RECIPE2PLAN: Evaluating Planning Abilities of LL.Ms for
Efficient and Feasible Multitasking with Time Constraints Between Actions

Zirui Wu'?, Xiao Liu', Jiayi Li!, Lingpeng Kong® and Yansong Feng'*
'Peking University, 2The University of Hong Kong
ziruiwu@pku.edu.cn, fengyansong@pku.edu.cn

Abstract

While Large Language Model-based agents
have demonstrated substantial progress in task
completion, existing evaluation benchmarks
tend to overemphasize single-task performance,
with insufficient attention given to the crucial
aspects of multitask planning and execution ef-
ficiency required in real-world scenarios. To
bridge this gap, we present RECIPE2PLAN,
a novel benchmark framework based on real-
world cooking scenarios. Unlike conventional
benchmarks, RECIPE2PLAN challenges agents
to optimize cooking time through parallel task
execution while respecting temporal constraints
i.e. specific actions need to be performed
within a particular time intervals following the
preceding steps. Overly aggressive local paral-
lelization may disrupt this constraint, poten-
tially compromising the entire cooking pro-
cess. This strict time constraint between ac-
tions raises a unique challenge for agents to
balance between maximizing concurrent op-
erations and adhering to critical timing con-
straints. Extensive experiments with state-of-
the-art models reveal challenges in maintaining
this balance between efficiency and feasibil-
ity. The results highlight the need for improved
temporal awareness and global multitasking
capabilities in large language models. We
open-source our benchmark and code at https:
//github.com/WilliamZR/Recipe2Plan.

1 Introduction

Large Language Models (LLMs) (OpenAl, 2023;
Team and Google, 2023; Touvron et al., 2023;
Qwen Team, 2024) have demonstrated the ability
to plan and reason step by step (Wei et al., 2022).
Leveraging this ability, LLM-based agents can au-
tomate complex real-world tasks (Yao et al., 2022b;
Shinn et al., 2024; Sun et al., 2024).

The effectiveness of LLM-based agents is pri-
marily evaluated based on the feasibility of their

* Corresponding author.

plans in the scenarios of web browsing (Yao et al.,
2022a; Zhou et al., 2023), tool usage (Qin et al.,
2023; Li et al., 2023), computer manipulation (Xie
et al., 2024b; Gou et al., 2024) and agent naviga-
tion (Shridhar et al., 2020; Wang et al., 2022).

However, the ability to manage concurrent ob-
jectives remains an often overlooked yet crucial
requirement in real-world applications, as exempli-
fied by everyday scenarios where humans prepare
multiple dishes simultaneously for a meal or con-
duct parallel laboratory experiments (Russell and
Norvig, 2010; Zhang et al., 2024; Wu et al., 2024).
Current planning benchmarks assume that models
execute tasks by decomposing the overall goal into
steps and achieving these subgoals sequentially,
one at a time (Liu et al., 2023; Ma et al., 2024).
Consequently, these datasets fail to account for the
duration of an action and the potential for multitask-
ing. The multitasking scenario proposes a different
objective in addition to feasibility. It challenges the
model to optimize the efficiency to reach multiple
goals simultaneously.

Time constraints between actions are often im-
posed in the recipe of dishes or experiments, indi-
cating specific actions must be performed within a
particular time interval after the preceding step is
completed. For instance, the pouring and dripping
actions for pour-over coffee must be carried out
in sequence without any delay, as recommended
by professionals (Hoffmann, 2018). This property
introduces a unique challenge for multitask plan-
ning apart from conventional benchmarks. The first
plan in Figure 1 illustrates that if the agent priori-
tizes maximizing efficiency by rushing to multitask
whenever it is idle, it may inadvertently violate fu-
ture time constraints. Consequently, the agent must
balance the need for efficiency with adherence to
time constraints to achieve feasible multitask plan-
ning as shown in the second plan in Figure 1.

We propose a new benchmark RECIPE2PLAN
based on real-world recipes and constraints to eval-

4279

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 4279—-4301
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/WilliamZR/Recipe2Plan
https://github.com/WilliamZR/Recipe2Plan

Action
Pour Water  Drip Coffee

Multitask Agent

Observation

Complete multiple recipes in the shortest time possible.

Both drippers are occupied.
The kettle is occupied, the temperature of water is 96.

“ .................................. > Feedback
Action of Recipe B can not be executed.
Agent is occupied.
Recipe A: Iced Coffee 4
P d i | Violation of time constraints
Preparation i
. o i
m Plan 1: Efficiency Feasibility x i
o l— i
l Pour | Drip | Pour | Drip | EoillWeter H
l Grind Coffee [ Pour | Drip | Pour Drip I
Brewing Time Constraints l Grind Coffee l pour [ Diip [ Pour ]
Recipe B: Hot Coffee
Preparation Plan 2: Efficiency Feasibility
T
o l Grind Coffee ‘ l Pour | Drip | Pour | Drip | Ice ‘
l Pour | 2op | Pour 207 Grind Coffee l Pour | Drip I Pour | Drip |

Brewing Time Constraints

Figure 1: A simplified demonstration of our benchmark. Actions will either occupy the agent or leave it idle. The
four steps of brewing must be executed sequentially as time constraints between actions. The goal for the agent is to
plan multitasking to complete the recipes in the shortest time possible without violating any constraints. The first
plan illustrates a scenario where the agent attempts always to keep the agent occupied for higher efficiency, resulting
in violations of time constraints. The second plan maintains the balance between the efficiency and feasibility of the
plan by leaving the agent idle on purpose to maintain the time constraints for all actions.

uate the multitasking abilities of agents. We high-
light three main challenges as: (1) Commonsense
Reasoning: The agent must identify idle periods
in the recipe as opportunities for multitasking, rec-
ognize action dependencies, and consider physical
constraints to construct feasible action sequences.
(2) Dynamic Local Planning: As recipe states
evolve based on executed actions, the agent must
continuously determine executable actions at each
timestep. Additionally, if the agent’s initial assump-
tions about properties or constraints do not align
with real-world conditions, it must dynamically
adapt its beliefs and revise the plan accordingly. (3)
Strategic Global Planning: The agent is required
to allocate the use of physical objects and schedule
actions on a timeline to enable efficient multitask-
ing. It is crucial to avoid planning multitasking
in a purely local and greedy manner, as this could
lead to violations of time constraints. It challenges
the agent to maximize efficiency while maintaining
feasibility from a global perspective.

Our benchmark provides a testbed for the effi-
ciency of LLM-based agents, as they are approach-
ing the upper limits of feasibility in current text-
based agent benchmarks (Sun et al., 2024) and
multitasking scenarios without time constraints
between actions (Table 3). By introducing time
constraints between actions, our benchmark eval-
uates the planning abilities of agents to maintain
a delicate balance between efficiency and feasibil-
ity, rather than simply maximizing efficiency in a

greedy manner. RECIPE2PLAN aims to push the
boundaries of current agent planning capabilities,
towards designing embodied agents that are capa-
ble of handling complex multitasking for industry-
level tasks with time constraints between actions.

In this study, we experiment with various sizes
of open-source models, such as Qwen2.5 (Qwen
Team, 2024) and Llama3.1 (Dubey et al., 2024), as
well as closed-source models, including Gemini-
1.5-Pro (Team et al., 2024) and GPT-40 (Ope-
nAl, 2023). Our experiments reveal that GPT-40
achieves the highest success rate of only 21.5% and
the main failure source is the violation of time con-
straints between actions. It suggests that current
LLMs fail to deliver feasible plans while attempting
efficient multitasking. We show that LLMs can de-
liver feasible plans if time constraints between ac-
tions are absent. However, their efficiency still lags
significantly behind a simple heuristic method (§4).
We also indicate that GPT-4o can trade efficiency
for success rate if focusing solely on feasibility
(§5.1). Overall, we demonstrate that current LLMs
struggle to balance efficiency and feasibility when
multitasking with time constraints. We further ana-
lyze the commonsense reasoning, local planning,
and global planning capabilities of LLMs. By iso-
lating each ability, we identify global planning as
the primary source of task failure and inefficient
multitasking (§5.3). Reasoning models excel un-
der time constraints compared with non-reasoning
models but struggle with action concurrency (§ 6).

4280



Our contributions are as follows:
e We introduce time constraints between actions to
restrict the time interval between steps for multitask
planning. This property highlights a new perspec-
tive to evaluate the planning abilities as balancing
efficiency and feasibility compared with existing
works focusing on feasibility solely.
e We construct a benchmark RECIPE2PLAN based
on real-world recipes for multitask planning. It
challenges the model to allocate the usage of phys-
ical objects and schedule actions on the timeline to
complete the recipes in the shortest time possible
without violating time constraints between actions.
e Our results show that LLMs struggle with plan-
ning multitasking under time constraints between
actions, resulting in a low success rate for the task.
This highlights the need for further development in
temporal reasoning and global planning capabili-
ties of LLM agents.

2 Related Work

Planning Benchmarks. To evaluate the planning
abilities of LLM-based agents, researchers have
proposed benchmarks across various domains such
as web browsing (Yao et al., 2022a; Zhou et al.,
2023; Deng et al., 2024), tool usage (Qin et al.,
2023; Li et al., 2023), and computer manipula-
tion (Xie et al., 2024b; Gou et al., 2024). These
benchmarks assess an agent’s ability to execute a
sequence of actions to achieve a general goal in a
partially observable environment (Liu et al., 2023;
Ma et al., 2024). However, these environments do
not account for the duration of each action. Ad-
ditionally, they evaluate planning abilities based
solely on feasibility, without comparing the effi-
ciency of task completion between different agents.

Scheduling Benchmarks. Apart from the typi-
cal planning task in which the agent interacts with
a partially observable environment without prior
knowledge of how to achieve the goal, the schedul-
ing task provides the agent with a complete de-
scription of the task. The objective is to deliver
an action sequence from a small set of fixed ac-
tions to meet the given objectives (Pinedo and Ha-
davi, 1992; Smith et al., 2000; Valmeekam et al.,
2024). Graph coloring (Stechly et al., 2024) investi-
gates whether LLMs can self-critique their answers
for violations of scheduling constraints. NATU-
RALPLAN assesses scheduling abilities in contexts
such as trip planning, meeting planning, and calen-

dar scheduling. TravelPlan (Xie et al., 2024a) deals
with more complex commonsense constraints and
strict restrictions. TIMEARENA primarily evaluates
the multitasking capabilities of LLMs in scenarios
without time constraints between actions. In con-
trast, our work focuses on assessing the ability to
balance efficiency and feasibility under time con-
straints between actions. While TIMEARENA only
analyzes task failures arising from a mix of com-
monsense reasoning, local planning, and global
planning, our work conducts extensive analysis to
isolate each challenge, identifying global planning
as the primary bottleneck. This systematic analysis
provides deeper insights into the complexities of
time-sensitive multitasking.

Planning Methods. Different methods use feed-
back and instructions in various ways. Open-loop
methods such as Chain-of-Thought (Wei et al.,
2022), least-to-most (Zhou et al., 2022) and plan-
and-solve (Wang et al., 2023) plan the action se-
quence without any feedback from the environment.
This type of method is vulnerable to the hallucina-
tion of execution constraints and environment dy-
namics. Closed-loop methods such as ReAct (Yao
et al., 2022b) and Reflexion (Shinn et al., 2024)
only refine local actions, which might result in
global failure due to time constraints. AdaPlan-
ner (Sun et al., 2024) refines the entire plan based
on environmental feedback and past failures.

3 RECIPE2PLAN

RECIPE2PLAN evaluates the planning ability of
LLMs for efficient and feasible multitasking un-
der constraints. Specifically, we provide the model
with multiple goals that can be achieved by follow-
ing recipes. Each recipe A is represented as a lin-
ear sequence of actions A = (ag, ay, ..., an ), with
each action assigned a specific execution time t,,.
The task is to plan the action sequence to complete
all goals in the shortest time possible, adhering
to the properties and constraints detailed in §3.1
and §3.2. RECIPE2PLAN challenges the model to
apply commonsense reasoning to infer any unwrit-
ten constraints from the recipe, including action
concurrency, action dependencies, and resource
limitations while planning the action sequence to
minimize overall execution time.

3.1 Properties of Actions

Action Duration. This refers to the time required
for an agent to complete a specific action. For the

4281



Commonsense Temporal Multitask Time Constraints Balance Efficiency

Benchmark Reasoning Planning Planning Between Actions and Feasibility
Graph Coloring (Stechly et al., 2024) X X X X X
NATURAL PLAN (Zheng et al., 2024) X X X X
TravelPlanner (Xie et al., 2024a) X X X
TIMEARENA (Zhang et al., 2024) X X

RECIPE2PLAN

Table 1: Comparison with existing scheduling benchmarks. Two unique properties distinguish our benchmark: (1)
Time Constraints Between Actions: Specific actions need to be performed within particular time intervals following
the preceding steps. It reflects real-world scenarios where violating such constraints might lead to task failure or
safety risk. (2) Balance Efficiency and Feasibility: The introduction of time constraints presents a unique challenge
where locally optimal planning for maximum efficiency might result in task failure. Therefore, the model must
adopt a global perspective to balance efficiency and feasibility during planning.

coffee recipes illustrated in Figure 1, the duration
of actions such as pouring and dripping is fixed,
and any deviation from these durations can result
in spoiled flavor. Following this principle, each
action in our benchmark is annotated with a spe-
cific duration. The recipe in the dataset explicitly
states this duration, allowing the agent to accurately
schedule the timeline. We also allow agent to pause
interruptable actions for more flexible multitasking.

Action Concurrency. Continuous actions, such
as pour water, require the active involvement of
the agent while the action is in progress. In con-
trast, autonomous actions, like boil water, do not
require the agent’s continuous attention, allowing
the agent to remain idle and free to perform other
tasks concurrently. Identifying autonomous actions
and executing them simultaneously with other ac-
tions is the key to efficient multitasking.

3.2 Multitasking Constraints

Action Dependencies. The dependent relation-
ships between actions are generally not explicitly
stated in the recipe. Although the actions in a recipe
are often presented in a linear sequence, the action
dependencies might form a graph structure. For ex-
ample, as illustrated in Figure 1, step 3 pour water
depends on step 1 boil water and step 2 grind coffee,
but steps 1 and 2 can be performed independently
of each other. This property challenges the agent
to dynamically identify the executable actions at
each timestep as the recipe status evolves.

Resource Limitations. During planning, the
agent must recognize whether an object is occupied
at the current time and when it will be available
again. Different recipes may require different phys-
ical objects and conditions. As shown in Figure 1,

the pouring process for coffee requires water at a
specific temperature, so the agent can boil water
for both recipes simultaneously to speed up the pro-
cess. However, if different recipes require water or
an oven at different temperatures, the agent must se-
quentially prepare the object for each recipe based
on when it becomes available. This property neces-
sitates that the agent plan globally, scheduling the
use of different objects while considering the dura-
tion of actions and specific condition requirements.

Time Constraints Between Actions. This prop-
erty is crucial for feasible multitasking of profes-
sional coffee preparation (Hoffmann, 2018) and
delicate biomedical experiments (Itoh et al., 2021),
where specific actions must be executed within a
precise time interval following a preceding action.
Failure to adhere to these time constraints may
cause the entire recipe or experiment to fail. This
realistic property imposes a significant challenge
on multitask planning. As depicted in Figure 1,
the agent can not simply follow a greedy manner
that prioritizes immediate actions without consider-
ing the broader temporal constraints. Incorporating
time constraints between actions ensures that the
agent must strategically balance multitasking effi-
ciency with feasibility.

3.3 Dataset Construction

Recipe Annotation. We collect and clean recipes
with annotated dependent relations from a website
for cooking. We ask three annotators to label the
properties and constraints following the pipeline in
Appendix A.1. The average kappa scores among
annotators are 0.78 for action concurrency, 0.50
for action interruptibility, 0.66 for time constraints,
and 0.86 for resource limitations. Based on these
results, we explicitly list action interruptibility

4282



and time constraints in the recipes, while keeping
action concurrency and resource limitations as
implicit properties that agents need to identify
through commonsense reasoning. Finally, we
prompt GPT-40 (Hurst et al., 2024) to annotate the
durations and time intervals that are also provided
in the recipes. All annotators have reviewed these
annotations to ensure their reasonableness.

Combine Recipes for Multitasking. We care-
fully select recipe combinations to evaluate plan-
ning abilities for efficient multitasking. To keep the
action space and context length manageable, we
only combine two recipes at a time. We then adapt
a heuristic algorithm from Zhang et al. (2024) to
plan action sequences for multitasking. Multitask-
ing efficiency for each sequence is computed ac-
cording to Equation 1. Instances are chosen for the
benchmark based on the following criteria: (1) Op-
portunities for multitasking: We include instances
with multitasking efficiency higher than 80% when
planning without time constraints, indicating signif-
icant potential opportunities for multitasking. (2)
Balance of efficiency and feasibility: We select in-
stances in which the multitasking efficiency drops
when time constraints between actions are consid-
ered, suggesting that an efficient greedy planning
strategy would likely violate these time constraints.
(3) Sufficient benchmark size with reasonable cost:
We include 65 diverse recipe combinations to reach
a similar size to previous work TimeArena.

3.4 Environment

We implement an environment to provide feedback
to the agent. The agent can choose to perform one
action for a specified duration at a given time. If the
agent determines that no action can be performed
at the moment, it can choose the time for its next
planned action. The environment then receives the
action and checks for any constraint violations. If a
constraint is violated, the environment will specify
the type of violation. If the action is permissible,
feedback from the environment includes the status
of physical objects, completed actions, and ongo-
ing autonomous actions. We present examples of
observations and feedback in Appendix C.2. The
agent can use this feedback to revise its global plan
and decide on the next action.

Recipe Statistics

# Recipes 29
Avg. Actions per Recipe 13.1
Avg. Autonomous Actions per Recipe 34
Avg. Interruptible Actions per Recipe 3.9
Avg. Time constraint Between Actions 3.1
Avg. Duration per Action (min) 5.7
Avg. Restriction Interval (min) 2.7

Multitasking Statistics

# Instances 65
Avg. Executable Action per Step 3.1
Avg. Efficiency w/o time constraint (%) 86.1
Avg. Efficiency w/ time constraint (%) 73.7

Table 2: Statistics of recipes and multitasking instances
in our RECIPE2PLAN benchmark. The agent can choose
any timestamp for the next action, expanding the search
space beyond the number of executable actions solely.

4 Experiments

4.1 Baselines

Models. We evaluate several models, including the
open-source Llama-3.1 with parameter sizes of 8B
and 70B (Dubey et al., 2024), and Qwen2.5 with
parameter sizes of 7B, 32B and 72B (Qwen Team,
2024). Additionally, we assess the closed-source
models, GPT-40-mini, GPT-40 (Hurst et al., 2024)
and Gemini-1.5-Pro (Team et al., 2024). The ver-
sions of the models are detailed in Appendix C.3.
Methods. We begin by prompting the model to
identify any unwritten properties and constraints
from each recipe. These identified elements
are then concatenated with the original descrip-
tion. Next, we employ a ReAct-style prompting
method (Yao et al., 2022b) on the models to plan
the action sequence. To evaluate the planning abil-
ities and mitigate the cascading errors from com-
monsense reasoning, we also experiment with an
oracle setting ReAct + Oracle that replaces the
identified constraints with the gold annotations.
Constraint Setting. We evaluate the agent under
without time constraints and with time constraints
settings to study the impact of time constraints
between actions on the feasibility and efficiency of
multitasking agents.

4.2 Evaluation Metrics

Success Rate. It measures the feasibility of the
plans exclusively by evaluating whether the agent
can deliver a plan that successfully completes all
recipes. The agent might fail due to a violation of
time constraints, reaching a maximum of execution
errors, or being stuck in an endless dead loop.

4283



w/o Time Constraints

w/ Time Constraints

Model
Success Progress R-Efficiency SxXE  Success Progress R-Efficiency SxE
ReAct
Open-Source Models
Qwen2.5-7B 1.5 26.5 73.6 1.3 0.0 224 78.0 0.0
Llama-3.1-8B 0.0 9.7 65.2 0.0 0.0 10.3 59.7 0.0
Qwen2.5-32B 80.0 96.7 57.3 47.2 154 57.4 91.4 8.6
Llama-3.1-70B 72.3 88.8 66.5 48.7 13.8 55.5 95.9 10.4
Qwen2.5-72B 72.3 91.2 71.0 48.8 7.7 54.9 97.1 4.5
Closed-Source Models
GPT-40-mini 3.1 51.8 63.5 1.8 1.5 36.0 68.3 0.4
Gemini-1.5-Pro 20.0 66.4 76.7 14.8 3.1 47.5 100.2 1.8
GPT-40 90.8 99.1 78.2 72.2 21.5 64.0 109.5 20.5
ReAct + Oracle
Qwen2.5-7B 0.0 28.1 90.7 0.0 0.0 24.1 73.9 0.0
Llama-3.1-8B 0.0 10.8 76.3 0.0 0.0 10.0 59.7 0.0
Qwen2.5-32B 80.0 96.7 61.2 51.0 10.8 57.0 91.7 8.6
Llama-3.1-70B 73.8 89.0 67.5 49.6 6.2 52.9 89.6 2.5
Qwen2.5-72B 72.3 90.1 70.2 50.7 7.7 52.6 106.5 7.0
GPT-40-mini 10.8 55.8 61.5 3.8 1.5 35.0 82.3 1.8
Gemini-1.5-Pro 16.9 63.6 82.8 14.1 7.7 49.1 105.1 44
GPT-40 95.4 99.4 75.0 73.1 27.7 60.6 116.0 24.0
Heuristics 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3: Results of ReAct and ReAct + Oracle experiments on RECIPE2PLAN. We report average percentage of
success rate (Success), progress rate (Progress), relative multitask efficiency (R-Efficiency) and muititasking score
(SxE). Bold denotes the best performance and underline denotes the second-best performance.

Progress Rate. This metric measures the propor-
tion of successfully executed actions in the recipes.
It evaluates the feasibility of the planning process
with a more fine-grained perspective.

Multitasking Efficiency. Autonomous actions
within recipes enable time savings, quantified as
Tsave » relative to the total duration of completed
actions. We define multitasking efficiency as the
ratio of saved time to the cumulative duration of
autonomous actions 7,0, with detailed rationale
in Appendix B.

T.
Efficiency e, = TLT (1)
auto

The efficiency metric is influenced by the
progress rate. As shown in Figure 2, if the agent
aborts the interaction midway, it will achieve an
efficiency of 100% while feasible and optimal man-
ner only obtains an efficiency of 87.5%. To address
this bias, we adjust the heuristic search plan to
match the agent’s progress rate and compute its ef-
ficiency as Efficiency, ;. For example, if an agent
completes 5 steps, we calculate the efficiency of the
first 5 steps of the heuristic plan as the reference.

The relative efficiency is computed as:

Efficiency ;e

R-Efficiency = ()

Efficiency, s

1.00 Efficiency 0.87

Pour | Drip Coffee Pour

| Pour | Drip Coffee Pour

Drip Coffee | Ice |
| Drip Coffee

1.00 R-Efficiency 1.00

Figure 2: Demonstration of relative efficiency. The
efficiency is affected by the progress rate and we use
relative efficiency (R-Efficiency) to calibrate the metric.

Multitasking Score. We use this metric to present
the overall efficiency and feasibility of the plans
simultaneously. The score is computed as:

M. Score — { R-Efficiency Succegs =1
0 otherwise
3
The rationale is that the agent should prioritize
ensuring the successful completion of the recipes
before aiming to achieve higher efficiency in task
execution. The overall score is computed as the

average of multitasking scores for each instance.

4284



120 Multitasking with Different Priority

---- Heuristics
100+ @8 Balanced Priority .__
N Feasibility Priority

0,
Success

Progress R-Efficiency SxE

Figure 3: Results of GPT-40 planning with different
priority. Balanced Priority: Blend feasibility and ef-
ficiency as in §4. Feasibility Priority: Only focus on
feasibility without considering efficiency.

4.3 Main Results

LLMs can plan feasible multitasking in the ab-
sence of time constraints between actions, but
efficiency needs improvement. In the ReAct set-
ting, GPT-4o delivers 90.8% feasible plans for mul-
titasking, surpassing other tested models by a large
margin. This demonstrates its ability to revise be-
liefs about unwritten properties and constraints and
to correct its actions to complete tasks. GPT-4o0
achieves a multitasking efficiency of 78.2%, indi-
cating that there is still room for improvement in
multitasking efficiency with LLMs.

LLMs face challenges in balancing efficiency
and feasibility for multitasking under time con-
straints between actions. The success rates and
completion ratios of all models decrease signif-
icantly when multitasking with time constraints.
GPT-40 only achieves the highest success rate of
21.5%. Interestingly, Gemini-1.5-Pro and GPT-40
achieve a relative efficiency higher than the heuris-
tic baseline. This indicates a tendency to prioritize
high efficiency during local planning. However,
the agent fails to maintain feasibility for time con-
straints from a global perspective while managing
multitasking efficiency.

Commonsense reasoning is not the bottleneck
for feasible and efficient multitasking. The chal-
lenge lies in effectively leveraging constraints
to schedule the actions. The models generally
achieve F1 scores higher than 70% for common-
sense reasoning as detailed in Appendix D. We in-
vestigate the impact of unidentified properties and
constraints in ReAct + Oracle setting. While the
success rate improves by 4.8% for GPT-40 in the
w/o time constraints setting, the relative efficiency
for GPT-40 decreases by 2.8%, indicating that the

w/o Time Constraints w/ Time Constraints

-- Heuristics
B Oracle
M Oracle + Hint

-- Heuristics
@8 Oracle
¥ Oracle + Hint ] 100

80

B
\

80
60
40

40

20 20

N

Success

N
SxE

Success SxE

Figure 4: Results of prompting GPT-40 under Oracle
setting: gold constraints, and Oracle + Hint setting:
gold constraints and executable actions at each step.

model struggles to formulate an efficient multitask-
ing plan even with oracle constraints. In the w/
time constraints setting, we observe the success
rate increases slightly for GPT-4o0 from 21.5% to
27.7%. Oracle constraints also improve efficiency
for Qwen2.5-72B and Gemini-1.5-Pro, surpassing
the heuristic baseline, yet their success rates remain
below 10%. This suggests that misidentified con-
straints are not the primary cause of time constraint
violations. Instead, the results highlight that mod-
els struggle to fully leverage explicit constraints to
plan efficient and feasible multitasking.

S Analysis

5.1 Multitasking with Different Priority

Our experiments (§4) indicate that LLMs struggle
to complete the recipes with balanced priority of
feasibility and efficiency. Therefore, we evaluate
if LLMs can focus solely on the feasibility priority,
ensuring that recipes are completed without vio-
lating any constraints as detailed in Appendix C.4.
LLMs can ensure more task completion by trad-
ing efficiency for feasibility. The results in Fig-
ure 3 show that under the feasibility priority set-
ting, the success rate significantly increases from
27.7% to 49.2%, and the progress rate increases
from 60.6% to 85.7%. This indicates that focusing
on feasibility allows more recipes to be completed
and more steps to be executed within the given time
constraints. It further underscores the importance
of enhancing the planning abilities of LLM agents
to balance feasibility and efficiency.

5.2 Error Analysis

In this section, we take a closer look at the dynamic
local planning abilities of the agents by examining
the distribution of valid and invalid actions. Invalid

4285



Distribution of Valid and Invalid Actions

Qwen2.5-32B Llama-3.1-70B Qwen2.5-72B
GPT-40 GPT-40 + Hint

EEE Success

[ Action Mismatch
mmm Action Concurrency
B Action Duration
Bl Action Dependency
B Resource Limitation

9

Distribution of Failure Sources

Qwen2.5-32B Llama-3.1-70B Qwen2.5-72B
GPT-40 GPT-40 + Hint

EEE Success

B Time Constraints
Stuck in Loop

B Maximum Revisions

mmm Early Finish

> I

Figure 5: Analysis of the distribution of invalid actions and failure source of ReAct + Oracle agents planning with
time constraints. GPT-40 + Hint: We add all the executable actions in the prompt to help the agent choose the next

action during dynamic local planning.

actions are categorized into: action mismatch (exe-
cuting non-existing actions and repeating finished
actions), and violations of other properties and con-
straints. We distinguish time constraint as a source
of failure separate from invalid actions, along with
other types of failure in Figure 5.

Action dependencies are the primary source of
invalid actions. As illustrated in Figure 5, models
with a high success rate under the w/o time con-
straints setting consistently achieve a valid action
ratio above 80% under time constraints. Despite all
constraints being explicitly presented in the prompt
during planning, the agent frequently violates these
constraints, particularly those related to action de-
pendencies. Upon examining the reasoning traces,
we observe that LLMs often breach action depen-
dencies constraints while attempting to optimize
multitasking, consequently neglecting feasibility.
Time constraints between actions are the main
sources of task failure. For the failure source of
planning with time constraints, open-source models
Llama-3.1 and Qwen2.5 may still get stuck in loop
or exceed maximum revisions for about 10% of the
instances. But the main source for the failure of
planning is due to time constraints between actions,
even GPT-4o fails to maintain time constraints in
70% of the cases.

5.3 Planning with Hints of Executable Actions

As LLMs can not handle action dependencies well
while planning for efficient multitasking, we fur-
ther add the executable actions for each step in the
prompt. This allows us to evaluate global planning
abilities directly as hints significantly improve the
model’s local planning ability to choose valid next
steps (Figure 5).

LLMs lack global planning ability for efficient
planning and maintaining time constraints be-
tween actions. The success rate and multitask
score show minimal improvement in both settings,
as illustrated in Figure 4. It suggests that agents
fail to consider the impact of executable actions on
the overall feasibility and efficiency from a global
perspective. Table 5 in the Appendix demonstrates
a case where GPT-4o fails to estimate the priority
of autonomous actions and leaves the agent idle
during the execution of the last two actions. Ta-
ble 6 in the Appendix provides an example where
GPT-40 rushes to heat up oil at the beginning of
the plan and executes this action concurrently with
others to maximize efficiency. This plan overlooks
ingredient preparation and results in the oil heated
for an extended period. It does not only violate the
time constraint but also risks catching fire.

6 Can Reasoning Models Master
Multitasking?

To assess the planning abilities of state-of-the-art
reasoning models, we evaluated GPT-5, Claude-
4, Gemini-2.5, and Deepseek-R1. We observed
that their tendency to generate long sequences
for constraint verification makes closed-loop plan-
ning impractical. Therefore, our evaluation em-
ployed the open-loop planning setting specified in
Appendix C.4. To ensure the evaluation focused
squarely on planning, we provided the models with
oracle constraints for each recipe.

Reasoning models excel under temporal con-
straints but struggle with action concurrency.
We present the evaluation of several leading rea-
soning models on our RECIPE2PLAN benchmark

4286



w/o Time Constraints

w/ Time Constraints

Model
Success Progress R-Efficiency SxXE  Success Progress R-Efficiency SxE
DeepSeek-R1 18.8 38.3 84.9 16.3 26.2 46.2 95.6 23.8
Cluade-Sonnet-4 15.4 36.7 99.7 12.4 16.9 34.7 95.7 15.8
Claude-4.1-Opus 21.5 42.7 91.5 18.6 20.0 40.9 93.2 19.0
GPT-5-mini 16.9 45.0 97.0 14.1 26.2 46.0 86.9 232
GPT-5 323 65.7 101.9 32.7 40.0 68.7 104.6 45.3
Gemini-2.5-Flash 354 62.8 90.6 28.1 36.9 57.2 91.1 30.7
Gemini-2.5-Pro 58.5 771 100.4 55.0 63.1 80.5 105.3 66.9
Heuristics 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 4: Results of reasoning models on RECIPE2PLAN. We report average percentage of success rate (Success),
progress rate (Progress), relative multitask efficiency (R-Efficiency) and muititasking score (S x<E). Bold denotes
the best performance and underline denotes the second-best performance.

in Table 4. Compared with ReAct baselines in
Table 3, reasoning models achieve much higher
success rate under time constraints between actions
compared with non-reasoning models. Gemini-
2.5-Pro achieves the highest success rate of 63.1%.
However, these models exhibit marked difficulty in
generating feasible plans when time constraints are
removed. While test-time scaling enhances their
global planning capabilities under time constraints
between actions, it does not adequately support
reasoning over action parallelism.

7 Conclusions

Our paper introduces the RECIPE2PLAN bench-
mark, which evaluates the feasible and efficient
multitasking abilities of existing LLMs. This
benchmark pushes the limits of current agent plan-
ning capabilities beyond mere task completion to
include the optimization of time and resource man-
agement. Our experiments reveal that while strong
models like GPT-40 can generate feasible plans
without time constraints, their performance de-
creases sharply when time constraints are imposed.
This highlights a significant gap between current ca-
pabilities and the requirements for feasible and ef-
ficient multitasking. Our analysis identifies global
planning as the primary area needing improvement,
paving the way for future work to focus on enhanc-
ing temporal reasoning and strategic planning.

Limitations

While multitasking is a practical application for
LLM agents, our text-based environment does not
fully capture the complexities of real-world cook-
ing and experimentation. Our agent does not en-
gage in physical exploration or interact with objects
in the real world, focusing solely on the temporal

planning aspects of multitasking. In our setting,
the agent is assumed to perform every action with-
out delay or failure. Introducing scenarios where
the agent must search for ingredients in a kitchen
or lab similar to Shridhar et al. (2020) and Wang
et al. (2022) would present a more realistic and
challenging environment. We plan to implement
such a realistic environment in future work.

The metric we use to evaluate efficiency by com-
puting the speed of completion may be biased by
the progress rate. To address this, we introduce a
relative multitasking efficiency metric to calibrate
our evaluation. However, the solution provided by
our heuristic baseline does not guarantee the opti-
mal plan for the task. The search space is complex
because the model can choose to execute actions
at arbitrary time stamps and split actions into ar-
bitrary time intervals, making it beyond the scope
of classical scheduling algorithms with time con-
straints (Itoh et al., 2021). While existing schedul-
ing algorithms may take a long time to execute, our
heuristic algorithm quickly identifies a feasible and
efficient plan, though it may be suboptimal. We
believe this heuristic can still serve as a valuable
baseline for evaluating the multitasking abilities
of agents. For future work, we plan to explore
scheduling algorithms that can better handle the
complexities of multitasking with time constraints.

Acknowledgement

This work is supported by NSFC (62161160339)
and a joint research scheme of NSFC and RGC
under grant number N_HKU714/21. We would
like to thank the anonymous reviewers for their
comments and suggestions. We also thank Chang
Ma for the helpful discussions. For any correspon-
dence, please contact Yansong Feng.

4287



References

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
2024. Navigating the digital world as humans do:
Universal visual grounding for gui agents. arXiv
preprint arXiv:2410.05243.

Atharva Gundawar, Karthik Valmeekam, Mudit Verma,
and Subbarao Kambhampati. 2024a. Robust plan-
ning with compound Ilm architectures: An llm-
modulo approach. Preprint, arXiv:2411.14484.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik
Valmeekam, Siddhant Bhambri, and Subbarao Kamb-
hampati. 2024b. Robust planning with 1lm-modulo
framework: Case study in travel planning. arXiv
preprint arXiv:2405.20625.

James Hoffmann. 2018. The World Atlas of Coffee:
From beans to brewing-coffees explored, explained
and enjoyed. Hachette UK.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Takeshi D Itoh, Takaaki Horinouchi, Hiroki Uchida,
Koichi Takahashi, and Haruka Ozaki. 2021. Op-
timal scheduling for laboratory automation of life
science experiments with time constraints. SLAS
TECHNOLOGY: Translating Life Sciences Innova-
tion, 26(6):650-659.

Subbarao Kambhampati. 2024. Can large language
models reason and plan? Annals of the New York
Academy of Sciences, 1534(1):15-18.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 3102-3116.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang
Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang,
Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun,
Minlie Huang, Yuxiao Dong, and Jie Tang. 2023.
Agentbench: Evaluating llms as agents. Preprint,
arXiv:2308.03688.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn llm agents. arXiv
preprint arXiv:2401.13178.

OpenAl. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

Liang-Ming Pan, Jingjing Chen, Jianlong Wu, Shaoteng
Liu, Chong-Wah Ngo, Min-Yen Kan, Yugang Jiang,
and Tat-Seng Chua. 2020. Multi-modal cooking
workflow construction for food recipes. In Proceed-
ings of the 28th ACM International Conference on
Multimedia, pages 1132-1141.

Michael Pinedo and Khosrow Hadavi. 1992. Schedul-
ing: theory, algorithms and systems development. In
Operations Research Proceedings 1991: Papers of
the 20th Annual Meeting/Vortrdge der 20. Jahresta-
gung, pages 35-42. Springer.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Stuart J Russell and Peter Norvig. 2010. Artificial intel-
ligence a modern approach. London.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Coté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

David E Smith, Jeremy Frank, and Ari K J6nsson. 2000.
Bridging the gap between planning and scheduling.
The Knowledge Engineering Review, 15(1):47-83.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-
hampati. 2024. On the self-verification limitations
of large language models on reasoning and planning
tasks. arXiv preprint arXiv:2402.08115.

4288


https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2411.14484
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2303.08774
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2024. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances
in Neural Information Processing Systems, 36.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Gemini Team and Google. 2023. Gemini: A fam-
ily of highly capable multimodal models. Preprint,
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Karthik Valmeekam, Kaya Stechly, Atharva Gundawar,
and Subbarao Kambhampati. 2024. Planning in
strawberry fields: Evaluating and improving the plan-
ning and scheduling capabilities of Irm ol. arXiv
preprint arXiv:2410.02162.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609-2634, Toronto, Canada. Associ-
ation for Computational Linguistics.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Coté, and
Prithviraj Ammanabrolu. 2022. ScienceWorld: Is
your agent smarter than a 5th grader? In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11279-11298,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024. Os-copilot: Towards gener-
alist computer agents with self-improvement. arXiv
preprint arXiv:2402.07456.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su.
2024a. Travelplanner: A benchmark for real-world
planning with language agents. In Forty-first Interna-
tional Conference on Machine Learning.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024b.
Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. arXiv
preprint arXiv:2404.07972.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing
Systems, 35:20744-20757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Yikai Zhang, Siyu Yuan, Caiyu Hu, Kyle Richard-
son, Yanghua Xiao, and Jiangjie Chen. 2024.
Timearena: Shaping efficient multitasking language

agents in a time-aware simulation. arXiv preprint
arXiv:2402.05733.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. 2024.
Natural plan: Benchmarking llms on natural lan-
guage planning. arXiv preprint arXiv:2406.04520.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv e-prints, pages arXiv—2307.

A Details for Dataset Construction

A.1 Recipe Collection

We collect cooking recipes from existing bench-
mark MM-Res (Pan et al., 2020). MM-Res contains
9,850 recipes from cooking websites and has anno-
tated the dependent relationship between actions
in the recipe. To curate cases from the MM-Res
dataset for the purpose of our benchmark. We sam-
ple recipes that involve using a microwave, an oven
or a stove and disregard those with more than 30
actions. We remove actions that is a non-cooking
steps, such as introductory phrases like roday we
want orka. Next, we ensure there are no temporal
inconsistencies between steps. Optional statements
are either removed or converted into mandatory
steps. For example, You can use a spoon to get

4289


https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2022.emnlp-main.775
https://doi.org/10.18653/v1/2022.emnlp-main.775

Action Duration Distribution Action Duration Distribution

GPT-40 Gemini-1.5-Pro

200 200

Number of Actions
Number of Actions

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (min) Time (min)

Figure 6: Distribution of action duration that Large
Language Models annotate automatically. GPT-40 and
Gemini-1.5-Pro share a similar distribution.

all the contents if needed is revised to exclude if
needed. Actions are split for clarity if needed. for
instance, boil water and pour water into a cup be-
comes boil water and pour water into a cup, to
separate the autonomous and continuous actions.
Conversely, steps that describe sequential actions
in separate sentences are merged; for example, use
water to strain and strain until the juices are gone
are combined into a single step. The dependent
relationships of the revised actions are adjusted
accordingly.

A.2 Details for Recipe Annotation

We recruit three graduate students with cooking
experience to annotate the action properties and
constraints in the recipes following the guidelines
in Table 10. Each student identifies whether actions
were autonomous or continuous, marks actions as
interruptible or non-interruptible, and specifies any
physical or time constraints associated with each
action. To ensure consistency and accuracy, anno-
tations were cross-verified among the annotators,
with discrepancies resolved through discussion.

A.3 Action Duration Distribution

We illustrate the distribution of action durations
in Figure 6, showing that the majority of actions
take less than 10 minutes to execute. To investigate
potential biases introduced by the use of GPT-4 in
duration annotation, we also employed Gemini-1.5-
Pro to annotate the durations. GPT-4 outperforms
Gemini-1.5-Pro in both feasibility and efficiency
(Table 3) despite both models exhibiting similar
distributions in terms of action duration. It suggests
that the automatic annotation does not introduce
biases that could influence planning outcomes.

B Design of Metrics for Efficiency

Our metric is inspired by the Complete Speed (CS)
metric from TimeArena (Zhang et al., 2024) but
addresses unit and scale inconsistency issues in CS
with the following calibration:
e Unit Calibration: The progress score of each
action in TimeArena is defined as:

bt 100% )
= =7 0

E?:l tj

CS is then computed as the average of the highest
(progress) score P; divided by the time taken to
achieve it T; (min). TimeArena’s CS divides a

percentage by time, resulting in a unit of min~!.

2ien Bi
>ien'Ti

To address this, we should replace the numerator
with the action duration and ensure that the metric’s
unit is a percentage.

e Scale Calibration: CS can be biased by the
duration of autonomous actions in the recipe, as
more autonomous actions lead to a higher upper
bound for efficiency. To mitigate this limitation, the
proportion of saved time 74y and the cumulative
duration of the executed autonomous actions 7},
to scale the upper bound of efficiency to 1 for all
recipe combinations.

cS = 5)

C Implementation Details

C.1 Heuristic Baseline Algorithm

We adapt the heuristic method from Zhang et al.
(2024) to search for an efficient plan that is feasi-
ble. The details of the algorithm is presented in
Algorithm 1.

C.2 Environment

We implement an environment to provide feedback
to the agent. The examples of feedback are listed
in Table 15. If the action fits all the constraints, the
agent receives a message of the successful execu-
tion. And an observation of the action concurrency
of the executed action, current timestamp, status
of physical objects and the executing autonomous
actions. If the action can not be executed, the envi-
ronment will return an error message and detailed
feedback about the violated constraint. We also
provide a hint about executable actions to evaluate
the global planning abilities of the agent solely in
§5.3. During the interaction with the agent, the

4290



maximum number of revisions is 10. Exceeding
this number will be considered as task failure. And
we abort the multitasking process if the agent at-
tempts to execute the same action three times or
violates any time constraints.

C.3 Model Details

We use the Instruct version for all sizes of
Qwen2.5! and Llama-3.12 models in our study. We
use vllm (Kwon et al., 2023) to deploy Qwen?2.5-
7B, Llama-3.1-8B and Qwen-2.5-32B on a single
A800 GPU, and Llama-3.1-70B and Qwen2.5-72B
on four A800 GPUs. We use the gpt-40-2024-08-
06 for GPT-40%, gpt-40-mini-2024-07-18 for GPT-
40-mini*, Gemini-1.5-Pro-002 (2024-09-24) for
Gemini-1.5-Pro’ .

C.4 Planning Methods

Commonsense Reasoning We prompt the model
with the same guidelines in §A.1 and one exam-
ple to generate the beliefs of action concurrency,
action dependency and resource limitations. The
temperature are set as O for all models. The max
tokens for generation are set as 128.

Open-Loop Planning We evaluate the open-loop
planning methods to determine if current LLMs can
plan action sequences without interacting with the
environment. Given the complexity of our task, we
implement a Plan-and-Solve baseline. In this ap-
proach, the model generates beliefs about unwritten
properties and constraints through commonsense
reasoning and creates a coarse-grained plan to per-
form actions simultaneously, aiming to reduce total
execution time. Finally, the agent writes a fine-
grained action sequence following one example for
execution as shown in Table 12. The temperature
is also set as 0 and the maximum generation tokens
is 2048.

Closed-Loop Planning with ReAct In this ap-
proach, we add the beliefs of unwritten constraints
from commonsense reasoning to the recipe descrip-
tion. Then the agent performs one action at a time
and predicts the next action based on interaction
with the environment. The agent receives feedback
after each interaction. If an action fails, detailed

1https://huggingface.co/Qwen

2https://huggingface.co/meta—llama

Shttps://platform.openai.com/docs/models#
gpt-40

4https://platform.openai.com/docs/models#
gpt-40-mini

5https://ai.google.dev/gemini—api/docs/models/
gemini#gemini-1.5-pro

feedback is provided, prompting the model to re-
flect on its beliefs about unwritten properties and
constraints and adapt its multitasking plan dynam-
ically. The interaction continues until the agent
believes all recipes are completed or the interaction
is aborted by the environment. We set the temper-
ature as 0 and the maximum generation tokens as
512. We parse the response to get the first action
to avoid action trying to execute multiple actions
during one interaction. The prompt for the react
setting is detailed in Table 13. The prompt for Re-
Act with feasibility priority setting is detailed in
Table 14. In this setting, we prompt the model to
finish recipes one by one to avoid violations of time
constraints due to multitasking.

D Commonsense Reasoning Evaluation

We present the results of our evaluation for iden-
tifying unwritten properties and constraints in Ta-
ble 9. Most of the tested models display an F1
score above 80% for identifying action dependency
and object occupancy, with GPT-40 demonstrat-
ing robust performance by achieving F1 scores
of 90.34% and 91.12%, respectively. Qwen2.5-
32B and Qwen2.5-72B also exhibit strong com-
monsense capabilities in action dependency and
resource limitations. However, the task of identify-
ing autonomous actions poses a greater challenge.
GPT-40-mini achieves the highest recall at 82.18%,
while Gemini-1.5-Pro exhibits the highest precision
at 88.33%. While the models perform commend-
ably in identifying action dependencies and object
occupancy, there is a clear need for improvement
in identifying autonomous actions, which present
significant opportunities for multitasking.

E Open-Loop Planning Results

LLMs cannot plan feasible multitasking with-
out environmental feedback. In the Plan-and-
Solve setting, the model is prompted to plan an
action schedule without feedback from the envi-
ronment. The results in Table 8 show that even
GPT-40 achieves only a success rate of 3.1% and a
complete ratio of 21.7% in the w/o time constraints
scenario. When time constraints are added, the
success rate and complete ratio drop further. Many
generated plans attempt to execute continuous ac-
tions simultaneously, leading to plan failure. This
suggests that current LLMs lack the planning abil-
ity to schedule multitasking without environmental
feedback.

4291


https://huggingface.co/Qwen
https://huggingface.co/meta-llama
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-pro
https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-pro

F Planning Multitasking with Iterations

The LLM-Modulo framework (Gundawar et al.,
2024a; Kambhampati, 2024) has demonstrated that
large language models (LLMs) can effectively plan
complex schedules with the help of critics, as
seen in benchmarks like TravelPlanner (Xie et al.,
2024a), which includes multiple soft and hard con-
straints. In our experiments described in §4, the
agent cannot recover from time constraint viola-
tions. This section evaluates whether the LLM-
Modulo framework can improve model perfor-
mance by providing detailed critiques of the entire
plan, thus enabling more robust global planning,
correcting time constraint violations, and achieving
efficient and feasible multitasking.

Rather than using a step-by-step evaluation as
in §4, we design different critics to assess each
property and constraint outlined in §3.1 and §3.2
for detailed feedback on the whole plan including
the actions after the step that the plan fails. Fol-
lowing the approach in Gundawar et al. (2024b),
we use a reformatter to control the output format
and concatenate the feedback from these critics and
incorporate it into the initial prompt, performing
10 iterations. We evaluate GPT-40 and the latest
ol-mini under this framework.

Iterations of critics can help LLMs plan feasi-
ble multitasking. We sample 20 cases from our
benchmark which GPT-4o fails to solve in ReAct
setting. To evaluate the global planning abilities
with iterations fairly, we prompt the models with
the same plan and let the model revise the plan. We
find that GPT-40 and ol-mini can deliver 3 feasible
plans after 10 iterations. Out of the feasible plans,
ol-mini achieves a relative efficiency of 98.89%
which is very close to a heuristic baseline.

LLMs can not adjust a feasible plan for higher
multitasking efficiency without breaking feasi-
bility We prompt the model with 18 feasible plans
from GPT-40 under ReAct setting, we then prompt
the model to determine whether the plan can be fur-
ther optimized for higher multitasking efficiency.
GPT-40 and ol-mini can only maintain the feasi-
bility of half of the plans and the relative efficiency
of these also decreases compared with the initial
plans.

Algorithm 1: Heuristic Algorithm for Mul-
titasking with time constraints

Input: Set of actions A, Durations 7T,
Dependencies p(.A).
Output: Heuristic minimal time 7pp.

1 Define autonomous actions .A* and
continuous actions A’ from A.

2 Sort A* by 7 in descending order.

3 A < concatenate(A*, A').

4 Initialize Action_list as an empty list.

5 foreach a; € Ado

6 P < BFS(aj, p(a;)) to collect
prerequisites.

7 foreach p;, € P do

8 if p; € A then

9 Action_list.append(p;).
10 Remove p; from A.

1 end
12 end
13 Action_list.append(a;).

14 end
15 Define function DFS(A*, A’, Tmin): if
Action_list is empty then

16 ‘ return 7 ..

17 end

18 foreach a; € Action_list do

19 if check_constraint(a;) then
20 if a; € A* then

2 A* — A\ {a;}.

22 Tmin < Tmin-

23 end

24 else

2 A — A\ {a;}.

26 Tinin <= Trmin + T<az)
27 end

28 result «— DFS(A*, A", Tmin)
29 if result is not failure then
30 return result.

31 end

32 end

33 end

34 return failure.

35 Tmin < O.

36 result «— DFS(A*, A’, Tmin)

37 if result is failure then

38 ‘ return "No feasible schedule found."
39 end

40 else

41 ‘ return result.

42 end

4292



## Recipe 1:Tacos

Step 0 (3 min): Place the fish in a cooking pot with enough
water to cover them.

Step 1 (20 min): Let it boil for around 20 minutes.

Step 2 (3 min):
Step 3 (3 min):
Step 4 (5 min):
Step 5 (2 min):
Step 6 (5 min):

Drain them and put them in a bowl.

Use a fork to smash them.

Chop the onion and tomato in little squares.
Put the onion in a pan with a little oil.

Let it cook a little for 5 minutes.

Step 7 (2 min): Place the tomato and stir.

Step 8 (5 min): Let it cook for 5 minutes stirring constantly.
Step 9 (5 min): When it’s ready put the fish in the pan and
mix well.

Step 10 (1 min): Add salt and pepper to taste.

Step 11 (15 min): Let it cool down.

Step 12 (1 min): Warm the tortillas for 1 minute in the
microwave.

Step 13 (2 min): Put the fish we made in the middle of the
tortilla using a spoon and make sure it doesn’t reach the edge.
Step 14 (2 min): Fold the tortilla in half and put one toothpick
on each side to hold it closed.

Step 15 (10 min): Fry them in a pan with oil

Step 16 (2 min): Take the toothpicks off and serve when they
are still warm.

Interrutable steps: 3, 4.

Autonomous actions: step 1, 6, 11, 12, 15.

Action Dependency: 0->1, 1->2, 2->3, 4->5, 5->6, 6->7, 7->8,
3->9, 8->9, 9->10, 10->11, 12->13, 11->13, 13->14, 14->15,
15->16.

Steps 1, 6, 7, 8, 9, 10, 15 require stove, Steps 12 requires
microwave.

## Recipe 2:Smore-Bars

Step 0 (10 min): Preheat your oven to 350 degrees fahrenheit.
Step 1 (3 min): Grease a 9x13 inch pan.

Step 2 (1 min): Melt your 1 cup of butter in the microwave
until it is completely melted.

Step 3 (5 min): crush 2 cups (approximately 2 sleeves) of
graham crackers.

Step 4 (3 min): Mix the melted butter and crushed graham
crackers together.

Step 5 (5 min): Take about 3/4 (doesn’t need to be exact) of
your butter/graham cracker mixture and press into the bottom
of your greased pan.

Step 6 (2 min): Unwrap your candy bars and arrange them.
Step 7 (3 min): Evenly spread out your bag of mini marshmal-
lows across entire pan.

Step 8 (2 min): Sprinkle your remaining butter/graham cracker
mixture across pan.

Step 9 (15 min): Place pan in oven for 15 minutes.

Step 10 (2 min): Cut and Enjoy!

Interrutable steps: 1, 3, 5, 6, 7, 8, 10.

Autonomous actions: step 0, 2, 9.

Action Dependency: 2->4, 3->4, 1->5, 4->5, 5->7, 6->7, 7->8,
0->9, 8->9, 9->10.

Steps 0, 9 require oven, Steps 2 requires microwave.

71 Tacos

X3 Smore-Bars
Autonomous
Continuous

Heuri

[ Z1

stic Baseline 16

Action order

=l
=

GPT-40

Tii

me (min)

Table 5: Case study of GPT-40 planning without time constraints. GPT-4o result in a lower efficiency compared
with the heuristic baseline. The primary difference is that GPT-4o prioritizes different autonomous actions and

leaves the agent idle during the execution of the last two

actions

4293



## Recipe 1: Vada

Step 0 (5 min): First, start with blending the chilies, ginger
and coriander along with some cumin seeds.

Step 1 (3 min): Partially blend the chana dal with the mixture
from the previous step.

Step 2 (5 min): Slice the onions.

Step 3 (3 min): Once the mixture is ready, you need to mix
the mixture with cut onion.

Step 4 (3 min): Later add some coriander and curry leaves
and continue mixing.

Step 5 (5 min): Heat up some oil in a pan.

Step 6 (5 min): Shape the paste into circular disk-shaped
chunks.

Step 7 (5 min): Deep fry the shaped chunks in the hot oil.
Step 8 (10 min): Fry the vada in oil until it turns golden
brown.

Step 9 (5 min): Serve the dish hot and along with some
ketchup and some mint chutney.

Interruptible steps: 0, 1, 2, 3, 4, 6.
Autonomous actions: step 5, 7, 8.

Action Dependency: 0->1, 1->3, 2->3, 3->4, 4->6, 5->7, 6->7,
7->8, 8->9.

Time Constraints: 5-7 (5 min), 7->8 (5 min), 8->9 (5 min).
Steps 5, 7, 8 require stove.

## Recipe 2:Daikon-Radish

Step 0 (5 min): Peel the skin from the radishes and rinse them.
Step 1 (5 min): Slice them into thin circular slices.

Step 2 (5 min): Chop napa cabbage into thin slices.

Step 3 (5 min): Peel the skin off the onions and slice into
cubes.

Step 4 (3 min): Thinly slice the green onions.

Step 5 (8 min): In a large non-stick pan, sauté the onion until
slightly golden brown.

Step 6 (2 min): Once the onion is cooked, place the sliced
napa cabbage onto the pan.

Step 7 (2 min): Stir fry for about 2 minutes.

Step 8 (8 min): Add the radish into the pan and stir fry until
soft.

Step 9 (2 min): To season and garnish, add a couple of
teaspoons of soy sauce, half a teaspoon of sesame oil, and a
pinch of salt and pepper.

Step 10 (3 min): Place the bacon slices onto a pan.

Step 11 (10 min): Cook until crispy.

Step 12 (5 min): Slice into smaller pieces to make bacon bits.
Step 13 (2 min): Top the radish dish with some bacon bits.

Interruptible steps: 0, 1, 2, 3, 4, 12, 13.

Autonomous actions: step 5, 11.

Action Dependency: 0->1, 1->2, 2->3, 3->4, 4->5, 5->6, 6->7,
7->8, 8->9, 10->11, 11->12, 12->13, 9->13.

Time Constraints: 5->6 (2 min), 6->7 (1 min), 7->8 (3 min),
8->9 (2 min).

Steps 5, 6, 7, 8, 9, 11 require stove.

E ;Z?:on-Radlsh Heuristic Baseline 'Illlllll‘ 5
e 77777777}
As
(/A
(LA
VN
g LD
g GPT-40 A6
Vo Ll
V)
)
(A
VLA
INOSONNNNNNTe
A

15 20 25 30

Time (min)

Table 6: Case study of planning with time constraints. We only show part of the plan to focus on the source of
task failure. GPT-40 plans to execute step 5 of Vada first to maximize local efficiency which leads to violation of
time constraints between step 5 and step 7 of Vada. The heuristic plan strategically starts step 5 of Vada until other

prerequisite actions of step 7 are nearly finished.

4294



Model Pass Cases R-Efficency”

Fix Failed Plans
GPT-40 3/20 84.50
ol-mini 3/20 98.89

Optimize Feasible Plans

GPT-40 10/18 93.53 (-2.62)
ol-mini 8/18 89.41 (-3.87)

Table 7: Results of LLM-Modulo framework on gen-
erating feasible or more efficient plans. We report a
number of feasible cases and the relative efficiency. *:
Average R-Efficiency for feasible plans.

4295



w/o time constraint w/ time constraint

Model
Success Progress R-Efficiency SxE Success Progress R-Efficiency SxE
Plan-and-Solve
Qwen2.5-7B 0.0 7.5 50.5 0.0 0.0 6.3 404 0.0
Llama-3.1-8B 0.0 6.2 38.6 0.0 0.0 6.6 429 0.0
Qwen2.5-32B 0.0 8.6 78.1 0.0 0.0 8.8 54.6 0.0
Llama-3.1-70B 0.0 11.3 65.9 0.0 0.0 10.1 61.1 0.0
Qwen2.5-72B 1.5 17.2 87.5 1.5 0.0 13.3 76.6 0.0
Closed-Source Models
GPT-40-mini 1.5 134 78.0 1.4 0.0 10.3 63.6 0.0
Gemini-1.5-Pro 0.0 6.1 61.4 0.0 0.0 6.6 68.3 0.0
GPT-40 3.1 21.7 83.7 1.4 1.5 17.4 77.6 1.4
Heuristics 100 100 100 100 100 100 100 100

Table 8: Results of Plan-and-Solve setting. We report Success Rate (Success), Average Progress Rate (Progress),
Relative Multitask Efficiency (R-Efficiency) and Muititasking Ability (SxE).

Constraint Model Recall Precision F1

Qwen2.5-7B 57.68 62.98 60.21
Llama-3.1-8B 58.26 50.87 54.31
Qwen2.5-32B 67.92 79.96 73.45

Llama-3.1-70B  81.09 75.83 78.37
Qwen2.5-72B 74.04 70.92 72.44
GPT-40-mini 82.18 68.27 74.58
Gemini-1.5-Pro  40.48 88.33 55.51
GPT-40 73.10 79.39 76.12

Qwen2.5-7B 69.67 78.15 73.67
Llama-3.1-8B 79.68 82.61 81.12
Qwen2.5-32B 87.41 92.18 89.73
Llama-3.1-70B  91.57 92.58 92.07
Qwen2.5-72B 92.18 92.82 92.50
GPT-40-mini 78.38 82.82 80.54
Gemini-1.5-Pro  88.36 90.09 89.22
GPT-40 89.94 92.33 91.12

Qwen2.5-7B 69.82 91.26 79.12
Llama-3.1-8B 85.31 88.96 87.10
Qwen2.5-32B 91.28 96.15 93.65
Llama-3.1-70B  88.30 97.21 92.54
Qwen2.5-72B 92.22 95.04 93.61
GPT-40-mini 92.10 89.56 90.81
Gemini-1.5-Pro  79.95 95.45 87.02
GPT-40 85.30 96.02 90.34

Action Concurrency

Action Dependency

Resource Limitations

Table 9: Results of commonsense reasoning for unwritten properties and constraints.

4296



Action Concurrency
Please identify if the action is autonomous or continuous.

- Autonomous Action: The action can be performed alongside other actions, allowing the agent to perform multiple
tasks simultaneously. (e.g. preheat oven).

- Continuous Action: The step requires active involvement of the agent to complete and must be executed
independently without overlapping with other tasks (e.g., ’Crack 3 eggs into a bowl’).

Execution Interruptibility
A step classified as non-interruptible means that it cannot be split into two separate periods, and no other actions can
be started during the execution of this action. Identify whether an action in a process can be interrupted or not

- If the action is logically interruptible (e.g., 'Dice the onions’), classify it as interruptible.

- If the action requires the agent to finish in one go(e.g., ’Keep stirring...”), classify it as non-interruptible.

- If the action involves heating (e.g., ’Melt the chocolate over low heat’), classify it as non-interruptible to ensure
that the heating time is not extended.

- If the action can be executed in a short time (e.g., "Pour water into a cup’ or *Add something into something’),
classify it as non-interruptible.

Resource Limitations
Annotate the steps that use one of the following physical objects.

- Oven: You should always preheat the oven to a specific temperature before using it. If the oven is already
preheated by a previous step, you can skip the preheat action.

- Microwave: Use this tool to heat something quickly. You can only microwave for one recipe at the same time.

- Stove: Use the heater to warm your pan or pot for cooking.

Time Constraints
Identify pairs of actions if there is a time constraint between them.

- If the object of action has been heated, the time interval between steps should be some value to avoid extending
the heating time (e.g., "Fry the okra’ -> "Mix the onion with okra’). Steps involving cooling allow for more flexible
time intervals.

- If the state of an object will change over time (e.g., "Melt butter’ -> *Mix with something’), the next step should
occur within a specific time frame to ensure the desired outcome

- Please only consider the actions with the direct dependent relationship. And you do not need to specify the time
interval.

Table 10: Guidelines for recipe annotation.

## Recipe 1:Baked-Potato

Step 0 (10 min): Preheat the oven to 425 degrees.

Step 1 (2 min): Pierce the potato several times with a fork.

Step 2 (5 min): Bake the potato in the preheated oven.

Step 3 (1 min): Melt butter in the microwave.

Step 4 (10 min): Remove potato from the oven and use a sharp knife to make decorative cuts on the top of the potato.
Step 5 (1 min): Pour melted butter over the potato and serve.

- You can minimize the execution time based on the following properties:
You can execute only part of the action duration to pause steps 1, 4 for more efficient multitasking. But other actions
must be finished without interruption.

- Do not violate any following constraints when executing this recipe:
Step 5 must be performed within 2 min after Step 3 is finished.

Thoughts on the recipe:

The agent can perform autonomous actions step 0, 2, 3 in parallel with other actions to speed up the process.

The action before the arrow must be completed before the action after the arrow can be started: 0->2, 1->2, 2->4,
3->5, 4->5

The following actions would occupy the corresponding physical objects. The agent can not perform the action if the
object is occupied. The properties such as volume and temperature of the object should also match the requirement of
the recipe: Steps 0, 2 require oven, Steps 3 requires microwave

Table 11: Demonstration of recipe description. For the oracle setting, we replace the thoughts on the unwritten
thoughts with the actual properties and constraints from the recipe

4297



You are a multitask planner. You will plan an action sequence to finish some recipes as quickly as possible without
violating any constraints.

## Recipes

Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied
with the duration to finish the action. Each recipe has autonomous actions such as boiling water that let the agent be
idle during execution. They can be executed in parallel with other actions to speed up the process Continuous actions
such as pouring water occupy the agent and only one continuous action can be executed at the same time across all
recipes.

## Task Description

Your task is to complete all of the recipes as quick as possible while following the recipe. The key to success is to
follow the recipe and constraints, then complete the steps in the correct order while minimizing the execution time by
executing the autonomous actions concurrently. First, let’s analyze the recipe and create a concise plan on how to
perform actions simultaneously to reduce the total execution time. Then write your action sequence following the
plan. Your action should be a list of *Step(step_num, recipe_name, time, timestamp)’ which indicates the performing
the given step for the given time at the timestamp. Your time and timestamp should be written as HH:MM:SS.

%
## Recipe 1:Baked-Potato
Description for baked potatoes

## Recipe 2:Cheese-Sandwich
Description for cheese sandwiches

## Plan
Start by preheating the oven for both recipes simultaneously, since they require the same temperature and preheating
is an autonomous action. This allows the agent to perform other actions while the oven is preheating.

While the oven is preheating, start the preparation steps that do not need the oven. I can pierce the potato (step 1 for
Baked-Potato) and prepare the Cheese-Sandwich by buttering the bread (Step 1) and then placing the cheese between
the slices (Step 2). These steps only take 5 minutes, then wait for the oven to preheat.

At 00:10:00, the oven should be preheated. Bake the potato (Step 2 for Baked-Potato) and heat soup (Step 4 for
Cheese-Sandwich) simultaneously. And wait for the autonomous actions to finish at 00:15:00 since the oven and
microwave are occupied and no other actions can be performed.

At 00:15:00, start baking the sandwich (Step 3 for Cheese-Sandwich) and making decorative cuts on the potato (Step
4 for Baked-Potato) simultaneously. Step 4 of Baked-Potato is interruptible, so the agent can pause this action and
perform step 5 of Cheese-Sandwich at 00:20:00 to serve the sandwich with the soup without violating the constraints.
And the agent can continue to finish the potato with executing autonomous action step 3 and continuous action step 4
simultaneously and serve the potato at 00:26:00.

## Action Sequence

Step(0, Baked-Potato, 10 min, 00:00:00), Step(0, Cheese-Sandwich, 10 min, 00:00:00), Step(1, Baked-Potato, 2 min,
00:00:00), Step(1, Cheese-Sandwich, 2 min, 00:02:00), Step(2, Cheese-Sandwich, 1 min, 00:04:00), Step(2, Baked-
Potato, 5 min, 00:10:00), Step(4, Cheese-Sandwich, 5 min, 00:10:00), Step(3, Cheese-Sandwich, 5 min, 00:15:00),
Step(4, Baked-Potato, 5 min, 00:15:00), Step(5, Cheese-Sandwich, 1 min, 00:20:00), Step(4, Baked-Potato, 4 min,
00:21:00), Step(3, Baked-Potato, 1 min, 00:25:00), Step(4, Baked-Potato, 1 min, 00:25:00), Step(5, Baked-Potato, 1
min, 00:26:00)

*/

Please follow the example to generate the action sequence for the following recipes.

/*

## Recipe 1:

Description

## Recipe 2:
Description

## Plan

Table 12: Prompt for Plan-and-Solve setting.

4298



You are a multitask planner. You will plan an action sequence to finish some recipes as quickly as possible without violating
any constraints.

## Recipes

Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied with
the duration to finish the action. Each recipe has autonomous actions such as boiling water that let the agent be idle during
execution. They can be executed in parallel with other actions to speed up the process Continuous actions such as pouring
water occupy the agent and only one continuous action can be executed at the same time across all recipes.

## Task Description

You are required to analyze the current status of the environment and decide the next action to take so that you can finish
the recipes in the shortest time without violating constraints. Give your thoughts on the given status, action history and
observation. Your analysis should be within 100 words starting with *Thought:’. Then you should choose your next action.
If you think you have already completed all the recipes, please output *Action: Finish’. Write your action as ’Action:
Step(step_num, recipe_name, time, timestamp)’ - Perform the given step for the given time at the timestamp. Your time and
timestamp should be written as HH:MM:SS. You can only perform one action each time. Do not repeat actions that are
already in progress. If you choose to wait for current actions to finish, please state the time you will wait for. Then write
your next action as ’I will wait and perform the next action at HH:MM:SS. Action: Step(step_num, recipe_name, time,
timestamp).

%
## Recipe 1:Baked-Potato
Description for baked potatos

## Recipe 2:Cheese-Sandwich
Description for cheese sandwichs

## Action Sequence

Observation: Continuous action executed successfully. The current timestamp is 0:5:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied; You are currently executing the following
autonomous actions: step 0 of Baked-Potato (will finish at 0:10:0), step 0 of Cheese-Sandwich (will finish at 0:10:0)
Thought: I have completed the preparatory steps for the Cheese-Sandwich. Since both recipes are still preheating in the
oven, [ should wait for the preheating to complete. After preheating, both recipes are ready for the next baking step. Step 4
of the Baked-Potato is a long continuous step that can be executed in parallel with steps 3 and 4 of the Cheese-Sandwich.
So I should bake the Baked-Potato first.

I will wait and perform the next action at 00:10:00. Action: Step(2, Baked-Potato, 00:05:00, 00:10:00)

Observation: Autonomous action started successfully. The current timestamp is 0:15:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied; You are currently executing the following
autonomous actions: step 4 of Cheese-Sandwich (will finish at 0:20:0)

Thought: With the Cheese-Sandwich currently baking in the oven, I can now focus on the the Baked-Potato. I will remove
the Baked-Potato from the oven and prepare it for serving. I should not start melting the butter for the Baked-Potato before
nearly finishing the Step 4 of Baked-Potato to avoid the butter cooling down. So I will start making decorative cuts on the
top of the potato first. And I will stop at 0:20:00 to serve the Cheese-Sandwich to avoid violating the time constraint.
Action: Step(4, Baked-Potato, 00:05:00, 00:15:0)

Observation: Continuous action executed successfully. The current timestamp is 0:21:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is not occupied; stove is not occupied

Thought: I have served the Cheese-Sandwich and can now continue with the Baked-Potato. I will prepare the melted butter
and pour it over the potato to complete the recipe. Since the step 5 must be performed within 2 min after Step 3, I will start
melting the butter when step 4 is nearly finished in 1 minute. Now I would continue with the decorative cuts on the top of
the potato.

Action: Step(4, Baked-Potato, 00:04:00, 00:21:0)

Observation: Continuous action executed successfully. The current timestamp is 0:27:0. Status of physical objects: oven is
occupied, temperature is 425.0; microwave is occupied; stove is not occupied

Action: Finish

*/

Please follow the example to generate the action sequence for the following recipes.

/*

## Recipe 1:

Description

## Recipe 2:
Description

## Action Sequence

Table 13: Prompt for ReAct-style action sequence generation.

4299



You are a multitask planner. You will plan an action sequence to finish some recipes without violating any constraints.

## Recipes

Each recipe is a sequence of actions designed to achieve a specific goal. Each action is a textual description companied
with the duration to fininsh the action. Each recipe has autonomous actions such as boiling water that lets the agent be idle
during execution. They can be executed in parallel with other actions to speed up the process Continuous actions such as
pouring water occupy the agent and only one continuous action can be executed at the same time across all recipes.

## Task Description

You are required to analyze the current status of the environment and decide the next action to take so that you can finish the
recipes without violating constraints. Do not rush to complete the recipes. Take your time to execute the actions without
violating constraints. especially the time constraints. You should prioritize on not violating the time constraints and ensure
the recipe is completed successfully.

Give your thoughts on the given status, action history and observation. If you find your initial thoughts of the recipes does
not align with the current status, you can revise your initial thoughts. Your analysis should starts with *Thought:’. Then you
should choose your next action. If you think you have already completed all the recipes, please output *Action: Finish’.
Write your action as *Action: Step(step_num, recipe_name, time, timestamp)’ - Perform the given step for the given time at
timestamp. Your time and timestamp should be written as HH:MM:SS. You can only perform one action each time. Do not
repeat actions that are already in progress. If you choose to wait for current actions to finish, please state the time you will
wait for. Then write your next action as ' will wait and perform the next action at HH:MM:SS. Action: Step(step_num,
recipe_name, time, timestamp).

/>|<

## Recipe 1:Baked-Potato

Description for baked potatos

Observation: The current timestamp is 00:00:00. Status of physical objects: oven is not occupied, is not preheated;
microwave is not occupied; stove is not occupied

Thought: I will preheat the oven. This will allow me to perform other actions while the oven is preheating.

Action: Step(0, Baked-Potato, 00:10:00, 00:00:00)

Observation: The current timestamp is 00:00:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 0 of
Baked-Potato (will finish at 00:10:00)

Thought: Since the oven is preheating, I can start piercing the potato for the Baked-Potato recipe. And this does not risk
violating any time constraints.

Action: Step(1, Baked-Potato, 00:02:00, 00:02:00)

Observation: The current timestamp is 00:04:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 0 of
Baked-Potato (will finish at 00:10:00), step 0 of Cheese-Sandwich (will finish at 00:10:00)

Thought: Step 1 of the Baked-Potato is complete. I will now move on to step 2 of the Baked-Potato. This does not risk
violating any time constraints.

Action: Step(2, Baked-Potato, 00:05:00, 00:10:00)

Observation: The current timestamp is 00:10:00. Status of physical objects: oven is occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied; You are currently executing the following autonomous actions: step 2 of
Baked-Potato (will finish at 00:15:00)

Thought: Step 2 of the Baked-Potato is complete. Since Step 5 depends on both Step 3 and Step 4 and Step 5 must be
performed within 2 minutes after Step 3 is complete, and. Executing Step 3 first will result in violation of time constraints
since Step 4 is a long continuous step. I will now first finish Step 4 of the Baked-Potato to ensure the time constraints are
followed.

Action: Step(4, Baked-Potato, 00:10:00, 00:15:00)

Observation: The current timestamp is 00:26:00. Status of physical objects: oven is not occupied, temperature is 425.0;
microwave is not occupied; stove is not occupied

Thought: The recipe is completed.

Action: Finish

*/

Please follow the example to generate the action sequence for the following recipes.
/%

## Recipe 1:

Description

## Action Sequence

Table 14: Prompt for ReAct-style action sequence generation with feasibility priority.

4300



Feedback

Wrong Recipe Recipe C is not one of our goals. Please select actions from our recipes A and B
Wrong Action There is no step X in recipe A.
Time Error The current time is HH:MM:SS. You can not perform any actions before the
current timestamp.
Infeasible Multitask You can not perform step X of Recipe A and step Y of Recipe B simultaneously
since they are all continuous actions.
Object Occupancy Object M is currently occupied.
Object Temperature The Property of the Object is o, but step X of recipe A needs .
Object Volume The object only has a volume of water. It is not enough for this action.
Dependency Step Y of recipe A can not be performed because prerequisite step X is not
completed. (The expected finish time is HH:MM:SS)
Repeated Action Prerequisite step X is already used for the next action step Y in recipe A. You

should not execute the same step twice. If you insist, please complete all the
previous steps first.

time constraint The time interval between Step X and Step Y in Recipe A exceeds the allowed
time limit t min.
Action Duration Your plan execution time t min exceeds the time needed to perform the action.
Execution Interruptibility Step X of Recipe A is not interruptable. You should finish the action in one go.
Observation
Success Execution Autonomous / Continuous action executed successfully. Stove is not occupied;
Oven is not occupied, temperature is t. You are executing step X of recipe A.
Failed Execution Step X of Action A can not be executed.
Hint
Executable Actions The following actions are ready to be executed after HH:MM:SS, Step X of

Recipe A, Step Y of Recipe B.

Table 15: Examples of observation, feedback and hints from the environment.

Critic Example

## Critic for the plan:

Plan Completeness: The following actions are missing in your plan: step 2 of Cobbler; step 3 of Cobbler; step 4 of
Cobbler; step 5 of Cobbler; step 6 of Pancakes; step 7 of Pancakes. Include them in the plan to complete the recipe.

Action Duration: The duration of the following actions do not align with the action duration: Pancakes step 9;
Pancakes step 10; Pancakes step 14; Pancakes step 12. Make sure the duration of the actions are correct.

Action Concurrency: You can not start another action while executing a continuous action. In your plan, the
following actions can not be performed simultaneously with each other: step 0 of Pancakes and step 1 of Pancakes;
step 1 of Pancakes and step 5 of Pancakes ; step 6 of Cobbler and step 3 of Cobbler . Please adjust the timeline to
avoid the conflict.

Action Interruption: The following actions should not be interrupted in your plan: step 14 of Pancakes. Make sure
they are finished in one go.

Action Dependency: step 1 of Pancakes can be performed only after prerequisite action step 0 of Pancakes is finished.
You should complete the prerequisites before performing the next action.

Time constraint: The following action pairs violate the time constraint: step 5 of Cobbler should start within 2 min
after step 3 of Cobbler is finished; step 14 of Pancakes should start within 2 min after step 12 of Pancakes is finished.
Reschedule the actions to meet the time constraint.

Physical Object: Step 14 of Pancakes can not be performed at time 00:02:00 due to Object stove is occupied. Adjust
the use of the physical objects to meet the requirements.

Multitasking Efficiency The plan is feasible. The agent is idle during the following timestamps: HH:MM:SS and
HH:MM:SS. You can assign continuous actions to the agent to optimize the plan for a shorter execution time. If you
think the plan is optimal, you can answer Action: Done to finish the task.

Table 16: Critic example for LLM-Modulo framework.

4301



