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Abstract
Large Language Models (LLMs) have demon-
strated promising capabilities in solving math-
ematical reasoning tasks, leveraging Chain-of-
Thought (CoT) data as a vital component in
guiding answer generation. Current paradigms
typically generate CoT and answers directly
for a given problem, diverging from human
problem-solving strategies to some extent. Hu-
mans often solve problems by recalling anal-
ogous cases and leveraging their solutions to
reason about the current task. Inspired by this
cognitive process, we propose MetaLadder, a
novel framework that explicitly prompts LLMs
to recall and reflect on meta-problems, those
structurally or semantically analogical prob-
lems, alongside their CoT solutions before ad-
dressing the target problem. Additionally, we
introduce a problem-restating mechanism to
enhance the model’s comprehension of the tar-
get problem by regenerating the original ques-
tion, which further improves reasoning accu-
racy. Therefore, the model can achieve reason-
ing transfer from analogical problems, mimick-
ing human-like “learning from examples” and
generalization abilities. Extensive experiments
on mathematical benchmarks demonstrate that
our MetaLadder significantly boosts LLMs’
problem-solving accuracy, largely outperform-
ing standard CoT-based methods (10.3% accu-
racy gain) and other methods.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable success in mathematical reasoning tasks
by leveraging Chain-of-Thought (CoT) data, which
explicitly guides models to decompose problems
into intermediate reasoning steps before producing
final answers (OpenAI, 2024b; Guo et al., 2025;
Team, 2024). Pioneering works such as (Wei et al.,
2022) demonstrated that training LLMs on CoT-
style solutions significantly improves their ability
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Figure 1: Compare our MetaLadder with other methods
(Standard CoT, Question & Answer Augmentation, Re-
flective Augmentation) on training data construction.

to solve complex problems, with subsequent stud-
ies (Fu et al., 2022; Zhou et al., 2022) further refin-
ing this paradigm. For instance, models like Min-
erva and GPT-4 (Lewkowycz et al., 2022; OpenAI
et al., 2023) have showcased near-human perfor-
mance by distilling high-quality CoT trajectories
from expert demonstrations. These methods typ-
ically follow a straightforward template: given a
problem, the model generates a CoT explanation
step-by-step, which then leads to the correct answer.
While effective, such approaches align only par-
tially with the nuanced cognitive processes (Daniel,
2011) humans employ during problem-solving.

Despite their success, existing CoT-based fine-
tuning methods rely on a rigid “Problem → CoT
→ Answer” framework (Fu et al., 2023; Yu et al.,
2024), which diverges from how humans approach
challenging mathematical tasks. When solving
problems, humans rarely generate solutions in iso-
lation; instead, they actively recall analogous prob-
lems and their solutions, especially for difficult or
unfamiliar questions (Vosniadou, 1988; Daugherty
and Mentzer, 2008). For example, encountering a
combinatorics problem, a student might recall sim-
ilar problems involving permutations or recursive
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strategies, using their structures to guide the current
solution. This ability to leverage prior analogical
experiences is critical for generalizing knowledge
and tackling novel challenges. However, current
LLM training paradigms largely overlook this as-
pect, treating each problem as an independent in-
stance without encouraging cross-problem reason-
ing. This limitation constrains models’ capacity to
transfer learned reasoning patterns, particularly for
problems requiring abstract structural or semantic
similarities to prior examples.

To bridge this gap, we propose MetaLadder, a
framework inspired by human-like analogical rea-
soning and problem comprehension. MetaLadder
explicitly guides LLMs to recall and reflect on
meta-problems—structurally or semantically analo-
gous problems with known CoT solutions—before
generating answers for the target problem. These
meta-problems and their CoT trajectories serve
as scaffolding to derive the current solution, mir-
roring how humans “stand on the shoulders” of
past experiences. Additionally, we introduce a
problem-restating mechanism: before reasoning,
the model regenerates the original question in its
own words, enhancing its comprehension of the
problem’s core components and constraints. This
dual mechanism—analogical recall and active re-
statement—enables the model to decompose com-
plex problems into familiar reasoning patterns, ef-
fectively mimicking the human ability to “learn
from examples” and generalize solutions across
analogous contexts. By integrating these steps,
MetaLadder successfully transforms the traditional
linear CoT process into a dynamic, context-aware
reasoning ladder, where each rung represents a re-
trieved meta-problem or a refined understanding of
the target task.

Extensive experiments validate MetaLadder’s
effectiveness. On mathematical benchmarks like
GSM8K and MATH, models trained with MetaLad-
der achieve significant improvements over standard
CoT fine-tuning baselines, with accuracy gains of
12.4% and 11.3%, respectively, surpassing recent
advanced methods. Further analysis reveals that
MetaLadder-trained models exhibit stronger gener-
alization to structurally novel problems, solving
9.3% more “out-of-distribution” test cases than
vanilla CoT models. Qualitative examples demon-
strate that the model not only retrieves relevant
meta-problems but also adapts their solutions cre-
atively. These results collectively highlight that
emulating human-like analogical reasoning and ac-

tive comprehension is a powerful yet underexplored
direction for advancing LLMs’ mathematical rea-
soning capabilities.

2 Related Work

2.1 Data Synthesis for Math Reasoning

Data synthesis has significantly contributed to the
development of LLMs’ mathematical reasoning
abilities (Yang et al., 2024; Shao et al., 2024).
Some studies focus on expanding the dataset and
its diversity by rewriting questions or answers (Yu
et al., 2024; Yuan et al., 2023; Liu et al., 2024; Tang
et al., 2024; Luo et al., 2023). For example, Meta-
Math (Yu et al., 2024) diversifies the data through
various enhancement methods, including question
rephrasing, answer augmentation, and the genera-
tion of inverse problems. Another line of research
focuses on improving the quality and difficulty of
the data (Wang et al., 2024a; Luo et al., 2023; Tong
et al., 2024; Zhang et al., 2024b; Fan et al., 2024).
For instance, WizardMath (Luo et al., 2023) gener-
ates more challenging data through RLEIF, while
RefAug (Zhang et al., 2024b) adds reflective infor-
mation after the original CoT process to encourage
enhancing the reasoning process. Our method dif-
fers by augmenting data to activate the model’s ana-
logical reasoning capabilities, enabling the model
to generate and apply solutions based on analogous
problems rather than relying solely on paraphrased
data, even enabling self-evolution by generating
analogous data. More discussion see AppendixC

2.2 RAG for Problem Solving

Retrieval-Augmented Generation (RAG) systems
enhance the performance of LLMs by integrat-
ing an external search engine for knowledge re-
trieval (Khandelwal et al., 2019; Lewis et al., 2020;
Gao et al., 2023). When a user poses a ques-
tion, the RAG system first retrieves relevant knowl-
edge fragments through the search engine and then
uses these answers along with the original query
to generate an answer. To address more com-
plex problems, such as mathematical reasoning,
some works incorporate the reasoning capabili-
ties of LLMs into the RAG framework, achiev-
ing retrieval-augmented reasoning (RAR) (Melz,
2023). For example, IRCoT (Trivedi et al., 2022)
combines RAG with multi-step CoT by using the
question and previous reasoning steps as queries,
retrieving relevant documents to generate the next
reasoning step. RAT (Wang et al., 2024b) generates
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Question:
Michael buys his suit 
for $430 and shoes 
for $190. So, if he gets 
a $100 discount, what 
was the amount that 
he paid to the seller?

Solution:
1. The amount before 
the deduction is $430 
+ $190 = $620.

2. The amount paid to 
the seller after the 
discount is $620 - 
$100 = $520.
The answer is $520.

Problem Type and Solution Method:
This is a simple arithmetic problem involving addition and subtraction of a discount. The solution method 
involves calculating the total cost of items and then applying the discount.

Similar Problem:
Sarah buys a laptop for $850 and a mouse for $50. If she receives a $150 discount on her total purchase, 
how much does she pay in total?

Solution to the Similar Problem:
1. Calculate the total cost before the discount:  850 + 50 = 900.   2. Apply the discount:  900 - 150 = 750.  
Thus, the total amount Sarah pays is $750.

Solution:
1. The amount before the deduction is $430 + $190 = $620.   2. The amount paid to the seller after the 
discount is $620 - $100 = $520.
The answer is $520.

Question:
Michael buys his suit for $430 and shoes for $190. So, if he gets a $100 discount, what was the amount that 
he paid to the seller?

Standard Training MetaLadder Training

Self-evolve

GPT

Question:
Michael buys his suit for $430 and shoes for $190. So, if he gets a $100 discount, what was the amount that 
he paid to the seller?

OR

Figure 2: Overview of the MetaLadder framework for generating reflective data. The process starts with the original
problem Q, followed by the problem type and solution method S, and the generation of analogous problems Q′ and
solutions C ′. Afterward, the original problem Q is reintroduced to prompt the model to restate the problem. These
components are then combined with the solution C of the original problem Q to form the training data.

a complete CoT first and then refines each reason-
ing step iteratively using RAG. Recent work, such
as Search-o1 (Li et al., 2025), extends the RAG
paradigm by applying it to o1-like models, fur-
ther enhancing the model’s reasoning capabilities.
While RAG emphasizes enhancing the model’s per-
formance by retrieving external knowledge with-
out updating the model’s parameters, our approach
differs in that it internalizes analogical reasoning
through model fine-tuning, allowing the model to
generate reflective information during reasoning
without relying on external data.

3 MetaLadder

We first introduce the overall MetaLadder frame-
work for enhancing mathematical problem-solving
(Section 3.1). Then we present each our method
in detail by explaining the generation of reflec-
tive data to guide the model’s reasoning process
(Section 3.2), describing the composition of train-
ing data to activate the model’s analogical reason-
ing (Section 3.3). Besides, we also add a self-
evolve process in our framework to enable the
model’s ability to autonomously generate data for
self-improvement (Section 3.4). Finally, we also
incorporate a shortcut inference mechanism for fast
and effective generation (Section 3.5).

3.1 Overview

The overview of MetaLadder framework is illus-
trated in Fig. 2. Given the original data consisting
of a target problem Q and its solution C. We first
generate additional reflective data by synthesizing
an problem analysis and solution strategy S for the
target problem, then along with analogous problem

Q′ and its corresponding solution C ′, which are
structurally or semantically similar to the original
data. Moreover, we introduce a problem-restating
mechanism, where the target problem Q is inserted
before the final solution C to enhance the model’s
understanding of the target problem. After training
on the generated data sequence QSQ′C ′QC, the
model is able to recall analogous problems, restate
the target problem and apply analogical reasoning
to find the final solution. Notably, because of Meta-
Ladder’s analogical reasoning capability, the model
can autonomously generate similar problems for
training itself, which enables the self-evolution abil-
ity of the model. We now introduce the details in
the following sections.

3.2 Reflective Data Generation

MetaLadder improves the model’s mathematical
problem-solving by incorporating reflective data
during training. This approach simulates human
learning, encouraging the model to recall and re-
flect on analogous problems, using their solutions
to inform reasoning on the target problem. To
achieve this, the model requires structured guid-
ance to first understand the problem-solving strat-
egy, then recall analogous problems, and finally
apply the solutions from those analogous problems
to the current task. Therefore, the reflective data
consists of three key components:
1) Problem Type and Solution Method S. Each
problem is categorized into a mathematical domain,
with an explanation of the relevant concepts and
methods (e.g., “This is a simple arithmetic problem
involving addition and subtraction of a discount.
The solution method involves calculating the total
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cost of items and then applying the discount.”).
This helps the model grasp the problem-solving
framework for future similar problems.
2) Analogous Problem Q′. The model generates
an analogous problem by modifying the context,
numbers, or variables, while keeping the core struc-
ture intact, offering a new learning context. For
example, as shown in Fig 2: “Original Problem:
Michael buys his suit for $430 and shoes for $190.
So, if he gets a $100 discount, what was the amount
that he paid to the seller?” The generated analogy
problem is then: “Similar Problem: Sarah buys
a laptop for $850 and a mouse for $50. If she re-
ceives a $150 discount on her total purchase, how
much does she pay in total?”
3) Solution to Analogous Problem C ′. The model
provides a solution for the analogous problem, rein-
forcing the application of similar strategies across
different problems. For instance, the solution to
the above analogy problem is: “1. Calculate the
total cost before the discount: 850 + 50 = 900. 2.
Apply the discount: 900 - 150 = 750. Thus, the
total amount Sarah pays is $750.”

To generate the above annotation data, we care-
fully design prompts for data generation. The de-
tailed prompts are provided in Table 11.

3.3 Analogical Reasoning Activation
To activate the analogical reasoning capabilities of
the model, we compose the training data with the
generated reflective data in a format as described
in Figure 1 (d). In traditional approaches, as shown
in Fig. 1, CoT directly generates the solution C
from the problem Q, while question and answer
augmentation directly rephrase the problem and
solution into Q′C ′. RefAug (Zhang et al., 2024b)
adds additional reflection R after the solution C.
In contrast, our MetaLadder introduces an analogi-
cal reasoning process SQ′C ′Q between Q and C,
involving the generation of analogous problem and
the transfer of knowledge from similar problem
to the target problem. Specifically, our analogical
reasoning process SQ′C ′Q consists of:
Problem Type and Solution Method S. This is
the problem and solution analysis, which is gener-
ated in Section 3.2.
Analogical Problem and Corresponding Solu-
tion Q′C ′. This is the analogy problem and the
solution of the analogy problem, which is also gen-
erated in Section 3.2.
Problem-restating mechanism. After presenting
Q′C ′, we reintroduce the original problem Q. This

step ensures that the model revisits the target prob-
lem and apply the knowledge gained from solving
the analogous problem, engaging in analogical rea-
soning and transferring the learned solution to solve
the original problem.

Overall, the enhanced training data format is
QSQ′C ′QC: Original Problem → Problem Type
and Solution Strategy → Analogous Problem and
its Solution → Original Problem and its Solution.
By training on the above formatted data, we aim
to improve the model’s mathematical reasoning
by activating its analogical reasoning from similar
problem and solution with a deeper understanding
of the target problem.

3.4 Analogical Self-evolution
Similar to other works (Zelikman et al., 2022; Lu-
ong et al., 2024; Guan et al., 2025), after training,
our model gains the ability to autonomously gener-
ate analogous problems that are related to the target
problem. This capability facilitates a self-evolving
data augmentation process, where the model can
iteratively bootstrap its own dataset. Specifically,
after making predictions for a given problem, the
model is used to generate new problem instances
based on its own outputs. These generated prob-
lems, being structurally or conceptually similar to
the original ones, are then fed back into the train-
ing loop for further refinement. The self-evolution
process significantly enhances the model’s abil-
ity to expand its knowledge base. As the model
generates new problem instances, it creates novel
variations of existing problems by modifying key
components—such as numbers, variables, or con-
texts—while preserving the underlying structure.
This process not only reinforces the model’s un-
derstanding of the problem-solving strategies but
also improves its generalization ability across new,
previously unseen problem types.

3.5 Shortcut Inference
During training, the model learns to implicitly en-
code analogy-problem reasoning schemas via the
QSQ′C ′QC paradigm, where explicit generation
of analogical problems Q′ and their solutions C ′

establishes robust neural pathways for structural
pattern transfer. At inference time, we try to pro-
pose a shortcut inference method that enables a
streamlined QŜQĈ process that bypasses analogy-
problem generation for fast inference. Specifically,
after the model generates Ŝ, we force it to directly
restate the original problem Q and output the an-
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swer Ĉ by inserting Q after Ŝ. Surprisingly, skip-
ping the Q̂′Ĉ ′ generation not only reduces infer-
ence cost but also boost the performance signif-
icantly (see results in Section 4.2). This clearly
demonstrates MetaLadder can successfully learn
analogy knowledge transfer through analogy prob-
lem solving.

4 Experiments

4.1 Experimental Setup

Datasets/Benchmarks. We use the training
sets from GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) for our experi-
ments. The augmented parts in each problem (prob-
lem type and solution method, the analogy problem,
the solution to the analogy problem) are generated
by GPT-4o-mini (OpenAI, 2024a). The details of
the data generation process can be found in the
Appendix A.1. For evaluation, besides the test
sets from GSM8K and MATH as in-distribution
evaluation, we also include out-of-distribution test
sets from ASDiv (Miao et al., 2020), College
Math (Tang et al., 2024), GaoKao (Chinese College
Entrance Exam) En 2023 (Liao et al., 2024) and
DM (Saxton et al., 2019) for verification.
Training and Evaluation. We primarily use two
popular LLMs for our experiments, covering the
general focused LLM and the math-focused LLM:
the widely used Llama3-8B (Zhang et al., 2024a)
and DeepSeekMath-7B (Shao et al., 2024). For a
fair comparison, all the models are trained for 1
epoch. During inference, greedy decoding is ap-
plied to get the outputs. As for evaluation metrics,
we report Pass@1 accuracy for all the models and
baselines. More experimental details can be found
in the Appendix A.2 and A.3.
Baselines. We first introduce the following base-
line methods that we adopt for comparison, which
are also shown in Figure 1: (i) CoT: The original
CoT data from GSM8K and MATH, which is the
standard setting (Figure 1(a)). (ii) AnalogyAug:
This combines our augmented analogy problem/-
solution (as used in MetaLadder) with the original
CoT data in a batch-level training, making the train-
ing data twice as large as the original data (also
known as question&answer augmentation, shown
in Figure 1(b)). (iii) RefAug: A state-of-the-art
(SOTA) data augmentation method that enhances
model reasoning by appending reflective data to
the end of the CoT chain (Figure 1(c)).

For our MetaLadder-based settings, we enhance

the original CoT data as described in Section 3.3
to train 1) MetaLadder, the basic setting, and de-
rive the following variant 2) MetaLadder + Self-
evolve: We use the MetaLadder model after one
round of training to greedily sample one data point
from each problem, and then filter out the correct
answers to add back to the training data used in the
first round. Since we have generated the analogy
problem Q′ for helping solve the target problem
Q, we add a reverse training setting in this section.
Specifically, we train 3) MetaLadder + Reverse,
which simply swaps the target problem Q and the
analogous problem Q′ to be a new training sample,
expanding the training data to twice the size of the
original data. Besides, we also experiment on a
variant, 4) MetaLadder + Reverse + Self-evolve,
which further incorporates self-evolve data. Be-
sides, for our MetaLadder-related experiments, we
also include the shortcut inference mechanism as
a comparison. The "-cut" suffix after the method
name indicates the use of the shortcut inference.

4.2 Main Results
Our experimental results, as shown in Table 1, re-
veal the following key findings:
MetaLadder Outperforms Strong Methods. The
main experimental results demonstrate the effec-
tiveness of the MetaLadder framework across mul-
tiple mathematical benchmarks. MetaLadder con-
sistently outperforms baseline methods on both
in-domain and out-of-domain datasets. On the
LLaMA3-8B and DeepSeekMath-7B models, Met-
aLadder surpasses CoT by an average accuracy im-
provement of 6.7 (36.1 vs. 42.8) and 10.3 (47.3 vs.
57.6) points, respectively, and outperforms RefAug
by 5.4 and 9.5 points in accuracy. These results
highlight MetaLadder’s significant advantage in en-
hancing the model’s reasoning ability, particularly
when tackling challenging mathematical problems.
MetaLadder Enhances the Model Beyond Batch-
Level Augmentation. Compared to AnalogyAug,
which performs question and answer augmenta-
tion at the batch level, MetaLadder achieves higher
scores on GSM8K and comparable performances
on MATH. On both models, MetaLadder improves
by 4.7 and 6.5 points, respectively. This suggests
that MetaLadder effectively enhances the model’s
reasoning ability by activating its analogical rea-
soning capabilities, rather than simply adding more
augmented data. Particularly, MetaLadder + Re-
verse, which swaps the target problem with analo-
gous problems to double the dataset, outperforms
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In-Domain Out-of-Domain
Method # Sample GSM8K MATH ASDiv CM GE DM Average

LLaMA3-8B
CoT (Wei et al., 2022) 15K 61.5 19.4 73.2 16.6 19.5 26.3 36.1
RefAug (Zhang et al., 2024b) 15K 59.7 20.3 74.3 17.6 18.4 23.2 35.6
RefAug+CoT (Zhang et al., 2024b) 30K 64.9 21.8 74.4 16.5 21.0 24.8 37.4
AnalogyAug 30K 63.8 22.6 76.1 18.2 20.8 27.2 38.1
MetaLadder 15K 66.2 22.4 76.7 17.2 23.9 29.7 39.4
MetaLadder-cut 15K 69.4 24.0 78.8 18.2 26.0 29.4 41.0
MetaLadder+Self-evolve 22K 66.5 24.8 76.6 19.1 26.8 31.7 40.9
MetaLadder+Self-evolve-cut 22K 73.5 26.0 81.6 20.3 24.4 30.7 42.8
MetaLadder+Reverse 30K 71.5 25.6 77.2 19.0 24.7 29.0 41.2
MetaLadder+Reverse+Self-evolve 44K 71.1 26.7 77.2 19.2 27.3 31.4 42.2
MetaLadder+Reverse+Self-evolve-cut 44K 70.5 27.7 77.2 19.4 28.3 31.9 42.5

DeepSeekMath-7B
CoT (Wei et al., 2022) 15K 64.2 34.3 81.5 31.4 29.4 43.0 47.3
RefAug (Zhang et al., 2024b) 15K 67.4 35.1 83.0 30.3 35.6 43.5 49.2
RefAug+CoT (Zhang et al., 2024b) 30K 67.2 34.9 80.4 31.8 29.4 45.1 48.1
AnalogyAug 30K 67.7 38.9 83.2 30.5 36.9 49.6 51.1
MetaLadder 15K 69.4 38.6 85.9 32.6 37.4 48.4 52.1
MetaLadder-cut 15K 71.5 40.0 87.1 35.2 40.5 49.1 53.9
MetaLadder+Self-evolve 23K 70.5 39.3 86.3 33.3 35.1 50.8 52.6
MetaLadder+Self-evolve-cut 23K 74.1 41.3 87.3 35.7 40.5 50.5 54.9
MetaLadder+Reverse 30K 72.3 40.5 85.2 32.1 37.4 51.3 53.1
MetaLadder+Reverse+Self-evolve 46K 72.6 40.7 85.2 33.7 38.2 51.9 53.7
MetaLadder+Reverse+Self-evolve-cut 46K 76.6 45.6 89.3 35.1 43.1 54.8 57.6

Table 1: Accuracy on in-domain and out-of-domain mathematical benchmarks. The bold and underlined values
represent the first and second best performances, respectively. CM, GE, DM denotes College Math, Gaokao En
2023, DeepMind-Mathematics, respectively. ‘# Sample’ denotes the data size.

AnalogyAug by 3.1 and 2.0 points on the two mod-
els, respectively. This further validates the effec-
tiveness of MetaLadder’s data generation strategy.

MetaLadder’s Self-Evolution Boosts Model Per-
formance. Self-evolution provides further im-
provements in model performance, with signif-
icant gains observed across all datasets. After
one round of self-evolution, MetaLadder+Self-
evolve improves by 1.5 points on LLaMA3-8B
and 0.5 points on DeepSeekMath-7B, demon-
strating that a single round of self-training effec-
tively enhances the model’s reasoning ability. Ad-
ditionally, MetaLadder+Reverse+Self-evolve im-
proves by 1.0 points and 0.6 points on LLaMA3-
8B and DeepSeekMath-7B in accuracy across all
datasets, respectively, confirming the benefits of
data augmentation through problem swapping. Ul-
timately, MetaLadder + Reverse + Self-evolve ex-
ceeds CoT by 6.1 points and RefAug by 4.8 points
on LLaMA3-8B and achieves the best score of 53.7
on DeepSeekMath-7B.

Shortcut Inference Reduces Inference Cost and
Improves Performance. Surprisingly, shortcut
inference not only reduces the inference cost by
skipping the analogy problem reasoning during
inference (e.g., as shown in Table 2, DeepSeek-
MetaLadder-cut on MATH achieves 1343.74 sec-
onds, faster than DeepSeek-MetaLadder’s 2181.13
seconds and close to CoT’s 1253.26 seconds), but

also boosts the model performance by a clear mar-
gin, e.g., 1.6 accuracy points on LLaMA3-8B
and 1.8 points on DeepSeekMath-7B. The results
demonstrate MetaLadder has transferred analogy
problem-solving knowledge.

These results underscore MetaLadder’s outstand-
ing performance in solving both in-domain and out-
of-domain problems, further validating the frame-
work’s effectiveness in enhancing mathematical
problem-solving abilities and cross-domain gen-
eralization. Through its data augmentation and
self-evolution strategies, MetaLadder not only ex-
cels in reasoning tasks within known domains but
also demonstrates strong adaptability when facing
unfamiliar data.

4.3 Ablation on Components

To thoroughly evaluate the contribution of each
component in the MetaLadder framework, we con-
ducted an ablation study that systematically exam-
ined the impact of its core elements, where “w/o
Strategy”, “w/o Analogy”, and “w/o Restate” refer
to the absence of the problem type and solution
method, analogy meta-problem, and problem re-
stating mechanism, respectively.

As shown in Table 2, we observed that removing
any of these components resulted in a significant
performance drop across both datasets. Specif-
ically, removing the strategy component caused
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Method GSM8K MATH Average

w/o Strategy 64.9 22.2 43.6
w/o Analogy 64.7 21.0 42.9
w/o Restate 61.6 22.0 41.8

MetaLadder 66.2 22.4 44.3

Table 2: Ablation study on GSM8K and MATH, where
w/o Strategy, w/o Meta-problem, and w/o Restate refer
to the absence of the problem type and solution method,
analogy meta-problem, and problem restating mecha-
nism, respectively.

a 0.7% average decrease in performance on both
datasets, indicating that the strategy is important in
guiding the model toward more accurate and effi-
cient solutions. Furthermore, excluding the anal-
ogy meta-problem or the problem restating mecha-
nism led to even greater performance degradation,
with decreases of 1.4 and 2.5 points, respectively.
This highlights the crucial role of these components
in enhancing the model’s reasoning ability.

4.4 Experiment on Qwen2.5-Math-7B

To evaluate the scalability of MetaLadder, we
conducted experiments on a strong math-oriented
model: Qwen2.5-Math-7B. We compared the per-
formance of standard COT and our MetaLadder
method, using the same 15K training samples. Ta-
ble 14 summarizes the results.

Even when applied to a strong backbone like
Qwen2.5-Math-7B, MetaLadder achieves consis-
tent improvements across all benchmarks, with an
average gain of +2.9 points over standard COT.
This demonstrates the generalizability of the ana-
logical reasoning framework and its potential bene-
fits on increasingly capable models.

5 Analysis

5.1 The Amount of MetaLadder Data

We first investigate the impact of different amounts
of MetaLadder-enhanced data on model perfor-
mance across two models. As shown in Figure
3(a), in our experiments, we gradually replace the
original CoT data with MetaLadder-enhanced data.
As the proportion of MetaLadder-augmented data
increased, the model’s performance steadily im-
proves, reaching its peak when the original data
is completely replaced with augmented data. This
demonstrates the effectiveness and scalability of
the augmentation method.

5.2 Multi-round Self-evolve

To further explore the impact of multiple rounds of
self-evolution, we examine the performance im-
provements with each additional round of self-
training. As shown in Figure 3(b), the perfor-
mance of MetaLadder steadily improves with the
increasing number of self-evolution rounds. On
the LLaMA3-8B model, after one round of self-
evolution, the average accuracy across all testsets
increases from 39.4 to 40.9. After two rounds, the
accuracy further improves to 41.7, with an increase
of 2.3 points. On the DeepSeekMath-7B model,
after two and three rounds of self-evolution, the
average accuracy increases to 53.1 and 53.9, re-
spectively, with improvements of 1.0 points and
1.8 points. This demonstrates that multi-round self-
evolution significantly enhances the model’s rea-
soning ability. Further experimental results can be
found in the Table 7.

5.3 Impact of Reflection on Train and Test

To investigate the impact of reflection on model
performance, we compared the effects of perform-
ing reflection before and after generating the final
answer. We train Pre-RefAug by shifting the re-
flection component of RefAug to the training stage,
and Post-MetaLadder by placing the reflection com-
ponent of MetaLadder after answer generation.

As shown in Table 3, Pre-RefAug outperformed
RefAug by 1.4 and 2.1 points on two models, while
MetaLadder achieved scores 1.3 and 0.3 points
higher than Post-MetaLadder. Our results demon-
strate that allowing reflection before providing the
final answer leads to further performance improve-
ment. This suggests that reflection data not only
enhances the model’s reflective capabilities during
training but also guides its reasoning during test-
ing in an in-context learning manner, ultimately
boosting performance.

5.4 Combine with Other Augmentation

We further investigate the effectiveness of our
method when combined with other augmentation
approaches. We compare the performance before
and after applying the MetaLadder method on two
augmented training sets: 1) In the AugCoT method,
we enhance the original solutions using prompts
that are almost identical to those used for generat-
ing MetaLadder’s analogous data, aiming to better
align the distribution and complexity of the answers
with the meta-problem. 2) We also use data gen-
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Method Train → Inference LLaMA DeepSeek

GSM8K MATH GSM8K MATH

RefAug QCR → QC 59.7 20.3 67.4 35.1
Pre-RefAug QRC → QRC 61.0 21.7 69.1 37.5

Post-Metaladder QQCSQ′C ′ → QQC 64.1 21.9 70.3 37.1
MetaLadder QSQ′C ′QC → QSQ′C ′QC 66.2 22.4 69.4 38.6

Table 3: Model performance when reflections placed before and after the answer.

erated by the mainstream MetaMath method (Yu
et al., 2024), which employs both question rephras-
ing and answer augmentation to generate a more
diverse set of problems.

The results in Figure 3(c) demonstrate the ef-
fectiveness of the MetaLadder framework in im-
proving the performance of DeepSeekMath-7B on
mathematical benchmark tasks. Compared to the
AugCoT baseline, AugCoT-MetaLadder shows a
more significant improvement across all datasets,
with an average increase of 5.4 points in accuracy.
This result suggests that the performance boost
brought by MetaLadder is not mainly because of
the enhanced data only, but rather due to the struc-
tured, reflective data generation process within the
MetaLadder framework.

Additionally, as shown in Table 8, we present
the experimental results based on the aug-
mented data from MetaMath20K and Meta-
Math40K. After being enhanced with MetaLadder,
MetaMath20K-MetaLadder outperforms the orig-
inal MetaMath20K with an average performance
improvement of 1.3 points, which highlights the
positive impact of MetaLadder on model accuracy.

These results further suggest that combining
MetaLadder with other augmentation methods can
more effectively boost the model’s performance,
demonstrating the potential of structured data aug-
mentation in improving mathematical reasoning.

5.5 Case Study

To have a more straightforward understanding of
the advantage of our MetaLadder, we show some
cases and make discussions in this section.

In case 16 (in Appendix, with more cases in
Appendix D.1.), we examine the performance of
MetaLadder and the standard CoT approach on a
root-finding problem. The problem is: “Compute
a + b + c, given that a, b, and c are the roots of
1
x + 5x2 = 6x − 24.” CoT solves the problem
directly, focusing on converting the equation to
4x3 − 5x2 + 5x − 1 = 0 and immediately ap-
plying Vieta’s formulas to obtain a + b + c = 5

4 .
This approach involves minimal abstraction and
no explicit reuse of methods from other problems.
It delivers a direct result but provides limited in-
sight into the generalization of the solution method.
In contrast, the MetaLadder framework explicitly
identifies this task as part of a general class of
polynomial-related problems and uses Vieta’s for-
mulas as the backbone of the solution. In addition,
it builds a reusable methodology, highlights sim-
ilarities with the original problem ( 1x + 5x2 =
6x− 24), and emphasizes systematic computation
techniques. The solution still delivers an accurate
result (a + b + c = 5

4), but it also builds a more
structured understanding of the type of problem.

This example highlights how MetaLadder can
improve the accuracy and reliability of the model
in solving conceptually rich and broadly applicable
problems, further underscoring the value of reflec-
tive reasoning in enhancing the model’s overall
problem-solving capabilities.

5.6 Discussion on Analogical Data Quality

To validate the quality of the automatically gen-
erated analogical problems and annotations, we
conducted both similarity analysis and correctness
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verification.

Similarity Evaluation. We computed cosine sim-
ilarity, Jaccard distance, and Levenshtein distance
between each generated analogical problem and its
original counterpart (see Table 9). These metrics
indicate strong structural and semantic similarity.

To further test the effect of analogical variation,
we additionally constructed a set of more divergent
analogical problems by modifying the generation
prompt with instructions such as “please change
the nouns and add extra conditions to the problem.”
Notably, Table 9 also shows that even when the
analogical problems deviate more from the origi-
nal in surface form, they can still lead to improved
performance, suggesting that moderate divergence
in analogical examples can be beneficial for gener-
alization.

Correctness Verification. We further assessed
the correctness of generated solutions and the re-
liability of problem type and strategy annotations
using LLaMA3.1-70B-Instruct. The model was
prompted to answer whether each solution or anno-
tation was correct. The results are in Table 4.

Diversity Visualization. To evaluate the diver-
sity of the generated analogical problems, we per-
formed t-SNE visualization on the embeddings of
the original and generated problems and their so-
lutions (See Figure 4). The result show that the
generated analogical problems broadly cover the
semantic space of the original dataset, indicating
good diversity.

Model Performance. Furthermore, we find that
the trained model itself can generate structurally
and semantically similar problems during infer-
ence, demonstrating that the analogical patterns are
learnable. Representative examples are provided in
Appendix D.1 for qualitative validation.

5.7 Discussion on Cost

While MetaLadder relies on LLMs to generate ana-
logical data, we find the cost and latency to be
manageable in practice. Additionally, comparable
results can be achieved using open-source models,
making the method more accessible to the broader
research community.

Cost and Time Analysis. Using GPT-4o-mini,
which charges $0.60 per million output tokens and
$0.15 per million input tokens, we generated 15K
analogical samples (approx. 2K tokens each for
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80

60

40

20

0

20

40
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80 GSM8K Math MetaLadder

Figure 4: Problem distribution of GSM8K, Math, Meta-
Ladder.

input and output) for under $20. The entire genera-
tion process completed in 1.5 hours. This demon-
strates that high-quality data generation is both cost-
and time-efficient even on commercial APIs.

Local Model Alternatives. To reduce depen-
dency on commercial APIs, we also tested lo-
cal generation using LLaMA3.1-70B-Instruct
(4×A100 GPUs). We replicated the generation pro-
cess and trained both CoT and MetaLadder models
using data from LLaMA and DeepSeek. Results
are shown in Table 15. Across both backbones,
MetaLadder outperforms standard CoT. Notably,
the average gain is +1.77 points for LLaMA and
+2.53 for DeepSeek, indicating that our framework
remains effective even when using open-source
models for data generation.

6 Conclusion

In this paper, we introduce MetaLadder, a
novel framework that enhances the mathemati-
cal problem-solving abilities of LLMs. By ex-
plicitly prompting the model to reflect on ana-
logical problems and their solutions, MetaLad-
der enables it to transfer reasoning across simi-
lar tasks, mimicking human learning. Addition-
ally, our problem-restating mechanism further en-
hances the model’s reasoning accuracy. Experi-
mental results across multiple mathematical bench-
marks demonstrate that MetaLadder significantly
improves LLM performance, surpassing both stan-
dard Chain-of-Thought (CoT) methods and other
state-of-the-art approaches. Our work highlights
the importance of integrating analogical reasoning
and meta-cognitive strategies into LLMs for com-
plex reasoning tasks.
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Limitations

Although the MetaLadder framework has shown
promising progress in mathematical problem solv-
ing, there are still some limitations worth further
exploration and improvement. For instance, the
performance of MetaLadder relies on the quality
of the analogy problems Q′ and their correspond-
ing solutions C ′. During the generation of analogy
problems, data augmentation biases may be intro-
duced, especially when the analogy problems are
generated with a strong reliance on certain problem
types or solution methods. The model may over-
fit to common problem types or solutions present
in the training data, potentially impacting its abil-
ity to generalize to novel problems. Future work
could focus on improving the quality of generated
analogy problems, enhancing the model’s ability to
handle a wider variety of problem types, and fur-
ther investigating the trade-off between inference
efficiency and reasoning depth.
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A Experimental Details

A.1 Annotation Details
Data annotation was performed using the GPT-4o-
mini-2024-07-18 model API with a sampling tem-
perature of 0.7. The full prompt used for annotation
is shown in Block 11.

In Experiment 8, we use prompt shown in
Block 12 to rephrase the original solutions in
GSM8K and MATH.

A.2 Train Details
Model training was conducted using the LLaMA
Factory 1 on 8 NVIDIA A100 GPUs. We train
all models for one epoch with a batch size of 128,
using the AdamW optimizer (Loshchilov, 2017)
with a learning rate of 5e-6 and cosine learning rate
decay. The training prompt is shown in Block 13.

A.3 Evaluation Details
GSM8K (Cobbe et al., 2021): GSM8K consists
of grade-school arithmetic tasks with relatively low
difficulty, primarily used to evaluate basic mathe-
matical reasoning abilities. The testset includes
1319 basic math word problems, covering sim-
ple arithmetic operations such as addition, sub-
traction, multiplication, and division. Compared
to other more complex datasets, the problems in
GSM8K are straightforward and suitable for testing
a model’s performance on solving basic mathemat-
ical problems.
MATH (Hendrycks et al., 2021): The MATH test-
set contains 5000 challenging competition-level
math problems. These problems are designed to be
complex and require the model to possess higher-
level mathematical reasoning capabilities, far sur-
passing the simpler problems found in GSM8K.
MATH spans multiple mathematical domains, in-
cluding algebra, geometry, and number theory,
making it an ideal benchmark for evaluating a
model’s performance on complex mathematical
reasoning tasks.
ASDiv (Miao et al., 2020): ASDiv (Academia
Sinica Diverse MWP Dataset) is a diverse English
math word problem dataset intended to evaluate the
capabilities of various MWP solvers. This dataset
includes 2,305 math word problems that cover a
wide range of language patterns and problem types,
offering more diversity than existing MWP datasets.
It includes problems commonly found in elemen-
tary school and is annotated with problem types

1https://github.com/hiyouga/LLaMA-Factory

and grade levels to help assess the difficulty and
complexity of each problem.
Gaokao 2023 EN (Liao et al., 2024): Gaokao
2023 EN contains 385 math problems from the
2023 Chinese National College Entrance Exami-
nation (Gaokao), which are primarily high school-
level open-ended problems. These problems cover
a wide range of mathematical topics and include
content taught during high school in China. The
Gaokao EN2023 dataset is designed to assess stu-
dents’ ability to apply mathematical reasoning in
real-world situations, containing both basic prob-
lems and more complex ones. It serves as an im-
portant benchmark for evaluating models’ perfor-
mance on Gaokao-style math problems.
CollegeMath (Tang et al., 2024): The College-
Math dataset includes 2,818 college-level math
problems extracted from 9 textbooks, spanning 7
mathematical domains such as linear algebra and
differential equations. CollegeMath is designed to
test a model’s ability to reason across diverse math-
ematical topics, with a particular focus on general-
ization to complex mathematical reasoning tasks
at the college level. The problems are more diffi-
cult, making the dataset well-suited for evaluating
a model’s ability to solve advanced mathematical
problems.
DeepMind-Mathematics (Saxton et al., 2019):
The DeepMind-Mathematics test set containing
1000 problems from a variety of problem types,
based on a national school mathematics curriculum
(up to age 16), designed to assess basic mathe-
matical reasoning across different domains. The
dataset generates question and answer pairs of vary-
ing types, generally at school-level difficulty, and
aims to test the mathematical learning and alge-
braic reasoning abilities of learning models.

All model evaluation was carried
out using the framework provided at
https://github.com/ZubinGou/math-evaluation-
harness/tree/main with zero-shot evaluation,
greedy sampling and a maximum generation length
of 2048 tokens.

To validate that the improvement from the short-
cut method was not due to avoiding the truncation
of MetaLadder’s output, we also conducted the
main experiment with a maximum length of 4096
tokens, and no significant changes in the metrics
were observed.

B More Experiments
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Component Total Correct

Solution to Analogical Problem 14,973 14,185 (94.7%)
Problem Type and Strategy 14,973 14,364 (95.9%)

Table 4: Verification of solution correctness and annota-
tion reliability using LLaMA3.1-70B-Instruct.

Method 1st Turn 2nd Turn 3rd Turn

CoT 60.05 31.26 23.44
MetaLadder 65.55 34.45 23.75

Table 5: Performance (%) on multi-turn reasoning using
MathChat-FQA.

Method 3ppl 4ppl 5ppl 6ppl

CoT 0.58 0.42 0.18 0.10
MetaLadder 0.62 0.44 0.22 0.12

Table 6: Performance on Logic Puzzles from the KK
dataset.
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In-Domain Out-of-Domain
Method # Sample GSM8K MATH ASDiv CM GE DM Average

LLaMA3-8B
MetaLadder 15K 66.2 22.4 76.7 17.2 23.9 29.7 39.4
MetaLadder+Self-evolve 22K 66.5 24.8 76.6 19.1 26.8 31.7 40.9
MetaLadder+Self-evolve2 30K 68.9 25.1 79.3 19.1 25.7 32.2 41.7
MetaLadder+Self-evolve3 38K 69.2 25.9 77.9 19.8 26.0 31.6 41.7

DeepSeekMath-7B
MetaLadder 15K 69.4 38.6 85.9 32.6 37.4 48.4 52.1
MetaLadder+Self-evolve 23K 70.5 39.3 86.3 33.3 35.1 50.8 52.6
MetaLadder+Self-evolve2 31K 71.9 39.8 86.1 33.6 37.9 49.2 53.1
MetaLadder+Self-evolve3 40K 72.2 40.6 86.3 34.0 38.7 51.5 53.9

Table 7: Accuracy of self-evolution on in-domain and out-of-domain mathematical benchmarks. The bold and
underlined values represent the first and second best performances, respectively. CM, GE, DM denotes College
Math, Gaokao En 2023, DeepMind-Mathematics, respectively.

GSM8K MATH ASDiv CM GE DM Average
MetaMath20K 71.1 38.4 84.5 32.0 32.5 46.9 50.9
MetaMath20K-MetaLadder 72.9 39.8 86.5 31.6 34.3 44.9 51.7
MetaMath40K 73.9 38.5 84.6 32.0 34.3 48.2 51.9
MetaMath40K-MetaLadder 75.7 40.0 87.0 30.5 34.8 45.8 52.3
AugCoT 65.3 40.7 73.5 30.0 35.1 54.0 49.8
AugCoT-MetaLadder 75.5 42.8 85.9 35.7 38.7 52.8 55.2

Table 8: DeepSeekMath-7B performance on two augmented datasets. MetaMath20K constructed by uniformly
sampling half of the data from MetaMath40K, and AugCoT representing original solutions rephrased by 4o-mini to
match the style of analogous data used in MetaLadder.

Method Cos JD LD GSM8K MATH

Original Problem 1.00 0.00 0.00 64.0 21.1
Analogous Problem 0.93 0.48 101.00 66.2 22.4
Enhanced Analogous Problem 0.91 0.61 131.30 65.3 23.3

Table 9: The impact of repeating the original problem and using analogous problems with greater divergence on
model performance. Cos refers to Cosine Similarity, JD refers to Jaccard Distance, and LD refers to Levenshtein
Distance.
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Method GSM8K MATH

LLaMA-CoT 61.86 749.26
LLaMA-MetaLadder 172.62 1479.85
LLaMA-MetaLadder-cut 111.26 1081.58

DeepSeek-CoT 65.9 1253.26
DeepSeek-MetaLadder 210.15 2181.13
DeepSeek-MetaLadder-cut 113.96 1343.74

Table 10: Total time cost of inference on the whole
GSM8K and MATH testsets, in seconds. Our MetaL-
adder, combined with shortcut reasoning, significantly
reduces inference time, achieving speeds close to CoT.
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B.1 Experiment on MathChat

Although MetaLadder is primarily designed for
single-turn tasks, we investigate its potential ex-
tension to multi-turn settings using the MathChat
dataset. Multi-turn reasoning requires the model
to integrate prior reasoning steps, track evolving
context, and maintain coherence across turns. To
adapt MetaLadder for this setting, we retain the
analogy and restatement components at each turn,
with the previous output provided as part of the
prompt context.

Experimental Setup. We evaluate on the Follow-
up Question Answering (FQA) task from Math-
Chat. For each turn, the previous answer is
prepended to the new question. We compare CoT
and MetaLadder under the same few-shot setting.

Observations. MetaLadder outperforms CoT in
the first and second turns, indicating that analogi-
cal reasoning and restatement mechanisms provide
early-turn benefits. Performance converges in later
turns, possibly due to increased context complexity.

Future Work. We plan to extend training to ex-
plicitly support multi-turn reasoning by:

• Incorporating analogies from prior turns to
support temporal or causal reasoning.

• Restating prior conclusions alongside current
questions to reinforce contextual memory and
prevent drift.

These improvements aim to better capture the dy-
namics of sustained interactions in multi-turn tasks.

B.2 Experiment on KK

To investigate generalizability, we extended Meta-
Ladder to Logic Puzzles using the KK (Xie et al.,
2024) dataset, which contains 2,000 samples for
3ppl and 4ppl. We applied Qwen2.5-7B-Math for
this experiment. The results are summarized in the
Table 6.

The preliminary results suggest that MetaLad-
der also improves performance in the logical puz-
zle reasoning, helping the model to "clarify condi-
tions" and "transfer structures," much like it does
for mathematical reasoning tasks.

C More Discussion on Related Work

Several recent methods have explored ways to im-
prove chain-of-thought (CoT) reasoning through

prompt engineering, data augmentation, or reflec-
tive learning. While we acknowledge these valu-
able contributions, we clarify here how MetaLadder
differs fundamentally from these approaches.

Beyond the “Problem → CoT → Answer”
Paradigm. Works such as RefAug and Critique
Fine-Tuning introduce reflective strategies and post-
hoc rationales that deviate from the standard CoT
pipeline. However, MetaLadder takes a different
route by incorporating explicit analogical reasoning
and problem restatement directly into the training
data, enabling the model to generalize reasoning
patterns through structured learning, not just reflec-
tive inference.

Comparison to Plan-and-Solve Prompting.
The Plan-and-Solve method focuses on optimiz-
ing zero-shot prompts by asking the model to plan
before solving(Wang et al., 2023). This process is
applied only at test time and does not alter train-
ing data. In contrast, MetaLadder uses a teacher
model to extract problem-solving strategies and
encodes these strategies into the training samples
themselves, providing the model with richer struc-
tured supervision.

Comparison to Question Augmentation. (Li
et al., 2024) augment training data by generating
additional similar questions, thereby improving ro-
bustness through data diversity. However, this pro-
cess does not involve explicit reasoning over the
analogous questions. In MetaLadder, the model
is not only exposed to similar problems, but also
guided to reflect on their structures and solutions
before answering the target problem—enabling
analogical reasoning transfer rather than mere data
expansion.

Key Novelty. The core novelty of MetaLadder
lies in its integration of three synergistic compo-
nents into training:

• Strategy learning: Explicit guidance on prob-
lem type and solution method.

• Analogical reasoning: Use of structurally/se-
mantically similar problems with CoT solu-
tions as scaffolds.

• Problem restatement: Prompted rephrasing
of the original question to deepen understand-
ing before solution.

Together, these elements simulate a human-like
learning pattern and lead to consistently improved
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performance across multiple datasets and model
scales. We believe this structured training formula-
tion goes beyond prior reflective or augmentation-
based techniques, and offers a new direction for
reasoning-aware data design.

D More cases

D.1 Inference Cases

We present more cases in this section to show the
generated predictions of our MetaLadder trained
model.

D.2 Error Analysis

Below, we highlight a typical failure case, analyze
common errors, and discuss potential directions for
improvement.

Failure Example. Consider the problem shown
in Table 17. In this case, the model correctly gener-
ated a similar problem, but made calculation errors
in both solutions. The solution to the similar prob-
lem should have been 26 pints (3.25× 4× 2), and
the solution to the original problem should have
been 20 pints (2.5× 4× 2).

Other Common Error Types. In addition to er-
rors in calculation, we observe the following com-
mon issues in the model’s reasoning process:

• When the solution to the analogous problem is
incorrect, the same mistake often propagates
into the solution for the original problem.

• In some cases, the model fails to correctly
identify or apply the problem type and solu-
tion method (referred to as "strategy"), leading
to incorrect reasoning from the outset.

• We also observe enumeration errors or miss-
ing steps during multi-step reasoning, espe-
cially in more complex tasks.

Performance Across Problem Types. MetaLad-
der improves over standard CoT in algebra prob-
lems but shows more limited gains in calculus and
number theory. This suggests that analogical trans-
fer is more effective for concrete reasoning tasks
and less so for abstract domains requiring deeper
understanding.

Directions for Improvement. To address these
issues, we propose:

• Step enumeration and coverage: Enhance
the model’s ability to break down complex
problems, especially in advanced domains like
calculus and number theory.

• Self-correction: Introduce fine-tuning exam-
ples where the model corrects its own errors,
fostering reflective reasoning.

4345



Data Annotation Prompt

You are a professional math teacher, and your goal is to teach your student to learn a given math problem. Identify the
type of the given problem and the name of the solution method. Then, generate a similar problem with its solution.

## Example 1:
### Original Problem:
Youngsville had a population of 684 people. The town had a growth spurt and the population increased by 25% then
they witnessed that 40% of the population moved away. What is the current population?

### Solution to the Original Problem:
The town had 684 people, and then had a 25% growth spurt, so the population increased by 684 * 0.25 = 171 people.
This increase brought the population to 684 + 171 = 855 people. 40% of the population moved away, so 855 * 0.40 =
342 people moved away. The new population is 855 - 342 = 513 people. The answer is 513.

### Type of Problem and Solution Method:
This is a consecutive percentage change problem. The solution method involves applying the growth factor first, then
applying the reduction factor. The key to solve the problem is to understand the concept of relative increase and decrease
percentages.

### Similar Problem:
A company started with 800 employees. After one year, the workforce increased by 20%, and then 30% of the new
workforce decided to quit due to relocation. How many employees remain at the company?

### Solution to the Similar Problem:
1. Initial employees: 800.
2. Increase by 20%: 20% of 800 is 160, so the workforce grows to 800 + 160 = 960.
3. Then, 30% of these 960 employees quit: 30% of 960 is 288, so 288 employees leave.
4. Remaining employees: 960 - 288 = 672. Therefore, the final number of employees is 672.
## Example 2:
### Original Problem:
Solve the equation (x - 99)(x - 101) = 8.

### Solution to the Original Problem:
Let t=x-100. Then the equation becomes (t - 1)(t + 1) = 8, which transforms into t2 - 1 = 8. Therefore, t = 3 or t = -3,
and accordingly we get x = 97 or x = 103.

### Type of Problem and Solution Method:
This is a quadratic equation problem solved by introducing a substitution to simplify the expression. The solution
method involves recognizing a suitable substitution that transforms the equation into a simpler form. The key to solving
the problem is understanding how to use algebraic manipulation to facilitate solving equations.

### Similar Problem:
Solve the equation (x - 50)(x - 52) = 4.

### Solution to the Similar Problem:
1. Notice that the middle point between 50 and 52 is 51, so let t = x - 51.
2. Then (x - 50) = (t + 1) and (x - 52) = (t - 1).
3. The equation becomes (t + 1)(t - 1) = 4 ⇒ t2 - 1 = 4 ⇒ t2 = 5 ⇒ t =

√
5 or t = −

√
5.

4. Substituting back: x = t + 51.
- If t =

√
5, then x = 51 +

√
5.

- If t = −
√
5, then x = 51−

√
5.

Hence, the solutions are x = 51 +
√
5 or x = 51−

√
5.

### Original Problem:
{problem}

### Solution to the Original Problem:
{solution}

Table 11: Annotation Prompt.
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Answer Augmentation Prompt

You are a professional math teacher, and your goal is to teach your student to learn a given math problem. Please
augment the original solution with a step-by-step breakdown.

## Example 1:
### Problem: Youngsville had a population of 684 people. The town had a growth spurt and the population increased by
25% then they witnessed that 40% of the population moved away. What is the current population?

### Original Solution:
The town had 684 people, and then had a 25% growth spurt, so the population increased by 684 * 0.25 = 171 people.
This increase brought the population to 684 + 171 = 855 people. 40% of the population moved away, so 855 * 0.40 =
342 people moved away. The new population is 855 - 342 = 513 people. The answer is 513.

### Augmented Solution:
1. Initial population: 684.
2. Growth by 25%: 25% of 684 is 171, so the population increases to 684 + 171 = 855.
3. 40% of 855 moved away: 40% of 855 is 342, so 342 people moved away.
4. The remaining population is 855 - 342 = 513.
Therefore, the final population is 513.

## Example 2:
### Problem:
Solve the equation (x - 99)(x - 101) = 8.

### Original Solution:
Let t = x− 100. Then the equation becomes (t− 1)(t+ 1) = 8, which transforms into t2 − 1 = 8. Therefore, t = 3
or t = −3, and accordingly we get x = 97 or x = 103.

### Augmented Solution:
1. Notice that the middle point between 99 and 101 is 100, so let t = x - 100.
2. Then (x− 99) = (t+ 1) and (x− 101) = (t− 1).
3. The equation becomes (t+ 1)(t− 1) = 8 ⇒ t2 − 1 = 8 ⇒ t2 = 9 ⇒ t = 3ort = −3.
4. Substituting back: x = t + 100.
- If t = 3, then x = 100 + 3.
- If t = -3, then x = 100 - 3.
Hence, the solutions are x = 103 or x = 97.

### Problem:
{problem}

### Original Solution:
{solution}

Table 12: Answer Augmentation Prompt.

Training and Evaluation Prompt

### Instruction:
{question}

### Response: Let’s think step by step.

Table 13: Training and Evaluation Prompt.

Method #Sample GSM8K MATH ASDiv CM GE DM

CoT 15K 82.4 59.1 90.1 43.4 52.5 60.0
MetaLadder 15K 85.9 62.4 92.0 44.5 52.2 67.7

Table 14: Comparison of CoT and MetaLadder on Qwen2.5-Math-7B. All methods are trained with 15K samples.
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Model GSM8K MATH ASDiv CM GE DM Avg.

LLaMA-CoT 61.5 19.4 73.2 16.6 19.5 26.3 36.08
LLaMA-MetaLadder 65.0 20.9 77.7 16.7 20.0 26.8 37.85

DeepSeek-CoT 64.2 34.3 81.5 31.4 29.4 43.0 47.30
DeepSeek-MetaLadder 68.1 35.8 82.5 30.1 36.9 45.6 49.83

Table 15: Comparison of CoT and MetaLadder using data generated by LLaMA3.1-70B-Instruct.
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Example D.1: Case in Math: Polynomial Roots Prob-
lem

Question: Compute a + b + c, given that a, b, and c are
the roots of 1

x
+ 5x2 = 6x− 24.

CoT: We can rewrite the equation as 5x3−6x2−x+24 =
0. By the rational root theorem, the only possible rational
roots are ±1, ±2, ±3, ±4, ±6, ±8, ±12, and ±24. We
can check that x = 2 is a root, so 5x2 − 13x + 12 =

0. The roots of this quadratic are x = 13±√
169−240
10

=
13±√−71

10
= 13±i

√
71

10
. Thus, the sum of the roots is 2 +

13+i
√

71
10

+ 13−i
√
71

10
= 3.

The answer is 3 .
MetaLadder: This is a polynomial equation problem
where we need to find the sum of the roots of a polynomial.
The solution method involves rearranging the equation to a
standard form and using Vieta’s formulas to find the sum
of the roots.
Similar Problem: Compute a+ b+ c, given that a, b, and
c are the roots of 1

x
+ 4x2 = 5x− 15.

Solution to the Similar Problem: We can rewrite the
equation as 4x3 − 5x2 +5x− 1 = 0. By Vieta’s formulas,
the sum of the roots is 5

4
.

Original Problem: ...
Solution to the Original Problem: We can rewrite the
equation as 5x3 − 6x2 +6x− 1 = 0. By Vieta’s formulas,

the sum of the roots is 6
5
. Thus, the answer is

6

5
.

Table 16: Model prediction example on MATH.

Example D.2: Error Case

Question: There are two pints in one quart and four quarts
in one gallon. How many pints are there in 2 1

2
gallons of

milk?

Model Prediction: This is a unit conversion problem in-
volving the conversion of gallons to pints. The solution
method involves converting the mixed number of gallons
to a decimal and then multiplying by the conversion factor
to find the total number of pints.
Similar Problem: There are two pints in one quart and
four quarts in one gallon. How many pints are there in 3 1

4
gallons of juice?
Solution to the Similar Problem:
1. Convert 3 1

4
gallons to a decimal: 3 1

4
= 3.25 gallons.

2. Convert gallons to pints: 3.25 gallons × 4 quarts/gallon
× 2 pints/quart = 13 pints.
Thus, there are 13 pints in 3 1

4
gallons of juice.

Solution to the Original Problem:
2 1
2

gallons is the same as 2.5 gallons.
There are 2.5 gallons × 4 quarts/gallon × 2 pints/quart =
10 pints in 2 1

2
gallons of milk.

Final Answer: 10 .

Table 17: Error Case.
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Example D.3: Case in MATH

Question: Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If
each exit is at least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

CoT: The distance between exit 41 and exit 50 is 100 km. If each exit is at least 6 km from the next exit, the
distance between exit 47 and exit 48 is at least 12 km. The longest possible distance between exit 47 and exit 48 is 12 km.
Final Answer: 12 .

MetaLadder: This is a problem involving the arrangement of objects (exits) with constraints on the distances
between them. The solution method involves setting up inequalities based on the given conditions and then solving for the
maximum distance between two specific exits.

Similar Problem:
Exits on a highway are numbered consecutively from 1 to 40. The distance from exit 31 to exit 40 is 80 km. If each exit is at
least 5 km from the next exit, what is the longest possible distance, in kilometers, between exit 37 and exit 38?

Solution to the Similar Problem:
1. The distance from exit 31 to exit 40 is 80 km, which means the distance from exit 31 to exit 32 is at least 5 km.
2. The distance from exit 32 to exit 33 is at least 5 km, and so on.
3. The total distance from exit 31 to exit 38 is:

• From exit 31 to exit 32: 5 km
• From exit 32 to exit 33: 5 km
• From exit 33 to exit 34: 5 km
• From exit 34 to exit 35: 5 km
• From exit 35 to exit 36: 5 km
• From exit 36 to exit 37: 5 km
• From exit 37 to exit 38: 5 km

4. Therefore, the total distance from exit 31 to exit 38 is:

5 km × 7 = 35 km

5. The distance from exit 38 to exit 40 is:

80 km − 35 km = 45 km

6. The distance from exit 37 to exit 38 is:

45 km − 5 km = 40 km

Thus, the longest possible distance between exit 37 and exit 38 is **40 km**.

Original Problem:
Exits on a highway are numbered consecutively from 1 to 50. The distance from exit 41 to exit 50 is 100 km. If each exit is at
least 6 km from the next exit, what is the longest possible distance, in kilometers, between exit 47 and exit 48?

Solution to the Original Problem:
The distance from exit 41 to exit 50 is 100 km, which means the distance from exit 41 to exit 42 is at least 6 km.
The distance from exit 42 to exit 43 is at least 6 km, and so on.
The total distance from exit 41 to exit 48 is:

• From exit 41 to exit 42: 6 km
• From exit 42 to exit 43: 6 km
• From exit 43 to exit 44: 6 km
• From exit 44 to exit 45: 6 km
• From exit 45 to exit 46: 6 km
• From exit 46 to exit 47: 6 km
• From exit 47 to exit 48: 6 km

Therefore, the total distance from exit 41 to exit 48 is:
6 km * 7 = 42 km
The distance from exit 48 to exit 50 is:
100 km - 42 km = 58 km
The distance from exit 47 to exit 48 is:
58 km - 6 km = 52 km
Final Answer: 52 .
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Example D.4: Case in MATH: Trigonometry

Question: Find csc(−120◦).

CoT: We have csc(−120◦) = 1
sin(−120◦) = 1

sin(120◦) = 1√
3

2

=
2
√
3

3
.

Final Answer:
2
√
3

3
.

MetaLadder: This is a trigonometric function evaluation problem. The solution method involves using the prop-
erties of the cosecant function and the reference angle to find the value of the cosecant at a given angle.

Similar Problem:
Find csc(−135◦).

Solution to the Similar Problem:
1. The angle −135◦ is in the third quadrant, where the cosecant function is negative.
2. The reference angle for −135◦ is 135◦ − 180◦ = −45◦.
3. The cosecant of −45◦ is csc(−45◦) = −

√
2.

4. Therefore, csc(−135◦) = −
√
2.

Thus, the final answer is −
√
2 .

Original Problem:
Find csc(−120◦).

Solution to the Original Problem:
The angle −120◦ is in the third quadrant, where the cosecant function is negative. The reference angle for −120◦ is

120◦ − 180◦ = −60◦. The cosecant of −60◦ is csc(−60◦) = − 2√
3

. Therefore, csc(−120◦) = − 2√
3

.

Final Answer: − 2√
3

.
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Example D.5: Case in GSM8K: Algebra

Question: A football team played 22 games. They won 8 more than they lost. How many did they win?

CoT: If they won 8 more than they lost, then they lost 22-8=14 games. So they won 22-14=8 games.
Final Answer: 8 .

MetaLadder: This is a problem involving a system of equations based on relationships between wins, losses,
and total games played. The solution method involves setting up equations based on the given information and solving for the
unknowns.

Similar Problem:
A basketball team played 30 games. They won 10 more than they lost. How many did they win?

Solution to the Similar Problem:
1. Let the number of games won be w.
2. The number of games lost is w − 10.
3. The total number of games played is 30, so we have the equation:

w + (w − 10) = 30

4. Simplifying this gives:
2w − 10 = 30

5. Adding 10 to both sides:
2w = 40

6. Dividing by 2:
w = 20

Thus, the team won 20 games.

Original Problem:
A football team played 22 games. They won 8 more than they lost. How many did they win?

Solution to the Original Problem:
Let the number of games won be w. The number of games lost is w − 8. The total number of games played is 22, so we have
the equation:

w + (w − 8) = 22

2w − 8 = 22

2w = 30

w = 15

Final Answer: 15 .
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Example D.6: Case in Math

Question: Simplify [
1

1− tan2 x
+

1

1− cot2 x
].

CoT: We have[
1

1− tan2 x
+

1

1− cot2 x
] =

1

cos2 x− sin2 x
+

1

sin2 x− cos2 x
=

1

cos2 x− sin2 x
− 1

cos2x− sin2x
= 0

]. Final Answer: 0

MetaLadder: This is a trigonometric simplification problem. The solution method involves using the Pythagorean identities
to express the given expression in terms of sine and cosine, and then simplifying the resulting expression.

Similar Problem:
Simplify [

1

1− sin2 x
+

1

1− cos2 x
].

Solution to the Similar Problem:
Using the Pythagorean identity, we have 1−sin2 x = cos2 x and 1−cos2 x = sin2 x. Thus,

1

1− sin2 x
+

1

1− cos2 x
=

1

cos2 x
+

1

sin2 x
=

sin2 x+ cos2 x

sin2 x cos2 x
=

1

sin2 x cos2 x
.

Original Problem:

Simplify
[

1

1− tan2 x
+

1

1− cot2 x

]
.

Solution to the Original Problem

1. Start with the given expression: [
1

1− tan2 x
+

1

1− cot2 x
].

2. Use the Pythagorean identity: [1− tan2 x =
1

cos2 x
and 1− cot2 x =

1

sin2 x
].

3. Substitute these identities into the expression:
1
1

cos2 x

+
1
1

sin2 x

= cos2 x+ sin2 x.

4. Since cos2 x+ sin2 x = 1, we have: cos2 x+ sin2 x = 1.

5.Final Answer: 1

Table 18: Case in MATH.
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Example D.7: Case in MATH: Exponentiation

Question: Compute (23)(55) in your head.

CoT: We have (23)(55) = (23)(53)(52) = (103)(25) =
100000.
Final Answer: 100000 .

MetaLadder: This is a multiplication problem in-
volving powers of different bases. The solution method
involves simplifying the expression by breaking it down
into smaller parts and then multiplying the results.

Similar Problem:
Compute (32)(43) in your head.

Solution to the Similar Problem:
1. First, calculate 32:

32 = 9

2. Next, calculate 43:

43 = 4× 4× 4 = 16× 4 = 64

3. Now, multiply the results:

9× 64 = 576

Thus, the final answer is 576 .

Original Problem:
Compute (23)(55) in your head.

Solution to the Original Problem:
We have 23 = 8 and 55 = 5 · 25 · 25 = 5 · 625 = 3125.
Thus, the answer is 8 · 3125 = 25000 .

Final Answer: 25000 .

Table 19: Case in MATH: Exponentiation

Example D.8: Case in GSM8K: Basic Algebra

Question: A treasure hunter found a buried treasure chest
filled with gems. There were 175 diamonds, 35 fewer
rubies than diamonds, and twice the number of emeralds
than the rubies. How many of the gems were there in the
chest?

CoT: There were 175− 35 = 140 rubies.
There were 140× 2 = 280 emeralds.
There were 175 + 140 + 280 = 600 gems in the chest.
Final Answer: 600 .

MetaLadder: This is a problem involving basic
arithmetic operations (addition and multiplication) to find
the total number of items based on given relationships.
The solution method involves calculating the quantities of
each type of gem based on the relationships provided.

Similar Problem:
A collector found a collection of antique coins. There were
200 silver coins, 40 fewer gold coins than silver coins, and
three times the number of copper coins than the gold coins.
How many coins were there in total?

Solution to the Similar Problem:
1. Silver coins: 200.
2. Gold coins: 200− 40 = 160.
3. Copper coins: 160× 3 = 480.
4. Total coins: 200 + 160 + 480 = 840.
Therefore, the total number of coins in the collection is
840 .

Original Problem:
A treasure hunter found a buried treasure chest filled with
gems. There were 175 diamonds, 35 fewer rubies than
diamonds, and twice the number of emeralds than the
rubies. How many of the gems were there in the chest?

Solution to the Original Problem:
There were 175− 35 = 140 rubies.
There were 140× 2 = 280 emeralds.
There were 175 + 140 + 280 = 595 gems in the chest.
Final Answer: 595 .

Table 20: Case in MATH: Basic Algebra
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