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Abstract

Intelligent vehicle cockpits present unique chal-
lenges for API Agents, requiring coordination
across tightly-coupled subsystems that exceed
typical task environments’ complexity. Tradi-
tional Function Calling (FC) approaches oper-
ate statelessly, requiring multiple exploratory
calls to build environmental awareness before
execution, leading to inefficiency and limited
error recovery. We introduce VehicleWorld,
the first comprehensive environment for the au-
tomotive domain, featuring 30 modules, 250
APIs, and 680 properties with fully executable
implementations that provide real-time state
information during agent execution. This en-
vironment enables precise evaluation of vehi-
cle agent behaviors across diverse, challeng-
ing scenarios. Through systematic analysis,
we discovered that direct state prediction out-
performs function calling for environmental
control. Building on this insight, we pro-
pose State-based Function Call (SFC), a novel
approach that maintains explicit system state
awareness and implements direct state transi-
tions to achieve target conditions. Experimen-
tal results demonstrate that SFC significantly
outperforms traditional FC approaches, achiev-
ing superior execution accuracy and reduced
latency. We have made all implementation code
publicly available on GitHub1.

1 Introduction

API Agents represent a paradigm shift in intelli-
gent interaction by combining large language mod-
els’ cognitive capabilities with external tools’ ex-
ecution capabilities (Durante et al., 2024; Zhang
et al., 2025; Qu et al., 2025, inter alia). These
agents distinguish themselves through autonomous
decision-making, sophisticated reasoning abilities,
and seamless tool interaction, transcending tradi-

*Equal contribution.
1https://github.com/OpenMOSS/VehicleWorld

User: The weather is hot, turn on the air conditioner, then play my music collection. 

Device
Music SeatAirconditioner DoorRadio Steeringwheel

Direct Function Call

Assistant:
I will first check what functional modules the
system has.
search_module()

User:
{"music", "airconditioner"...}

Assistant:
I will check what APIs are available for the music
and airconditioner module.
search_api([
    "music",
    "airconditioner"
])

User:
def Environment.to_dict():
""" Get temperature information"""
def airconditioner.switch(switch:bool, temp: int):
""" Turn on or off the in-car air conditioner"""
def music.view_favorite_play_list():
"""View my favorite music list""""
def music.add_current_play_List(music: Str):
"""Add and play the current playlist"""
...

Assistant: 
I will first check the current ambient temperature.
Environment.to_dict()

State-based Function Call (ours)

sound_channel: None
temperature: 27

is_playing: False
current_play_list: []

temperature: 27
is_on: False

Assistant: 
I will observe the environment and then generate
state transition code to solve this problem.

Environment.sound_channel = music
Environment.temperature = 24

airconditioner.is_on = True
Environment.temperature = 24

music.is_playing = True
music.current_play_list = music.favorite.play_list

Assistant: 
Now I will call the API to solve your problem.

airconditioner.switch(True, 24)
play_list = music.view_favorite_play_list()
music.add_current_play_List(play_list[0])

User:
temperature: 27
...

sound_channel: music
temperature: 24

is_playing: True
current_play_list: 
["music01"...]

temperature: 24
is_on: False

Figure 1: Direct Function Call (FC) versus State-based
Function Call (SFC)

tional dialogue systems’ limitations (Xi et al., 2025;
Jin et al., 2024; Cao et al., 2024).

Intelligent vehicle cockpits present a uniquely
challenging domain for API Agents, integrating
numerous tightly-coupled subsystems from enter-
tainment and navigation to vehicle diagnostics and
environmental controls. Within this environment,
agents must orchestrate diverse systems while al-
lowing drivers to maintain focus on the road (Ma
et al., 2024a). Despite their importance to modern
vehicle systems, the field lacks a comprehensive
evaluation framework for these cockpit agents, pre-
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venting systematic assessment of their performance
across implementations (Khiabani et al., 2025).

Figure 1 illustrates the challenges with a com-
mon request: “The weather is hot, turn on the air
conditioner, then play my music collection.” This
seemingly simple instruction requires coordination
across multiple subsystems. Traditional Function
Call (FC) approach operates statelessly, sequen-
tially exploring available modules and APIs, ne-
cessitating multiple exploratory calls to build envi-
ronmental awareness before execution. As noted
by Guo et al. (2024), this approach becomes prob-
lematic when API calls fail, as agents struggle to
recover without a macroscopic understanding of
the global state. Additionally, agents can only dis-
cern execution results through limited API return
information, which may lead to incorrect conclu-
sions about task success or failure.

To address these limitations, we developed Vehi-
cleWorld, a virtual intelligent cockpit environment
supporting 30 modules, 250 APIs, and 680 prop-
erties. All APIs are executable code implementa-
tions, with each corresponding to a module instance
method implemented through attribute state modifi-
cations. Based on our comprehensive environment
construction, we discovered that state information
significantly enhances agent call accuracy. We
propose State-based Function Call (SFC), which
explicitly constructs state transition processes by
maintaining awareness of the system’s current state
and directly implementing necessary transitions to
achieve target states. Our contributions include:

• The first comprehensive environment for the
automotive domain that provides real-time
state information during model execution.

• A novel State-based Function Call (SFC) ap-
proach specifically engineered for our Vehi-
cleWorld environment.

• Experiments demonstrate that SFC exhibits
significant improvements in execution accu-
racy and latency reduction compared to FC.

2 Related Work

Tool-Utility Agent Recent studies have demon-
strated that integrating tool-using capabilities sig-
nificantly enhances the adaptability and effective-
ness of agents in complex environments (Mialon
et al., 2023; Schick et al., 2023). Tools expand
agents’ operational range, enabling flexible inter-
actions with dynamic environments (Chen et al.,

2024a; Nakano et al., 2021; Ma et al., 2024b),
provide valuable feedback mechanisms for self-
reflection (Yu et al., 2024; Liu et al., 2024c; Wang
et al., 2024), and bridge knowledge gaps encoun-
tered by large language models (Li et al., 2025). Ve-
hicle scenarios present unique challenges at the in-
tersection of real-time responsiveness, multimodal
human-machine interaction, and strict safety re-
quirements. Despite considerable advancements in
tool-utility agents, research specifically tailored to
intelligent vehicle cockpits remains limited. Mod-
ern vehicle cockpits have evolved into human-
machine interactive systems (Ma et al., 2024a), un-
derscoring the need for dedicated studies address-
ing their specialized design, user intentions, and
evaluation methodologies.

Simulated World World models enable agents to
build internal representations of environments, en-
hancing decision-making capabilities. These mod-
els can be categorized as model-based worlds (Ha
and Schmidhuber, 2018) that represent environ-
ments through learned neural network parameters,
or code-based worlds (Tang et al., 2024; Trivedi
et al., 2024) that provide more interpretable repre-
sentations by encoding environmental dynamics as
executable code. While WorldCoder (Tang et al.,
2024) constructs world models through Python
programs derived from environmental interactions,
and AppWorld (Trivedi et al., 2024) creates a simu-
lated environment of applications with numerous
APIs, these approaches have limitations for auto-
motive cockpit environments: (1) Apps operate in
isolation, lacking the systemic coupling necessary
between modules; (2) AppWorld cannot explicitly
represent real-time application states, limiting mod-
els’ understanding of current system conditions. To
address these limitations, VehicleWorld provides
an executable intelligent cockpit environment with
well-defined APIs and direct state observability,
enabling agents to develop both procedural and
declarative knowledge in automotive scenarios.

Function Call Function calling has emerged as a
critical mechanism for transforming LLMs into ef-
fective tool-using agents. Recent advancements
include specialized multi-task learning frame-
works (Abdelaziz et al., 2024), data-centric ap-
proaches generating high-quality datasets (Liu
et al., 2024d,b), parallel function execution
paradigms (Zhang et al., 2016), and robust secu-
rity frameworks (Srinivasan et al., 2023). While
these approaches have made significant progress,
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they predominantly focus on optimizing the func-
tion calling process itself, either by enhancing
model instruction-following ability (Chen et al.,
2024c) or simplifying complex function calling se-
quences (Huang et al., 2024). Our work takes a
complementary direction by reconceptualizing tool
use through a state-based framework, introducing
a state-transparent environment where agents di-
rectly access and operate system states, enabling
them to predict desired goals and generate efficient
state transition code.

3 VehicleWorld

To simulate realistic intelligent cockpit environ-
ments, we introduce VehicleWorld, the first com-
prehensive environment for the automotive domain
that provides real-time state information during
agent execution and supports precise evaluation of
vehicle agent behaviors.

3.1 Device

As shown in Figure 2, we selected 30 common de-
vices from intelligent cockpit systems, spanning
four domains: Multimedia, Touch Control, Car
Control, and Lighting. For each device, we col-
lected commonly used APIs based on real-world
usage (see Appendix G for API examples).

We abstracted each device into a corresponding
module class by extracting relevant device prop-
erties for each API. These properties formed the
foundation for constructing comprehensive object-
oriented device classes. Within each class, we de-
fined precise function signatures and implemented
them with robust parameter validation and struc-
tured return formats. The API implementations
leveraged a flexible combination of get and set
methods operating on predefined attributes, effec-
tively modeling the intended device behavior. This
systematic approach resulted in the creation of 30
device classes encompassing 250 API methods and
680 attributes (Appendix E.2 demonstrates detailed
class definitions).

To support direct function calls, we also imple-
mented two utility APIs inspired by Trivedi et al.
(2024): search_module and search_api. Agents
use these to discover available modules and their
APIs before executing functional calls.

3.2 Global Attributes

In contrast to the isolated smartphone applications
in AppWorld (Trivedi et al., 2024), intelligent cock-

pit systems operate as an ecosystem of tightly cou-
pled devices that share and compete for limited
system resources. This interdependence creates in-
herent challenges: the audio channel, for instance,
can only be utilized by a single device at any given
time, leading to potential conflicts among music
playback, navigation instructions, and radio broad-
casts. Similarly, system-wide properties such as
volume represent global parameters that can be
modified through multiple APIs, necessitating care-
ful coordination to maintain system consistency
and appropriate user experience.

To manage shared resources, we implemented a
global Environment class using the Singleton pat-
tern. This centralized component maintains system-
wide attributes including sound channel, volume,
and cabin temperature. It provides standardized ac-
cess methods with concurrency control to prevent
conflicts. Device classes must interact with shared
attributes exclusively through this interface rather
than maintaining local copies. Implementation de-
tails are provided in Appendix E.3.

3.3 World State

To simulate diverse cockpit conditions, we im-
plemented init() methods across all 30 device
classes based on real-world usage patterns. These
methods establish initial values for device at-
tributes, creating consistent and realistic starting
states. Through strategic combinations of these
initialization methods, we generated 302 diverse
initialization scenarios. Furthermore, we serial-
ized the relevant device states for each scenario
into structured JSON documents. These documents
capture both device-level attributes (e.g., naviga-
tion routes, music playback) and global settings
(e.g., volume, temperature, sound channel). This
standardized format enables precise scenario re-
production and supports systematic evaluation of
state-based function call. In Table 1, we demon-
strate two example JSON documents.

4 State-based Function Call

Through the precise modeling of system states in
VehicleWorld, we are able to analyze how the sys-
tem evolves before and after function calls. We
observe that in many scenarios, tasks can be ac-
complished by generating short state transitions
instead of full API call sequences. Based on this in-
sight, we propose State-based Function Call (SFC),
which predicts the target system state and generates
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Multimedia

Light

Touch Control

Car Control

robshare

...

sound channel

temperature

language system of units

volume

sound channel

temperaturelanguage

system of units

volume

@classmethod
def get_volume():
"""Get environment volume."""

...
@classmethod
def set_volume():
"""Set environment volume."""

...
@classmethod
def search_module():
"""Get available modules."""

...
@classmethod
def search_api(modules):
"""Get the module's API."""

...

Global AttributesDevice Environment

Query: Turn on the radio and
turn the volume up to 20. search_module() search_api(["radio"]) radio_play()

radio_volume_set(20)

radio["is_playing"]=true

sound_channel="radio"
volume=20state 1 state 2SFC

FC

module API

share

share

share

state 1

Figure 2: Overview of VehicleWorld. Above is the composition of VehicleWorld, which consists of 30 devices and
680 attributes. To maintain common attributes within the system, we have established a global static class named
Environment. Below is a comparison between our proposed SFC and FC.

minimal code to fulfill the user’s intent.

4.1 Definition of Function Call

In the Function Call (FC) paradigm, the agent com-
pletes tasks by generating and executing sequences
of API calls. Each function call fi is formally de-
fined as fi = F(qi, A), where qi represents the
user query at step i, and A denotes the set of avail-
able APIs. The agent interprets the query, selects
a relevant API from A, and generates a structured
function call with the appropriate parameters. In
our setup, the agent first invokes search_module
and search_api to retrieve the list of available de-
vices and their corresponding APIs (see Figure 2).
Based on the retrieved APIs, it then constructs and
executes function calls to fulfill the user’s intent.

4.2 Definition of State-based Function Call

In the State-based Function Call (SFC) paradigm,
the agent completes tasks by directly predicting
desired system states and generating efficient tran-
sition code. At each step i, the agent processes the
user query qi alongside the current system state si
to predict the subsequent state:

si+1 = SF(qi, si), (1)

where SF represents the state transition function,
si is provided in the JSON format described in Sec-
tion 3.3, and si+1 is the target state. This approach
enables the agent to generate concise transition
code that precisely fulfills user intent. In our imple-
mentation, we adopt a two-stage approach. First,
we provide the agent with the complete JSON state
information of all devices, enabling it to select the
relevant devices that need to be operated based on
the current state and user query. After identifying
the pertinent devices, we then provide the agent
with the specific state JSON of only those selected
devices to predict the target state and generate the
corresponding state transition code. Note that these
two stages operate independently without shared
context.

5 Vehicle Benchmark

To evaluate model performance in VehicleWorld,
we developed a comprehensive benchmark com-
prising natural, diverse, and challenging intelligent
cockpit scenarios. Our approach includes a special-
ized data generation pipeline that maintains state
continuity across interactions and an evaluation
methodology that analyzes state transition patterns.
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Please create a scenario. init() API

<scenario>
<inits>radio.init()</inits>
<query>Turn on the radio</query>
<api_call>radio_play()</api_call>
</scenario>

radio.init() radio_play()

whether the query is executable given the state

whether the API call is aligned with the query

whether the query results in any modification of the state

<query>Turn on the radio</query>

<api_call>radio_play()</api_call>

<inits>radio.init()</inits>S1

S2

Query1 StatusAPI Query1

```python
radio_play()
```

```python
radio["is_playing"]=true
```

Code Feedback Code Feedback Status

Query2

delete

StatusAPI Query2

Completed! Completed!

Scenario Construction Evaluation

FC SFC

S1 S2

Figure 3: Overview of Scenario Construction and Evaluation. The left part shows the process of scenario
generation, including device initialization, query creation, API selection, and validation through execution and
expert review. The right part illustrates the evaluation pipeline, where FC executes API calls directly, while SFC
manipulates system states explicitly and incorporates state information into multi-turn interactions.

Scenario 1: Navigating to Shanghai via Nanjing, with the navigation volume set to 80 and no video playback.

Environment
• "volume": 80
• "sound_channel": "navigation"

Navigation
• "is_active": true
• "destination": "Shanghai"
• "midway": "Nanjing"

Video
• "is_playing": false
• "quality": "1080P"
• "current_video": null

Scenario 2: Turn on the air conditioner and lower it to 20 degrees, close the car door.

Environment
• "temperature": 20
• "speaker":"driver’s seat"

AirConditioner
• "is_on": true
• "temperature": 20

Door
• "is_locked": false
• "status": "closed"

Table 1: State document. Two common user scenarios in intelligent driving systems, each corresponding to
different device configurations and operational states. These scenarios are stored as JSON files within the system.

5.1 Setup

To construct realistic and diverse scenarios, we
begin by selecting appropriate devices and their
associated APIs based on real-world user cases.
For each scenario, we select the relevant devices
and corresponding init() method and API. Then,
we prompt Claude 3.7 Sonnet to generate a struc-
tured scenario following our predefined format (see
Appendix F), as illustrated in Figure 3 (left).

As illustrated in Figure 3, the generated scenario
is organized using HTML-style tags: <scenario>
wraps the entire scenario, <inits> defines the ini-
tialization methods, <query> specifies the user re-
quest, and <api_call> represents the API call
needed to fulfill the query. Since VehicleWorld
is an executable environment, we execute both the
<inits> and <api_call> blocks to validate code
correctness. Each execution step modifies the state
of the relevant devices, and we persist the resulting
intermediate states for subsequent evaluation.

In addition to automatic execution checks, each
scenario undergoes manual inspection by domain
experts. They verify (1) whether the query is ex-
ecutable given the current state, (2) whether the
API call is semantically aligned with the query, and
(3) whether the query results in any meaningful
modification of the system state. Only scenarios
that pass all validation criteria are stored in our
benchmark database, including both the original
structured scenario and all execution state records.

5.2 VehicleWorld Benchmark

Through the aforementioned construction process
and expert review, our final dataset contains 1291
tasks, split into Multimedia, Touch Control, Car
Control, and Light splits, based on the types of
devices they involve. Table 2 presents the distribu-
tion of user intents sampled from real-world sce-
narios, highlighting a significant diversity in the
types of interactions, reflecting the wide range of
devices involved. Car Control tasks dominate our
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S-S S-M M-S M-M

Multimedia 59 96 251 53
Touch Control 34 93 107 15
Car Control 135 178 205 173
Light 79 75 159 161

Table 2: Distribution of categories in VehicleWorld
Benchmark. The first S/M indicates single-turn/multi-
turn interactions, while the second S/M indicates sin-
gle/multiple intents per turn.

TC L M CC

Avg Devices 2.03 2.02 2.11 2.06
Avg Unique APIs 2.84 3.54 3.18 3.47
Avg API Calls 3.07 3.86 3.34 3.73

Table 3: Statistics of VehicleWorld Benchmark across
devices. TC refers to Touch Control, L refers to Light,
M refers to Multimedia and CC refers to Car Control.

dataset due to the large number of vehicle control
systems and the critical nature of driving and safety
functions, which demand frequent and varied inter-
actions. The data also shows a strong preference
for multi-round interactions, as users often refine
commands or adjust settings through follow-ups.

The key dataset statistics are presented in Ta-
ble 3. On average, each task engages more than
two devices, utilizes at least four distinct API calls,
and involves approximately 3.5 API calls in total.
The most complex scenarios within our dataset or-
chestrate up to five devices and 13 API calls, 12 of
which are unique. This highlights the complexity
of our dataset, underscoring its challenging nature.

5.3 Metrics

In evaluation, the key insight is that a good assis-
tant should execute user-required actions accurately
while refraining from undesired actions. Based on
this principle, we introduce three evaluation crite-
ria: (1) Whether attributes that should be changed
have indeed been modified; (2) Whether attributes
that should remain same are maintained consis-
tently; and (3) Whether the trends of attribute
changes are correct. Initially, we determine the
expected attribute change by analyzing the differ-
ences between two consecutive interaction rounds
of truth states, thus identifying sets of attributes that
should and should not change. Subsequently, we
compute the model-induced attribute change trends
by analyzing the resulting states from interactions.

We propose three critical metrics: F1 positive,
evaluates the model’s effectiveness in accurately
identifying attributes that require changes; F1 nega-
tive, measures the model’s capability in preserving
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Qwen2.5-32B
Qwen2.5-72B gpt-4o

LLaMA3-8B
DeepSeek-v3

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f T
ok

en
s

222 246 280 227
326

214 219

518
600

449 480

234

1507

522

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f T
ur

ns

FC Turns FC Tokens SFC Turns SFC Tokens

Figure 4: Average interaction turns and output tokens
per task for each model under FC and SFC.

attributes that should remain unchanged; and Ac-
curacy (Acc), indicates the proportion of attributes
with correct change among all attributes intended
for modification. The detailed computation formu-
las for these metrics are provided in Appendix B.

During evaluation, we prompt models to sequen-
tially respond to user queries through multi-turn
interactions, generating either API calls (FC) or
state transitions (SFC). The agent’s code responses
are executed in a local environment, with return
values and logs provided as feedback. In SFC, cur-
rent device states are appended to the feedback for
richer context. The final evaluation scores are com-
puted by averaging results across all interaction
turns. More evaluation details in Appendix A.4.

6 Experiments

6.1 Experimental Setup
Methods. We adopted three prompting-based
decision-making strategies in our experiments un-
der both the Function Call (FC) and State-based
Function Call (SFC) paradigms: ReAct, ReAct +
Reflection, and ReAct without Examples. Detailed
descriptions are provided in Appendix A.2.
Models. We analyzed a range of open-source and
commercial models, detailed in Appendix D.

6.2 Results
Table 4 presents results across all evaluated mod-
els in four domains (Multimedia, Touch Control,
Car Control, and Light), categorized by interac-
tion complexity (S-S, S-M, M-S, and M-M) under
both FC and SFC paradigms for the ReAct strategy.
Models consistently demonstrate superior perfor-
mance under SFC, with average accuracy increas-
ing from 51.1% (FC) to 61.5% (SFC), underscor-
ing the advantage of direct state prediction over
sequential API manipulation. GPT-4o emerges as
the top performer under the FC paradigm (70.2%),
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Model Name Overall
Multimedia Touch Control Car Control Light

S-S S-M M-S M-M S-S S-M M-S M-M S-S S-M M-S M-M S-S S-M M-S M-M
Function Call

Claude-3.7-Sonnet 62.9 74.3 40.0 66.5 48.5 50.5 31.4 90.3 50.6 65.0 38.7 51.9 55.0 57.1 36.0 79.0 59.5
GPT-4o 70.2 77.1 66.1 68.4 56.4 78.1 45.6 92.4 58.4 69.9 60.5 55.9 56.4 75.3 60.3 81.6 62.2
DeepSeek-v3-250324 70.0 65.2 58.1 70.1 59.0 67.4 48.0 92.9 60.6 68.4 56.2 58.6 62.2 73.4 56.3 82.1 66.9
Qwen2.5-7B 33.0 65.0 32.4 49.7 32.3 32.3 11.9 66.6 15.8 17.3 10.9 28.2 21.9 9.1 8.8 29.6 23.1
Qwen2.5-14B 38.0 59.3 33.3 52.5 33.8 32.3 13.0 68.1 24.1 33.8 13.1 35.6 29.2 11.7 9.7 36.1 29.3
Qwen2.5-32B 46.8 62.1 39.6 58.9 35.6 40.6 14.6 77.0 24.8 44.4 22.9 42.1 41.9 22.1 11.8 53.1 44.7
Qwen2.5-72B 58.8 69.9 41.7 63.1 46.5 46.9 15.6 85.6 46.7 60.2 29.6 50.8 56.3 50.6 26.4 72.9 58.3
Llama-3.1-8B 28.7 50.0 22.1 42.5 31.0 26.0 12.5 59.5 15.8 13.5 9.7 25.8 20.1 10.4 8.1 26.7 21.6
Avg. 51.1 65.4 41.7 59.0 42.9 46.8 24.1 79.1 37.1 46.6 30.2 43.6 42.9 38.7 27.2 57.6 45.7

State-based Function Call
Claude-3.7-Sonnet 73.4 72.3 66.6 74.0 55.6 73.8 46.4 94.1 72.8 69.9 68.2 63.2 65.7 74.7 58.0 83.2 69.8
GPT-4o 70.9 67.2 57.3 72.0 56.1 69.8 36.3 90.9 72.8 69.3 55.1 57.3 61.3 77.3 51.1 79.7 64.2
DeepSeek-v3-250324 71.9 67.1 63.9 71.6 54.3 74.9 43.6 93.7 69.4 72.3 60.3 59.7 61.9 74.7 60.0 81.6 66.0
Qwen2.5-7B 49.0 60.3 32.9 55.4 34.9 60.9 12.5 73.9 18.9 46.0 18.4 33.4 32.1 61.4 23.7 65.4 37.3
Qwen2.5-14B 57.3 66.8 33.7 59.8 45.0 62.0 22.4 82.1 41.8 56.1 30.7 42.6 44.9 73.4 27.3 71.8 49.9
Qwen2.5-32B 57.5 65.4 42.1 65.1 47.3 55.7 18.4 81.8 36.5 36.1 27.3 45.7 50.6 72.7 36.4 76.1 56.2
Qwen2.5-72B 64.8 67.5 47.2 65.4 49.7 76.6 34.8 91.1 55.1 58.4 47.0 53.2 52.3 76.6 44.4 78.2 55.9
Llama-3.1-8B 46.8 63.2 43.2 54.9 36.2 50.0 9.9 74.9 24.5 30.8 19.2 31.5 29.8 50.6 18.6 63.7 35.5
Avg. 61.5 66.2 48.4 64.8 47.4 65.5 28.0 85.3 49.0 54.9 40.8 48.3 49.8 70.2 39.9 75.0 54.3

Table 4: Accuracy comparison of models across different control domains and interaction complexities (S-S, S-M,
M-S, M-M) under FC and SFC paradigms. Overall, SFC consistently outperforms FC across all domains and task.
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Figure 5: Impact of World Complexity. Accuracy
across varying levels of world complexity, measured by
the number of relevant devices.

while Claude-3.7-Sonnet performs best under the
SFC paradigm (73.4%). Domain-specific analy-
sis reveals the most pronounced improvements in
Touch Control and Car Control tasks. In Figure 4,
we further analyze the latency differences between
FC and SFC from the perspectives of interaction
rounds and generated token counts. We observe
that SFC significantly reduces both the number
of interaction rounds and generated tokens across
various models, effectively enhancing execution
efficiency and establishing a powerful baseline in
vehicle-based LLM applications.

6.3 Analysis

World Complexity. Figure 5 illustrates Qwen2.5
series performance across increasing world com-
plexity. We simulate complexity gradients by incre-
mentally adding 2, 4, or 6 irrelevant device states
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Figure 6: Scaling Effects in VehicleWorld. Perfor-
mance comparison (Accuracy and F1 Score) across dif-
ferent model parameter scales.

to the ReAct prompting setup, resulting in con-
sistent performance degradation across all models.
Notably, larger models demonstrate superior ro-
bustness as world complexity increases, while the
Qwen2.5-7B model exhibits rapid performance de-
terioration. This pattern suggests that increased
parameter scale enhances models’ capacity to com-
prehend and navigate complex environments.

Scaling Effects. Figure 6 demonstrates the im-
pact of model scaling on both SFC and FC perfor-
mance. As Qwen2.5 model size increases from 7B
to 72B parameters, both methods show improved
performance. FC exhibits larger relative gains with
scaling, while SFC consistently outperforms FC
across all model scales.

Impact of Reflection and Examples. Figure 7
compares three prompting strategies: ReAct, Re-
Act with Reflection, and ReAct without Examples,
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evaluated under both the SFC and FC paradigms for
representative open-source and commercial mod-
els. We observe that removing in-context examples
degrades performance in both paradigms, but the
impact is significantly greater in FC. This suggests
that SFC is more robust to the absence of demon-
strations. Additionally, adding reflection consis-
tently improves results in both SFC and FC. More
experimental results can be found in Table 5 and 6.

State-based vs Rule-based Evaluation. A ma-
jor advantage of constructing executable environ-
ments is the ability to accurately evaluate agent
behaviors. In Figure 8, we compare the differences
between state-based and traditional rule-based eval-
uations for the Qwen-2.5 model. Both automated
evaluation methods are detailed in Appendix A.3.
By comparing with expert evaluation results, we
find that state-based evaluation consistently results
in lower error rates across all model sizes. The
lower error rate under state-based evaluation can
be attributed to its emphasis on task completion
rather than strict adherence to predefined action
sequences, providing a more nuanced assessment
of agent performance in interactive environments.

Reasoning. In Figure 9, we analyze the impact
of extended thinking on task accuracy. We im-
plemented ReAct prompting strategies to encour-
age more comprehensive planning and reasoning
processes. The results reveal nuanced patterns:
under the SFC paradigm, all models experience
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Figure 9: Performance of various models under the FC
and SFC paradigms, with and without reasoning.

performance degradation when reasoning is intro-
duced, suggesting that the streamlined execution
may be disrupted by excessive deliberation. How-
ever, under the FC paradigm, we observe contrast-
ing effects—while GPT-4o and Claude-3.7-Sonnet
show performance decline, Qwen2.5-72B demon-
strates improvement with reasoning. This suggests
that models with initially lower performance in
complex interaction scenarios may benefit from
structured planning, whereas high-performing mod-
els may suffer from overthinking (Chen et al.,
2024b), whereby they generate fabricated facts
that contradict the actual environment state. This
phenomenon highlights the balance between suffi-
cient reasoning and excessive deliberation in agent-
based systems, with the optimal strategy varying
by model capability and execution paradigm.

The Integration of FC and SFC. To further in-
vestigate factors contributing to SFC’s high accu-
racy, we conducted a detailed analysis comparing
error cases between FC and SFC methods. Our
findings reveal that SFC significantly outperforms
FC in device selection accuracy. For ambiguous
user queries, FC may require multiple rounds of en-
vironment exploration to determine target devices,
whereas SFC, with its global environment percep-
tion, can more accurately identify target devices.

However, we observed scenarios where SFC un-
derperforms compared to FC. These cases typically
occur when numerous devices require extensive
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state transition code generation. In complex device
states, FC benefits from high-level API encapsula-
tion, enabling easy manipulation of multiple device
properties and achieving higher accuracy.

Based on these observations, we analyze the in-
tegration of two approaches (FC+SFC): leveraging
SFC’s environment perception capability for de-
vice selection, then providing relevant device APIs
for FC-based calls. The experimental results are
presented in Figure 10. Experimental results show
that the FC+SFC method achieves the highest end-
to-end accuracy. Notably, Qwen3 series models,
due to specialized tool calling training, demonstrate
that FC accuracy can exceed SFC accuracy, show-
casing their powerful tool calling capabilities even
with lower device selection accuracy.

7 Conclusion

We introduced VehicleWorld, the first comprehen-
sive multi-device environment for intelligent vehi-
cle interaction that accurately models the complex,
interconnected systems in modern cockpits. This
environment enables precise evaluation of agent be-
haviors by providing real-time state information
during execution. Building on this foundation,
we constructed the first benchmark for evaluating
vehicle agents, establishing standardized metrics
for comparing different LLMs. Our analysis re-
vealed a critical insight: directly predicting en-
vironment states proves more effective than pre-
dicting function calls in complex, state-dependent
systems. This observation led to our State-based
Function Call (SFC) approach, which maintains
explicit awareness of system state and implements
direct state transitions.

Experimental results demonstrate that SFC sig-
nificantly outperforms traditional function call-
ing, enhancing models’ ability to interpret user
intentions while reducing erroneous function calls.
Furthermore, we identified the complementary
strengths of both paradigms: SFC excels at device
selection due to its global environmental percep-

tion, while FC’s high-level APIs are more efficient
for complex state transitions. This led us to propose
a hybrid FC+SFC approach, which leverages SFC
for device selection before using FC for API exe-
cution. Our experiments confirm that this hybrid
method achieves the highest end-to-end accuracy.

These advancements establish a foundation for
future research in intelligent cockpit systems and
offer valuable insights for agent design in other
complex, multi-device environments.

Limitations

Manual Entity Construction. While our object-
oriented approach to designing and implementing
the world model provides a highly executable, per-
sistent, and inspectable simulation environment, it
still has limitations. Specifically, the lack of an
efficient automated pipeline for constructing entity
classes requires substantial manual effort to verify
and define each device. Additionally, we have not
yet developed an effective method for integrating
the global static Environment class into the con-
struction of individual entities. Future work will
explore more automated and standardized pipelines
for world model construction.

Complex State Representation. Moreover, al-
though we adopt the JSON format to store and
present the world state, the complexity of the envi-
ronment forces us to augment each attribute with
a value, type, and description field to help the
agent understand the meaning of each parameter.
Future research could explore methods to stream-
line the world state representation or improve the
agent’s ability to interpret complex environments.
As discussed in Section 6.3, our experiments show
that model performance tends to degrade as world
complexity increases. Enhancing an agent’s under-
standing of complex environments may therefore
improve its performance in state-based function
call (SFC) tasks under such conditions.
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Ethics Statement

All APIs used in our system were designed and
implemented by domain experts based on real-
world user experiences in intelligent cockpit en-
vironments, combined with personal usage habits.
These APIs do not involve any third-party propri-
etary or private data and are intended strictly for
research purposes. Although the APIs are expert-
defined rather than crowd-sourced, they are derived
from realistic production environments, and thus
offer valuable insights for academic study.

The scenarios included in our benchmark were
created by the participants from Pacific Rim re-
gion. When recruiting participants, we carefully
considered gender and racial balance, while strictly
adhering to local wage standards by compensat-
ing participants at a rate of $20 per hour, in line
with the regional average. We thoroughly informed
all participants about the nature of their work, as
shown in Tables 9, 10, and 11, as well as how their
data would be subsequently utilized, as detailed
in Table 12. To further expand our dataset, we
employed Claude-3.7-Sonnet (Anthropic, 2025) to
generate additional scenarios following our prede-
fined format. In the development of VehicleWorld,
we utilized Claude-3.7-Sonnet to assist us with
code generation. All AI-generated content was
carefully reviewed by human annotators to ensure
that the data contained no personally identifiable
information or offensive content.

Our environment successfully simulates an ex-
ecutable, programmable vehicle cockpit system.
However, it remains a controlled research simula-
tion that may differ significantly from real-world
deployments. Caution should be exercised when
considering the use of this environment as a staging
ground for in-vehicle agents in production systems.
Transitioning from a simulated to a real-world en-
vironment raises critical concerns regarding execu-
tion safety, system reliability, and user interaction
risks, all of which must be rigorously addressed in
future work before deployment.

Finally, we have strictly ensured compliance
with all relevant terms of use in our deployment
of large language models. For commercial mod-
els, we exclusively utilized official APIs and ad-
hered rigorously to their terms of service. For open-
source models, we carefully reviewed all licenses
and ensured our usage complies with their require-
ments; details of these licenses can be found in
Table 7. Throughout our data collection and usage

processes, we have meticulously ensured compli-
ance with relevant legal and ethical standards, and
have provided detailed information to all data con-
tributors regarding the purpose and scope of our
data usage.
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A Experiment Detail

A.1 Experiment Setting

During inference, we adopted a uniform sampling
temperature of 0.7 and deployed all open-source
models using vLLM (Kwon et al., 2023) on 8 inter-
connected NVIDIA A100 GPUs. For the Qwen2.5
series, we extended the context length to 128k
tokens using YaRN, a technique for improving
length extrapolation. For Qwen3, we also applied
YaRN to extend the context length and evaluated
the model without activating thinking mode. All
model calls were issued through the standard Ope-
nAI SDK interface to ensure consistency across
different model providers. The results remained
highly stable across multiple runs. To reduce com-
putational overhead without compromising reliabil-
ity, we therefore adopted single-sample evaluation
for all experiments.

A.2 Methods

We implement three prompting strategies that oper-
ate within two different paradigms: Function Call
(FC) and State-based Function Call (SFC). Both
paradigms use variants of the ReAct framework.

ReAct. The core ReAct framework follows an
iterative process where the agent first observes the
current system state or results from previous API
calls. Based on these observations, the agent rea-
sons about what to do next and generates the cor-
responding executable code, either API calls or
state transition code. In the FC paradigm, the agent
generates API calls which are then executed by
the VehicleWorld executor. The execution results
are returned as feedback to guide the agent’s next
reasoning step. In the SFC paradigm, the agent
produces code that directly modifies the JSON-
formatted system state. This code is executed by
the environment, which then returns both validation
results and the updated system state as feedback.

ReAct + Reflection. We also test ReAct with
reflection by providing both paradigms with 3 ad-
ditional reflection opportunities. During these re-
flection turns, agents can re-observe the system
state, reason about whether their actions achieved
the intended outcome, and take corrective actions
if needed.

ReAct without Examples. In both the standard
ReAct and ReAct + reflection approaches, we
provide demonstration examples to help agents

understand task requirements and ensure basic
instruction-following. To evaluate zero-shot per-
formance, we implement a variant that removes
these examples entirely, testing the model’s ability
to understand and execute tasks without explicit
demonstrations.

A.3 Error Rate

To assess the reliability of different evaluation
strategies, we manually annotated 200 Function
Call (FC) outputs from the Qwen2.5 model series.
Each output was labeled as correct or incorrect by
multiple experts in the field of intelligent cockpit
systems, based on whether it fulfilled the user intent
expressed in the original query.

We then compared the results of two automatic
evaluation methods, state-based and rule-based,
with the expert annotations. The rule-based method
checks the API call sequence for exact matches in
API names, parameter keys and values, and call
count. In contrast, the state-based method judges
correctness based on whether the final system state
satisfies the intended task goal.

The error rate is defined as the proportion of mis-
matches between the automatic evaluation result
and the human annotation:

Error Rate =
FP + FN

TP + TN + FP + FN
.

This metric reflects how closely each automatic
evaluation method aligns with human judgments
of functional correctness. A lower error rate indi-
cates that the evaluation strategy more accurately
captures the user’s intent and the practical outcome
of the task.

A.4 Evaluation Detail

During evaluation, we prompt the model to sequen-
tially respond to each query by either generating
API calls (FC) or producing state transitions (SFC),
forming a multi-turn interaction framework. The
prompts used for evaluation are described in Ap-
pendix F. As illustrated in Figure 3 (right), after
the agent generates a response, we extract the code
enclosed within ```python``` code blocks and
execute it in a local environment.

For FC, the agent directly generates an API call,
while in SFC, the agent outputs corresponding state
transition code. After execution, we collect return
values, exceptions, and logs as feedback and return
them to the agent for the next turn. In SFC, we
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Model Name Overall
Multimedia Touch Control Car Control Light

S-S S-M M-S M-M S-S S-M M-S M-M S-S S-M M-S M-M S-S S-M M-S M-M
Function Call

GPT-4o 71.8 77.1 66.1 68.8 55.8 69.8 47.2 92.6 68.8 69.2 63.6 57.2 58.8 79.2 58.6 82.4 63.6
DeepSeek-v3-250324 72.7 70.4 62.4 68.2 57.5 87.5 50.0 94.3 70.8 72.4 62.3 58.8 64.2 77.3 58.9 82.5 68.3
Llama-3.1-8B 31.2 57.1 25.6 45.2 28.9 29.2 10.0 64.9 17.4 17.3 11.8 26.8 21.9 7.8 8.1 29.9 24.0
Qwen-2.5-72B 62.7 77.5 48.7 66.9 46.5 48.4 18.2 90.5 44.7 58.8 31.4 54.3 58.9 69.5 31.1 76.1 62.1
Qwen-2.5-32B 54.6 62.0 49.2 63.4 48.6 56.2 19.8 83.8 40.6 51.9 28.8 48.5 49.1 40.9 26.5 60.8 51.1
Qwen-2.5-14B 43.6 59.9 36.9 54.0 36.8 38.5 15.1 74.2 38.4 36.1 18.3 37.8 40.1 20.8 17.3 48.9 40.1
Qwen-2.5-7B 34.8 61.8 39.4 50.7 32.0 32.3 12.0 65.5 15.8 18.5 12.5 29.2 23.5 10.4 11.0 36.2 26.6
Avg. 53.1 66.5 46.9 59.6 43.7 51.7 24.6 80.8 42.4 46.3 32.7 44.7 45.2 43.7 30.2 59.5 48.0

State-based Function Call
GPT-4o 72.2 75.7 61.2 72.9 57.0 69.8 41.7 94.0 68.5 68.3 63.1 61.3 62.0 75.3 58.2 81.0 66.6
DeepSeek-v3-250324 72.2 77.3 61.5 71.0 57.7 81.7 45.4 93.1 74.1 69.9 58.5 60.5 64.2 75.3 59.8 82.5 68.2
Llama-3.1-8B 48.3 60.5 37.8 56.7 39.1 56.8 11.1 77.1 37.6 32.1 20.8 35.9 34.1 51.9 21.8 63.0 40.2
Qwen-2.5-72B 68.1 70.4 56.1 70.2 54.8 75.9 35.0 92.3 62.5 63.2 52.4 57.3 56.7 73.4 51.7 79.4 61.6
Qwen-2.5-32B 68.1 71.8 53.7 68.7 55.7 66.1 30.1 91.2 59.8 65.7 48.8 55.0 59.8 75.9 51.9 78.4 63.4
Qwen-2.5-14B 62.1 65.3 43.8 62.8 46.5 72.5 29.9 85.1 49.6 61.7 41.3 47.2 51.1 72.8 33.5 73.4 54.9
Qwen-2.5-7B 52.9 61.2 39.9 55.4 40.0 60.9 18.2 76.7 30.7 52.2 31.3 38.4 34.9 58.5 31.6 67.2 40.5
Avg. 63.4 68.9 50.6 65.4 50.1 69.1 30.2 87.1 54.7 59.0 45.2 50.8 51.8 69.0 44.1 75.0 56.5

Table 5: Accuracy comparison of models across different control domains and interaction complexities (S-S, S-M,
M-S, M-M) under Function Call (FC) and State-based Function Call (SFC) paradigms with reflection. Overall,
SFC consistently outperforms FC across all domains and task types.

additionally append the current device states to the
feedback after code execution.

The state-aware design in SFC introduces sig-
nificantly longer input sequences due to the accu-
mulation of system state in scenarios with multiple
queries. To address potential input length issues,
we implement a lightweight conversation manage-
ment strategy: whenever a new query begins, all de-
vice states attached to previous turns are discarded,
retaining only the latest states. This keeps the con-
text window within reasonable bounds while pre-
serving essential information required for accurate
evaluation.

B Metric Detail

As described in Section 5.3, we employ three dis-
tinct metrics to evaluate FC and SFC, conducting
state-based assessments of model performance.

B.1 F1 positive

This metric evaluates how effectively the model
identifies attributes that require changes and per-
forms modifications on them. It focuses on the act
of modification rather than the correctness of the
modified values.

Precision: The proportion of correctly modified
attributes among all attributes the model attempted
to modify.

Ppositive =
TP

TP + FP
(2)

Recall: The proportion of attributes that should
be modified and are actually modified by the model
among all attributes that should be modified.

Rpositive =
TP

total_should_changed
(3)

F1 Score: The harmonic mean of precision and
recall.

F1positive =
2 · Ppositive ·Rpositive

Ppositive +Rpositive
(4)

Here, TP denotes the number of attributes that
should be modified and are indeed modified by the
model, FP denotes the number of attributes that
should not be modified but are modified by the
model, and total_should_changed represents the
total number of attributes that should be modified.

B.2 F1 negative

This metric evaluates how effectively the model
identifies attributes that should remain unchanged
and preserves them without modification. It fo-
cuses on the act of preservation rather than the
overall correctness of the system state.

Precision: The proportion of correctly preserved
attributes among all attributes the model predicted
should remain unchanged.

Pnegative =
negative_TP

negative_TP + negative_FP
(5)
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Model Name Overall
Multimedia Touch Control Car Control Light

S-S S-M M-S M-M S-S S-M M-S M-M S-S S-M M-S M-M S-S S-M M-S M-M
Function Call

GPT-4o 60.0 72.1 38.8 66.7 48.4 39.6 30.0 81.2 45.2 56.4 40.0 52.4 50.1 65.6 45.9 72.1 55.3
DeepSeek-v3-250324 36.7 54.6 14.0 52.3 36.3 34.4 7.0 66.7 38.5 22.6 13.2 37.7 32.1 26.6 14.3 40.3 32.3
Llama-3.1-8B 25.4 50.0 11.7 36.9 25.7 21.9 2.9 49.6 15.5 14.3 9.2 24.2 18.0 7.8 8.1 26.5 19.5
Qwen-2.5-72B 27.6 52.9 11.7 41.0 26.6 25.0 2.9 53.4 18.5 15.8 9.2 26.6 20.0 9.1 8.1 29.9 21.4
Qwen-2.5-32B 27.6 51.8 13.0 39.0 31.7 21.9 2.9 52.8 20.2 17.3 9.2 27.4 19.9 15.6 8.1 28.3 21.0
Qwen-2.5-14B 29.3 51.1 11.7 43.5 28.4 21.9 2.9 53.1 16.3 15.0 9.2 27.2 22.0 16.9 9.7 34.8 23.8
Qwen-2.5-7B 28.0 57.1 12.0 39.9 28.9 29.7 2.9 53.3 19.9 15.0 9.3 25.1 23.3 11.7 8.3 28.7 25.6
Avg. 33.5 55.7 16.1 45.6 32.3 27.8 7.4 58.6 24.9 22.3 14.2 31.5 26.5 21.9 14.6 37.2 28.4

State-based Function Call
GPT-4o 66.9 66.1 52.8 71.1 52.6 69.3 36.6 87.0 51.2 55.7 49.5 56.0 60.6 75.9 49.2 79.8 65.7
DeepSeek-v3-250324 68.9 65.6 61.4 69.2 54.2 76.6 41.1 91.7 69.1 69.9 53.8 56.4 62.0 62.0 54.9 80.5 66.6
Llama-3.1-8B 42.3 55.9 31.2 50.8 31.6 42.2 9.2 69.5 29.6 30.3 19.3 29.8 25.4 44.3 20.9 57.3 29.8
Qwen-2.5-72B 57.9 63.7 42.4 61.2 47.6 62.4 33.2 79.8 43.5 37.7 37.0 44.6 49.9 77.2 45.7 77.0 55.4
Qwen-2.5-32B 51.6 61.9 35.7 57.8 46.1 39.6 10.1 69.3 32.9 28.6 21.1 38.4 48.5 70.3 35.1 74.3 55.1
Qwen-2.5-14B 28.6 50.8 15.1 37.9 28.3 23.4 2.9 50.2 18.1 22.4 10.7 24.6 19.0 10.1 8.3 36.3 21.7
Qwen-2.5-7B 35.9 52.5 18.9 41.1 29.0 28.1 8.0 56.8 21.7 26.1 12.0 26.1 22.2 44.3 19.0 52.7 27.1
Avg. 50.3 59.5 36.8 55.6 41.3 48.8 20.2 72.0 38.0 38.7 29.1 39.4 41.1 54.9 33.3 65.4 45.9

Table 6: Accuracy comparison of models across different control domains and interaction complexities (S-S, S-M,
M-S, M-M) under Function Call (FC) and State-based Function Call (SFC) paradigms without sample. Overall,
SFC consistently outperforms FC across all domains and task types.

Recall: The proportion of attributes that should
remain unchanged and are actually preserved by
the model among all attributes that should remain
unchanged.

Rnegative =
negative_TP

total_should_unchanged
(6)

F1 Score: The harmonic mean of precision and
recall.

F1negative =
2 · Pnegative ·Rnegative

Pnegative +Rnegative
(7)

Here, negative_TP denotes the number of
attributes that should be preserved and are in-
deed preserved by the model, negative_FP
denotes the number of attributes that should
be modified but are preserved by the model,
and total_should_unchanged represents the total
number of attributes that should remain unchanged.

B.3 Accuracy
This metric quantifies the correctness of modifica-
tion values, measuring how often the model assigns
the correct new values to attributes that need to be
changed. Unlike F1positive and F1negative which
focus on modification behaviors, this metric evalu-
ates the actual correctness of the modified values.

acc =
Ncorrect

Ntotal
(8)

Where Ncorrect represents the number of at-
tributes that were both modified and assigned the

correct target values, and Ntotal denotes the total
number of attributes requiring modification.

Moreover, for numerical attributes, exact value
comparison is inappropriate when user requests
are ambiguous (e.g., "increase the volume" with-
out specifying by how much). In these cases, we
evaluate accuracy based on the trend (increase, de-
crease, or maintain) rather than requiring exact
value matches. This approach better aligns with
user intent when precise numerical targets aren’t
explicitly stated in the request.

Together, these three metrics provide a com-
prehensive evaluation framework: F1positive mea-
sures the model’s ability to identify and modify
the right attributes, F1negative assesses its ability
to preserve unchanged attributes, and Accuracy
evaluates the correctness of the actual modification
values.

C Dataset Detail

The dataset used in VehicleWorld is constructed
entirely by the authors without incorporating any
third-party content, personal data, or system logs.
To prevent any privacy leakage, we employed syn-
thetic data and rigorously ensured that the gen-
erated data contained no personal information or
offensive content. We measured the distribution
against participants’ real intentions using Jensen-
Shannon divergence and obtained a similarity score
of 0.9640, demonstrating strong consistency. The
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Models # Para Launch Time Max Tokens Scaling Corporation License
GPT-4o / May 13, 2024 128,000 Effort OpenAI Proprietary
Claude-3.7-Sonnet / Feb 24, 2025 200,000 Budget Anthropic Proprietary
DeepSeek-v3-250324 671B Mar 25, 2025 131,072 Budget DeepSeek Open Source
Llama-3.1-8B 8B Jul 23, 2024 131,072 Budget Meta Llama License
Qwen-2.5-7B 7.6B Sep 19, 2024 131,072 Budget Alibaba Apache 2.0
Qwen-2.5-14B 14.7B Sep 19, 2024 131,072 Budget Alibaba Apache 2.0
Qwen-2.5-32B 32.5B Sep 19, 2024 131,072 Budget Alibaba Apache 2.0
Qwen-2.5-72B 72.7B Sep 19, 2024 131,072 Budget Alibaba Apache 2.0
Qwen-3-4B 4.0B Apr 29, 2025 131,072 Budget Alibaba Apache 2.0
Qwen-3-8B 8.2B Apr 29, 2025 131,072 Budget Alibaba Apache 2.0
Qwen-3-32B 32.8B Apr 29, 2025 131,072 Budget Alibaba Apache 2.0

Table 7: Large language models evaluated in our experiments with specifications and characteristics.

Jensen-Shannon divergence is defined as:

JSD(P |Q) =
1

2
DKL(P |M) +

1

2
DKL(Q|M)

(9)
where P and Q represent the empirical distribu-
tions of the synthetic data and real-world partici-
pant intentions, respectively, and M = 1

2(P +Q)
is the average distribution. DKL denotes the Kull-
back–Leibler divergence.

Throughout our construction process, we in-
formed all participants of our intended usage and
ensured that our methods strictly adhered to our
mutual agreement. As detailed in Appendix H, we
present the specific instructions provided to anno-
tators in Table 9, 10, and 11. The objectives of our
data collection and utilization are outlined in Ta-
ble 12. Our dataset is in English, with participants
from the Pacific Rim region. During collection, we
considered diversity in gender and ethnicity. The
dataset will be released under the Apache License
2.0, and we strongly advocate that all related usage
strictly complies with relevant regulations.

D Model Detail

Our evaluation includes both closed-source and
open-source language models. For closed-source
models, we selected GPT-4o (OpenAI, 2024)
and Anthropic’s Claude-3.7-Sonnet (Anthropic,
2025). For open-source models, we evaluated
DeepSeek-v3 (Liu et al., 2024a), Llama-3.1-8B-
Instruct (Grattafiori et al., 2024), and a range of
models from the Qwen family. This includes the
classic Qwen-2.5 series (7B, 14B, 32B, 72B) (Yang
et al., 2024) , as well as Qwen’s latest models:
Qwen-3 series (4B, 8B, 32B) (Yang et al., 2025).
For detailed information about the models used in
our experiments, please refer to Table 7.

E Class Detail

E.1 Prompt
The comprehensive prompts used for class con-
struction are meticulously detailed in Appendix F.

E.2 Class Architecture
The VehicleWorld framework uses a modular class
architecture where each vehicle device is imple-
mented as an independent module class. Each de-
vice class contains specialized inner classes for
subcomponents, creating a clean hierarchical struc-
ture. To represent device states in a readable format,
each class implements a to_dict() method that
organizes instance attributes into structured JSON
documents with detailed metadata. These meth-
ods work recursively: the to_dict() method of
each top-level device class automatically calls the
to_dict() methods of its nested submodules to
generate a complete, hierarchical state representa-
tion.

We also implement a global static Environment
class that manages system-wide properties such as
temperature settings, audio volume levels, and com-
munication channels, ensuring consistent behavior
across all devices and reduces code redundancy.

Finally, each device class provides multiple ini-
tialization methods through specialized init()
class methods. These allow flexible configuration
of different initial states for testing and demonstra-
tion purposes by combining different initialization
approaches for specific scenarios. The following
example demonstrates this architecture through the
Navigation device class implementation:
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Listing 1: Entity class for navigation device. This class demonstrates the core design of device abstraction, including
inner classes, property encapsulation, and API method implementation. Some content has been omitted for brevity
import Environment
class Navigation:

class DistanceUnit(Enum):
"""
Enumeration for distance units used in navigation.
"""
KILOMETERS = "Kilometers"
MILES = "Miles"

class VolumeLevel(Enum):
"""
Enumeration for predefined volume levels.
"""
MAX = "max"
HIGH = "high"
MEDIUM = "medium"
LOW = "low"
MIN = "min"

class RouteInfo:
"""
Inner class for storing route information between two points.
"""
def __init__(self , departure="Current location", destination=""):

self._departure = departure
self._destination = destination

@property
def departure(self):

return self._departure

@departure.setter
def departure(self , value):

self._departure = value

@property
def destination(self):

return self._destination

@destination.setter
def destination(self , value):

self._destination = value

def to_dict(self):
"""
Convert RouteInfo object to a dictionary with metadata.

Returns:
dict: Dictionary representation of route information.

"""
return {

"departure": {
"value": self.departure ,
"description": "Starting point of the route",
"type": type(self.departure).__name__

},
"destination": {

"value": self.destination ,
"description": "End point of the route",
"type": type(self.destination).__name__

}
}

def __init__(self):
# Base navigation state
self._is_active = False
# Route information
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self._current_route = self.RouteInfo ()

# Property getters and setters
@property
def is_active(self):

"""Get navigation active status."""
return self._is_active

@is_active.setter
def is_active(self , value):

"""Set navigation active status."""
self._is_active = value

@property
def current_route(self):

"""Get current navigation route."""
return self._current_route

@current_route.setter
def current_route(self , value):

"""Set current navigation route."""
self._current_route = value

# API Methods Implementation
@api("navigation")
def navigation_meter_unit(self , mode):

"""
Set the unit of distance displayed on the navigation.

Args:
mode (str): Distance unit options. Valid values are "Kilometers" or "

Miles".

Returns:
dict: Result of the operation with updated unit.

"""
try:

# Update the global environment unit system
if mode == "Kilometers":

Environment.set_unit_system("kilometer")
else:

Environment.set_unit_system("mile")
return {

"success": True ,
"unit": mode

}
except ValueError as e:

return {
"success": False ,
"error": str(e)

}

@api("navigation")
def navigation_soundVolume_set(self , value=None , degree=None):

"""
Set navigation volume adjustment.

Args:
value (int , optional): Numeric volume value (0 -100).
degree (str , optional): Categorical volume level.

Valid values are "max", "high", "medium", "low",
"min",

mutually exclusive with value.

Returns:
dict: Result of the operation with updated volume.

"""
if value is not None and degree is not None:

return {
"success": False ,
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"error": "Cannot specify both value and degree"
}

try:
if value is not None:

if not isinstance(value , int) or not (0 <= value <= 100):
return {

"success": False ,
"error": "Volume value must be an integer between 0 and 100"

}
Environment.set_volume(value)

elif degree is not None:
# Map degree to volume value
degree_map = {

self.VolumeLevel.MAX.value: 100,
self.VolumeLevel.HIGH.value: 80,
self.VolumeLevel.MEDIUM.value: 50,
self.VolumeLevel.LOW.value: 20,
self.VolumeLevel.MIN.value: 0

}

if degree not in degree_map:
return {

"success": False ,
"error": f"Invalid volume degree: {degree }. Valid values are

{list(degree_map.keys())}"
}

Environment.set_volume(degree_map[degree ])
else:

return {
"success": False ,
"error": "Either value or degree must be specified"

}

# Set global environment volume and change sound channel to navigation
Environment.set_sound_channel("navigation")

return {
"success": True ,
"volume": Environment.get_volume (),
"sound_channel": Environment.get_sound_channel ()

}
except Exception as e:

return {
"success": False ,
"error": str(e)

}

@api("navigation")
def navigation_get_destination(self):

"""
Get current navigation destination.

Returns:
dict: Information about the current destination.

"""
if not self.is_active or self.current_route is None:

return {
"success": False ,
"error": "No active navigation route"

}

return {
"success": True ,
"destinationInfo": self.current_route.destination

}

@api("navigation")
def navigation_exit(self):
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"""
Exit navigation by deactivating the current route.

Returns:
dict: Result of the operation.

"""
if not self.is_active:

return {
"success": False ,
"error": "Navigation is not active"

}

self.is_active = False
self.current_route = None
self.waypoints = []

return {
"success": True ,
"message": "Navigation exited successfully"

}

@api("navigation")
def navigation_route_plan(self , address , placeOfDeparture="Current location"):

"""
Route planning , specify destination to start navigation.

Args:
address (str): Destination name/address.
placeOfDeparture (str): Departure name/address. Defaults to "Current

location ".

Returns:
dict: Result of the operation with route details.

"""
if not address:

return {
"success": False ,
"error": "Destination address is required"

}

# Create a new route with the specified destination
self.current_route = self.RouteInfo(destination=address , departure=

placeOfDeparture)
self.is_active = True
self.waypoints = []

# Set sound channel to navigation for voice guidance
Environment.set_sound_channel("navigation")

return {
"success": True ,
"route": self.current_route.to_dict ()

}

def to_dict(self):
"""
Convert the Navigation object to a dictionary with metadata.

Returns:
dict: Dictionary representation of the Navigation object.

"""
waypoints_info = []
for i, waypoint in enumerate(self.waypoints):

waypoints_info.append ({
"index": i,
"location": waypoint

})

return {
"is_active": {
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"value": self.is_active ,
"description": "Whether navigation is currently active , when you

need to use navigation , you should set it to True.",
"type": type(self.is_active).__name__

},
"current_route": {

"value": self.current_route.to_dict () if self.current_route else
None ,

"description": "Current active navigation route. Set it to None when
exit navigation",

"type": "RouteInfo or None"
}

}

@classmethod
def init1(cls):

"""
Initialize a Navigation instance with active navigation to Shanghai.

Returns:
Navigation: An initialized Navigation instance with active navigation to

Shanghai.
"""
instance = cls()
# Set navigation to active
Environment.set_sound_channel("navigation")
instance.is_active = True
# Set up the current route
instance.current_route = cls.RouteInfo(departure="Current location",

destination="Shanghai")
return instance

@classmethod
def init2(cls):

"""
Initialize a Navigation instance with navigation not active.

Returns:
Navigation: An initialized Navigation instance with inactive navigation.

"""
instance = cls()
# Ensure navigation is inactive
instance.is_active = False
# Reset current route
instance.current_route = cls.RouteInfo ()
return instance

E.3 Global Static Environment Class

423



Listing 2: Implementation of the global Environment class as a centralized resource manager. The class follows
a simplified Singleton design pattern and manages shared cockpit attributes such as volume, sound channel, unit
system, temperature, and time format. All device entity classes interact with this environment interface to ensure
consistency and avoid redundant state maintenance.
class Environment:

_context = {
"volume": 50,
"sound_channel": "music",
"unit_system": "mile",
"timestamp": "2025 -04 -13 12:00:00",
"speaker": "driver ’s seat",
"temperature": 14,
"language": "Chinese",
"time_display_format": "24-hour -format"

}

@classmethod
def set_language(cls , language): cls._context["language"] = language
@classmethod
def get_language(cls): return cls._context["language"]

@classmethod
def set_time_display_format(cls , time_format): cls._context["time_display_format
"] = time_format
@classmethod
def get_time_display_format(cls): return cls._context["time_display_format"]

@classmethod
def get_current_speaker(cls): return cls._context["speaker"]

@classmethod
def set_temperature(cls , temperature): cls._context["temperature"] = temperature
@classmethod
def get_temperature(cls): return cls._context["temperature"]

@classmethod
def get_timestamp(cls): return cls._context["timestamp"]
@classmethod
def set_timestamp(cls , timestamp): cls._context["timestamp"] = timestamp

@classmethod
def set_volume(cls , volume): cls._context["volume"] = volume
@classmethod
def get_volume(cls): return cls._context["volume"]

@classmethod
def set_sound_channel(cls , channel): cls._context["sound_channel"] = channel
@classmethod
def get_sound_channel(cls): return cls._context["sound_channel"]

@classmethod
def set_unit_system(cls , unit): cls._context["unit_system"] = unit
@classmethod
def get_unit_system(cls): return cls._context["unit_system"]

@classmethod
def to_dict(cls) -> Dict[str , Any]:

return {
"volume": {

"type": "int",
"value": cls._context["volume"],
"description": "Volume level (0 -100)"

},
"sound_channel": {

"type": "str",
"value": cls._context["sound_channel"],
"description": "..."

},
"unit_system": {

424



"type": "str",
"value": cls._context["unit_system"],
"description": "Distance unit system , supports mile or kilometer"

},
"timestamp": {

"type": "str",
"value": cls._context["timestamp"],
"description": "Current system time"

},
"speaker": {

"type": "str",
"value": cls._context["speaker"],
"description": "..."

},
"temperature": {

"type": "int",
"value": cls._context["temperature"],
"description": "..."

},
"language": {

"type": "str",
"value": cls._context["language"],
"description": "Current system language"

},
"time_display_format": {

"type": "str",
"value": cls._context["time_display_format"],
"description": "Time format , either ’24-hour -format ’ or ’12-hour -

format ’"
}

}

@classmethod
def init1(cls):

cls._context.update ({
"volume": 60,
"sound_channel": "music",
"unit_system": "mile",
"timestamp": "2025 -04 -13 11:00:00",
"speaker": "driver ’s seat",
"temperature": 14,
"language": "Chinese",
"time_display_format": "24-hour -format"

})
return cls

@classmethod
def init2(cls):

cls._context.update ({
"volume": 75,
"sound_channel": "video",
"unit_system": "mile",
"timestamp": "2025 -04 -13 12:10:00",
"speaker": "passenger seat",
"temperature": 16,
"language": "Chinese",
"time_display_format": "24-hour -format"

})
return cls

F Prompts

Listing 3: Structured prompt template used with Claude-3.7-Sonnet to systematically generate VehicleWorld entity
classes through a four-stage process: API analysis, entity class implementation with getters/setters, complete API
method implementation with error handling, and thorough documentation via to_dict() methods.
# {Device} System API Analysis and Entity Class Implementation
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## Context
You are in a vehicle driving environment , and you are given a series of APIs related

to the {Device} system , where {Device} is responsible for managing the in-car {
Device} system.

## Task
Please analyze these APIs in detail , extract all implicit data attributes , and write

a complete {Device} entity class using Python code.

## Requirements

### API Analysis
- Carefully analyze each API to identify the core data objects and states it

operates on
- Extract all necessary attributes (fields) to support the functionality of these

APIs
- Consider the relationships and dependencies between attributes
- Set reasonable initial values for each attribute
- Ensure that each API call is reflected in changes to one or more attributes

### Entity Class Implementation
- Implement getter and setter methods for all attributes
- If the top -level {Device} entity class requires complex data structures as

attributes , you can define necessary inner classes

### API Method Implementation
Design separate method implementations for each API , with each method requiring:
1. Functionality implemented through executing relevant getter and setter methods
2. Clear method signatures , including parameter types and return types
3. Detailed parameter validation and error handling
4. Clear state transition logic
5. Structured return values , including operation results and related state

information
6. Add @api ("{ Device }") annotation for each API method
7. If API method parameters involve enumeration classes , the possible values should

be specified in the comments

### Documentation
- Each entity class needs to set up a to_dict method to print the class ’s attributes

, value types , and attribute descriptions
- If it’s an enum attribute , the complete range of possible values needs to be given

in the description

### Global Environment
- You can use a static global Environment class to get the current state of the

environment , which is shared by multiple entity classes
- Some APIs need to call methods of the global class to modify the environment state

For example , {examples}

Here is an example of a class:
‘‘‘python
from utils import api

class MyClass:
class InnerExample:

"""
Inner class , used as an attribute of MyClass , the example contains a simple

attribute info.
"""
def __init__(self , info):

self.info = info

def to_dict(self):
return {

"info": self.info ,
"description ": "Example inner class information",
"type": type(self.info).__name__

}
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@classmethod
def from_dict(cls , data):

return cls(data["info "])

def __init__(self , a, b, c, inner_info):
self._a = a
self._b = b
self._c = c
# Use an instance of the inner class as an attribute of MyClass
self.inner = MyClass.InnerExample(inner_info)

# Getter and setter for attribute a
@property
def a(self):

return self._a

@a.setter
def a(self , value):

self._a = value

# Getter and setter for attribute b
@property
def b(self):

return self._b

@b.setter
def b(self , value):

self._b = value

# Getter and setter for attribute c
@property
def c(self):

return self._c

@c.setter
def c(self , value):

self._c = value

def to_dict(self):
return {

"a": {
"value": self.a,
"description ": "Description of attribute a",
"type": type(self.a).__name__

},
"b": {

"value": self.b,
"description ": "Description of attribute b",
"type": type(self.b).__name__

},
"c": {

"value": self.c,
"description ": "Description of attribute c",
"type": type(self.c).__name__

},
"inner": {

"value": self.inner.to_dict (),
"description ": "Instance of inner class InnerExample",
"type": "InnerExample"

}
}

@classmethod
def from_dict(cls , data):

"""
Restore an instance of MyClass from dictionary data , including restoring

inner class attributes.
"""
a = data["a"][" value"]
b = data["b"][" value"]
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c = data["c"][" value"]
# First restore the inner class instance
inner = MyClass.InnerExample.from_dict(data["inner "][" value "])
instance = cls(a, b, c, inner.info)
# If further synchronization of other attributes of the inner class is

needed , it can be extended here
instance.inner = inner
return instance

@api(" MyClass ")
def api_function(self , a, b, c, inner_info):

# Example implementation: update own attributes and inner class attributes
self.a = a
self.b = b
self.c = c
self.inner.info = inner_info
return {

"success ": True ,
"updated_values ": self.to_dict ()

}
‘‘‘

Please provide a complete code implementation , below are the APIs provided to you:
{API document}

Listing 4: Structured prompt template used with Claude-3.7-Sonnet to systematically generate VehicleWorld
benchmark scenarios through HTML-style formatting: device initialization (<inits>), user queries (<query>), and
corresponding API calls (<api_call>) with automatic execution validation and expert verification for semantic
correctness.
# System Role
You are an in-vehicle artificial intelligence system with the following function

modules:
{module_des}

# Main Task
Based on the current status of the function modules , design 10 different user query

scenarios and generate corresponding API call chains for each scenario.

# Detailed Requirements
## Scenario Design
- If there are multiple modules , each scenario must involve at least 2 different

modules
- Queries must have logical dependencies between them
- Scenarios must be based on the initial state and cannot violate it
- Scenarios must conform to real driving scenarios and user habits
- Use natural , conversational language for user queries

## API Call Constraints
- Clearly show the dependencies and calling relationships between APIs
- API calls need to reflect contextual coherence

## Output Format
Each scenario should use the following strict format:
‘‘‘xml
<scenario >

<query >User query 1 (natural language)</query >
<api_call >vw.module.api0(parameter1 , parameter2 ...)

vw.module.api1(parameter1 , parameter2 ...) </api_call >(Use line break to separate
multiple API calls)
<query >User query 2 (natural language)</query >
<api_call >vw.module.api2(parameter1 , parameter2 ...) </api_call >
<query >User query 3 (if any)</query >
<api_call >vw.module.api3(parameter1 , parameter2 ...) (if any)</api_call >

</scenario >
‘‘‘
## Currrent World State
The current status of the function modules is as follows:
{State}
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## API
Below you will be provided with information about the APIs for these modules:
{API documents}

Listing 5: FC evaluation prompt that guides agent through a structured API interaction process: module discovery,
API querying, function execution, and feedback handling, with step-by-step instructions and example dialogues to
ensure efficient task completion via API calls.
You are an intelligent in-car AI assistant responsible for fulfilling user requests

by calling the vehicle system API. Please ensure you understand user needs and
complete tasks in the most efficient way.

**Step -by -Step Guidance **
Please follow these steps sequentially:
1. **Get System Function Modules **

First call ‘Environment.search_module ()‘ to obtain all the functionality modules
of the vehicle system.

2. ** Query APIs for Specific Modules **
After selecting the required function module , call ‘Environment.search_api(
modules=[’module_name ’])‘ to query the API methods of that module , and then
proceed with the calls.

3. **Get System Global Status (if needed)**
If the task involves global system environment (such as temperature , volume , etc
.), call ‘Environment.to_dict ()‘ to get the current system status.

**API Call Requirements **
- Each code block can contain multiple related API calls , but should remain concise.
- Ensure the code can be executed directly , without non -code content other than

comments.
- Code sections should be surrounded by ‘‘‘python ‘‘‘.
- Only generate API calls , do not generate any additional code.

** System Feedback Handling **
- The system will return execution results after each API call , including return

values (success or failure) and any error messages.
- Carefully analyze each feedback to decide the next step. If an API call fails ,

analyze the reason and make corrections.

**Task Completion Standards **
1. Choose the most efficient API combination to complete tasks , avoiding unnecessary

code.
2. Correctly handle API errors and exception situations.
3. If the system status does not support the user ’s request , clearly decline.
** Example Task Flow**
User:
Navigate to the nearest gas station and turn up the navigation volume a bit

Assistant:
I’ll help you navigate to the nearest gas station and increase the navigation volume

. First I need to check the available system modules:
‘‘‘python
Environment.search_module ()
‘‘‘

User:
Code execution results:
{{

"modules ": [" navigation", "music", "climate", "radio"]
}}

Assistant:
Now I’ll query the API methods of the navigation module:
‘‘‘python
Environment.search_api(modules =[" navigation "])
‘‘‘
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User:
Code execution results:
{{

"navigation ": [
"navigation_route_plan",
"navigation_exit",
"navigation_soundVolume_increase",
"navigation_soundVolume_decrease",
"navigation_soundVolume_set"

]
}}

Assistant:
After understanding the available APIs , I’ll plan a route to the nearest gas station

for you:
‘‘‘python
vw.navigation.navigation_route_plan (" nearest gas station ")
‘‘‘

User:
Code execution results:
{{

"success ": True ,
"route ": {{

"destination ": "nearest gas station",
"distance ": "3 km",
"duration ": "10 minutes"

}}
}}

Assistant:
Navigation has been successfully set to the nearest gas station , now I’ll increase

the navigation volume:
‘‘‘python
vw.navigation.navigation_soundVolume_increase(degree =" little ")
‘‘‘

User:
Code execution results:
{{

"success ": True ,
"old_volume ": 30,
"new_volume ": 40,
"sound_channel ": "navigation"

}}

Assistant:
I have successfully completed the following operations for you:
Set navigation to the nearest gas station , approximately 3 kilometers away , with an

estimated travel time of 10 minutes
Increased the navigation volume from 30 to 40, making it easier for you to hear the

navigation instructions clearly
The navigation system is now active , and you can follow the guidance to the gas

station. If you need any other assistance , please let me know.

Listing 6: SFC prompt for retrieving relevant modules, which are then passed to Listing 7 to generate state transition
code.
You are a vehicle AI assistant. Given the current state of in-vehicle devices and a

user query related to these devices , you need to identify and select the
relevant device modules that should handle the query.

## Task Requirements:
- Analyze the user query and current system status
- Select the most relevant device modules (maximum 6 modules per query)
- Return the selected modules in the specified format

## Output Format:
<modules >
module1
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module2
module3
</modules >

## Guidelines:
1. Each module name should match exactly with the keys in the system status

dictionary
2. Separate multiple modules with newlines
3. Only select modules that are directly relevant to fulfilling the user ’s request
4. Consider the current state and capabilities of each module
5. Prioritize modules that are most likely to be needed for the task

## Example:

User:
Play the video I’ve downloaded
Current System Status:
{

"video": {
"value": {

"current_video ": {
"value": {

"video_id ": {
"value": "dl_001",
"type": "str",
"description ": "Unique identifier for video"

},
"title": {

"value": "Highway Safety Tutorial",
"type": "str",
"description ": "Title of the video"

},
"description ": {

"value": "Learn about best practices for highway driving and
safety tips",

"type": "str",
"description ": "Description of the video"

}
},
"type": "VideoItem",
"description ": "Currently selected video"

},
"downloaded_videos ": {

"value": [
{

"video_id ": {
"value": "dl_001",
"type": "str",
"description ": "Unique identifier for video"

},
"title": {

"value": "City Night Drive",
"type": "str",
"description ": "Title of the video"

},
"description ": {

"value": "Exploring the city streets at night with
ambient lighting",

"type": "str",
"description ": "Description of the video"

}
}

],
"type": "List[VideoItem]",
"description ": "List of downloaded videos"

}
},
"description ": "Video system for media playback",
"type": "Video"

},
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"radio": {
"value": {

"_history ": {
"type": "List[RadioStation ]",
"value": [

{
"name": {

"type": "str",
"value": "Indie Music Channel",
"description ": "Name of the radio station"

},
"frequency_value ": {

"type": "str",
"value": "90.5 MHz",
"description ": "Frequency value of the radio station"

},
"city": {

"type": "str",
"value": "Portland",
"description ": "City where the radio station is

available"
},
"app_name ": {

"type": "str",
"value": "Independent Music",
"description ": "App name used to play this radio station

"
},
"timestamp ": {

"type": "float",
"value": "2025 -04 -13 11:00:00" ,
"description ": "Timestamp when this station was last

played"
}

}
],
"description ": "History of played radio stations (most recent first)

"
},
"_collection ": {

"type": "List[RadioStation ]",
"value": [

{
"name": {

"type": "str",
"value": "Indie Music Channel",
"description ": "Name of the radio station"

},
"frequency_value ": {

"type": "str",
"value": "90.5 MHz",
"description ": "Frequency value of the radio station"

},
"city": {

"type": "str",
"value": "Portland",
"description ": "City where the radio station is

available"
},
"app_name ": {

"type": "str",
"value": "Independent Music",
"description ": "App name used to play this radio station

"
},
"timestamp ": {

"type": "float",
"value": "2025 -04 -13 11:00:00" ,
"description ": "Timestamp when this station was last

played"
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}
}

],
"description ": "Collection of favorite radio stations"

}
},
"description ": "Radio system for audio streaming",
"type": "Radio"

},
"navigation ": {

"value": {
"current_location ": {

"value": {
"latitude ": 45.5152 ,
"longitude ": -122.6784 ,
"address ": "Portland , OR"

},
"type": "Location",
"description ": "Current vehicle location"

},
"destination ": {

"value": null ,
"type": "Location",
"description ": "Current navigation destination"

}
},
"description ": "Navigation and GPS system",
"type": "Navigation"

}
...

}

Assistant:
The user wants to play a downloaded video. The video module contains downloaded

videos and current video information , making it the primary module needed to
handle this request. The radio and navigation modules are not relevant for this
specific task.

<modules >
video
</modules >

Listing 7: SFC evaluation prompt that guides agent through direct system state manipulation, teaching it to analyze
the current vehicle state, generate appropriate state transition code, and verify results through updated status
feedback, with clear response format requirements and illustrative examples.
You are an intelligent vehicle AI assistant , your task is to help users analyze the

vehicle system status to complete various tasks.

## Current System Status
1. The system will first provide you with the current status of the vehicle

environment , including various information related to the task. You should fully
understand the system status information and generate status modification code

to complete the user -specified task.
2. After each code execution , the system status will be updated , and you need to

determine whether the task has been completed or further operations are needed
based on the return value of the code execution and the updated system status.

3. If the system status does not support executing the user ’s request , please refuse
.

## Status Analysis Principles
When analyzing system status , please follow these principles:
1. Carefully check all available system modules and parameters
2. Understand the data types and value ranges of each field
3. Pay attention to the dependency relationships of status values , such as certain

operations requiring specific sound channels
4. Prioritize using the ready -made data provided by the system , avoiding creating

unnecessary new values
5. Ensure changes comply with system constraints
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## Response Format
Your response should include the following parts:
1. Brief analysis of the user ’s question and code execution results
2. Code execution section (surrounded by ‘‘‘python ‘‘‘, containing only status

changes , do not include other code)
3. Do not generate other additional content

## Example Task Flow

### Example 1
User:
Play the video I’ve downloaded
Current system status:
vw = {

"video": {
"value": {

"current_video ": {
"value": {

"video_id ": {
"value ": "dl_001",
"type": "str",
"description ": "Unique identifier for video"

},
"title": {

"value ": "Highway Safety Tutorial",
"type": "str",
"description ": "Title of the video"

},
"description ": {

"value ": "Learn about best practices for highway
driving and safety tips",

"type": "str",
"description ": "Description of the video"

}
...

},
"type": "VideoItem",
"description ": "Currently selected video ."

},
"downloaded_videos ": {

"value": [
{

"video_id ": {
"value": "dl_001",
"type": "str",
"description ": "Unique identifier for video"

},
"title ": {

"value": "City Night Drive",
"type": "str",
"description ": "Title of the video"

},
"description ": {

"value": "Exploring the city streets at night
with ambient lighting",

"type": "str",
"description ": "Description of the video"

}
...

},
],
"type": "List[VideoItem]",
"description ": "List of downloaded videos"

},

},
"description ": "Video system",
"type": "Video"

}
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}

Assistant:
The user needs to play a downloaded video , so I need to play the first video in the

downloaded_videos list
‘‘‘python
vw[’video ’][’value ’][’ current_video ’][’value ’] = vw[’video ’][’value ’][’

downloaded_videos ’][0]
‘‘‘

### Example 2
User:
Turn up the volume a bit
Current system status:
vw = {

"environment ": {
"value": {

"volume ": {
"type": "int",
"value": 50,
"description ": "Volume level (0 -100)"

},
"sound_channel ": {

"type": "str",
"value": "music",
"description ": "

Current sound channel type , can be music , video ,
navigation , radio , conversation; the current environment has only one player ,
only one system can use the player at a time , so you need to modify the
sound_channel field in the environment to use different systems.

- Please set to conversation when making/receiving
calls or adjusting call volume

- Please set to music when playing music or
adjusting music volume

- Please set to navigation when adjusting navigation
volume , starting navigation , switching destinations , adding/removing waypoints ,
turning on/off announcements , or switching announcement modes

- Please set to radio when playing radio stations or
adjusting radio volume

- Please set to video when adjusting video volume or
playing videos

"
},
"unit_system ": {

"type": "str",
"value": "mile",
"description ": "Distance unit system , supports mile or

kilometer"
}

},
"description ": "World environment",
"type": "type"

}
}

Assistant:
The user needs to turn up the volume
‘‘‘python
vw[’environment ’][’value ’][’volume ’][’value ’] = 60
‘‘‘
Next , please generate state transition code to solve the user ’s request based on the

current status of the system.

Listing 8: prompt that guides agent to generate a plan first for reasoning experiment.
You are an in-car AI assistant responsible for executing user requests. Based on the

user ’s command , your first step is to generate a plan.

** Example Task Flow**
User:
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Navigate to the nearest gas station and turn up the navigation volume a bit.

Assistant:
The user wants to start navigation to the nearest gas station and slightly increase

the navigation volume. To fulfill this request , I need to identify and operate
the modules responsible for navigation and volume control. I will also check
which APIs are available in these modules to carry out the required actions.

G API Documentation

Table 8: API documentation for the Conversation module, detailing 15 phone and messaging functions with
parameters, requirements, and value ranges for implementing voice communication capabilities.

conversation_soundVolume_increase

Device conversation
Description Increase volume (0–100); use value or degree
Arguments value (int): numeric increase; exclusive with degree

degree (string): {"large", "little", "tiny"}
Required None

conversation_soundVolume_decrease

Device conversation
Description Decrease volume (0–100); use value or degree
Arguments value (int): numeric decrease; exclusive with degree

degree (string): {"large", "little", "tiny"}
Required None

conversation_soundVolume_set

Device conversation
Description Set volume (0–100); must provide either value or degree
Arguments value (int), degree (string): {"max", "high", "medium", "low", "min"}
Required One of: value, degree

conversation_phone_call

Device conversation
Description Make a phone call
Arguments contact (string)
Required {contact}

conversation_phone_redial

Device conversation
Description Redial phone
Arguments None
Required None

conversation_phone_answer

Device conversation
Description Answer phone
Arguments None
Required None

conversation_phone_hangup

Device conversation
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Description Hang up phone
Arguments None
Required None

conversation_message_send

Device conversation
Description Send SMS
Arguments contact (string), content (string)
Required {contact}

conversation_message_view

Device conversation
Description View SMS
Arguments contact (string)
Required None

conversation_contact_view

Device conversation
Description Find contact
Arguments contact (string)
Required {contact}

conversation_call_miss_view

Device conversation
Description View missed calls
Arguments None
Required None

conversation_call_record_view

Device conversation
Description View call history
Arguments None
Required None

conversation_contact_hag_view

Device conversation
Description Query user’s contact list
Arguments None
Required None

conversation_call_handsFree_switch

Device conversation
Description Hands-free switch
Arguments switch (boolean)
Required {switch}

conversation_contact_delete

Device conversation
Description Delete contact
Arguments contact (string)
Required {contact}
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H Instruction to Participants

These four tables provide comprehensive instructions for annotators. Table 9 guides API design assessment
focusing on functionality and parameter structures. Table 10 directs test set construction with emphasis
on authentic user interactions and scenario diversity. Table 11 outlines criteria for evaluating function
call outputs based on intent fulfillment and parameter accuracy. Table 12 contextualizes the annotation
process, explaining how annotators’ expert judgments establish benchmarks for comparing function call
generation methodologies in automotive systems.

Table 9: Instruction for API design process.

Instruction:
1. Background: We will provide you with API information. Each entry includes:

• The device using this API

• Detailed description of the API functionality

• Required parameter information

2. Requirements Analysis Phase: Carefully analyze the provided information, clarifying the
following points:

• Functional Boundaries: Determine the core functionality and boundaries of the API,
clarifying what tasks it needs to accomplish

• Use Cases: Consider the scenarios and ways the API will be used in practical applications

• User Expectations: Understand end-user expectations for this functionality and possible
interaction patterns

• Device Constraints: Analyze the characteristics and limitations of the target device,
ensuring the API design matches the device capabilities

3. API Design Principles: Follow these general design principles:

• Simplicity: The API should be concise and clear, exposing only necessary functionality

• Consistency: Maintain consistency in naming and structure for ease of understanding and
use

• Intuitiveness: Design parameters and return values to be intuitive, reducing the learning
curve

4. Structure Design: Design the basic structure of the API, including:

• Naming Conventions: Design clear and intuitive API names based on functional charac-
teristics

• Parameter Design: Determine necessary input parameters and their data types

• Return Value Design: Plan the response structure and content of the API
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5. Documentation: Write clear and complete API documentation:

• General Description: Provide an overview and purpose of the API

• Parameter Details: Explain in detail the purpose, type, format, and constraints of each
parameter

• Call Examples: Provide specific API call examples and response examples

Table 10: Instruction for Test Set Construction and Manual Screening.

Instruction:
1. Background: We will provide you with user-intelligent cockpit interaction scenarios. Each
scenario includes:

• Environment initialization statement

• User query statement

• API call corresponding to the query statement

2. Review and Screening Criteria: Review each interaction scenario based on the following
criteria:

• Authenticity: Whether the scenario matches real users’ in-vehicle interaction habits and
expressions

• Clarity: Whether the user query statement is clear and unambiguous

• Completeness: Whether the scenario description contains sufficient contextual informa-
tion to understand user intent

• Diversity: Ensure the test set covers various interaction patterns and functional domains

3. API Matching Assessment: Evaluate the matching degree between query statements and
API calls:

• Functional Match: Whether the API call meets the functional requirements expressed in
query

• Parameter Correctness: Whether API parameters correctly reflect the specific require-
ments in query

• Contextual Relevance: Whether the API call takes into account the contextual information
of the scenario

• Edge Case Handling: Whether the API response is reasonable for edge cases
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4. Scenario Annotation: Add the following annotations to each scenario:

• Scenario Classification: Label the functional category to which the scenario belongs
(e.g., navigation, music control, environment control, etc.)

• Expression Type: Label the type of user query expression (direct command, inquiry,
ambiguous expression, etc.)

• Complexity Level: Rate the complexity of the scenario (simple, medium, complex)

Important Considerations:

• Prioritize the authenticity and coverage of the test set, avoiding overly artificial expressions

• Maintain diversity among different scenarios, avoiding excessive focus on specific func-
tions

• Pay special attention to edge cases and exception handling test scenarios

• Ensure the test set includes user expressions of different complexities and language styles

Table 11: Human Expert Evaluation Guide for Function Call Outputs in Intelligent Cockpit Systems

Instruction:
1. Background: We will provide you with Function Call output samples from an intelligent
cockpit system for evaluation. Each sample includes:

• The original user query expressing an intent or request (e.g., "adjust temperature to 22
degrees")

• The Function Call (FC) output generated by the model, including API calls and parameters

• Reference to available API specifications and documentation

• The expected system state after function execution

2. Review Function Call Output: Carefully examine the model-generated function calls,
paying close attention to:

• Intent Fulfillment: Does the function call sequence correctly address what the user
requested?

• API Selection: Are the appropriate APIs called for the requested task?

• Parameter Accuracy: Are all parameter values correct and aligned with the user’s
request?

• Call Sequence: Is the order of function calls logical and appropriate for achieving the
task?
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3. Determine Correctness: Based on your review, determine whether the Function Call output
is correct or incorrect.

• A function call output is considered correct if it would result in the expected system state
through valid API calls with appropriate parameters.

4. Record Results: For each Function Call output, record the following information:

• Your Assessment (Correct or Incorrect)

• For incorrect assessments, note specific issues (wrong API, missing calls, incorrect param-
eters)

Important Considerations:

• Focus on practical outcomes and user intent fulfillment rather than superficial differences

• Consider the context of an automotive environment when evaluating API appropriateness

• If multiple valid approaches exist, consider the output correct if any valid approach is used

• If you are unsure about correctness, consult with another expert evaluator

Table 12: Purpose and Application of Human Expert Annotations in Intelligent Cockpit Function Call Evaluation

Annotation Purpose and Research Methodology:
1. Research Objective:

• The primary goal of this human expert annotation process is to establish a high-quality
benchmark dataset for comparing different function call generation methodologies in
intelligent cockpit systems.

• These expert annotations serve as the gold standard against which both our proposed
method and traditional approaches will be evaluated.

• The central research question is: Which method produces function calls that more closely
align with human expert judgments of correctness and appropriateness?

2. Comparative Analysis Framework:

• Baseline Comparison: Human-annotated data will be used to assess how closely tradi-
tional function call methods match expert expectations versus our novel approach.

• Alignment Metrics: We will quantify the degree of alignment between each automated
method and human annotations using precision, recall, F1 scores, and custom alignment
metrics.

• Error Pattern Analysis: Discrepancies between both methods and human annotations
will be categorized to identify systematic strengths and weaknesses of each approach.
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3. Expected Research Outcomes:

• Method Validation: Demonstrate whether our proposed method produces function calls
that more accurately reflect human expert judgment compared to traditional approaches.

• Performance Gaps: Identify specific scenarios or query types where the performance
gap between methods is most significant.

4. Practical Applications of Research Findings:

• System Selection: Determine which function call generation approach should be imple-
mented in production intelligent cockpit systems.

• Hybrid Optimization: Identify opportunities to combine strengths of both approaches
based on comparison with human annotations.

• User Experience Enhancement: Leverage insights from human annotations to improve
the naturalness and reliability of in-vehicle voice command systems.

5. Annotation Quality Control:

• Multiple expert annotators will evaluate each sample to ensure reliability and minimize
individual bias.

• Inter-annotator agreement metrics will be calculated to validate the consistency and quality
of the human benchmark data.

• The final gold standard will prioritize samples with high annotator consensus to ensure a
reliable comparison baseline.
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