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Abstract

In-context learning (ICL) performance heavily
relies on the quality and ordering of demon-
strations. Iterative selection (IS) is a promis-
ing approach to address this issue, but existing
IS methods face two key challenges: the over-
simplification of process reward signals that
guide intermediate steps (often using single-
dimensional metrics) and the lack of outcome
reward signals that directly optimize final-task
accuracy (relying solely on binary terminal
feedback like correct/incorrect predictions). To
address these issues, we propose a reinforce-
ment learning method R-Mix which models it-
erative demonstration selection as a Markov De-
cision Process (MDP), crafting hybrid reward
signals — combining outcome-based accuracy
signals (i.e., outcome rewards) with process-
oriented signals (i.e, process rewards) like step-
wise influence and label entropy improvement.
Our analysis reveals a positive but trade-off
relationship between outcome rewards and pro-
cess rewards, underscoring the importance of
both components for effective policy optimiza-
tion. We further introduce a dual-head pol-
icy architecture that explicitly decouples input-
semantic relevance and label-content compat-
ibility. Experiments across NLP benchmarks
demonstrate superior performance over state-
of-the-art methods, with ablation studies vali-
dating the necessity of both reward components
and architectural disentanglement. Our work
has deeply explored the effective potential of
ICL through demonstration selection.

1 Introduction

In-context learning (ICL), an emergent ability of
large language models (Brown et al., 2020), enables
these models to achieve impressive performance
on diverse tasks—such as text summarization, di-
alogue management, and semantic analysis—by
merely incorporating demonstration input–label

*Equal contribution.
†Corresponding author (e-mail: zhangx89@ruc.edu.cn).

pairs as prompts, all without any parameter up-
dates (Sia and Duh, 2023; Li et al., 2023; He et al.,
2023; Sun et al., 2024; Liu et al., 2024b; Chen et al.,
2023; Shen et al., 2024).

Demonstration selection critically impacts ICL
efficacy, where demonstrations can be manually
designed or retrieved from datasets. Research has
demonstrated that both the quality and order of
demonstrations significantly influence the ICL ca-
pabilities of large language models (Gao et al.,
2020; Lu et al., 2021). While point-wise sim-
ilarity matching (Liu et al., 2021; Reimers and
Gurevych, 2019) efficiently retrieves test-relevant
demonstrations, it neglects inter-demonstration syn-
ergies. Sample-then-select methods (Guo et al.,
2024; Lu et al., 2021; Wu et al., 2022) address
this via permutation sampling and list-wise metrics
(e.g., permutation entropy, mutual information),
yet suffer from computational overhead and sam-
pling bias. Recent iterative approaches (Liu et al.,
2024a; Chen et al., 2024; Liu et al., 2024b), while
circumventing these issues, adopt a myopic opti-
mization strategy—exclusively relying on oversim-
plified intermediate benefits (referred to as process
rewards)—that fails to align with the improvement
of final-task performance. This creates a critical
gap that hinders unleashing the effective potential
of LLMs for ICL through demonstration selection.

In response to these challenges, we model the
demonstration selection process as a Markov De-
cision Process (MDP) and optimize it by training
a small reinforcement learning model (named R-
Mix) utilizes crafted hybrid reward signals. These
include an outcome reward (OR) aligned with final-
task accuracy, which however suffers from sparsity
since it is only obtainable after the entire selection
process is completed. To mitigate optimization
difficulties associated with sparse rewards ((Hare,
2019; Devidze et al., 2022)), we introduce several
rich process rewards (PR), such as improvements
in influence and label entropy. We analyze the re-
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lationship between process rewards and outcome
rewards, finding that while they exhibit a positive
correlation, it’s also a trade-off, highlighting the
need for all types of rewards to guide the policy
effectively. Furthermore, since both the input and
output in the demonstrations affect the final selec-
tion, we adopt a dual-head policy model to decou-
ple their respective contributions. We validate the
effectiveness of our model on three datasets and
provide extensive experimental analysis to demon-
strate its robustness and generalizability.

2 Related Work

Demonstration selection can critically affect the
performance of ICL. Several studies have pro-
posed methods that leverage point-wise match-
ing to retrieve demonstrations that are most rel-
evant to the task at hand (Liu et al., 2021; Reimers
and Gurevych, 2019; Rubin et al., 2021). Uncer-
tainty (Diao et al., 2023; Hübotter et al., 2024) ,
influences (Nguyen and Wong, 2023), entropy (Lu
et al., 2021; Wu et al., 2022), diversity (Ye et al.,
2023b; Su et al., 2023), sensitivity (Chen et al.,
2022) and LLM scores (Ye et al., 2023a; Zhang
et al., 2023) have also been utilized as criteria for
demostration selection. While these methods are
efficient, they fail to account for the interactions
and synergies between different demonstrations.

Order sensitivity plays a crucial role in max-
imizing ICL performance. Research has shown
that the sequence in which demonstrations are
presented significantly influences model behav-
ior (Gao et al., 2020; Lu et al., 2021). Ordering
strategies based on list-wise metrics, such as permu-
tation entropy and mutual information, help capture
the relationships between demonstrations, optimiz-
ing the presentation for the model (Guo et al., 2024;
Wu et al., 2022). However, these sample-then-
select methods often suffer from computational
overhead and potential biases introduced by the
sampling process, raising concerns about their scal-
ability and efficiency in practical applications.

Iterative methods have been proposed to op-
timize demonstration selection and ordering in a
more dynamic and adaptive manner. These meth-
ods focus on refining the demonstration sequence
iteratively (Liu et al., 2024a; Zhang et al., 2022a;
Chen et al., 2024; Liu et al., 2024b). Liu et al.
(2024a) trains a ranker to iteratively approximate
the optimal demonstration list. Reinforcement
Learning (RL) has also been explored as a key

technique for optimizing demonstration selection
through iterative refinement with process influence
improvement (Zhang et al., 2022a; Chen et al.,
2024). While such iterative approaches have shown
promise in improving performance, they are opti-
mized using intermediate benefits (referred to as
process rewards) and lack outcome-oriented reward
signals to directly optimize final-task performance.
Additionally, their process rewards remain oversim-
plified. Our work builds on this gap by introducing
outcome rewards with process rewards that cap-
ture intermediate activation and guide the model to
refine demonstration selection.

3 Reward MIXolog (R-Mix): Our Method

To address the challenge of example selection in
ICL, our K-shot iterative demonstration retrieval
method models the demonstration selection process
as a Markov Decision Process and optimizes the
policy based on the hybrid reward, as shown in Fig-
ure 1. RMix operates through three components:
(1) an MDP formulation modeling demonstration
selection (Sec. 3.1), (2) a dual-head scoring policy
that disentangles the contribution of input and label
semantics respectively, and (3) a hybrid reward sys-
tem combining outcome accuracy gains with step-
wise influence and entropy signals whose positive
but trade-off correlation is analyzed in Figs. 2(a)-
2(b). The reward shaping via batch normalization
(Sec. 3.4) ensures stable policy optimization.

3.1 Iterative Demonstration Retrieval
Formulation

Given a pretrained language model LM , a re-
trieval model R, a candidate demonstration set
D = {(xi, yi)}Ni=1, and a query input xtest, the goal
is to iteratively construct an ordered demonstration
sequence SK = [(xs1 , ys1), . . . , (xsK , ysK )] that
maximizes the K-shot ICL performance gain:

S∗
K = argmax

SK⊆D, |S|=K

[
I (LM (SK ⊕ xtest) = ytrue)

−I (LM (xtest) = ytrue)
]
,

(1)
where S ⊕ xtest represents the concatenation of the
demonstration examples S with the test input xtest,
and ytrue indicates the ground-truth label for the
given demonstration set.

MDP Formulation This iterative process can be
formally modeled as a Markov Decision Process
(MDP) defined by the tuple (S,A,P,R, γ):
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Figure 1: Our proposed R-Mix: A K-shot iterative demonstration retrieval method employing a dual-head policy.
The architecture dynamically selects demonstrations through iterative scoring K times, where the input head
computes content scores by evaluating BERT-encoded demonstration inputs Enc(xi) from the candidate set, while
the label head calculates label scores through learnable embeddings Emb(yi). Their fused compatibility scores
(Eq. (9)) govern the policy’s selection probabilities, optimized by hybrid rewards (outcome reward for terminal
accuracy and process reward for stepwise signals).

• State Space S: State st ∈ S at step t consists of:

– Current demonstration sequence St−1 =
[(xs1 , ys1), . . . , (xst−1 , yst−1)].

– Query input xtest.

– GRU internal state stx (from Sec. 3.2)

Formally: st = (St−1, xtest, s
t
x).

• Action SpaceA: At step t, select from remaining
candidates:

At = D \ St−1, at = (xi, yi) ∈ At. (2)

• Transition Dynamics P : Deterministic state up-
date through concatenation:

P(st+1|st, at) =
{
1 if St = St−1 ⊕ (xi, yi),

0 otherwise,
(3)

where ⊕ denotes sequence concatenation.

• Reward FunctionR: Combines immediate and
terminal rewards:

R(st, at) =
{
λRt

pr t < K,

Ror(SK) + λR(K)
pr t = K,

(4)
whereRt

pr andRor are designed follows Sec.3.3.

• Discount Factor γ: Exponential reward dis-
counting with γ ∈ [0, 1] as in Eq. (16).

Policy Implementation The dual-head architec-
ture generates selection probabilities:

πθ(at = (xi, yi)|st)

=
exp(ScoretR(xi, yi))∑

(xj ,yj)∈At
exp(ScoretR(xj , yj))

,
(5)

where ScoretR combines input and label scores
through Eq. (9).

Construction Process The iterative demonstra-
tion retrieval process is formalized in Algorithm 1.
This formulation enables end-to-end optimization
through reinforcement learning.

3.2 Dual-Head Policy Architecture
The dual-head policy network integrates historical
information through a hybrid embedding mecha-
nism. Specifically, it first encodes the previous
input xt−1 using BERT and then concatenates this
with the embedding of the previous label yt−1,
which is obtained via a learnable embedding matrix
Elabel ∈ R|Y|×dy . This concatenated vector,

ht−1 = BERT(xt−1)⊕Elabel(y
t−1), (6)

has a dimension dh = dx + dy, where dx is the
dimensionality of the BERT-encoded input and dy
is that of the label embedding. The hybrid embed-
ding ht−1 is then fed into a Gated Recurrent Unit
(GRU) cell together with the previous hidden state
st−1
x to produce the output ot and update the state

to stx:

ot, stx = GRUϕ

(
ht−1, st−1

x

)
. (7)
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Algorithm 1 Iterative Demonstration Retrieval
Require: Pretrained LM M , retrieval model R,

candidate set D = {(xi, yi)}Ni=1, query xtest,
maximum sequence length K

Ensure: Demonstration sequence S =
[(xs1 , ys1), . . . , (xsK , ysK )]

1: Initialize S0 ← ∅, t← 1
2: while t ≤ K do
3: Compute relevance scores:
4: for each (xi, yi) ∈ D \ St−1 do
5: ScoretR(xi, yi)← R

(
(xi, yi), x, s

t
x

)

6: end for
7: Demonstration Selection:
8: if training then ▷ Stochastic Sampling
9: (xst , yst)← Sample(ScoretR(xi, yi))

10: else ▷ Greedy Selection
11: (xst , yst)← Argmax(ScoretR(xi, yi))
12: end if
13: Update sequence:
14: St ← St−1 ⊕ (xst , yst)
15: t← t+ 1
16: end while
17: return SK

At the start, the previous input is initialized as x
and the label embedding is set to a zero vector.

Then we compute compatibility scores through
dual projection heads:

Scoretx(xi) = ⟨BERT(xi),Wxo
t⟩/

√
dx,

Scorety(yi) = ⟨Elabel(yi),Wyo
t⟩/

√
dy,

(8)

with learnable projection matrices Wx ∈ Rdx×dh ,
Wy ∈ Rdy×dh . The

√
dx and

√
dy term stabilizes

gradient magnitudes.
For fusion Scoretx(xi) and Scorety(yi) adaptively,

we simply add them together:

ScoretR(xi, yi) = Scoretx(xi) + Scorety(yi). (9)

To select the action at at step t, our model
uses the composite score ScoretR(xi, yi) defined
in Eq. (9). During training, we employ Thompson
sampling (Russo et al., 2018) for action selection
to ensure proper exploration (Ladosz et al., 2022;
Zhang et al., 2024; Chen et al., 2023), while at
inference time, we simply take the greedy action
by selecting the maximum-scoring demonstration
pair. This balanced approach maintains exploration
during learning while guaranteeing optimal perfor-
mance during deployment.

3.3 Hybrid Reward Design

To guide the iterative construction of demonstration
examples, we propose a dual-component reward
system that synergistically combines global opti-
mization with stepwise guidance:

Outcome Reward (Global Optimization) This
component quantifies the terminal performance im-
provement induced by the constructed demonstra-
tion S:

Ror(SK) = I (LM (SK ⊕ xtest) = ytrue)

−I (LM (xtest) = ytrue) ,
(10)

where I(·) is an indicator function that returns 1
if the condition is satisfied and 0 otherwise, and
S ⊕ x denotes the concatenation of demonstration
S with test input x.

Process Reward (Stepwise Guidance) R-Mix
faces a sparsity issue with its outcome-dependent
reward mechanism, which only provides binary
signals (0/+1/-1) upon task completion, failing to
guide intermediate optimization processes and lead-
ing to susceptibility to local optima (Hare, 2019;
Devidze et al., 2022). To address this, we pro-
pose introducing process rewards that decompose
the task into learnable incremental steps, thereby
providing continuous learning signals throughout
the construction phase. Specifically, the process
reward will be restructured into two elements:

• Influence Improvement: Measures the local per-
formance gain at step t, which was introduced
in (Zhang et al., 2022b) to quantify the improve-
ment in the ground truth probability for the test
example brought by the selected sample at each
step:

Rt
infl = I(St)− I(St−1), (11)

where

I(S) = PLM(ytrue|S ⊕ xtest). (12)

• Label Entropy Improvement: Recent studies
suggest that effective example selection should
encourage the language model’s output distribu-
tion for empty inputs to approach uniformity (Lu
et al., 2021; Guo et al., 2024). We quantify un-
certainty reduction through entropy differentials:

Rt
entr = H (St)−H (St−1) , (13)
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(a) Relation between influence and accuracy. (b) Relation between label entropy and accuracy.

Figure 2: Relation between process rewards (influence and label entropy) with outcome rewards (accuracy).

where H(·) denotes the Shannon entropy of the
model’s output distribution over the label space
Y when provided with an empty query “N/A”:

H(S) = E (PLM(·|S⊕“N/A”))

= −
∑

y∈Y
P (y) logP (y). (14)

The composite process reward at each step ag-
gregates these components:

Rt
pr = Rt

infl +Rt
entr. (15)

Interplay Between Rewards As shown in Fig-
ure 2(a) and Figure 2(b), process rewards exhibit a
positive but trade-off relationship with the outcome
reward across both CR (Hu and Liu, 2004) and
MR (Pang and Lee, 2005) datasets. Specifically:

• Positive Correlation: In the initial phase, higher
cumulative influence improvement (

∑Rt
infl) and

label entropy (
∑Rt

entr) generally correspond to
improved final accuracy (Ror). For example, in
the CR dataset, trajectories with

∑Rt
infl > 0.02

achieveRor ≥ 0.55, while those with
∑Rt

infl <
0 yieldRor ≤ 0.51.

• Trade-off Relationship: Beyond sufficiently
high process rewards, further increases may lead
to reduced accuracy as shown in Figure 2(a):
when Influence exceeds 0.08, accuracy drops sig-
nificantly. This likely occurs because the LLM
allocates greater influence to examples that were
already correctly answered initially. As illus-
trated in Figure 2(b), this phenomenon becomes
more pronounced—blindly emphasizing label en-
tropy does not reliably improve accuracy, under-
scoring the need for balanced reward design that
integrates procedural guidance with outcome op-
timization.

These phenomenons highlight the need for a hy-
brid approach: outcome rewards provide a global
optimization target, while process rewards offer
detailed guidance for each step. Together, they ad-
dress the challenges of sparse rewards and align the
policy learning process with the dynamic reasoning
patterns of LLMs.

3.4 Policy Optimization
We optimize the policy network using a stabilized
REINFORCE algorithm with two key enhance-
ments: temporal discounting and in-batch reward
normalization. The objective function maximizes
the expected discounted cumulative reward:

J (θ) = ES∼πθ

[
K∑

t=1

γt−1Rt

]
, (16)

where γ ∈ [0, 1] is the discount factor, and the step
reward Rt combines immediate process reward
signals and terminal outcome reward signals:

Rt = I(t = K) · Ror(SK)︸ ︷︷ ︸
Outcome Reward

+ λ · Rt
pr︸ ︷︷ ︸

Process Reward

,

(17)
where λ controls their relative importance. To sta-
bilize training dynamics, we design the advantage
function to combine long-term outcome rewards
with discounted process rewards:

At = γK−tRor(S) + λ ·
K∑

i=t

γi−tR(i)
pr . (18)

To mitigate the non-stationarity of reward distri-
butions across batches and significantly enhance
learning efficiency (Naik et al., 2024; Hu, 2025),
we apply in-batch standardization:

Ât =
At − µA

σA
, (19)
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Method CR MR SST2
Zero-shot 0.5586 0.6211 0.6328
Random 0.5625 0.5703 0.5547

Similarity 0.6250 0.6594 0.6872

Best-of-N 0.5508 0.5391 0.7695
MDL 0.5352 0.5547 0.6352
MI 0.5039 0.7930 0.7891
GLE 0.7659 0.7891 0.7820
DEmO 0.8984 0.7789 0.8711

EPR 0.6477 0.7143 0.7477
LLM-R 0.6831 0.6460 0.7246

Se2 0.8553 0.7443 0.8253
IterR 0.8828 0.8398 0.8789

R-Mix 0.9062 0.9023 0.9102

Table 1: 8-shots performance on various methods.

where µA and σA denote the batch-wise mean and
standard deviation of advantage values. This nor-
malization scheme ensures gradient estimates re-
main scale-invariant across different task domains.
The final policy gradient is computed as:

∇θJ (θ) ≈
1

B

B∑

b=1

K∑

t=1

Ât
b∇θ log πθ(a

t
b|St−1

b , xb),

(20)
where B is the batch size and K is the maximum
demonstration length.

4 Experiments

4.1 Setup

Building upon previous work (Guo et al., 2024),
we adopt the LLaMA2 series models (Xia et al.,
2023; Touvron et al., 2023) as the inference LLM
in our study. The majority of the analyses are con-
ducted using Sheared LLaMA2 1.3B. We evalu-
ate the model on three textual classification task
datasets and compare its performance with several
existing methods. The specific details of the exper-
imental setup are outlined as follows.

Datasets: Given previous research (Guo et al.,
2024; Yang et al., 2023; Wu et al., 2022; Lu et al.,
2021), we conducted experiments on three datasets,
covering CR (Hu and Liu, 2004), MR (Pang and
Lee, 2005) and SST2 (Socher et al., 2013).

Compared Methods: We selected several base-
lines as comparison approaches, including both
learning-free and learning-based methods, point-

wise and list-wise methods. For learning-free meth-
ods, we selected:

• Zero-shot method directly applies a LLM to per-
form classification tasks without additional guid-
ance. Random serves as a baseline by randomly
selecting and ordering the dataset.

• The point-wise Similarity method (Liu et al.,
2022) selects demonstrations based on their se-
mantic similarity to the current query.

• List-wise methods: Best-of-N generates N ran-
dom dataset permutations and selects the highest-
accuracy configuration. The MDL approach (Wu
et al., 2022) creates permutations per instance
and chooses the one minimizing label encod-
ing codelength. The MI method (Sorensen
et al., 2022) uses information theory to optimize
demonstration selection, while GLE (Lu et al.,
2021) reduces order sensitivity via entropy-based
metrics. Furthermore, DEmO (Guo et al., 2024)
determines optimal demonstration order without
external data using dataset-free optimization.

For learning-based methods, we selected:

• Point-wise methods: EPR (Rubin et al., 2021)
uses a scoring LM to label examples and trains a
contrastive dense retriever. LLM-R (Wang et al.,
2023) trains a reward model for scoring, then
distills knowledge into a retriever.

• List-wise methods: Se2 (Liu et al., 2024a) trains
a ranker to iteratively approximate the optimal
demonstration list. Lastly, IterR (Chen et al.,
2024) iteratively refines the demonstration se-
lection process using a reinforcement learning-
based retriever.

Evaluations: For each dataset, we randomly se-
lected a subset of 256 samples from the validation
set as the test set. We use the LLM accuracy on the
test set as the evaluation metric.

Implementation Details: We randomly con-
struct a demonstration pool consisting of 512 sam-
ples, from which we select 8 instances iteratively
to formulate an 8-shot learning. For point-wise
methods, we sort demonstrations by scores in
descending order. For sample-then-select meth-
ods, we set the sample number to 100. For
learning-based methods, we set the learning rate
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to 1e−3 for 100 epochs, ensuring stable conver-
gence and effective policy optimization. λ is cho-
sen from {0.1, 0.5, 1.0, 2.0}. γ is chosen from
{0.8, 0.9, 0.95}.

4.2 Main Results

Our experimental results reveal four critical in-
sights about in-context demonstration selection:

(1) The Random baseline achieves lower accu-
racy than Zero-shot on MR (56.25% vs. 62.11%)
and SST2 (55.47% vs. 63.28%), indicating that
arbitrary demonstration ordering can degrade LLM
performance. In contrast, Similarity-based selec-
tion shows consistent improvements (e.g., +6.64%
on CR), suggesting targeted demonstration curation
is crucial for effective in-context learning.

(2) Sample-then-select methods demonstrate sig-
nificant gains over Zero-shot, with DEmO achiev-
ing second-best performance through list-wise met-
rics: 89.84% on CR and 87.11% on SST2. This
validates the importance of holistic demonstration
list evaluation beyond individual sample quality.

(3) Learning-based methods like EPR and LLM-
R outperform most learning-free approaches by
adapting to task-specific data, but they show overall
inferiority compared to list-wise methods due to
neglecting interactions between examples.

(4) Se2 demonstrates high performance, yet its
greedy-generated supervision sequences limit its
upper bound. Additionally, the RL-based method
IterR fully explores LLM’s outputs to achieve bet-
ter performance, but its overly simplistic reward
fails to focus on the final performance, thereby
limiting its capabilities.

(5) Integrating dual-modality scoring (Eq. 9)
and hybrid rewards designed (Eq. 17), our method
R-Mix achieves SOTA accuracy: 90.62% (CR),
90.23% (MR), 91.02% (SST2). The improvements
over baselines demonstrate the necessity of joint
input-label scoring and balanced reward design.

5 Discussions and Analysis

5.1 Ablation Studies

To further evaluate the key components of R-Mix,
we conducted a series of ablation studies.

5.1.1 Impact of Outcome Reward
We analyzed the importance of the outcome reward
Ror by retaining only this reward during the train-
ing process. As shown in Table 2, retaining only
the outcome reward led to a decline in performance.

Method CR MR SST2
onlyRor 0.8704 0.8711 0.8867
onlyRinfl 0.8867 0.8906 0.9045
onlyRentr 0.8672 0.8930 0.7930

only πinput 0.8984 0.8642 0.8703
only πlabel 0.8139 0.7969 0.7487

R-Mix 0.9062 0.9023 0.9102

Table 2: Ablation studies of R-Mix.

This is because the outcome reward is sparse; one
can only obtain it after fully selecting K demon-
strations. This sparsity of the reward necessitates
the introduction of process rewards to ensure that
the reward can be distributed across each step of
demonstration selection.

5.1.2 Impact of Process Reward
We evaluated the individual impacts of each pro-
cess reward (influence improvement and label en-
tropy) by examining their contributions to the final
accuracy. As shown in Table 2, retaining either
reward alone resulted in a performance decline.
On the CR and SST2 datasets, retaining onlyRinfl
led to higher final accuracy than retaining only
Rentr, especially on the SST2 dataset. This observa-
tion aligns with what we presented in Figures 2(a)
and 2(b), where an increase in influence generally
leads to an increase in accuracy, while an increase
in label entropy does not necessarily guarantee an
improvement in accuracy. In other words, optimiz-
ing based solely on label entropy as a reward may
not necessarily lead to an improvement in the final
results, which is consistent with the findings in the
table. We need to combine the process reward and
the outcome reward to achieve better performance
by leveraging their respective advantages.

5.1.3 Impact of Dual-Head Policy
We additionally analyzed our designed dual-head
policy, which separately calculates the contribution
values of the input and the label in a demonstration
and then sums them up. In this part, we separated
the scores of the two, i.e., retaining only Scorex
or Scorey, denoted as ‘only πinput’ and ‘only πlabel’
respectively. As shown in Table 2, retaining the
contribution value of either part alone led to a per-
formance decline. Moreover, on the three datasets,
retaining only the label contribution resulted in
lower performance than retaining only the input
score. This result is quite intuitive: in typical tasks,
the input contains more information than the label.
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Figure 3: Impact of number of demonstrations.

Training
Testing

CR MR SST2
CR 0.9062 0.8555 0.8281
MR 0.7969 0.9023 0.8320
SST2 0.7266 0.7773 0.9102

Table 3: Cross-dataset generalization performance.

Especially in our task, the label has only two values
(positive and negative), and it is only more relevant
to Rentr. However, without the input information,
Ror and Rinfl have no discrimination. This also
proves the importance of our dual-head policy in
decoupling the contributions of the input and the
label respectively.

5.2 Impact of Number of Demonstrations

We study how the number of demonstrations affects
R-Mix’s performance by experimenting with differ-
ent shot settings (i.e., 2-shots∼10-shots). As shown
in Figure 3, before 8-shots, accuracy generally in-
creases with the number of shots, reflecting the pos-
itive impact of more demonstrations on model per-
formance. However, at 10 shots, the performance
on CR and MR declines, possibly due to noisy or
redundant examples diluting the model’s learning
signal. To ensure a fair comparison and balance
between demonstration sufficiency and quality, we
select 8-shots as the default setting.

5.3 Cross-Dataset Generalization Performance

To validate R-Mix’s generalizability beyond task-
specific specialization, we conduct cross-dataset
evaluation where models are trained on one dataset
and tested on others. As shown in Table 3, our ap-
proach maintains competitive performance under
this challenging setting: it surpasses all baselines
on the MR dataset (0.8555 accuracy) and ranks sec-
ond only to DEmO on SST2 (0.8320 vs. DEmO’s
0.8711), demonstrating effective knowledge trans-
fer. This may be attributed to our label entropy re-
ward being task-agnostic (i.e., independent of xtest

Method CR MR SST2
Similarity 1.81 1.57 1.57

Best-of-N 46.52 52.19 33.21
MDL 119.72 141.21 96.38
MI 47.25 56.87 36.41
GLE 47.68 55.69 35.86
DEmO 58.82 68.30 54.27

EPR 1.83 1.45 1.85
LLM-R 1.79 1.78 1.57

Se2 4.13 3.67 4.67
IterR 1.70 1.54 1.73

R-Mix 1.72 1.57 1.54

Table 4: Demonstration sequence construction time(s).

in Eq.(13) and Eq.(14)). These results confirm our
algorithm’s robustness against distribution shifts
while preserving task-agnostic adaptability. Fur-
thermore, our approach remains extensible in this
regard — any task-agnostic generic list-wise metric
can be seamlessly incorporated into our framework,
ensuring the generalizability of trained policies.

5.4 Inference Efficiency

As shown in Table 4, inference latency is primar-
ily determined by demonstration sequence con-
struction time, as LLM’s inference time remains
consistent across methods. Ranking by similar-
ity achieves a low latency through heuristic-based
point-wise selection. Sample-then-select meth-
ods (Best-of-N to DEmO) incur 33.21–141.21s
overhead due to exhaustive permutation evalua-
tions using LLM-based list-wise metrics. Crucially,
learning-based approaches decouple training and
inference: although they require LLM feedback
for reward calculation during training, they elimi-
nate LLM dependency during deployment, signifi-
cantly reducing construction time. IterR and R-Mix
achieve latency close to that of similarity-based
methods on all tasks, demonstrating their advan-
tages in practical deployment. Se2 has a longer
inference time compared to R-Mix and IterR be-
cause it requires step-by-step context concatenation
and encoding, whereas our method replaces this
with GRU state transitions.

6 Conclusion

We propose a reinforcement learning method R-
Mix for ICL, modeling iterative demonstration se-
lection as an MDP. By integrating hybrid rewards
combining outcome and process signals, we ad-
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dress oversimplified and misguided rewards in ex-
isting methods. Analysis shows a positive yet trade-
off between process and outcome rewards, high-
lighting their joint necessity. A dual-head policy
architecture enhances performance by decoupling
input relevance and label compatibility. Experi-
ments across NLP benchmarks demonstrate supe-
rior performance over state-of-the-art methods.

Limitations

Our method R-Mix has several limitations. First,
the hybrid reward mechanism relies on linear fu-
sion, leaving room for more sophisticated methods
like attention-based weighting. Second, the dual-
head policy network directly sums input-semantic
and label-content scores, which could be improved
by using a gating network for adaptive aggrega-
tion. Finally, our on-policy training samples a sub-
set of the dataset, whereas off-policy training with
mini-batches could better leverage the full training
set for improved generalization. Addressing these
limitations could further enhance the framework’s
performance and applicability.
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