) indicate about bird flu’s lethality?
Answer: Potential reduction in its lethality

Table 4: Qualitative examples of missing link reasoning
using contextually and exactly equivalent entities.

concept, enabling the system to reason across men-
tions and infer a reduction in lethality. These exam-
ples demonstrate the necessity of enriched graph
construction for supporting robust multi-hop rea-
soning.

A.3 Additional Model Families

We extend the evaluation to two non-OpenAl
models—Claude 4 Sonnet (20250514) and Llama
3.2 3B Instruct. Both were tested on three repre-
sentative domains (Sports, Health, Science) under
the same setup as described in the main experiment.
Across all cases, error rates increase consistently
with both hop count and retrieval difficulty (D,.).
This confirms that the proposed difficulty formula-
tion produces stable trends across different model
families.

A.4 Evaluation on Multi-Step and
Decomposition RAG Systems

We extend the evaluation to two stronger RAG
pipelines under the same protocol and difficulty
matrix as in the main paper. (1) Multi-step RAG:
two-stage retrieval and generation—first generate
an intermediate answer from top-10 retrieved docu-
ments, then perform a second retrieval conditioned
on the original query, retrieved context, and the
intermediate answer to produce the final response.
(2) Query-decomposition RAG: decompose the
query into sub-queries; for each sub-query retrieve
top-10 documents, merge with de-duplication, and
rerank using bge-reranker-large. All results
are reported as cell-wise error rates (1 — accuracy)
over the 4 x4 difficulty matrix (rows = hop count;
columns = D, quartiles from low to high).

In both systems and across domains, error rates
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Figure 4: Model performance across varying levels of reasoning depth (2-5 hops) and retrieval difficulty (low vs.
high) in Science domain. Each heatmap cell represents the error rate for a given setting.

Domain  Hops @1 (Low D) Q2 Q3 Q4 (High D,)
2-hop 0.222 0.333  0.241 0.407
Sports 3-hop 0.160 0.388 0.592 0.460
p 4-hop 0.262 0.310 0.429 0.535
5-hop 0.400 0.529  0.600 0.457
2-hop 0.343 0.299 0.522 0.716
Health 3-hop 0414 0491 0.534 0.724
4-hop 0.408 0.531 0.633 0.680
5-hop 0.477 0.591 0.659 0.795
2-hop 0.262 0.350 0.525 0.689
Science 3-hop 0.300 0450 0.517 0.656
4-hop 0.246 0.526  0.456 0.509
5-hop 0.352 0.453  0.648 0.537

Table 5: Error rates for Claude 4 Sonnet (20250514).

generally increase with hop count and retrieval diffi-
culty, with the largest gains along the main diagonal
of the matrix (higher hops and higher D).

A.5 Evaluation on Entertainment and
Technology Domains

To further examine the robustness of our frame-
work across domains, we extended the experiments
to Entertainment and Technology corpora. Fol-
lowing the same pipeline described in Section 3,
we constructed domain-specific knowledge graphs
and generated multi-hop queries (2-5 hops). For
both domains, error rates showed consistent trends
with our main analysis: performance degrades
as reasoning depth increases and retrieval diffi-
culty grows, while overall tendencies align with
the Sports, Health, and Science results.

As shown in Table 9 and Table 10, these addi-
tional experiments reinforce the generalizability of
the proposed difficulty framework across diverse
topical domains. The observed patterns mirror
those in the primary analysis, further supporting
the consistency of GRADE under varying domain
conditions.

A.6 Human Evaluation on Missing Link
Detection

To assess the reliability of our missing link de-
tection process, we manually analyzed 30 ran-
domly sampled entity groups from the augmen-
tation phase. We observed 5 ambiguous cases
among exact-equivalence groups and 6 among
contextually-equivalent groups. Most were not
outright errors but borderline situations involving
partial overlaps or differences in granularity. For
example, “the first round of the draft” versus “the
first round of the NFL draft” reflected an inclu-
sion rather than strict synonymy, while “redemp-
tion” versus “Michael Vick’s ongoing redemption”
showed a mismatch in abstraction level. Such cases
were limited in scope relative to the overall map-
pings and did not noticeably affect question gen-
eration or evaluation outcomes. Still, we note that
refining entity matching strategies remains a worth-
while direction, especially in high-stakes domains.

A.7 Evaluation with Alternative Embedding
Models

To further assess the robustness of the GRADE
framework, we conducted additional experiments
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Domain  Hops @i (Low D) Q2 Q3 Q4 (High D,)
2-hop 0.519 0.556  0.463 0.630
Soorts | 3hop 0.420 0.633  0.796 0.720
POTES 4 hop 0.452 0.571  0.786 0.860
5-hop 0.514 0.735  0.943 0.686
2-hop 0.262 0.350  0.525 0.689
Healy  3-hop 0.300 0.450 0.517 0.656
4-hop 0.246 0.526  0.456 0.509
5-hop 0.352 0.453  0.648 0.537
2-hop 0.508 0.700  0.803 0.836
Science  3hop 0.533 0.633  0.650 0.738
1N 4 hop 0.561 0.702  0.649 0.702
5-hop 0.537 0.698 0.815 0.685

Table 6: Error rates for Llama 3.2 3B Instruct.

Multi-step RAG Hops Qi1 (Low D,) Q- Q3 Qa4 (High D;)
2-hop 0.352 0.296 0.185 0.444
Spors 3-hop 0.180 0.388 0.490 0.420
P 4-hop 0.357 0.333  0.476 0.465
5-hop 0.371 0.706  0.600 0.457
2-hop 0.403 0.299 0.507 0.672
Health 3-hop 0.310 0.421 0.466 0.569
4-hop 0.388 0.490 0.592 0.660
5-hop 0.591 0.500 0.568 0.727
2-hop 0.262 0.383  0.557 0.721
Science 3-hop 0.367 0.483 0.550 0.705
4-hop 0.316 0.491 0.439 0.509
5-hop 0.352 0.472  0.630 0.537

Table 7: Extended evaluation on a two-stage Multi-step RAG. Values are error rates over the 4 x4 difficulty matrix
(rows = hop count; columns = D,. quartiles). Lower is better.

using three widely adopted embedding encoders:
all-mpnet-base-v2 # bge-en-large-v1.5 7,
and jina-embeddings-v3 ©. These models dif-
fer substantially in architecture, training data, and
design philosophy, providing complementary per-
spectives on sentence-level representation.

As shown in Tables 11, Tables 12 and Tables 13,
Across all domains (SPORTS, HEALTH, SCIENCE),
we observed consistent trends aligned with our
main findings: diagonal values in the GRADE ma-
trix exhibit a steady increase from upper-left to
bottom-right. This consistency across encoders
demonstrates that the framework’s evaluation sig-
nals are not artifacts of a particular embedding
choice, but rather reflect intrinsic aspects of multi-
hop reasoning difficulty.

*https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

5https://huggingface.co/BAAI/bge-large-en—v1.
5

6https://huggingface.co/jinaai/
jina-embeddings-v3

A.8 Evaluation under Alternative Chunking
Strategies

To examine whether the GRADE framework is
sensitive to specific retrieval granularities, we
evaluated two alternative chunking strategies in
addition to the main configuration: 64-128
tokens, 25-token overlap and 256-512
tokens, 100-token overlap.

As shown in Table 14, Table 15 and Table 16,
across all domains (SPORTS, HEALTH, SCIENCE),
we observed the same characteristic patterns as
in our main experiments: diagonal values in the
GRADE matrix exhibit a steady increase from
upper-left to bottom-right. This indicates that the
validity of the framework’s difficulty signals does
not depend on a particular chunking configuration.
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Query-decomposition RAG Hops @1 (Low D,) Q2 Qs Q4 (High D,)

2-hop 0.519 0.500 0.426 0.500
Sports 3-hop 0.360 0.531 0.653 0.580
4-hop 0.500 0.738  0.738 0.605
5-hop 0.514 0.588  0.629 0.743
2-hop 0.478 0.493  0.627 0.746
Health 3-hop 0.690 0.754 0.776 0.672
4-hop 0.408 0.714  0.714 0.740
5-hop 0.705 0.750  0.750 0.773
2-hop 0.443 0.500 0.623 0.787
Science 3-hop 0.550 0.533 0.717 0.705
4-hop 0.491 0.684 0.579 0.649
5-hop 0.648 0.528  0.630 0.741

Table 8: Extended evaluation on a Query-decomposition RAG with per-subquery retrieval, merge & de-duplication,
and bge-reranker-large reranking. Values are error rates.

Hops | Low D, Q2 Q3  High D,
2-hop | 0375 0.298 0489  0.479

Hops Low D, Q2 Q3 High D,

all-mpnet-base-v2

3-hop | 0471 0.440 0.549  0.608 2hop 0343 0254 0388  0.731
4-hop 0.378 0.523  0.689 0.578 3-hop 0310 0421 0.552 0.603
5-hop 0.708 0.522 0.652 0.542 4-hop 0.347 0.531  0.510 0.600

5-hop 0.386 0.659 0.477 0.545

Table 9: Error rates in the ENTERTAINMENT domain. bge-en-large-v1.5
. 2-hop 0.299 0.299 0.388 0.612
Lower is better.

3-hop 0.362 0.404 0.483 0.448
4-hop 0.347 0.531 0.633 0.460

Hops | Low D, Q2 Q3 High D, 5-hop 0.500 0.523  0.682 0.477
jina-embeddings-v3

2-hop | 0.431 0380 0420  0.608 2hop 0313 0269 0463 0716

3-hop | 0.417 0375 0.542  0.667 3hop 0345 0404 0431  0.655

4-hop | 0386 0465 0488  0.545 Thop  0.306  0.571 0331 0.560

5-hop 0.432 0.682  0.568 0.636

5-hop | 0.564 0.564 0.487  0.550

Table 12: Error rates in the HEALTH domain for three

Table 10: Error rates in the TECHNOLOGY domain. emedding models.

Lower is better.

Hops Low D, Q2 Q3 High D,

all-mpnet-base-v2 Hops Low D, Q2 Q3 High D,
2-hop 0.296 0.121 0.241 0.389
3-hop 0.220 0.388 0.469 0.360

4-hop 0.262 0262  0.452 0.442 3-hop 0383 0383 0633 0574

Shop 0286 0441 0571 0514 4hop 0228 0474 0456 0544

bge-en-large-v1.5 5-hop 0.333 0.547 0.519 0.537
2hop 0315 0111 0222 0333
3-hop 0180 0286 0449 0400

‘S‘:ﬁgg 8&3{ 8%2 g'jgg 8'2;}% 3-hop 0333 0.500 0.400  0.623
; : : : 4hop 0263 0386 0404  0.404
jina-embeddings-v3 5-hop 0.352 0.358 0.500 0.481

2-hop 0315  0.167 0259  0.444

3-hop  0.140 0388 0469  0.600
4hop  0.167 0357 0.595  0.651

5-hop 0400 0353 0543 0771

all-mpnet-base-v2
2-hop 0.230 0.367 0.492 0.689

bge-en-large-v1.5
2-hop 0.295 0.367 0.393 0.705

jina-embeddings-v3
2-hop 0.213 0.333  0.443 0.607
3-hop 0.367 0.500 0.433 0.639
4-hop 0.246 0.404 0.439 0.544
5-hop 0.296 0.453 0.481 0.611

Table 11: Error rates in the SPORTS domain with three

embedding models. Table 13: Error rates in the SCIENCE domain for three
embedding models.
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Hops Low D, Q2 Q3 High D,

256-512 tokens, 100-token overlap
2-hop 0.278 0.315 0.204 0.407
3-hop 0.140 0.388 0.673 0.340
4-hop 0.190 0.286  0.381 0.372
5-hop 0.314 0.529 0.543 0.429

64-128 tokens, 25-token overlap
2-hop 0.222 0.259 0.204 0.333
3-hop 0.120 0.490 0.673 0.400
4-hop 0.286 0.333  0.619 0.488
5-hop 0.429 0.529 0.714 0.486

Table 14: Error rates in the SPORTS domain with alter-
native chunking strategies.

Hops Low D, Q2 Q3 High D,

256-512 tokens, 100-token overlap
2-hop 0.373 0.224 0.433 0.672
3-hop 0.310 0.351 0.466 0.603
4-hop 0.327 0.429  0.490 0.580
5-hop 0.455 0.455 0432 0.682

64-128 tokens, 25-token overlap
2-hop 0.403 0.239 0.537 0.642
3-hop 0.310 0.386 0.517 0.586
4-hop 0.367 0.531 0.531 0.660
5-hop 0.455 0.523  0.500 0.727

Table 15: Error rates in the HEALTH domain with alter-
native chunking strategies.

Hops Low D, Q2 Q3 High D,

256-512 tokens, 100-token overlap
2-hop 0.246 0.333 0475 0.689
3-hop 0.350 0417 0.483 0.672
4-hop 0.228 0.491 0.456 0.526
5-hop 0.352 0.415 0.519 0.574

64-128 tokens, 25-token overlap
2-hop 0.213 0.350 0.475 0.672
3-hop 0.383 0.400 0.567 0.525
4-hop 0.246 0.456  0.368 0.544
5-hop 0.315 0.547 0.537 0.574

Table 16: Error rates in the SCIENCE domain with alter-
native chunking strategies.
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A9 Prompts

We include all prompt templates used throughout
the pipeline in this appendix. These prompts cover
claim generation, entity matching, triple extraction,
multi-hop question construction, and system evalu-
ation.

A.9.1 Prompt for Claim Generation

System: A **claim** is a statement or assertion made within
a text that expresses a belief, opinion, or fact. Given the
evidence and the original context, please transform the
evidence into a claim.

Note:

- The claim should be a clear and concise statement that
logically follows from the provided evidence.

- The claim should not contain ambiguous references such as
"he," "she," or "it." Use complete names or specify entities
where necessary.

- The claim must be a paraphrased version of the evidence,
stating the point or fact clearly, without adding extra
information.

- If there is no claim that can be drawn from the evidence,
please leave the response blank.

User:

Context: {context}
Evidence: {evidence}
Claim:

# Content

A.9.2 Prompt for Claim-Sentence Consistency
Check

System: You are an Al assistant that receives pairs of
sentences and claims.

Your task is to determine whether each claim is consistent
with its corresponding sentence.

Focus solely on whether the claim accurately reflects the core
factual content of the sentence.

Ignore style, tone, attitude, or figurative language.

Respond with "Yes" if the claim is factually consistent with
the sentence.

Respond with "No" if the claim introduces information that is
not supported or is inconsistent.

Output format: Yes / No

User:

Sentence: sentence
Claim: claim

# Content
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A.9.3 Prompt for Triple Extraction

System: You are an Al assistant that extracts entities and
their relationships from a list of sentences. Each sentence has
an associated sentence ID.

Your task is to extract triplets from each sentence in the form
of: (source_entitylrelationshipltarget_entitylsentence_id)

Please follow these guidelines:

- An entity can be a person, place, object, concept, or any
meaningful noun phrase that participates in a relationship.

- Extract all valid (source_entitylrelationshipltarget_entity)
triplets from each sentence.

- Append the sentence ID at the end of each triplet to indicate
which sentence it came from.

- If multiple triplets can be extracted from a single sentence,
list all of them.

- Do not include duplicate triplets where only the order of
source and target is reversed.

IMPORTANT: Resolve pronouns

- Replace pronouns such as he, she, it, they, this, that with the
most specific entity mentioned in the sentence.

Output format:

(source_entitylrelationshipltarget_entityl1)
(source_entitylrelationshipltarget_entityl2)
(source_entitylrelationshipltarget_entityl2)
(source_entitylrelationshipltarget_entityl3)

User:
Sentence 1: {sentencel }
Sentence 2: {sentence2}

Sentence 10: {sentencelO}
# Content

A.9.4 Prompt for Search Same Entity (Exact /
Contextual Equivalence)

System: You are an Al assistant tasked with identifying
entities that refer to the same concept based on a given set of
triples and their supporting claims.

Each input consists of multiple (source_entity, relationship,
target_entity) triples along with their corresponding claim
context.

Your task is to group entities that can be considered the same,
based on both the triples and their claim contexts.

There are two types of equivalence:

1. Always equivalent: Entities that refer to the same
real-world object or concept in any context (e.g., "USA" and
"United States").

2. Context-dependent equivalent: Entities that refer to the
same thing only in the context of the given triples and claim(s)
(e.g., "study co-author" and "microplastics researcher").

Format your output as follows:

Group identical entities together inside square brackets [].
Separate each entity with a vertical bar |.

At the end of each group, append either "always" or "context"
(in quotes) to indicate the type of equivalence.

Write one group per line.

If no identical entities are found, output exactly: No identical
entities found.

User:
Example output:
{examples}

Triple: {triples}
Claim: {claim}

Triple: {triples}
Claim: {claim}
# Content

4422



A.9.5 Prompt for QA Generation (Ground
Truth)

System: You are an Al assistant designed to generate
multi-hop questions and answers based on triples in the form
of (source_entity, relationship, target_entity), along with the
associated claims and context.

Your task is to generate a multi-hop question-answer pair
based on the given triples. The number of hops should
correspond to the number of triples provided. If there are N
triples, generate a question that connects all N triples, and use
them to form a coherent, logical path for the answer.

Ensure that:

- The question should begin with "Question:" and the answer
should begin with "Answer:".

- The question should clearly reference the entities and
relationships, and should be designed such that the answer is
a concise, **specific entity or short phrase** (e.g.,
"Microsoft", "United States", "2025", "GLP-1 drugs").

- The answer should **not be abstract** (e.g., "noticeable
effects”, "study participants”, "potential limitations") but
should be a **clear entity, specific term, or concise concept™*
that can be derived directly from the triples.

- The question and answer should be linked with a pipe (I) on
the same line.

- Do not add external knowledge or assumptions beyond the
given triples.

Notes for clarification:

- For N triples: The question should logically connect all N
triples and form a coherent path that leads to a **specific,
concrete answer** derived solely from the entities in the
triples.

- Make sure the question is specific and each relationship in
the chain is clearly traceable to lead to the final answer.

User:
Example output format:
{examples}

Triples: {triples}
Claims: {claims}
Context: {chunks}
# Content

A.9.6 Prompt for Validation

System: You are an Al assistant tasked with reviewing
question and answer pairs for ambiguity or vagueness.
Your goal is to evaluate whether each pair is clear and
self-contained — that is, whether it can be understood
without relying on external or missing context.

Use the following criteria to make your judgment: The
question and answer must be decontextualized — meaning
they should be understandable on their own, without requiring
additional background information.

If the answer includes vague references such as "other
countries," "certain individuals," or "this technology," and the
question does not provide enough information to specify what
these refer to, then it is considered ambiguous.

Similarly, if the question uses pronouns or context-dependent
expressions like "he," "they," "this," or "that" without clearly
indicating the referent, the pair is not decontextualized and
should be marked as ambiguous.

Based on these criteria:

If the question-answer pair is decontextualized and
unambiguous, output True.

If it relies on missing context or includes vague or ambiguous
expressions, output False.

Output format:
True / False

User:

Question: {question}
Answer: {answer}

# Content
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A.9.7 Prompt for Test RAG System Answer
Generation

System: You are an Al assistant designed to generate
answers for multi-hop questions. Given a question and its
corresponding context, use only the information in the
context to generate a **specific, concise answer**.

The answer should be **a clear, short entity, concept, or
term**, such as "Microsoft", "United States", or "2020". Do
not provide detailed explanations or longer sentences.

Do not use any external knowledge or make assumptions.
Focus solely on the information provided in the context to
answer the question.

Output format:
Answer

User:

Question: {question}
Context: {top_chunks}
# Content

A.9.8 Prompt for LLM Evaluation

System: You are an Al assistant that receives a question
along with two answers: a ground truth answer and a
generated response. Your task is to evaluate whether the
generated response is correct or not, and provide a binary
judgment (True or False).

Output format:
True/False

User:

Question: {question}

Ground Truth Answer: gt_answer
Response: {rag_answer}

# Content
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