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Abstract

Proteins are central to biological systems, par-
ticipating as building blocks across all forms
of life. Despite advancements in understand-
ing protein functions through protein sequence
analysis, there remains potential for further ex-
ploration in integrating protein structural in-
formation. We argue that the structural infor-
mation of proteins is not only limited to their
3D information but also encompasses informa-
tion from amino acid molecules (local infor-
mation) to protein-protein structure similarity
(global information). To address this, we pro-
pose GLProtein, the first framework in pro-
tein pre-training that incorporates both global
structural similarity and local amino acid de-
tails to enhance prediction accuracy and func-
tional insights. GLProtein innovatively com-
bines protein-masked modelling with triplet
structure similarity scoring, protein 3D dis-
tance encoding and substructure-based amino
acid molecule encoding. Experimental results
demonstrate that GLProtein outperforms previ-
ous methods in several bioinformatics tasks, in-
cluding predicting protein-protein interactions,
contact prediction, and so on.

1 Introduction

Proteins are fundamental to virtually every biologi-
cal process, serving as the building blocks for cells
and organs and acting as catalysts, messengers, and
structural elements in all life forms. Understanding
the structure and function of proteins is crucial for
advances in health, agriculture, and environmental
science, making protein research a cornerstone of
biotechnology and medicinal science (Ding et al.,
2019; Davis et al., 2024; Zhao et al., 2024). Recog-
nizing the critical role of proteins in various scien-
tific fields, many efforts have been made to design
computational methods to further understand these
crucial molecules (Weng et al., 2021; Zhao et al.,
2020). Particularly, protein representation learning,
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Figure 1: An illustration on protein representation learning
flow. Protein information from local information (inside pro-
teins) to global information (between proteins) can be used as
input. This input undergoes encoding by a protein encoder to
generate a protein representation across various downstream
tasks.

as one significant part, involves capturing the com-
plex features and relationships within proteins in
a condensed form that can be utilized for various
computational tasks and analyses. It is crucial for
enhancing the understanding of protein structures
and functions, improving predictive modelling in
bioinformatics, facilitating the drug discovery pro-
cess, and advancing our knowledge of biological
systems through interpretable and efficient repre-
sentations of proteins (Somnath et al., 2021; Liu
et al., 2023; Gao et al., 2024).

In recent years, the success of language models
in natural language processing (NLP) has paved
the way for innovative approaches in bioinformat-
ics areas, such as protein modeling (Xiao et al.,
2021; Chowdhury et al., 2022), protein genera-
tion (Madani et al., 2020; Ferruz et al., 2022), and
protein-protein interaction prediction (Wang et al.,
2019; Ofer et al., 2021). To be specific, by treat-
ing protein sequences as linguistic strings, these
models have demonstrated remarkable effective-
ness in predicting protein function based on se-
quence data alone. Technically, as shown in Figure
1, protein sequences (e.g., the amino acid sequence
‘MLTAHV...’) are treated as sentences in natural
language and amino acids (e.g., ‘M’, ‘L’, and ‘T’)
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resemble words. Thus, Leveraging the powerful
BERT architecture originally developed for natural
language, ProtBert (Elnaggar et al., 2021) adeptly
adapts the BERT (Devlin et al., 2018) masked lan-
guage modelling framework to the field of bioin-
formatics. This analogy allows ProtBert to employ
the technique of predicting randomly masked el-
ements in sequences, thereby learning to identify
complex patterns and dependencies among amino
acids. Similar to ProtBert, ESM (Rives et al.,
2021; Verkuil et al., 2022; Hie et al., 2022) ex-
tends this paradigm by employing a more refined
Transformer-based architecture, focusing on cap-
turing the evolutionary relationships and functional
dynamics within protein sequences. In other words,
most existing protein modelling methods aim to
perform protein representation learning by encod-
ing the protein’s sequence information for various
downstream applications, such as amino acid con-
tact prediction (Singh et al., 2022), protein homol-
ogy detection (Kaminski et al., 2023), protein sta-
bility prediction (Chu et al., 2024), protein-protein
interaction identification (Wang et al., 2019; Ofer
et al., 2021), etc.

Despite the aforementioned successes, most ex-
isting protein language modelling methods suffer
from intrinsic limitations. Specifically, most of
their focuses have primarily been on the amino
acid sequence, often neglecting the crucial aspects
of protein structure. Proteins possess the ability
to fold into diverse 3D shapes, interacting with
various proteins and small molecules in biologi-
cally significant ways (Jumper et al., 2021; Mirdita
et al., 2022; Tsaban et al., 2022). Since protein’s
structure determines function (Greslehner, 2018),
utilizing protein 3D structure information effec-
tively is crucial for protein language modelling, in
which many studies have demonstrated the poten-
tial of pre-training on experimentally determined
protein structures (Hermosilla and Ropinski, 2022;
Su et al., 2023; Wang et al., 2022; Zhang et al.,
2022). Nevertheless, these methods focus only on
the structure within proteins and ignore the global
similarities between proteins. We emphasize that
the information on protein structure is not only lim-
ited to its structure (i.e., conformation) in 3D space
but also includes information ranging from local
amino acid molecules to the global structural simi-
larity between proteins, as shown in Figure 1. Lo-
cal information involves the detailed properties and
orientations of individual amino acids, which can
affect protein stability and biochemical activity (Re-

(a) FfIBP (b) CaTrailin_4 (c) Alignment
Figure 2: An example of protein structure similarity. Given
the predictive structures of a protein pair: (a) the bacterial
ice-binding protein FfIBP and (b) the diatom adhesion protein
CaTrailin_4 (Zackova Suchanova et al., 2023; Al-Fatlawi et al.,
2023), (c) is FfIBP (blue) and CaTrailin_4 (green) structure
alignment.

naud et al., 2021). These specifics are vital as
they demonstrate how modifications or mutations
at the amino acid level can alter the overall struc-
ture and functionality of the protein (Jumper et al.,
2021). Furthermore, protein structure similarities
provide information on evolutionary relationships
and functional classes, which are crucial for under-
standing how structurally similar proteins of dif-
ferent species can perform similar or complemen-
tary functions within biological systems (Hamamsy
et al., 2023). For example, as shown in Figure 2, the
bacterial ice-binding protein FfIBP and the diatom
adhesion protein CaTrailin_4 exhibit no detectable
sequence similarity despite their functional similar-
ities (Zackova Suchanova et al., 2023; Al-Fatlawi
et al., 2023). Their predicted structures exhibit a
remarkable similarity (TM-Score = 0.6), with both
proteins adopting a beta-helical fold comprised of
two units linked by an alpha helix. This structural
topology is characteristic of ice-binding proteins.
Such comparisons are key to predicting the func-
tions of newly discovered proteins based on known
structures, thereby enhancing our grasp of complex
biological processes and interactions (Lipman and
Pearson, 1985; Hamamsy et al., 2022, 2023). How-
ever, most existing approaches have ineffectively
incorporated amino acid molecule information and
protein structural similarities into protein represen-
tation learning.

To eliminate these limitations, we propose a
novel protein pre-training framework GLProtein
with Global-and-Local Protein structure informa-
tion for protein representation learning. Our major
contributions are summarized as follows:

• We introduce a principled approach for captur-
ing protein structural characteristics in a thor-
ough and detailed manner. This approach in-
corporates a holistic view of protein structure
data, encompassing global structural informa-
tion, protein structure similarities, as well as
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local structure information such as protein
3D distance encoding and substructure-based
molecular encoding. To the best of our knowl-
edge, we are the first to investigate global and
local protein structure information in protein
language modelling.

• We propose a novel protein pre-training frame-
work (GLProtein), where protein structure
information is incorporated into protein lan-
guage models for enhancing protein represen-
tation learning.

• The comprehensive experiments demonstrate
the effectiveness of the proposed method on a
wide range of downstream tasks, which verify
the performance superiority of GLProtein.

2 Related Work

Protein Langauge Modelling. As an approach to
protein representation learning, protein language
modelling is a burgeoning field at the intersection
of computational biology and natural language pro-
cessing (NLP) (Hu et al., 2023; Li et al., 2024b,c,a).
Inspired by the success of language models in
NLP, researchers have adapted these techniques
to analyse and predict the properties of protein
sequences (Fan et al., 2025). Recent advance-
ments have been dominated by the application
of transformer-based models, which utilise self-
attention mechanisms to capture relationships be-
tween amino acids in a sequence. ProtTrans (El-
naggar et al., 2021) and ESM (Beal, 2015; Verkuil
et al., 2022; Hie et al., 2022), trained on large-scale
protein databases, have shown remarkable ability
in tasks such as protein classification and interac-
tion prediction. Moreover, OntoProtein (Zhang
et al.) and KeAP (Zhou et al., 2023a) incorporated
external biological knowledge to enrich protein rep-
resentations and enhance performance on various
downstream tasks. However, most of these protein
language models do not explicitly consider the spa-
tial structure of proteins and structural similarities
between proteins, like our proposed approach.
Protein Structure Modelling. The structure of
a protein determines its functions. Thus, pro-
tein structure modelling has been treated as a reli-
able way to improve protein representation learn-
ing (Huang et al., 2024; AlQuraishi, 2021; Torrisi
et al., 2020; Cheng et al., 2008). Some methods
use Graph Neural Networks (GNNs) to handle the
complex, non-linear relationships inherent in pro-

tein structure (Liao et al., 2023; Jha et al., 2022;
Réau et al., 2023; Xu and Bonvin, 2024; Zhou
et al., 2023b, 2024; Li et al., 2025). Moreover,
RGN2 (Chowdhury et al., 2022) utilized a pro-
tein language model to learn structural information
from unaligned protein sequences. GearNet (Zhang
et al., 2022) focused on geometric pertaining and
learned protein features by utilizing spatial rela-
tionships between amino acids. SaProt (Su et al.,
2023) introduced the concept of a "structure-aware
vocabulary" to integrate residue tokens with struc-
ture tokens. Similar to the knowledge hancing
method, PST (Chen et al., 2024) enhances protein
language models by integrating structural infor-
mation through graph transformers to incorporate
structural data. Unlike these models, we propose
global structure learning and local structure learn-
ing methods, which could not only integrate protein
structure information and amino acid information
but also learn the structure similarity between dif-
ferent proteins by using TM-Score (Hamamsy et al.,
2023).

3 Methodology

In this section, we aim to introduce our proposed
framework (GLProtein) as a novel solution to learn
global and local protein structure information for
protein representation learning. We develop GLPro-
tein that incorporates both global and local protein
structure information into protein representation
learning. The framework of GLProtein, shown in
Figure 3, consists of three components: protein
language modelling (Section 3.1), global struc-
ture information modelling (Section 3.2), and local
structure information modelling (Section 3.3).

3.1 Protein Language Modelling

As shown in the center part of Figure 3, protein
language modelling forms the backbone of our pro-
posed framework, which aims to learn protein rep-
resentation. We adopt a masking strategy that each
masked amino acid has an 80% probability of be-
ing masked for prediction, a 10% chance of being
replaced with a random amino acid, and a 10%
chance of remaining unchanged. We then integrate
protein 3D distance encoding and substructure-
based molecular encoding into a protein decoder, in
which we will detail in the local structure informa-
tion modelling component. Suppose that the num-
ber of masked amino acids is M and xi denotes the
i-th amino acid. x∼i denotes the sequence of amino
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Figure 3: Overview of our proposed model, which jointly optimises global protein similarities and masked protein model with
local structure information.

acids excluding the masked amino acid at position
i. We leverage a cross-entropy loss LMLM to esti-
mate masked amino acids. Formally, the masked
protein modelling objective can be defined as:

LMLM = − log
∑

i∈M

P (xi|x∼i; θE , θD), (1)

where θE and θD denote the parameters of the
protein sequence encoder and decoder, respectively.
We initialise with a pre-trained BERT-like encoder:
ProtBert (Elnaggar et al., 2021).

3.2 Global Structure Information Modelling
Protein structures encompass more than mere 3D
spatial configurations; they also include global
structural information that reflects similarities
among proteins. To address this, we introduce the
concept of global structure information, which con-
tains the structure similarities between proteins, by
leveraging the huge amount of self-supervised sig-
nals in protein sequences, as shown at the top of
Figure 3. To be specific, given each input protein
sequence, positive and negative protein sampling is
designed to get the triplet (P, Ppos, Pneg) for cap-
turing protein structure similarity features. Then,
the protein triplets are encoded to protein represen-
tation for the calculation of the contrastive learning
loss. This optimises the protein sequence encoder
by bringing the representation of the input protein
P and its positive samples Ppos closer together
while pushing the representation of P and its nega-
tive samples Pneg further apart in the representation
space.

Positive and Negative Protein Sampling. TM-
score (Template Modeling Score) (Zhang and Skol-

nick, 2004; Xu and Zhang, 2010) is a widely used
metric in structural biology for assessing the struc-
tural similarity between two protein structures. We
utilize the TM-score to measure structural simi-
larity between proteins, focusing on their overall
global structure rather than mere sequence identity.
Mathematically, the TM-score can be expressed as:

TM-score = max[
1

LN

Lr∑

i=1

1

1 + ( di
d0
)2
], (2)

where LN is the length of the native structure, Lr

is the length of the aligned residues to the template
structures, di is the distance between the i-th pair
of residues, and d0 is a scaling factor.

We employ a two-pronged approach that utilizes
the TM-Vec model (Hamamsy et al., 2023) to con-
struct a robust set of positive and negative samples
for our protein structure similarity analysis. For
positive sample selection, we utilize the TM-Vec
model to identify the top-K protein sequences that
exhibit the highest TM-score values in relation to
the template proteins.

In contrast, our negative sampling strategy em-
ploys a stochastic selection process followed by
structural dissimilarity confirmation. Initially, we
randomly select n proteins from our dataset. Subse-
quently, we employ the TM-Vec model to compute
the TM-score between each selected protein and
the template protein. Proteins with a TM-score
< 0.2 are classified as negative samples, as this
threshold indicates a high degree of structural dis-
similarity (Xu and Zhang, 2010).

Protein Triplet Modelling. After positive and
negative protein sampling, we obtain the triplet
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(P, Ppos, Pneg). Each protein in the triplet is passed
to the protein sequence encoder, resulting in the
protein representation, i.e., Ep ∈ RLp×D, Epos

p ∈
RLp×D and Eneg

p ∈ RLp×D. Lp denotes the length
of amino acid sequence and D stands for the feature
dimension.

Since the task we focus on in this part is con-
trastive learning, the protein triplet loss is designed.
This loss function operates by comparing three en-
tities: anchor protein P , positive protein Ppos and
negative protein Pneg. Thus, given protein repre-
sentation triplet (P, Ppos, Pneg), the protein triplet
loss LPTL can be defined as:

LPTL(P, Ppos, Pneg) =

max(||Ep −Epos
p ||2 − ||Ep −Eneg

p ||2 + ϵ, 0),
(3)

where Ep, Epos
p , Eneg

p ∈ RLp×D are protein
representation of the triplet (P, Ppos, Pneg). ϵ is a
margin between positive and negative pairs.

3.3 Local Structure Information Modelling

While the global structure information modelling
component is designed to identify structural simi-
larities across different proteins, the local structure
information modelling component zooms in on the
specific, intricate features of a protein’s internal
structure, providing a more nuanced understanding.
More specifically, in this part, we leverage the local
structural details of proteins, including protein 3D
distance encoding and substructure-based molecu-
lar encoding, to enhance the model’s ability to learn
and interpret this local configuration effectively, as
shown at the bottom of Figure 3.

Protein 3D Distance Encoding. The 3D coor-
dinates provide critical insights into how proteins
fold and interact in three-dimensional space, influ-
encing their stability, activity, and specificity (Liu
et al., 2022; Peng et al., 2022; Su et al., 2023). We
use AlphaFoldDB1 as the 3D protein database and
integrate the protein 3D distance encoding (Ying
et al., 2021) to represent protein 3D structural infor-
mation to ensure rotational and translational invari-
ance. We propose to take advantage of the alpha-
carbon (α-C) coordinates rather than the entire
protein coordinates in protein representation learn-
ing. By capturing the backbone conformation, α-C
coordinates effectively convey the protein’s overall
shape and folding pattern, which are critical for
understanding its function. Moreover, leveraging

1https://alphafold.ebi.ac.uk/

α-C coordinates balances capturing essential struc-
tural information and maintaining computational
efficiency.

Specifically, the coordinates of each α-C are
processed to represent the current position of
the amino acid in 3D space. Then, we encode
the Euclidean distance metric to reflect the spa-
tial relation between any pair of amino acids
in the 3D space. Mathematically, given each
amino acid pair (i, j), we first process their Eu-
clidean distance with the Gaussian Basis Ker-
nel function (Scholkopf et al., 1997), ϕk

(i,j) =

− 1√
2π|σk| exp(−

1
2(

γ(i,j)||ri−rj||+β(i,j)−µk

|σk| )2),

where k = 1, . . . ,K. K is the number of Gaus-
sian Basis kernels. Then, the 3D distance encoding
can be calculated as follows:

Φdistance
(i,j) = GELU(ϕ(i,j)W

1
D)W 2

D, (4)

where ϕ(i,j) = [ϕ1
(i,j); . . . ;ϕ

K
(i,j)]

⊤. W 1
D ∈

RK×K , W 2
D ∈ RK×1 are learnable parameters.

γ(i,j), β(i,j) are learnable scalars indexed by the
pair of amino acid types, and µk, σk are learnable
kernel center and learnable scaling factor of the k-
th Gaussian Basis Kernel. Denote Φdistance as the
matrix form of the 3D distance encoding, whose
shape is n× n.

Substructure-based Molecular Encoding. As
more detailed information about protein localisa-
tion, amino acid molecules play a crucial role in
protein representation learning, as they form the
essential building blocks of proteins and provide
the foundational data for understanding protein
structure and function (Lieu et al., 2020; Lopez
and Mohiuddin, 2024). To learn the fine-grained
amino acid structure information, we introduce
substructure-based molecular encoding to leverage
the inherent relationships between molecule motifs
and substructural features in amino acid molecules.
In practice, we utilize the mol2vec (Jaeger et al.,
2018) to process and derive representations for all
amino acid molecules to obtain fine-grained molec-
ular structure information. For protein P , we have

Ea(P ) = Concat(ex1 , ex2 , . . . , exi , . . . , exL),

where exi ∈ R1×d, L is the length of the protein
sequence, exi is the i-th amino acid molecule em-
bedding, and d stands for the feature dimension of
the amino acid molecule.

3.4 Model Training
In this part, we will first detail the protein decoder
process, which combines protein language mod-
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elling and local structure information modelling
components. Finally, the pre-training objective of
the whole framework will be stated.

Protein Decoder. As shown in Figure 3, the de-
coder treats protein representation Ep as a query,
while the substructure-based molecular encodings
Ea are attended to as keys and values and protein
3D distance encoding Φdistance is attended to as
attention bias. Taking the i-th layer as an exam-
ple, the inputs to the protein decoder include Ei

p,
Φdistance and Ea. The substructure-based molecu-
lar encoding Ea is firstly queries by Ei

p as the key
and value:

Qi
p = Norm(Ei

p)W
i
Q,

Ki
a = Norm(Ea)W

i
K ,

V i
a = Norm(Ea)W

i
V ,

where W i
Q,W i

K ,W i
V are learnable matrices.

Norm stands for the layer normalization (Ba et al.,
2016).

Then, Attention (Vaswani et al., 2017) is applied
to {Qi

p,K
i
a, V

i
a}, where the representation of pro-

tein sequence extracts helpful, relevant information
from the substructure-based molecular encoding.
The obtained representation oip stores the helpful
structure information for restoring missing amino
aids. We then add up oip and Ei

p to integrate in-
formation, resulting in the representation Êi

p as
follows:

oip = Attention(Qi
p,K

i
a, V

i
a ,Φ

distance),

Êi
p = Norm(Ei

p) + oip.

The resulting representation Êi
p integrates the

helpful, relevant structure information that bene-
fits the restoration of missing amino acids. We
finally forward Êi

p through a residual multi-layer
perceptron to obtain the output representation of
the i-th block, which also serves as the input to the
(i+ 1)-th block.

Pre-training Objective. To estimate the model
parameters of GLProtein, we adopt the masked
protein modelling object and global protein triplet
objective to construct the overall model. We jointly
optimize the overall objective as follows:

L = LMLM + αLPTL, (5)

where α is the hyper-parameter.

4 Experiments

In this section, we evaluate the generalization abil-
ity of the learned protein representation by fine-
tuning the pre-trained model across a diverse ar-
ray of downstream applications, including amino

acid contact prediction, protein homology detec-
tion, protein stability prediction, protein-protein
interaction identification, protein-protein binding
affinity prediction and semantic similarity infer-
ence.

Pretraining Datasets. Swiss-Prot (Boeckmann
et al., 2003) offers a comprehensive and manually
curated protein sequence database that includes
nearly 600k protein sequences. We use it as per-
taining dataset. Additionally, we use AlphaFoldDB
to obtain the protein 3D coordinate datasets.

Implementation Details. We conducted some
experiments and compared GLProtein with base-
lines regarding pre-training and inference time in
contact prediction tasks, as shown in Appendix Ta-
ble 5. GLProtein outperforms baselines in multiple
downstream tasks with similar parameters. During
pre-training, GLProtein is trained for 300k steps
using a learning rate of 1e-5, weight decay of 0.01
over four GPUs (NVIDIA A6000, 48G Memory
each). We uniformly fine-tuned all downstream
tasks without structural information to ensure fair
and unbiased comparisons. For the amino acid con-
tact prediction and protein-protein interaction task,
we randomly selected five random seeds to fine-
tune our model and the baseline model separately
and report the results.

4.1 Downstream Tasks

4.1.1 Amino Acid Contact Prediction

Overview. Amino acid contact prediction is a criti-
cal task in computational biology, aiming to iden-
tify pairs of amino acids within a protein that are in
close spatial proximity. Given an input protein se-
quence, our model predicts whether pairs of amino
acids from the same sequence are in contact. The
model accomplishes this by generating a probabil-
ity contact matrix for each input protein. We tested
the model on the dataset collected and organized
by ProteinNet (AlQuraishi, 2019) and TAPE (Rao
et al., 2019).
Baselines. We evaluate our model compared
with ten baselines. Specifically, we employed
variations of LSTM (Hochreiter and Schmidhu-
ber, 1997), ResNet (He et al., 2016) and Trans-
former (Vaswani et al., 2017) proposed by the
TAPE benchmark (Rao et al., 2019). ProtBert (El-
naggar et al., 2021) is a BERT-like model pre-
trained on UniRef100 (Suzek et al., 2007, 2015).
ESM-2 (Rives et al., 2021; Verkuil et al., 2022;
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6 ≤ seq < 12 12 ≤ seq < 24 24 ≤ seq

P@L P@L/2 P@L/5 P@L P@L/2 P@L/5 P@L P@L/2 P@L/5

LSTM 0.26(±0.02) 0.36(±0.01) 0.49(±0.03) 0.20(±0.02) 0.26(±0.02) 0.34(±0.03) 0.20(±0.01) 0.23(±0.02) 0.27(±0.02)

ResNet 0.25(±0.02) 0.34(±0.02) 0.46(±0.02) 0.28(±0.01) 0.25(±0.01) 0.35(±0.03) 0.10(±0.03) 0.13(±0.02) 0.17(±0.03)

Transformer 0.28(±0.03) 0.35(±0.01) 0.46(±0.02) 0.19(±0.02) 0.25(±0.02) 0.33(±0.01) 0.17(±0.02) 0.20(±0.02) 0.24(±0.02)

ProtBert 0.30(±0.03) 0.40(±0.02) 0.52(±0.02) 0.27(±0.03) 0.35(±0.02) 0.47(±0.01) 0.20(±0.01) 0.26(±0.02) 0.34(±0.01)

OntoProtein 0.37(±0.02) 0.46(±0.01) 0.57(±0.03) 0.32(±0.01) 0.40(±0.02) 0.50(±0.02) 0.24(±0.03) 0.31(±0.01) 0.39(±0.03)

LM-GVP 0.35(±0.02) 0.42(±0.02) 0.49(±0.02) 0.33(±0.03) 0.43(±0.02) 0.51(±0.03) 0.26(±0.02) 0.37(±0.02) 0.43(±0.03)

GearNet 0.39(±0.02) 0.46(±0.02) 0.57(±0.02) 0.36(±0.03) 0.44(±0.02) 0.55(±0.03) 0.29(±0.02) 0.37(±0.01) 0.45(±0.02)

SaProt 0.41(±0.02) 0.39(±0.03) 0.42(±0.02) 0.38(±0.01) 0.37(±0.01) 0.41(±0.01) 0.24(±0.02) 0.27(±0.03) 0.37(±0.02)

KeAP 0.41(±0.04) 0.52(±0.02) 0.62(±0.03) 0.36(±0.01) 0.45(±0.01) 0.57(±0.01) 0.29(±0.02) 0.37(±0.03) 0.46(±0.02)

ESM-2 0.42(±0.02) 0.49(±0.03) 0.63(±0.01) 0.37(±0.01) 0.43(±0.01) 0.57(±0.02) 0.30(±0.02) 0.38(±0.03) 0.46(±0.02)

GLProtein 0.45(±0.02) 0.55(±0.02) 0.66(±0.01) 0.39(±0.03) 0.48(±0.01) 0.58(±0.02) 0.31(±0.02) 0.40(±0.01) 0.47(±0.02)

Table 1: Comparisons on amino acid contact prediction. seq signifies the distance, measured in terms of amino acid units,
between two selected amino acids. P@L, P@L/2, P@L/5 denote the precision scores calculated upon top L (i.e., L most likely
contacts), top L/2, and top L/5 predictions, respectively. The best results are bolded, and the second-best results are underlined.
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Figure 4: An example of amino acid contacts (top-L predictions for ProteinNet (AlQuraishi, 2019) test example
TBM-hard#T0912). Raw contact probabilities are shown below the diagonal, top L contacts are shown above the diagonal (blue:
true positives, red: false positives, grey: ground-truth contacts).

Hie et al., 2022) feature a transformer architec-
ture pre-trained on the representative sequences
from UniRef50 (Suzek et al., 2007, 2015). On-
toProtein (Zhang et al.) and KeAP (Zhou et al.,
2023a) are the most recent knowledge-based pre-
training methodologies. SaProt (Su et al., 2023) is
the most recent structure-based protein language
model. LM-GVP (Wang et al., 2022) and Gear-
Net (Zhang et al., 2022) are famous geometric
methods for protein representation learning. We
uniformly fine-tuned all downstream tasks with-
out structural information to ensure fair and unbi-
ased comparisons. Since all structural tokens are
masked, residual information still exists; we sub-
stitute Foldseek structure tokens with "#" when
fine-tuning SaProt.

Results. Table 1 shows the experimental results
of amino acid contact prediction. Specifically, we
notice that our model GLProtein consistently out-
performs other models in short- (6 ≤ seq < 12),
medium- (12 ≤ seq < 24) and long-range (seq >
24) contact predictions. Notably, our model demon-
strates better performance compared to SaProt,

which is also a structure-based language model.
We also randomly selected a protein from the con-
tact test dataset for visual analysis. As shown in
Figure 4, the left is our GLProtein’s result of amino
acid contacts. The right three are the contact maps
of three baseline models, including KeAP, ESM-2
and ProtBERT. Figure 4 shows more visually that
GLProtein’s prediction on the task of contact pre-
diction is closer to labels, i.e., better performance
on long-range contact prediction. We attribute the
enhancements in performance achieved by GLPro-
tein to its innovative integration of global and local
structural information, which allows the pre-trained
model to gain a deeper understanding of protein
structure. More results can be found in the Ap-
pendix A.1.

4.1.2 Protein-Protein Interaction
Overview. Protein-protein interaction (PPI) is fun-
damental to virtually all biological processes and
pathways in living organisms. It refers to the physi-
cal contact between two or more amino acid se-
quences. In this paper, we only focus on two-
protein cases where a pair of protein sequences
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Accuracy on SS-Q3  Accuracy on SS-Q8 P@L/2 on Contact 

Accuracy on Homology  Speraman's  on Fluorescence  Speraman's  on Stability

Figure 5: Results on TAPE Benchmark encompass various evaluations. SS is a secondary structure task that is evaluated in
CB315. We report medium- and long-range results using P@L/2 metrics in contact prediction task. In fluorescence and stability
prediction tasks, we use Spearman’s ρ metric for evaluation. We also provide a related table in Appendix A.1.

serve as the inputs. The objective is to accurately
predict the specific types of interactions that occur
between each pair of proteins.

In our experiments, we focus on predicting 7
interaction types between protein pairs, namely re-
action, binding, post-translational modifications,
activation, inhibition, catalysis, and expression.
The challenge of PPI prediction is approached
as a multi-label classification problem. We
conducted our experiments using three datasets:
SHS27K (Chen et al., 2019), SHS148K (Chen
et al., 2019) and STRING (Lv et al., 2021). Both
SHS27K and SHS148K are considered subsets of
STRING, with proteins excluded if they have fewer
than 50 amino acids or exhibit 40% or higher se-
quence identity. We followed OntoProtein’s setting
to generate test sets and employed Breadth-First
Search (BFS) and Depth-First Search (DFS) tech-
niques across these datasets. The F1 score is uti-
lized as the primary metric for evaluating perfor-
mance.
Baselines. Following OntoProtein (Zhang et al.)
and KeAP(Zhou et al., 2023a), we have expanded
our baseline models to include four additional
methods: DPPI (Hashemifar et al., 2018), DNN-
PPI (Li et al., 2018), PIPR (Chen et al., 2019)
and GNN-PPI (Lv et al., 2021). These are incor-
porated alongside existing baselines such as Prot-
Bert (Elnaggar et al., 2021), ESM-2 (Beal, 2015),
OntoProtein (Zhang et al.), KeAP (Zhou et al.,
2023a), SaProt (Su et al., 2023), LM-GVP (Wang

et al., 2022), GearNet (Zhang et al., 2022), DeepIn-
ter (Lin et al., 2023), MAPE-PPI (Wu et al., 2024),
ProLLM (Jin et al., 2024) and ESM-C (Hayes et al.,
2025), providing a comprehensive set of compar-
isons in our analysis.

SHS27k SHS148k STRING

Methods BFS DFS BFS DFS BFS DFS

DPPI 40.27(±0.74) 44.86(±0.87) 51.26(±0.66) 51.43(±0.94) 55.79(±0.81) 64.72(±0.94)

DNN-PPI 47.97(±0.94) 52.85(±0.91) 55.90(±0.67) 57.82(±0.78) 52.74(±0.89) 62.99(±0.93)

PIPR 43.67(±0.99) 56.76(±0.82) 60.10(±0.85) 61.83(±0.94) 53.65(±0.88) 66.46(±0.92)

GNN-PPI 62.47(±0.65) 73.19(±0.89) 71.01(±0.92) 81.54(±0.87) 75.34(±0.82) 90.01(±0.78)

ProtBert 68.44(±0.78) 72.36(±0.85) 70.06(±0.88) 77.46(±0.62) 66.08(±0.91) 86.45(±0.82)

DeepInter 77.31(±1.14) 77.18(±0.84) 74.52(±0.99) 76.60(±0.49) 77.82(±0.98) 80.04(±1.18)

OntoProtein 71.37(±0.84) 76.28(±0.77) 74.60(±0.56) 76.33(±0.69) 75.64(±0.91) 90.23(±0.79)

KeAP 78.51(±0.95) 78.84(±0.85) 74.26(±0.89) 81.99(±0.92) 80.08(±0.79) 88.47(±0.71)

LM-GVP 80.25(±1.24) 79.42(±0.83) 77.6(±0.76) 80.36(±0.97) 81.17(±0.58) 85.67(±0.74)

MAPE-PPI 83.63(±0.76) 81.01(±0.58) 84.57(±0.91) 83.62(±0.69) 87.18(±0.82) 87.46(±0.59)

GearNet 85.46(±0.61) 82.73(±0.69) 80.02(±1.26) 82.28(±0.93) 85.55(±0.74) 88.03(±0.51)

ESM-2 94.01(±0.77) 87.32(±0.97) 91.46(±0.63) 85.24(±0.46) 88.13(±0.71) 85.53(±0.55)

SaProt 91.18(±0.73) 88.85(±1.04) 90.75(±0.91) 80.67(±0.90) 88.23(±0.81) 88.90(±0.74)

ProLLM 91.49(±0.91) 88.38(±0.78) 90.90(±1.03) 85.34(±0.61) 87.38(±0.77) 86.99(±0.57)

ESM-C 92.46(±1.02) 88.14(±0.75) 91.86(±0.51) 86.11(±0.78) 87.41(±0.95) 86.78(±0.66)

GLProtein 96.32(±0.86) 91.23(±0.92) 93.78(±0.77) 86.14(±0.69) 89.41(±0.66) 91.35(±0.89)

Table 2: Protein-Protein Interaction Prediction Results.
Breath-First Search (BFS) and Depth-First Search (DFS) are
strategies that split the training and testing PPI datasets. The
best results are bolded, and the second-best results are under-
lined.

Results. As shown in Table 2, the results clearly in-
dicate that our method consistently outperforms all
other methods, including the structure-based pro-
tein language model such as SaProt and multimodal
protein language model such as ESM-C, across all
datasets and both BFS and DFS evaluation metrics.
The observed decline in performance can be linked
to the growing amount of fine-tuning data, transi-
tioning from SHS27k to STRING, which dimin-
ished the influence of pre-training. We believe that
the structural similarities between proteins identi-
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fied during the pre-training step enable GLProtein
to excel in the PPI task, resulting in its outstanding
performance.

5 Conclusion and Future Work

In this work, we propose GLProtein, a general pro-
tein language model with global and local protein
structure information. GLProtien outperforms the
previous protein representation learning model on
most downstream applications, demonstrating the
performance superiority of GLProtein. In the fu-
ture, we aim to further enhance GLProtein’s capa-
bilities by exploring novel avenues for incorporat-
ing multi-modal data sources, refining the model’s
interpretability, and extending its applicability to a
wider array of biological contexts.

6 Limitations

We have observed that GLProtein underperforms
on certain individual tasks. For instance, in the
protein-protein binding affinity prediction task,
ESM-2 surpasses GLProtein. This task focuses
on predicting changes in binding affinity resulting
from protein mutations. We believe that GLPro-
tein’s limited performance is attributed to its lack
of mutation information, whereas ESM-2 incorpo-
rates multiple sequence alignment (MSA) data dur-
ing training, which includes mutation insights. Sim-
ilarly, in the Fluorescence task, GLProtein does not
demonstrate significant improvement when tasked
with distinguishing closely related proteins. We hy-
pothesize that while GLProtein effectively learns
structural similarities among different proteins dur-
ing pre-training, it excels at identifying differences
between dissimilar structures but struggles to dif-
ferentiate between similar ones. We plan to further
investigate these issues in our future research.
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A.1 Results on TAPE Benchmark

In addition to the Figure version, we also provide
results on TAPE benchmark in a tabular version. As
shown in Table 6, our model GLProtein performs
competitive performance on many tasks, especially
on the contact prediction and stability prediction
tasks.

A.2 Secondary structure prediction

Overview. Secondary structure is a fundamen-
tal aspect of computational biology, aiming to de-
termine the local structures of protein segments.
this task is a sequence-to-sequence task where
each input protein is mapped to a type of local
structure. We report accuracy on a per-amino
acid basis on the CB513 dataset (Cuff and Bar-
ton, 1999). Baselines. We evaluate our model
compared with ten baselines. Specifically, we
employed variations of LSTM (Hochreiter and
Schmidhuber, 1997), ResNet (He et al., 2016) and
Transformer (Vaswani et al., 2017) proposed by the
TAPE benchmark (Rao et al., 2019). ProtBert (El-
naggar et al., 2021) is a BERT-like model pre-
trained on UniRef100 (Suzek et al., 2007, 2015).
ESM-2 (Rives et al., 2021; Verkuil et al., 2022;
Hie et al., 2022) feature a transformer architec-
ture pre-trained on the representative sequences

from UniRef50 (Suzek et al., 2007, 2015). On-
toProtein (Zhang et al.) and KeAP (Zhou et al.,
2023a) are the most recent knowledge-based pre-
training methodologies. SaProt (Su et al., 2023) is
the most recent structure-based protein language
model. LM-GVP (Wang et al., 2022) and Gear-
Net (Zhang et al., 2022) are famous geometric
methods for protein representation learning.
Results. For the secondary structure (SS-Q3 and
SS-Q8), as shown in Figure 5, GLProtein outper-
forms other baselines in SS-Q8 task and shows
competitive performance with ProtBERT, OntoPro-
tein and KeAP in SS-Q3 task. Considering the ap-
proaches taken by Saprot, LM-GVP, and GearNet,
which also incorporate protein structural informa-
tion, the evident performance superiority of GL-
Protein over these methods indicates that it offers
a more effective option for structure-based protein
representation learning. We attribute the enhance-
ments in performance achieved by GLProtein to its
innovative integration of global and local structural
information, which allows the pre-trained model to
gain a deeper understanding of protein structure.

A.3 Homology Detection, Fluorescence and
Stability Prediction

Overview of homology detection. The task of pre-
dicting remote homology in proteins can be viewed
as a classification problem at the molecular level.
The objective is to input a protein sequence into the
homology detection model, which then identifies
the correct types of protein fold. In our paper, this
presents a significant challenge with 1,195 distinct
protein folds to classify. We utilize data sources
from (Hou et al., 2018) and present the average
accuracy achieved on the fold-level heldout set.
Overview of fluorescence prediction. In the realm
of protein science, fluorescence prediction is a vi-
tal task that involves estimating the fluorescence
properties of proteins. This is a regression task
where each input protein is mapped to a label mea-
suring the most extreme circumstances in which
the protein maintains its fold above a concentra-
tion threshold. We use the data from (Rocklin
et al., 2017) and use Spearman’s rank correlation
coefficient as the metric.
Overview of stability prediction. Stability predic-
tion involves estimating the resilience of a protein’s
structure under various environmental conditions,
a critical factor in understanding its functional ef-
ficacy and therapeutic potential. This regression
task focuses on predicting the intrinsic stability
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of proteins, which is essential for assessing their
capacity to preserve their structural integrity un-
der severe conditions. To assess the effectiveness
of our model, we measure its performance using
Spearman’s rank correlation coefficient across the
entire test set (Rocklin et al., 2017).
Baselines. As shown in Figure 5, we included ten
protein model as baselines.
Results. As for fluorescence prediction, Figure
5 shows our model has the most competitive per-
formance compared to Transformer and KeAP. In
the domain of stability prediction, our model again
shows the highest performance with a score of 0.81.
This is significantly higher compared to other mod-
els, indicating its potential utility in applications
like drug design and protein engineering, where
stability is paramount.

A.4 Protein Function Prediction

Overview. Protein function prediction aims to as-
sign biological or biochemical roles to proteins, and
we also regard this task as a sequence classification
task. Following KeAP (Zhou et al., 2023a), we di-
vide protein attributes into three groups: molecular
function (MF), biological process (BP) and cellular
component (CC), and report the Spearman’s rank
correlation scores for each group.
Baselines. We evaluate our model compared with
five baselines, including ESM-2, ProtBERT, Onto-
Protein, SaProt and KeAP.

Methods MF BP CC Avg

ESM-2 0.31 0.42 0.28 0.34
ProtBert 0.41 0.35 0.36 0.37
OntoProtien 0.41 0.36 0.36 0.38
SaProt 0.40 0.40 0.39 0.40
KeAP 0.40 0.40 0.40 0.40
GLProtein 0.41 0.40 0.39 0.40

Table 3: Comparisons on semantic similarity inference. The
best results are bolded, and the second-best results are under-
lined.

Results. Table 3 assesses the performance of var-
ious computational models in prediction protein
functions in three categories: MF, BP and CC. Ad-
ditionally, an average score (Avg) is calculated for
each method to provide a holistic view of perfor-
mance across all categories. These models all show
a balanced performance in three groups. It is worth
noting that our model does not use any protein
attribute-related knowledge and is comparable to
OntoProtein and KeAP, which do. It also demon-
strates the superiority of our approach.

A.5 Protein-Protein Binding Affinity
Estimation

Overview. In this task, we focus on assessing how
well protein representations can predict changes
in binding affinity caused by protein mutations.
This regression task involves associating each pro-
tein pair with a numerical value. Following the
methodology described in (Unsal et al., 2022),
we employ Bayesian ridge regression on the out-
comes of element-wise multiplication of representa-
tions derived from pre-trained protein models. This
approach is designed to enhance the accuracy of
binding affinity predictions. We used the SKEMPI
dataset from (Moal and Fernández-Recio, 2012)
and reported the mean square error of 10-fold cross-
validation.
Baselines. We evaluate our model compared
with six baselines. Specifically, we employed
PIPR (Chen et al., 2019), ProtBert (Elnaggar et al.,
2021), ESM-2 (Rives et al., 2021; Verkuil et al.,
2022; Hie et al., 2022), SaProt (Su et al., 2023),
OntoProtein (Zhang et al.) and KeAP (Zhou et al.,
2023a). PIPR is a siamese-residual-RCNN-based
model for multifaceted protein–protein interac-
tion prediction. ProtBert is a BERT-like model
pre-trained on UniRef100 (Suzek et al., 2007,
2015). ESM-2 feature a transformer architecture
pre-trained on the representative sequences from
UniRef50 (Suzek et al., 2007, 2015). SaProt is
the most recent structure-based protein language
model. OntoProtein and KeAP are the most recent
knowledge-based pre-training methodologies.

Methods Affinity(↓)

PIPR 0.63
ProtBert 0.58
ESM-2 0.48
SaProt 0.58
OntoProtien 0.59
KeAP 0.52
GLProtein 0.52

Table 4: Comparisons on protein-protein binding affinity pre-
diction, with the best result bolded and the second best un-
derlined. The notion ↓ signifies a preference for lower values,
reflecting a superior predictive performance in this context.

Results. Table 4 compares several methods of pre-
dicting the binding affinity of protein interactions,
where a lower score indicates superior performance.
GLProtein outperforms PIPR, ProtBert, SaProt and
OntoProtein. It also shows the competitive perfor-
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Parameters Resouces Pre-training Inference
(40 examples)

ProtBert 400M A single TPU Pod V3-512 400k steps 2.02s
OntoProtein 400M 4 NVIDIA 48G A6000 GPUs 3 Days (continue pertaining on ProtBert) 1.91s
KeAP 400M 4 NVIDIA 48G A6000 GPUs 3 Days (continue pertaining on ProtBert) 1.94s
SaProt 650M 64 NVIDIA 80G A100 GPUs 3 Months 3.02s
ESM-2 650M - - 2.45s
GLProtein 400M 4 NVIDIA 48G A6000 GPUs 3 Days (continue pertaining on ProtBert) 1.93s

Table 5: Comparison of the number of parameters, resources, pre-training time, and inference time for GLProtein and baselines.

mance of KeAP and ESM-2.

A.6 Ablation Study

Figure 6: Left: Ablations of three proposed approaches. Long-
range P@L/2 results are reported for contact prediction. Right:
Ablations of three proposed approaches. F1 scores are re-
ported for protein-protein interaction tasks.

We investigated the effects of employing di-
verse protein structure information fusion strate-
gies. First of all, the exclusion of the global struc-
ture information modelling component (representa-
tion as "w/o triplet" in Figure 6) resulted in vary-
ing degrees of performance deterioration across
contact prediction and protein-protein interaction
prediction tasks. This observation suggests that
our global structure similarities through protein
triplet contrastive learning stand out as a more effi-
cacious choice. Subsequently, upon removing the
proposed substructure-based molecular encoding
from the local protein structure information compo-
nent (denoted as "w/o aa" in Figure 6), we noted a
decline in performance by approximately 2.5% and
8% for contact prediction and protein-protein in-
teraction tasks, respectively. This underscores the
essential role of substructure-based molecular en-
coding within our proposed methodologies. Finally
when the protein 3D distance encoding was omit-
ted from the local structure information modelling
component (indicated as "w/o coord" in Figure 6),
a similar trend of performance degradation was ob-
served, further emphasizing the indispensability of
this strategy within our architectural framework.

A.7 Parameter Sensitivity Study
In this section, we explore the impact of the param-
eters in the model on the final performance of our

protein model. We experimented with the number
of protein samples in the protein local structure in-
formation modelling component and the coefficient
of contrastive learning loss for the protein triplet,
respectively.

As shown in Figure 7, we test the number of
protein samples from 1 to 4 on the contact predic-
tion task. We observe that as the number of protein
samples increases, the performance of our model
improves to varying degrees in short-, medium-
and long-range contact prediction. This also shows
that our proposed protein triplet approach indeed
enables the protein language model to capture the
structural similarity features among proteins. Due
to computational and memory cost considerations,
we ended up constructing 4 protein positive sam-
ples and 4 protein negative samples for each pro-
tein.

As shown in Figure 8, we test the value of
the coefficient α of contrastive learning loss for
the protein triplet. We divided the experiment
into 6 groups and set the values of α to 0.1, 0.3,
0.5, 1, 3, and 5. Then, we evaluated them using
the protein-protein interaction prediction task on
SHS27k, SHS148k, and STRING datasets, respec-
tively. We observe that the model achieves the best
performance when the value of α is set to 1. Thus,
we choose α = 1 in this paper as our model’s
setting.

A.8 Visualization of Protein Representations
To facilitate a more intuitive comparison, we uti-
lize t-SNE to visualize the protein representations
produced by GLProtein, ESM2, KeAP, and Prot-
Bert. The visualization results, based on the non-
redundant subset (PIDE ≤ 40%) of the SCOPe
database (Chandonia et al., 2019), are illustrated
in Figure 9. As depicted in this figure, the repre-
sentations for alpha and beta proteins generated by
GLProtein are distinctly separated, whereas those
produced by ESM-2, KeAP, and ProtBert are more
closely intertwined.
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Structure Evolutionary Engineering
SS-Q3 SS-Q8 Contact Homology Fluorescence Stability

SaProt 0.51 0.45 0.37 0.12 0.25 0.46
LSTM 0.75 0.59 0.26 0.26 0.67 0.69
Transformer 0.73 0.59 0.25 0.21 0.68 0.73
ResNet 0.75 0.58 0.25 0.17 0.21 0.73
ESM-2 0.70 0.54 0.43 0.10 0.30 0.65
LM-GVP 0.69 0.50 0.43 0.20 0.64 0.69
GearNet 0.71 0.55 0.44 0.25 0.67 0.78
ProtBert 0.82 0.67 0.35 0.29 0.61 0.73
OntoProtein 0.82 0.67 0.40 0.24 0.65 0.74
KeAP 0.82 0.67 0.45 0.29 0.67 0.75
GLProtein 0.82 0.68 0.48 0.28 0.67 0.81

Table 6: Results on TAPE Benchmark. SS is a secondary structure task that is evaluated in CB315. In contact prediction, we test
medium- and long-range using P@L/2 metrics. In protein engineering tasks, we test fluorescence and stability prediction using
Spearman’s ρ metric.

Figure 7: Parameter sensitivity study on the number of protein samples in the local structure information component.

Figure 8: Parameter sensitivity study on the value of the coefficient α of contrastive learning loss for the protein triplet in the
local structure information component.

Task Epoch Batch Size Warmup Ratio Learning Rate Freeze Bert Optimizer

Contact 5 8 0.08 3e-5 False AdamW
Homology 10 32 0.08 4e-5 False AdamW
Stability 5 64 0.08 1e-5 False AdamW
SS-Q3 5 32 0.08 3e-5 False AdamW
SS-Q8 5 32 0.08 3e-5 False AdamW
Fluorescence 15 64 0.10 1e-3 True Adam

Table 7: Hyper-parameters for fine-tuning.
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Figure 9: Embedding visualizations of GLProtein, ESM-2, KeAP and ProtBert on SCOPe database.

A.9 Time Complexity Analysis
We provide a more specific complexity analysis
as follows: protein encoder operates at approx-
imately O(L2d), where L is the length of pro-
tein sequence and d is the embedding dimen-
sion. Triplet protein sampling operates at ap-
proximately O(L3), reducing the complexity to
O(L2) by TM-Vec. Triplet loss operates at approx-
imately O(3Ld) → O(Ld). Protein 3D distance
encoding operated at approximately O(KL2d),
where K is the number of Gaussian Basis kernels.
Substructure-based molecular encoding operates
at approximately O(Ld). Protein decoder oper-
ates at approximately O(L2d). Total computation
cost operated at Ototal = Oencoder + Oglobal +
Olocal +Odecoder = O(L2d) +O(L2) +O(Ld) +
O(KL2d) +O(L2d) = O((K + 1)L2d).

A.10 Hyper-parameters for Fine-tuning
The hyper-parameters for fine-tuning are provided
in the Table 7. Specifically, we follow the hyper-
parameter settings in GNN-PPI (Lv et al., 2021)
for PPI prediction. For protein binding affinity pre-

diction and semantic similarity inference, we fol-
low the fine-tuning configuration in PROBE (Unsal
et al., 2022).
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