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Abstract

LLM search methods, such as Chain of
Thought (CoT) and Tree of Thought (ToT), en-
hance LLM reasoning by exploring multiple
reasoning paths. When combined with search
algorithms like MCTS and Bandit methods,
their effectiveness relies heavily on uncertainty
estimation to prioritize paths that align with
specific search objectives. However, it remains
unclear whether existing LLM uncertainty met-
rics adequately capture the diverse types of
uncertainty required to guide different search
objectives. In this work, we introduce a frame-
work for uncertainty benchmarking, identifying
four distinct uncertainty types: Answer, Cor-
rectness, Aleatoric, and Epistemic Uncertainty.
Each type serves different optimization goals
in search. Our experiments demonstrate that
current metrics often align with only a subset
of these uncertainty types, limiting their effec-
tiveness for objective-aligned search in some
cases. These findings highlight the need for
additional target-aware uncertainty estimators
that can adapt to various optimization goals in
LLM search. Code is available at link.

1 Introduction

LLM search methods, such as Chain of Thought
(CoT)(Wei et al., 2022), Tree of Thought
(ToT)(Yao et al., 2024), and ReAct (Yao et al.,
2022), have significantly improved the perfor-
mance of large language models (LLMs) by gener-
ating multiple intermediate reasoning steps. These
methods can be further enhanced through algo-
rithmic search, leveraging techniques like Monte
Carlo Tree Search (e.g., LATS, STaR)(Zhou et al.,
2023; Zelikman et al., 2022), bandit algorithms
(e.g., LongPo)(Hsieh et al., 2023), or gradient-style
optimization (e.g., OPRO) (Yang et al., 2023). A
key component in these approaches is uncertainty
estimation, which plays a crucial role in prioritiz-
ing reasoning paths that are aligned with specific

search targets, such as maximizing correctness, re-
ducing noise, or improving diversity.

Prior work on uncertainty estimation in LLMs
has largely focused on metrics derived from gen-
eration likelihoods (Chen et al., 1998; Malinin
and Gales, 2020; Kuhn et al., 2023), verbalized
model confidence (Kadavath et al., 2022; Lin
et al., 2022a), consistency across outputs (Xiong
et al., 2023; Jiang et al., 2023b) or model
knowledge (Ahdritz et al., 2024). While useful
for calibration and risk assessment, it remains
unclear whether these metrics are well-suited
for search/optimization tasks, where uncertainty
should help guide decision-making based on the
targeted search objectives. For instance, search
methods that optimize for factual accuracy need
uncertainty signals that reflect model correctness,
whereas strategies that encourage idea diversity
need metrics sensitive to answer variability.

To address this gap, we first identify four key
types of uncertainty that are relevant to target-
aware search: Answer Uncertainty (variability in
output answers), Correctness Uncertainty (uncer-
tainty about the factual validity of an answer),
Aleatoric Uncertainty (intrinsic ambiguity in the
query input), Epistemic Uncertainty (model uncer-
tainty due to limited knowledge).

We then present a unified benchmarking frame-
work to evaluate how well existing uncertainty met-
rics approximate these uncertainty types in struc-
tured search scenarios. Our pipeline constructs
large tree-structured reasoning traces through ex-
tensive sampling and Monte Carlo approximations
to estimate accurate target uncertainties. Through
experiments on multiple datasets and LLMs, we
show that current metrics often align with only a
subset of uncertainty types, limiting their effective-
ness for objective-aligned search in some cases.
These findings highlight the need for additional
search-aware uncertainty estimators that can adapt
to various optimization goals in LLM search.
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Figure 1: Benchmarking Pipeline Overview. For each
question, our pipeline constructs a reasoning tree, gen-
erating numerous metric estimates and truth value pairs.
We then apply bootstrapping on these pairs to perform
robust statistical analysis. Pseudo code at Appendix D

2 Different Uncertainty Types for Search

Uncertainty can arise in various forms, each repre-
senting different aspects of the problem and guid-
ing the search process in unique ways.

Answer Uncertainty (AnsU) reflects the
model’s confidence and the diversity of possible
answers. AnsU describes how consistently the
model produces the same answer after repeated
sampling, but it does not guarantee correctness. If
the model lacks necessary knowledge to answer
the given question, it is reasonable for the output
answers to be incorrect, even if low AnsU is ob-
served after repeated sampling. AnsU is measured
as the entropy of the output answer distribution.
AnsU(x) = −∑

i p(yi|x) log p(yi|x) where
p(yi|x) is the probability of output answer yi
obtain from {xj} given the input x. AnsU can
guide search algorithms to explore a richer solution
space, increasing the variability of generated
content. This can be particularly beneficial for
tasks where diversity are highly valued.

Correctness Uncertainty (CU) provides in-
sights into the likelihood of answer correctness.
High CU indicates that the model’s prediction
may be unreliable, suggesting the need for ad-
ditional verification. CU is directly related to
the accuracy of the prediction. When CU is low,
the model’s predictions are less likely to include
a majority of false positives. CU is calculated
as the entropy of the output correctness distribu-

tion. CU(x) = −∑
i p(ci|x) log p(ci|x) where

p(ci|x) represents the probability of correctness ci
(whether an answer is correct or incorrect) obtain
from {xj} given the input x. CU can guide search
by narrow down the solution space and acquire the
correct answer, reducing the likelihood of incorrect
or irrelevant answers.

Aleatoric Uncertainty (AU) and Epistemic Un-
certainty (EU) are two distinct sources of model
uncertainty. AU arises from the inherent noise in
the data itself. EU, on the other hand, originates
from the model’s limitations and is related to its
knowledge and understanding. AU and EU are cal-
culated using the Deep-Ensemble-Decomposition
method (Balaji Lakshminarayanan, 2016), where
total model uncertainty is the sum of AU and EU. In
our context, θ, which represents model parameters
in the original paper, corresponds to the rephrased
questions in our setting. EU captures the disagree-
ment between different perturbations, measured
by the mutual information I(Y ; θ|X). AU re-
flects the inherent data noise and is represented
as Eq(θ|D)[H(q(Y |X, θ))], where the expectation
is taken over the questions θ. The total model un-
certainty is expressed as :

H(q(Y |X)) = I(Y ; θ|X)︸ ︷︷ ︸
EU

+Eq(θ|D)[H(q(Y |X, θ))]
︸ ︷︷ ︸

AU

(1)

AU and EU help identify whether uncertainty stems
from data noise or model limitations, enabling tar-
geted improvements like rephrasing questions or
adding few-shot examples.

3 Benchmarking Pipeline

A reliable uncertainty metric should serve as an
accurate estimator of its target uncertainty. In this
study, we introduce a novel benchmarking pipeline
designed to assess the effectiveness of uncertainty
metrics in estimating target uncertainties within
search (Figure 1).

3.1 Pipeline Workflow

To assess how well a metric quantifies the target
uncertainty in a search task, we first establish an
accurate estimation of the uncertainty values as
ground truth in each reasoning step. This requires
generating large tree-structured reasoning traces by
rephrasing input prompts and sampling output mul-
tiple times with varying temperatures. These traces
serve two purposes: (1) tree-structured reasoning
traces represent a predominant approach in cur-
rent sampling-based search methods, making them
relevant for real-world evaluation, and (2) they thor-
oughly explore the solution space, enabling robust
uncertainty estimation via Monte Carlo methods.
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Once ground truth values are obtained, we com-
pute metric estimates at each reasoning node and
evaluate their alignment using statistical analysis.

3.2 Rationale for Target Uncertainties

We define target uncertainties according to specific
objectives—such as maximizing correctness, pro-
moting diversity, or reducing ambiguity—to cap-
ture fine-grained reasoning properties that can vary
even within a single task. For example, when a
model summarizes a news article, one objective
may prioritize accuracy, ensuring all facts are cor-
rect, while another may prioritize diversity, generat-
ing multiple distinct summaries. This approach al-
lows our benchmark to capture uncertainty signals
that are goal-sensitive but not tied to any particular
task, making it broadly applicable across tasks with
diverse solution criteria. By avoiding reliance on
task-specific assumptions, our benchmark evalu-
ates how well uncertainty metrics generalize under
flexible, evolving search objectives, even when pre-
defined task labels are unavailable or insufficient.

3.3 Pipeline Scalability

In our pipeline, MC sampling is used to estimate
the ground truth uncertainty. Hence, a large num-
ber of samples is necessary to ensure that the es-
timated value is accurate. However, this is a one-
time cost. Once we identify the best metrics for
specific tasks, they can be used in downstream ap-
plications with minimal sampling(based on metric
design). Additionally, during sampling, we can
store the generated logits and text, allowing reuse
of sampling trees for any metric that operates on
these outputs. Moreover, MC sampling can be lim-
ited to a representative subset of questions (e.g.,
based on difficulty in the MATH dataset), further
reducing cost. These tricks make our approach
efficient and scalable for future metric evaluations.

4 Experiments

In this section, we use our benchmarking pipeline
to evaluate six existing uncertainty metrics against
the target uncertainty defined in Section 2. More
implementation details and prompt templates are
shown in Appendix A and B.

LLM Uncertainty Metrics We benchmark six
existing task-agnostic uncertainty metrics, which
can be categorized into three types. Token-
liklihood based metrics estimate uncertainty from

the predictive entropy of model’s output distribu-
tion, including NORMALIZED PREDICTIVE EN-
TROPY (NPE), LENGTH-NORMALIZED PREDIC-
TIVE ENTROPY (LNPE) (Malinin and Gales,
2020), and SEMANTIC ENTROPY (SE) (Kuhn
et al., 2023). Verbalized-based measures assess
confidence by directly prompting the model to ex-
press its certainty, such as VERBALIZED CONFI-
DENCE (VC) and P(TRUE) (Kadavath et al., 2022).
Lexical-based metrics, such as LEXICAL SIMILAR-
ITY(Lin et al., 2022b), evaluate uncertainty based
on the consistency of lexical overlap between mul-
tiple responses. Since P(TRUE), and VC are origi-
nally formulated to express model confidence, we
transform them into uncertainty measures by taking
their complements: specifically, PTRUE-COMP,
and VC-NEG represent the complement of P(True)
and the negative of VC.

While some uncertainty metrics are specifically
tuned to particular tasks or datasets, we focus on
task-agnostic metrics because they do not require
task-specific supervision, retraining, or labeled val-
idation data. This makes them especially valuable
in real-world scenarios—such as open-ended gen-
eration, under-specified tasks, or low-resource set-
tings—where task formats or ground-truth labels
may be unavailable or unreliable.

Datasets and LLMs We select four di-
verse datasets: MATH (mathematical reason-
ing) (Hendrycks et al., 2021), COMMONSENSEQA
(commonsense reasoning) (Talmor et al., 2018),
TRIVIAQA (reading comprehension) (Joshi et al.,
2017), and TRUTHFULQA (truthfulness) (Lin
et al., 2021). MATH and TRIVIAQA feature
open-ended answers, while COMMONSENSEQA
and TRUTHFULQA use multiple-choice for-
mats. These datasets are evaluated using three
open-source language models (Grattafiori et al.,
2024; Team et al., 2024; Jiang et al., 2023a) of
similar sizes: LLAMA-3-8B, GEMMA-2-9B,
and MISTRAL-7B-V0.3. This setup ensures
diversity across task types and model architectures,
enhancing the robustness of our evaluation.

5 Results and Analysis

Metric Correlation with Uncertainty Types
Figure 2 shows the rank correlation between bench-
marked uncertainty metrics and the breakdown into
different uncertainty types. As shown, most met-
rics correlate more strongly with AnsU, AU, and
EU than with CU across all datasets. This suggests
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Figure 2: Dependencies between Metric and Target Uncertainty. Figure shows the Spearman correlation between
benchmarked uncertainty metrics and target uncertainty. A higher correlation indicates that the metric better captures
the ground truth uncertainty rankings, making it more reliable for guiding uncertainty-aware decisions. Each value
in figure is averaged across models.

Figure 3: Correlation with Correctness. Figure shows the Spearman correlation between benchmarked uncertainty
metrics and dataset-level accuracy. A lower correlation suggests that the metric is more aligned with actual model
performance across datasets (high uncertainty low correctness). Each value in figure is averaged across models.

that existing metrics are better at capturing answer
diversity, data ambiguity, and model disagreement,
but struggle to reflect and guide output correctness.
This limitation likely stems from their reliance on
model output distributions, which are shaped more
by confidence and variability than factual accuracy.

To dive deeper, generation-likelihood-based met-
rics (NPE, LNPE, SE) show strong correlation
with AnsU, AU, and EU. In contrast, verbalized-
based metrics (VC-NEG, PTrue-Comp) correlate
less consistently, possibly due to noise introduced
by additional language model inference. Lexical
metrics show weak or negative correlation with
all targets, indicating that surface-level variation
alone doesn’t capture meaningful uncertainty. We
also present the mutual information results in Ap-
pendix C, which show similar patterns.

Interdependencies Among Uncertainty Types
From Figure 2, we observe that CU exhibits weaker
correlation with the other uncertainty types, under-
scoring its distinct focus on answer correctness
rather than output consensus or variability. In con-

trast, AnsU, AU, and EU show similar correlation
patterns, suggesting a close relationship: ambigu-
ous or under-specified queries (high AU) may in-
crease epistemic uncertainty (high EU), which can
lead to more diverse or inconsistent outputs (high
AnsU).

Correlation with Correctness Figure 3 presents
the correlation between uncertainty metrics and
dataset accuracy. We observe that most metrics
show some degree of alignment with accuracy.
Generation-likelihood-based metrics (e.g., NPE,
LNPE, SE) perform well on COMMONSENSEQA,
MATH, and TRIVIAQA, while verbalized-based
metrics (e.g., VC-NEG, PTrue-Comp) outperform
them on TRUTHFULQA. This may be because
TRUTHFULQA includes questions prone to hal-
lucination, and verbalized methods involving self-
reflection via a second inference step help capture
uncertainty more effectively. Lexical metrics con-
tinue to underperform, likely due to their limited
semantic insight.

Surprisingly, as shown in figure, CU does not
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correlate well with accuracy, despite its intuitive
formulation. We believe this failure is due to poor
calibration of the model predicted correctness dis-
tribution p(ci|x). When these predicted probabili-
ties do not reflect the true likelihood of correctness,
the resulting entropy (CU) fails to represent actual
uncertainty. CU can be misleading when the model
is over-confidently correct or wrong, making it un-
reliable as a signal of factual correctness. This
highlights a critical mismatch between the model’s
predicted confidence and the actual correctness,
underscoring the need for better-calibrated correct-
ness estimators.

6 Future Directions

Search-Aware Uncertainty Metrics A possible
direction for search-aware uncertainty metrics is
to decompose total uncertainty into finer-grained
sources—such as decoding instability, instruction
ambiguity, or semantic under-specification. Rather
than relying on a single aggregate score, such met-
rics could combine multiple signals—for example,
a composite score integrating token-level predictive
entropy, model self-reported confidence, and vari-
ation across sampled outputs, weighted according
to the reasoning objective. This type of approach
could provide a more detailed view of how different
uncertainty sources contribute to generation out-
comes, enabling more interpretable, controllable,
and diagnostic LLM behavior.

Limitation and Improvement of CU Correct-
ness Uncertainty, as currently estimated via en-
tropy over predicted correctness distribution, suf-
fers from model calibration issues, limiting its reli-
ability as a ground-truth signal. Future work could
explore alternative estimators, such as variance-
based uncertainty from reward models or scoring
functions, which may better capture answer quality
and align with correctness objectives. However,
these approaches may require additional model
training, which could reduce generalizability. Post-
hoc calibration methods—such as temperature scal-
ing, isotonic regression, or ensemble-based cali-
bration—could also help improve the alignment
between CU and actual correctness, particularly in
scenarios where labeled supervision is available.

7 Conclusion

We present a benchmarking framework for evalu-
ating how well existing LLM uncertainty metrics

capture four types of uncertainty relevant to target-
aware search: AnsU, AU, EU, and CU. Through
extensive experiments across models and datasets,
we find that while many metrics correlate with
certain uncertainty types—such as output diver-
sity or input ambiguity—they often fail to align
with correctness-oriented objectives. This mis-
match reveals a major limitation in current uncer-
tainty estimation methods, especially for applica-
tions requiring reliability and goal-directed reason-
ing. Our findings highlight the need for develop-
ing new, search-aware uncertainty metrics that can
adapt to diverse optimization goals and better guide
decision-making in LLM search.

Limitations

Due to computational constraints, we evaluate on a
sampled subset of each benchmark dataset. While
bootstrapping is employed to reduce sampling bias,
our findings may still be influenced by the lim-
ited scale. Additionally, random sampling of LLM
outputs is constrained by budget limitations on
scaling depth, width, and the number of ques-
tions. Also, our analysis focuses on a representa-
tive, but non-exhaustive, set of existing uncertainty
metrics, meaning it may not capture all emerg-
ing approaches or domain-specific adaptations. Fi-
nally, our experiments are conducted using a fixed
prompting and sampling strategy, so results may
vary under different decoding settings or model
configurations.

Use of AI Assistants

ChatGPT was utilized to refine paper writing. The
authors paid careful attention to ensuring that AI
generated content is accurate and aligned with the
author’s intentions.
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A Implementation Details

Due to computational constraints, we randomly
sample 150 questions from each dataset. To ensure
robustness and statistical significance, we apply
bootstrapping with 500 resamples across all experi-
ments. For benchmark metric evaluations, we use:
32 samples for NPE, LNPE, and SE; 3 samples
for VC-NEG and PTRUE-COMP; 5 paraphrased
variants for SPUQ-COMP; and 4 iterative chains
(depth 5) for IPT-EU. For SE, we use JINAAI/JINA-
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semantic group. All experiments are conducted
using a single NVIDIA GeForce RTX 3090 GPU.
We use the vLLM engine for efficient inference and
encoding text into vector.
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B Prompt Templates

Please answer the following question. Think carefully
and in a step-by-step fashion.
At the end of your solution, indicate your final an-
swer by writing the answer choice (A, B, C, D, or E)
inside a boxed environment, like: A .
Q: {q}
Choices: {c}
Your answer:

Figure 4: Sampling Prompt Template for MC Questions

Following is your previous response to the question.
Q: {q}
Choices: {c}
Your previous response: {a}
Check your previous response carefully and solve the
same question again.
At the end of your solution, indicate your final an-
swer by writing one of the answer choice (only letter
: A, B, C, D, or E) inside a boxed environment, like:
A .

Output:

Figure 5: Check Prompt Template for MC Questions

Read the following passage and answer the question.
Passage : {p}
Question : {q}
At the end of your solution, indicate your final an-
swer inside a boxed environment, like: answer .

Figure 6: Sampling Prompt Template for RC Questions

Following is your previous response to the question:
Read the following passage and answer the question.
Passage : {p}
Question : {q}
Your previous response: {a}
Check your previous response carefully and respond
the question again.
At the end of your solution, indicate your final an-
swer inside a boxed environment, like: answer .

Figure 7: Check Prompt Template for RC Questions

Please answer the following question.
Think carefully and in a step-by-step fashion.
At the end of your solution, put your final result in a
boxed environment, e.g. answer .
Q: {q}

Figure 8: Sampling Prompt Template for Essay Ques-
tions

Following is your previous response to the question.
Q: {q}
Your previous response: {a}
Check your previous response carefully and solve the
same question again step by step.
At the end of your solution, put your final result in a
boxed environment, eg. ( answer ).
Output:

Figure 9: Check Prompt Template for Essay Questions
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C Additional Result

Figure 10: Mutual Information and Rank Correlation Top: MI between benchmarked uncertainty metrics and
target uncertainties. Higher MI indicates stronger relation. Bottom: Rank correlation between metrics and target
uncertainties. Each value is averaged across models.
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D Benchmarking Pipeline Pseudo Code

Algorithm 1: Pipeline Workflow

foreach input question Q do
Initialize a reasoning tree with a root node containing Q;
while the reasoning tree is not fully constructed do

foreach node in the tree that has not yet terminated do
Step 1: Input Perturbation
Generate M rephrased inputs {xj}Mj=1 from the current node’s input x;
Step 2: Random Sampling
For each rephrased input xj , sample K responses {yjk}Kk=1;

Expand the tree by adding child nodes using the newly generated responses;
Step 3: Ground Truth Uncertainty Calculation
For each node, calculate the ground truth uncertainty using the answers in its subtree’s leaves,

as described in Section 2;
Step 4: Uncertainty Metric Calculation
For each node, compute the estimated uncertainty metric based on its own input and output,

following the formulas in Section 4;
Step 5: Statistical Analysis
Collect all (Umetric, Utrue) pairs from every node across all trees.;
Compute Corr(Umetric, Utrue) by bootstrapping and visualize these relationships to assess how well

the estimated metrics align with the ground truth.;

Note that increasing M and K enhances the Monte Carlo approximation of ground truth values, thereby
improving evaluation quality.
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