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Abstract

Large language models (LLMs) have demon-
strated remarkable reasoning capabilities, in-
cluding in financial question answering (FQA).
However, the performance in FQA remains lim-
ited, particularly in questions that require deep
financial knowledge and complex numerical
reasoning. While supervised fine-tuning and
closed-source LLMs have shown promise, they
are often constrained by high costs or com-
putational inefficiency. In this paper, we pro-
pose a low-cost yet effective framework, named
FinMAN (Financial multi-agent framework),
that enables small LLMs (e.g., 8B) to perform
complex reasoning tasks without relying on
expensive models or task-specific fine-tuning.
FinMAN improves formula selection, extrac-
tion, and calculation to help small-scale mod-
els solve FQA tasks more accurately, with a
lightweight verification mechanism to correct
common errors. Experimental results show
that FinMAN outperforms the best open-source
model on BizBench by 23.96% and achieves
competitive performance to GPTo3-mini using
significantly fewer parameters. Our code and
data are publicly available at https://github.
com/coenliu/MultiAgentFin.

1 Introduction

Recent advances in LLMs (Touvron et al., 2023;
OpenAl, 2023; Wu et al., 2024, 2025; Fei et al.,
2024a,b, 2025) have led to remarkable progress
across a wide range of natural language processing
(NLP) tasks (Qin et al., 2024; Liu et al., 2025; Ju
et al., 2025; Wang et al., 2025; Wei et al., 2024).
However, their performance remains limited when
tackling domain-specific and knowledge-intensive
problems such as financial question answering
(FQA) (Reddy et al., 2024). In real-world FQA
scenarios, high performance is typically achieved
with large, closed-source models (e.g., GPT-3.5
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Question: What will the worth of the investment be after 2 years for

Casel a shareholder?

The formula for interest for rate: ( )
@ amount = principal x (1 + rate x time) X
é The correct formula should be:

amount =principal * (1 + rate /n) ** (n * time)
Question: What is the total proportion of cost of revenue as a
percentage of revenue in 2017 and 20187
Context: “... revenue™: {"2019": 43, "2018": 50, "2017": 55} ...

revenue_2017 = df ['2017"] =100X ... o
revenue_2018 =df ['2018"] =50/

The correct value of 2017: 55

Question: What was the percent of the increase in the backlog from
2012t02013?

backlog_2013 = 20,500; backlog 2012 = 18,100 v/ i
percent_increase = (backlog_2013 - backlog_2012) / @
backlog 2012 * 100/

Answer: 12.50 X

The right answer: 13.25

Figure 1: Illustration of error cases generated by smaller
LLMs (e.g., Llama?2) and correct answers by FinMAN.

(Ye et al., 2023)), which are expensive and inacces-
sible to many users (Gao et al., 2023a). In contrast,
smaller, open-source models (e.g., Llama (Meta,
2024)) are more affordable but underperform, par-
ticularly when dealing with long and complex fi-
nancial documents. In this work, we aim to bridge
this gap by developing an effective and affordable
LLM-based method tailored for real-world FQA
applications.

Small-scale LLMs typically face three chal-
lenges in FQA. First, they often struggle to pro-
vide accurate and reliable financial knowledge. For
instance, in Case I of Fig. 1, a small LLM (e.g.,
Llama?2) applied an incorrect formula to calculate
annual income, demonstrating insufficient domain
knowledge for answering professional financial
questions. Second, they have difficulty in extract-
ing key financial values from lengthy financial con-
texts. As shown in Case 2, they fail to extract the
correct value for Statement of Operations from the
given long financial document. Third, they under-
perform in multi-step reasoning and calculations,
frequently making errors in intermediate steps or
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the final computation (Case 3). Given that FQA
involves complex, multi-step solutions, any type of
these errors can lead to incorrect answers.

To address these challenges, a common approach
is to apply supervised fine-tuning (SFT) (Zhu et al.,
2024) on small LLMs for FQA. However, fine-
tuning requires annotated data and substantial com-
putational resources, making it costly and less
accessible. In response to specific challenges,
some studies have explored alternative strategies,
such as incorporating external financial knowledge
via retrieval-augmented generation (RAG) (Chen
et al., 2024b) or enhancing numerical reasoning
through external computational tools (Theuma and
Shareghi, 2024). While these approaches show
promise, they often depend heavily on external
retrieval systems or tools and fall short of offer-
ing a unified solution to the broader challenges of
FQA. Additionally, some efforts have been made to
improve small LLMs’ reasoning ability by knowl-
edge distillation from large models like GPT-3.5
and DeepSeek (Tyen et al., 2024). However, dis-
tilling the intricate reasoning capabilities required
for complex FQA tasks remains a significant hur-
dle, limiting the effectiveness of such methods in
guiding meaningful improvements (Li et al., 2025).

In this work, we explore how smaller LLMs can
achieve strong performance in FQA without rely-
ing on closed-source LLMs. To this end, we pro-
pose a cost-efficient method using cascaded multi-
agent reasoning, named FinMAN. Specifically, we
decompose FQA into modular subtasks, each as-
signed to a distinct agent specialized in a particular
role. We design four agents: a Formulator (finan-
cial expert) for reasoning and formula planning, a
Resolver (data analyst) for report comprehension
and quantity extraction, an Executor that gener-
ates and runs code to compute the answer, and a
cross-cutting Evaluator that verifies and corrects
outputs at each stage. These subtasks become more
facilitated once decomposed and clearly defined
for each agent, particularly for the data analyst
and executor, whose responsibilities are straight-
forward. Moreover, the financial expert, based
on small LLMs, is required to master deep, domain-
specific knowledge. To support this agent, we em-
ploy Monte Carlo Tree Search (MCTS) (Zhang
et al., 2024a) to simulate and explore reasoning
paths, and we integrate an evaluator agent that
leverages external financial knowledge to score
and verify each intermediate step. Consequently,
FinMAN gains an accuracy of 25.5% in the out-of-

domain FinanceMATH dataset (Zhao et al., 2024a),
surpassing GPT-3.5.

Additionally, to ensure reliability and trans-
parency, we incorporate a stepwise verification
mechanism, making each output traceable and ver-
ifiable. Our method draws inspiration from the
human strategy of breaking down complex tasks
into manageable subtasks, allowing smaller LLMs
to become proficient by addressing these subtasks'.

To validate its effectiveness, we evaluate FinMAN
on widely used FQA tasks, covering both quantity
extraction and financial mathematical reasoning.
By enabling cooperation among multiple smaller
agents (e.g., Llama3-8B), our approach improves
mathematical reasoning accuracy from 32.98% to
46.63%, reaching or even surpassing the perfor-
mance of GPT-3.5 (i.e., 36.1%).

Our contributions are summarized as follows:

* We propose FinMAN, a cost-effective and open-
source multi-agent framework that enables
small LLMs to achieve strong performance
on real-world FQA tasks.

* We design a cascade of four agents:
Formulator (financial expert), Resolver
(data analyst), Executor, and a cross-cutting
Evaluator. The Formulator plans formulas
with MCTS using retrieved financial knowl-
edge, while the Evaluator performs stepwise
verification at each stage. This architecture
enables FinMAN to address multi-step, domain-
specific financial question answering effec-
tively.

* Experiments show that FinMAN achieves sub-
stantial performance gains, outperforming or
matching larger closed-source models in both
quantity extraction and FQA tasks.

2 Related Works

LLMs in FQA. Recent FQA tasks integrate
both tabular and textual data, supported by expert-
annotated datasets like FinQA (Chen et al., 2021)
and ConvFinQA (Chen et al., 2022b), derived
from S&P 500 annual reports. This challeng-
ing task has garnered significant attention, lead-
ing to the development of several notable models.

"Like the biblical tale of David vs. Goliath, where a young
shepherd defeats a giant warrior with a sling, our method
employs a multi-agent framework in which specialized smaller
LLMs (David) collaborate to match the performance of much
larger models (Goliath).
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Question: The following information pertains to a bond, what will be the
bond's price? 801

Table: Coupon rate 3%

e 701

Interest paid Semiannually 60!

Mature time 3year

Required rate of retum 5% 501 i

Par value of the bond 100

Llama3 -8B output:
Solution: The bond's price can be calculated using the formula: | 30 B Formula Error

Bond Price = Par Value/ (1 + Required Rate of Return)*Matul 20! EED Extraction Error

Bond Price =100/ (1 + 0.06)*3 [ Calculation Error

Bond Price =100/1.1618 107 1 Other Error

Bond Price = 85.93

Figure 2: Illustration of error types for FQA (left) and
average error rates (%) across seven small LLMs (right).

For example, FinBERT-21 (Liu et al., 2021) is a
BERT-based model trained on general and financial
texts; FinMA (Xie et al., 2023) fine-tunes Llama
(7B/30B) on financial QA datasets (Chen et al.,
2021, 2022b); InvestLM (Yang et al., 2023) adapts
Llama-65B with curated financial instructions; and
BloombergGPT (Wu et al., 2023), a BLOOM-
style closed-source model trained on 363B tokens,
demonstrates strong FQA proficiency. Following
this line (Phogat et al., 2024), we introduce a multi-
agent framework that leverages small LLMs for
cost-efficient FQA.

Multi-agent Framework. Modern LLMs have
demonstrated advanced capabilities that motivate
the creation of agent systems tailored for spe-
cific tasks (Yao et al., 2023; Park et al., 2023).
In the financial sector, StockAgent (Liu et al.)
specializes in stock market analysis by forecast-
ing price movements. FinAgent (Zhang et al.,
2024b) provides comprehensive financial evalua-
tions and strategic recommendations. FinMEM
(Yu et al., 2024) employs memory-augmented mod-
els to combine historical market data with current
conditions for long-term investment strategies. Li
et al. (2024b) presents a factor mining agent us-
ing a neuro-symbolic approach to achieve supe-
rior performance with an annualized return. Han
et al. (2024) investigated various multi-agent col-
laboration structures for analyzing investment re-
search reports. Targeting FQA, we design a new
lightweight multi-agent framework based on small
LLMs, which simulate real-world division of la-
bor. It comprises four agents: a Formulator (fi-
nancial expert), a Resolver (data analyst), and an
Executor, plus a cross-cutting Evaluator that en-
ables step-by-step, verifiable reasoning.

MCTS in Reasoning. Compared to large-scale
LLMs, small LLMs often lack the reasoning ability
(Feietal.; Xu et al., 2025; Chen et al., 2024a, 2025;
Cheng et al., 2025; Wang et al., 2025) needed for

complex tasks like formula generation in FQA. To
mitigate this limitation, tree-search-based methods,
particularly MCTS (Qi et al., 2024), have been ex-
plored to enhance reasoning, which is employed to
simulate potential outcomes of various decisions,
enabling the agent to navigate through different
hypotheses or possible solutions. To improve fi-
nancial reasoning, RAP (Hao et al., 2023a) focuses
on simple reasoning using only internal knowledge.
XOT (Ding et al., 2024) employs MCTS as an ex-
ternal tool to refine LLM-generated thoughts. Dif-
ferent from previous methods, our expert agent
embeds MCTS directly within a domain-specific
QA, leveraging a curated financial knowledge bank
to model and explore relationships among financial
concepts for accurate formula selection.

3 Preliminary

3.1 Task Definition

Following the widely adopted FinQA benchmark
(Chen et al., 2021), our input formulation focuses
exclusively on textual content and structured tables.
Given a textual content E and a table 7', along
with a question (), the FQA task is to generate the
final answer Ans. To arrive at Ans, the model
needs to produce a sequence of reasoning steps
S = {so, s1, 82,...,5n}, where each s; denotes
an individual step required to derive the correct so-
lution. The relationship among these components
is formalized as follows:

P(Ans|T,E,Q) = > P(SIT,E,Q) (1)
S;€S

In addition to answering the question, FQA in-
volves extracting quantities during reasoning steps.
This subtask is called quantity extraction, which is
identifying numerical values within a given context
(Gopfert et al., 2022). A quantity typically con-
sists of a numeric value and, when applicable, a
unit of measurement. Modifiers such as "average,"
"approximately,” or "above" can alter the mean-
ing of a quantity and may be included within the
quantity span (Sun et al., 2024). Quantities can
appear as ranges, enumerations, uncertainties, or
combinations (Srivastava et al.).

3.2 Probing Experiments

To gain deeper insights into the limitations of
small-scale LLMs in FQA, we conduct a prob-
ing analysis on the widely used benchmark
CodeFinQA (Krumdick et al., 2024). We test seven
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Figure 3: The overview of our proposed FinMAN. The top is the input data and the bottom is an example of
workflow. The core pipeline operates in three stages (Formulator— Resolver— Executor); a cross-cutting Evaluator

agent cross-checks and corrects outputs at each stage.

small LLMs in a few-shot setting, and randomly
sampled 50 failed cases for each model, resulting
in a total of 350 instances for manual error anal-
ysis. Details of this experiment are presented in
Appendix C.

It is observed that LLM-generated responses to
FQA tasks typically involve a three-stage process
(as illustrated in Fig. 3): applying appropriate finan-
cial formulas, extracting relevant data, and perform-
ing calculations. Our probing experiment reveals
that errors can occur at any of these stages, and a
single failed case may involve multiple error types.

Then, we ask three experts> to annotate these
cases, and the distribution of error types is shown
in Figure 2. It is observed that calculation er-
rors, which involve mistakes during intermediate
or final computational steps, are the most common,
accounting for 84% of failed cases. Formula er-
rors, the second most frequent, occur when the
model selects or applies incorrect financial formu-
las (Srivastava et al.). Extraction errors arise from
inaccurately identifying or extracting relevant nu-
merical values from provided texts or tables (Zhao
et al., 2024a). Lastly, other errors include issues
such as misunderstanding questions.

However, when considering the subtasks in-
volved in these error types, such as extraction and
calculation, it is notable that existing methods al-
ready perform well individually. For instance, 72%
of failures are extraction errors, but treating extrac-

2Senior Ph.D. students in finance.

tion as a standalone task yields strong results; e.g.,
a simple fine-tuned GLM-3 achieves a high match
rate (BERTScore F1 of 0.81) (Chen et al., 2024b).
This gap suggests that the performance of com-
plex FQA tasks can be improved by decomposing
the workflow into specialized agents for formula
selection, data extraction, and calculation.

4 Methodology

The overall architecture of our FinMAN framework
is shown in Figure 3. The basic idea is a cascaded
pipeline of four agents. The Formulator agent uses
MCTS to explore reasoning paths and generate fi-
nancial formulas and variables. Next, the Resolver
agent retrieves relevant text and table segments to
extract variable values. Then, the Executor agent
converts these formulas and values into Python
code and executes it to obtain the answer. Finally,
the Evaluator agent performs error detection to
verify and correct each intermediate output.

Formulator Agent with MCTS. In FQA, se-
lecting the appropriate formula and its variables
is crucial for obtaining the correct result. Given
a question that includes context F, tables 7', and
query (), the Formulator agent M ¢o,muiator inte-
grates MCTS to explore candidate reasoning trajec-
tories composed of intermediate steps. We define
an action set A = {T, C,D, I, A} that represents
thinking, clarify, decompose, identify, and abstract,
where each child node represents an intermediate
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Formulator Agent Prompt

Context: ...liquidity and capital resources our objective ...
Table: | (In millions)| 2017|2016 2015 | ...

Question: what is the net change in cash during 2016?
Instruction: Please choose one of the action to solve the
question <ACTION>,<T: Thinking>, <C: Clarify>,<D:
Decompose> <I:|dentify>, <A: Abstract> ....

Figure 4: Prompting template for Formulator agent.

step s; produced by M formulator- A candidate tra-
jectory is designed by concatenating the question
Q and a sequence of s;

t=Q®s1Ps2®---®s;, sicA (2

Given t, the formulator agent outputs the formula
set F and corresponding variables ) using the tem-
plate prompt as shown in Fig 4:

FV= Mformula(t). 3)

In this agent, MCTS search uses a default rollout
depth of 20, and results for other rollout settings
are discussed in Section 5.3.

Resolver Agent. Given the variables V =
{V1, Vi, - - - }, the Resolver agent extracts the corre-
sponding numeric value from the input context for
each variable V; € V. Specifically, given textual
content F and table T', we first parse the input into
a set of paragraphs £ = {eq, ea, - - - } and tables ta-
bles T = {t1,1o,- - - }. For each variable’ V € V,
we use BM25 to identify top-k most relevant con-
texts from E U T for value extraction:

Top, (V) = argtop-k BM25(C,V) (4)
CeERuUT

where each C represents either a paragraph or a
table. Unlike prior work such as FinQA (Chen
et al., 2021), which relies on retrievers based on
pretrained models (e.g., using a BERT encoder
and a binary relevance classifier), we adopt BM25
(Robertson et al., 2009) due to its greater efficiency
performance, as discussed in Appendix D.2. Next,
Miesolver 18 designed to generate m candidate val-
ues and then select the final value v* for V' with
the highest confidence score, using the prompt tem-
plate illustrated in Fig. 5:

{Ui}?ll ~ IVlresolver (Topk(V), V) ®))
vt = argmax P(v; | Topy(V), V) (6)

>We omit subscripts for clarify.

Resolver Agent Prompt

Variables: (V}

Retrieved chunk: {BM25(Top, (V))}

Instruction: Please identify the keyvariables and their
corresponding values from the provided chunk

Figure 5: Prompting template for Resolver agent.

Executor Agent Prompt

Formula: {F}

Variables: {V} : (v*}

Instruction: You are tasked with writing Python code
based on the provided context.

Figure 6: Prompting template for Executor agent.

Executor Agent. To ensure accurate and trans-
parent calculation, the Executor agent uses a code-
based model Meyecutor to generate Python code
that is subsequently executed by an interpreter, fol-
lowing the framework of program-aided language
models (Gao et al., 2023b; Chen et al., 2022a).
Given formulas F and extracted values for the vari-
ables V, Executor generates code using the prompt
template illustrated in Fig. 6:

code = Mexecutor (]:7 {(Vl : U:()|VZ € V}) (7)

This code is then run by a local interpreter and
the final computed answer Ans with no execution
errors occur:

Ans = Interpreter(code) (8)

Evaluator Agent with RAG. LLM-as-a-judge is
widely used in many applications (Li et al., 2024a);
however, smaller models can yield inaccurate re-
sults. To address this issue, we introduce an Evalua-
tor agent Mevamuator that verifies the outputs of each
module with task-specific strategies. The Evaluator
is cross-cutting and provides stage-wise checks for
Formulator, Resolver, and Executor outputs. For
the Formulator, a key step in FQA is selecting for-
mulas grounded in fundamental financial concepts
such as revenue, ratios, and expenses. We therefore
augment this agent with external financial knowl-
edge. Specifically, we collect 48 corporate-finance
formulas from Financial Analyst* and convert them
into IATEX. Using retrieval-augmented generation
(RAG) (Lewis et al., 2020), Meyaluator 28Signs an un-
supervised reward Q)(s;|s; € A) to each candidate
*https://365financialanalyst.

com/templates-and-models/
corporate-finance-formulas-cfa-level-1/
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. QL CL RT
Dataset Train Test \j.3/Ave) (Med/Avg) (Med/Avg)
BizBench

FinCode 7 47 628/65 - -
CodeFinQA 4,668 795 16.8/16.0 685.1/688.0 7.7/7.0
CodeTAT-QA 2856 288 14.2/14.0 - 7.1/60
ConvFinQA (E) - 629 7.8/60 781.3/7660 8.6/8.0
TAT-QA (E) — 120 11.1/11.0 299.2/239.0 10.3/9.5
SEC-Num 6,846 2,000 6.1/60 810.5/781.0 23.5/22.0
FinanceMATH 200 1,000 54.0/61.8 - 3.0/3.0

Table 1: Statistics of tasks in BizBench and Finance-
MATH. QL = Question Length, CL = Context Length,
RT = Rows per Table.

trajectory produced by MCTS. For the Resolver, a
binary classifier ensures that extracted values are
supported by the context. For the Executor, the
Evaluator detects and flags common programming
errors (e.g., syntax errors) via a local interpreter.
The complete FinMAN workflow is summarized in
Algorithm 1.

S Experiments

5.1 Experimental Setup

Dataset. We conduct evaluations on two repre-
sentative benchmarks: BizBench (Krumdick et al.,
2024) and FinanceMATH (Zhao et al., 2024b),
which require multi-step reasoning over both tex-
tual and tabular financial data across domains,
including quantitative finance, accounting, and
derivatives. For the FQA task, we use FinCode,
CodeFinQA, and CodeTAT-QA from BizBench,
as well as FinanceMATH. For the Quantity Ex-
traction task, we use ConvFinQA, TAT-QA, and
SEC-Num from BizBench, which focus on accu-
rate extraction of numerical values from text and
tables. We evaluate only our Resolver agent on this
task. Detailed statistics and dataset descriptions are
provided in Table 1.

Baselines. We compare our approach against
a diverse set of large language models (LLMs),
grouped into three categories: (1) Closed-source
models, represented by GPTo3-mini and GPT-
3.5; (2) Open-source models, including CodeL-
lama (Roziere et al., 2023), Qwen 2.5 (7B) (Yang
et al., 2025), Llama-3 (Llama3-8B, Llama3.2-
3B/1B) (Meta, 2024), Gemma2 (9B) (Team et al.,
2024), and DeepSeek-R1 (a distilled version of
Qwen2.5-7B) (Guo et al., 2025); and (3) Fine-
tuned models, including FinMA (Xie et al., 2023)
and Llama3-SFT, obtained by fine-tuning Llama3-
8B with LoRA (Kojima et al., 2022). We evalu-

ate these models using three standard prompting
strategies: Chain-of-Thought (CoT) (Wei et al.,
2022), Program-of-Thought (PoT) (Chen et al.,
2022a), and In-Context Learning (ICL) (Brown
et al., 2020), following the BizBench evaluation
framework. Our FinMAN utilizes Llama3-8B for
the Formulator, Resolver, and Evaluator agents,
while CodeLlama-13B is designated for the Execu-
tor, with a decoding temperature set to 0.1. Addi-
tionally, we experimented with Deepseek-R1 7B as
the backbone for all four agents to compare back-
bone effects. Full prompt templates are provided
in Appendix G.

Metrics. Following previous studies (Krumdick
et al., 2024; Zhao et al., 2024b), we report average
test accuracy for both FQA and Quantity Extrac-
tion.

5.2 Overall Performance

Performance on FQA. Table 2 reports FQA re-
sults. Our FinMAN achieves strong performance.
Against the best closed-source baseline (GPTo3-
mini, taking the strongest prompting per dataset),
FinMAN-7B (ICL) yields 4.26% on FinCode (61.70
vs. 57.44) and 4.31% on CodeFinQA (82.64
vs. 78.33). Compared with open-source LLMs,
FinMAN-7B (ICL) surpasses Llama3-8B-ICL on
CodeFinQA by 13.34% and DeepSeek-R1-7B-PoT
on CodeTAT-QA by 23.96%; for completeness, the
gains on FinCode and FinanceMATH over the best
open-source baselines are 17.02% and 13.50%, re-
spectively. Finally, relative to GPT-3.5 (175B),
our 7B model attains higher accuracy on FinCode
(+23.41% under CoT) and CodeFinQA (+13.94%
under CoT) while using far fewer parameters.
FinanceMATH targets knowledge-intensive fi-
nancial math reasoning across domains includ-
ing quantitative finance and derivatives, requiring
multi-step reasoning over text and tables. In this
dataset, FinMAN-7B (ICL) attains 37.50, exceeding
the strongest open-source baseline DeepSeek-R1-
7B (ICL, 24.00) by 13.50 and the best fine-tuned
model Llama3-SFT-8B (ICL, 15.50) by +22.00.
For completeness, this aligns with the summary
row in Table 2: Impr. over open-source LLMs =
13.50 and Impr. over fine-tuned LLMs = 22.00.
Relative to the best closed-source baseline GPTo3-
mini (ICL, 32.50), FinMAN-7B (ICL) is 5.00 higher
while using far fewer parameters (7B vs. ~200B).
These results indicate strong generalization of
FinMAN to FinanceMATH’s challenging, out-of-
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FQA Tasks

Quantity Extraction Tasks

Model #Para Method
FinCode CodeFinQA CodeTAT-QA FinanceMATH ConvFinQA (E) TAT-QA (E) SEC-Num
Closed-source LLMs
CoT 57.44 72.55 73.33 29.50 80.66 86.66 70.33
GPTo3-mini  "200B PoT 46.80 73.33 80.33 31.00 - - -
ICL 51.06 78.33 71.33 32.50 83.66 85.66 72.66
" CoT 3829 6870 5739 2350 9141 84.17 7850
GPT-3.5 175B PoT 31.91 49.13 46.09 23.00 - - -
ICL 36.10 67.50 87.60 24.60 92.40 84.20 76.00
Open-source LLMs
CoT 23.40 28.99 21.48 5.85 56.12 75.83 57.5
CodeLlama  13B PoT 29.78 15.99 19.42 4.87 - - -
ICL 21.28 31.95 35.53 7.00 78.01 81.25 62.00
" CoT 3191 6038 4931 1200 7568 84.16 3455
Gemma2 9B PoT 27.78 61.50 50.00 13.50 - - -
ICL 36.17 62.51 53.12 13.00 77.26 83.33 33.60
- CoT 3298 6623 38717 1400 7817 8542 7160
Llama3 8B PoT 40.42 60.12 50.34 15.50 - - -
ICL 36.17 69.30 52.43 17.50 84.26 82.50 62.40
7 CoT 4255 6855 5938 1950 7583 8333 7425
DeepSeek-R1 7B PoT 42.55 64.44 61.80 20.50 - - -
ICL 44.68 65.96 57.99 24.00 79.17 79.17 70.90
S CoT 2766 4579 4583 1850 87.17 8583  33.05
Qwen2.5 7B PoT 29.78 48.67 41.66 20.00 - - -
ICL 31.91 50.56 48.61 19.50 89.18 84.16 32.05
7 CoT 2978 4239 208 1750 7488 6833 4000
Llama3.2 3B PoT 19.14 47.79 23.95 15.50 - - -
ICL 28.72 52.70 22.57 5.70 80.02 60.56 69.58
- CoT 1702 2397 1319 550 61.04 4000 4930
Llama3.2 1B PoT 14.89 20.68 10.76 4.00 - - -
ICL 19.14 24.34 11.45 4.50 63.43 48.33 47.05
Fine-tuned LLMs
FinMA 7B ICL 11.55 35.28 11.11 2.50 81.17 66.39 69.45
Llama3-SFT 8B ICL 25.53 61.33 54.51 15.50 81.39 82.9 70.14
CoT 42.55 75.59 45.48 20.00 90.62 91.66 75.10
FinMAN 13B & 8B PoT 40.42 76.85 42.01 21.50 - - -
ICL 46.63 78.16 43.72 25.50 88.93 92.50 79.40
7 CoT 5957 7957 222 2050 8282 8333 7120
FinMAN 7B PoT 55.31 81.81 75.34 33.50 - - -
ICL 61.70 82.64 85.76 37.50 86.96 90.83 81.35
Impr. over open-source LLMs 117.02 113.34 123.96 113.50 11.44 19.17 17.10
Impr. over fine-tuned LLMs 136.17 121.31 131.25 122.00 19.23 19.60 111.21

Table 2: Performance of various LLMs on FQA and Quantity Extraction tasks. Red indicates the best results among

closed-source LLMs. Blue and Green mark the best results on open-source and fine-tuned models, respectively.
Bold denotes the best results among our FinMAN. Impr. and Impr. denote improvement over open-source and
fine-tuned LLMs, respectively. Results on the Quantity Extraction task are reported only for our Resolver agent.

domain financial reasoning tasks.

Comparison with fine-tuned models. As shown
in Table 2, our training-free FinMAN-7B (ICL)
surpasses the strongest fine-tuned baseline on all
four FQA datasets by 36.17, 21.31, 31.25, and
22.00 percentage points on FinCode, CodeFinQA,
CodeTAT-QA, and FinanceMATH, respectively. In
contrast, training domain-specific financial LLMs
typically demands substantial compute; for exam-
ple, BloombergGPT (50B) was trained on 700B
tokens for 1.3M GPU hours (Wu et al., 2023).

Results on Quantity Extraction. Our Resolver
achieves strong results on quantity extraction.

On TAT-QA (E) and SEC-Num, FinMAN (ICL)
reaches 92.50 and 81.35, which are +8.3% and
+5.35% points above GPT-3.5 (84.20 and 78.50),
respectively. Compared with open-source LLMs,
FinMAN-7B (ICL) shows the reported summary
gains of 1.44, 9.17, and 7.10 on ConvFinQA (E),
TAT-QA (E), and SEC-Num, respectively, as listed
in Table 2. Overall, FinMAN delivers the top results
among open-source and fine-tuned baselines across
all three QE datasets, while remaining competitive
with closed-source models on ConvFinQA (E).
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Figure 8: Performance comparison on the FQA dataset
under different number of rollouts with FinMAN.

5.3 Further Analysis

Ablation Study. We examine each agent by dis-
abling it in turn. w/o Formulator: skips MCTS and
directly passes the original question and context to
the Resolver. w/o Resolver: retains formulas and
variable names from the Formulator but extracts
numbers from the context using regular expres-
sions. w/o Executor: does not generate or execute
Python code; instead, the same LLM directly per-
forms the calculation. w/o Evaluator: disables all
error-checking and retry mechanisms.

Across BizBench, removing the Formulator
results in the largest drops (e.g., —44.07% on
CodeFinQA), confirming the centrality of formula
planning. Turning off the Evaluator or Executor
also leads to substantial declines (e.g., —31.64%
and —18.75% on CodeFinQA and CodeTAT-QA,
respectively), highlighting the importance of step-
wise verification and code-based execution. Re-
moving the Resolver consistently degrades perfor-
mance across tasks (up to —14.62%). These re-
sults indicate that all four agents contribute mean-
ingfully, with the Formulator having the largest
impact. The Evaluator and Executor providing es-
sential safeguards for extraction and computation.

Variants CodeFinQA  FinanceMATH CodeTAT-QA FinCode

Ours 78.16 /- 25.50/- 4548 /- 46.63 /-

w/o Formulator  34.03//44.07  7.50/018.00  29.86/]15.72 31.91/14.72
w/o Resolver 63.48/114.62 11.00/114.50  32.63/]12.95 36.17/,10.46
w/o Executor 68.06/110.04 17.50/]8.00  26.73/)18.75 38.29/]9.34
w/o Evaluator ~ 46.46/,31.64 12.00/113.50 25.34/120.24 34.04/12.49

Table 3: Ablation study results. w/o indicates removing
the corresponding agent.

Model Acc. (%) Time (s)
GPTo3-mini (~200B) 32.50 14.72
GPT-3.5 (175B) 24.60 21.55
CodeLlama (13B) 7.00 20.11
Gemma2 (9B) 13.50 20.96
Llama3 (8B) 17.50 21.04
Qwen2.5 (7B) 20.00 19.26
DeepSeek-R1 (7B) 24.00 21.15
Llama3.2 (3B/1B) 17.50/5.50  15.66/15.04
FinMA (7B) 2.50 0.63
Llama3-SFT (8B) 15.50 28.76
FinMAN (7B) 37.50 18.34

Table 4: Accuracy and average time on Finance-
MATH. Bold denotes the best result among all models;
underline denotes the lowest inference time.

Test-time Scaling. To assess the performance
of various prompting strategies, we adopt the ap-
proach from (Muennighoff et al., 2025), as shown
in Figure 7. Specifically, when the token limit
is reached, we insert an end of thought delimiter,
optionally followed by “Final Answer:”, to termi-
nate reasoning and prompt the model to output
its current best answer. Our findings indicate that
the performance of both CoT and PoT improves
with increased thinking time up to a point; how-
ever, when the thinking token exceeds 128, their
performance declines, possibly because extended
reasoning does not yield further benefits in the fi-
nancial domain. In contrast, while the few-shot
method peaks at 128 tokens, our FinMAN frame-
work continues to benefit from additional test-time
computation.

Effectiveness under Different Rollouts. The
Formulator agent applies a rollout policy for ex-
panding the MCTS tree, where increasing the num-
ber of rollouts generates more candidate solution
trajectories at the expense of higher inference costs.
Figure 8 compares the performance of various roll-
out counts in all FQA datasets. Our key obser-
vation is that the agent’s performance generally
improves with more rollouts, although the gains
become marginal when the rollout reaches 32.

Time Efficiency. The experiment on runtime is
shown in Table 4. Accuracy and mean inference
time are reported for FinanceMATH dataset. Our
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approach achieves competitive results compared
to GPTo3-mini and GPT-3.5 in FinanceMATH but
with fewer parameters. Moreover, our framework
achieves higher scores than other open-source mod-
els. In contrast, FinMA only produces numerical
answers without intermediate reasoning steps, mak-
ing it difficult to understand or analyze the cause
of incorrect answers. In contrast, FinMAN supplies
a transparent chain of intermediate reasoning steps,
each accompanied by verification signals, enabling
precise inspection. Details of our FinMAN runtime
are provided in Appendix D.5

6 Conclusion

In this work, we propose FinMAN, a novel FQA
method based on an autonomous agent framework
designed to solve financial math problems. Fin-
MAN offers a cost-effective solution by leveraging
open-source LL.Ms while achieving performance
comparable to that of large commercial models.
Our multi-agent solution mimics human problem-
solving by decomposing the FQA task into four spe-
cialized roles: financial expert, data analyst,
executor and evaluator. In particular, to address
challenging formulations, the designed Formulator
agent that leverages external financial knowledge
and employs MCTS to derive appropriate formulas.
Experimental results demonstrate that FinMAN sig-
nificantly enhances performance on both FQA and
quantity extraction tasks. In future work, we plan
to extend FinMAN to handle more complex financial
scenarios and incorporate multi-modal data.

Limitations

Although FinMAN significantly improves the per-
formance of small open-source models in FQA, our
approach has several limitations. First, our work
primarily focuses on FQA, which limits its appli-
cability to broader financial tasks. Second, while
MCTS plays a crucial role in enhancing reasoning
performance, it is also the most time-consuming
component of the framework. Finally, the frame-
work’s robustness across diverse, real-world finan-
cial scenarios remains to be fully validated. In
future work, we plan to refine the FinMAN frame-
work to handle more complex data and develop
improved methods for capturing entity relations
and ensuring robust performance.
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A Error cases

To qualitatively demonstrate the effectiveness of
FinMAN, we present a case study along with error
analyses in FQA, focusing on verification and math-
ematical calculations. Figure 9 compares three
common error cases. As shown, Llama3-8B fails
to perform accurate calculations (see Figure 9(c))
and its calculation process lacks verification. Addi-
tionally, Llama3-8B only extracts portions of the
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correct values from the provided context and gener-
ates incorrect financial formulas based solely on its
internal knowledge, leading to incorrect answers in
the financial domain.

Context: Question:

... net revenue utility following is an analysis of what would 2015 net revenue have been in millions

the change in net revenue comparing 201510 2014. | assuming there was no impact from both the retail electric

amount ( in millions ). price change and the impact of volume/weather in the year?

Amount Ground Truth:
(In Millions) retail_electric_price = 187

volume_weather = 95

2014 net revenue 5735 net_revenue_2015 = 5829 +

Retail electric price 187 retail_electric_price + volume_weather
answer = net_revenue_2015

Volume/weather 95 Answer:6111

Waterford 3 replacement 32

steam generator provision (32) Model Error Response:
2014_net_revenue = 5735

MISO deferral (35) 2015_net_revenue = 5829

— retail_electric_price = 187

Louisiana business

combination customer credits on volume_ueather = 95
2015_net_revenue_without_impact =

Other (14) 2015_net_revenue - (retail_electric_price +
volume_weather) (wrong formula)

2015 net revenue 5,829 answer = 2015_net_revenue_without_impact
Answer: 5,732

(a) Error case 1: Problem-Solving Approach Error

Context:

{"Fiscal Years - ": {"2019":

,”\m!emenum[)penunm - Revenue”: {"2019": 100, "2018": 100, "2017":
20177 55 f : — Gross profit"s

xpenses: - Loss

2017" -1},

from operations’
ownunuxp 5: -
me taxes": {"2019": -150, "2018"
0171 }. "Operating expenses: -- Net loss"

Provision for income taxes": {"2019": 1, "2018": 1

Question:
What is the total proportion of cost of reve

as a percentage of revenue in 2017 and 20187

Ground Truth:
revenve_cost_2017 = d ‘Statements of Operations:
-- Cost of revenue" 7]

revenve_cost_2018 = d Statements of Operations:
-- Cost of revenue"]["201

answer = (revenve_cost_: 2217 + revenve_cost_2018) cost_of_reven
Ans:165 Operations: --
(wrong extract)
revenue_2018 = df["Statements of Operations: --
Revenue”]["2018"] = 160 (unrelated extract)
Answer: 55.00

Model Error Response:

cost_of_revenue_2017 = df[“Statements of
Operations: -- Cost of revenue"]["2017"] = 55
revenue_2017 = df[“Statenents of Operations: --
= 100 (unrelated extract)
2018 = df["Statements of

Cost of revenue"]["2018"] = 55

(b) Error case 2: Extraction Error

Context:

.. results of operations consolidated sales and earnings.

($ in millions) 2011 2010 2009
Net sales 8,630.9 7,630.0 6,710.4
Net eamings attributable to Ball Corporation |444.0 468.0 387.9

The increase in net sales in 2011 compared to 2010 was driven largely by the increase in demand for metal packaging
in the pre ...

Question: what were average net sales in millions for the three years ending in 20117

Ground Truth:

table_row = [8630.9, 7630.0, 6710.4]
# row labeled net sales

a = sum(table_row) / len(table_row)
Answer: 7657.1000976562

Model Error Response:
average_net_sales = ( 8630.9 + 7630.0 +
6710.4 ) / 3

answer = average_net_sales

Answer: 7336.4333333 (wrong calculation)

(c) Error case 3: Calculation Error

Figure 9: Error case study.

B FinMAN Algorithm
C Error Distribution

Figure 10 presents the distribution of four major
error types, formula, extraction, calculation, and
other, across seven small open-source LLMs on
the CodeFinQA dataset. Each horizontal bar in-
dicates the percentage of questions for which a
given model committed a specific error. Calcula-
tion errors are the most frequent for most models,

Algorithm 1 FinMAN Framework

Require: Q, F,T
Ensure: Ans
1: init IC

A« {T,C, D, I, A}

while optimal action sequence not found do
Sn ¢ Mtormula(choose from A) > MCTS
t—QDs1 DD sy
reward < Mevaluate (¢, KC)
if reward indicates optimal sequence then

break > Optimal sequence found

else

> Question, context, tables
> Final answer

0 X RN R R

10: update action > Rollback candidate
11: end if

12: end while

13: F,V <« final formula & vars

14: for each v; € V do > Value Extraction
15: Top;, < BM25(E U T, v;)

16: ¢ < Miesolve (Topy,)

17: v* +— arg max, P(c | context)

18: if Mevaluate (v*, E U T') returns false then
19: reExtract()

20: end if

21: end for

3%
[N}

: code < Mexecute (F, {v*}) > Code Execution
(an, err) < Interpreter(code)

o if Meoyaate(e17) detects error then
commentAndReRun()

: end if

: return Ans

RN NN
- N I N !

confirming that multi-step numerical reasoning re-
mains the primary bottleneck. Extraction errors
are the second largest category, suggesting room
for improvement in value retrieval. Formula selec-
tion mistakes are comparatively lower but still sig-
nificant, especially pronounced in the CodeLlama
models, highlighting the difficulty of choosing the
correct financial equation. Other errors account for
a small fraction of failures. This breakdown moti-
vates our design of specialized agents in FinMAN to
target the three dominant error sources: calculation,
formula generation, and extraction.

D Experiment Setup

D.1 Implementation Details

For all LLMs, the decoding temperature is set to
0.1 to ensure deterministic generation. To maintain
the validity of our comparisons, we replicate the
existing results reported in the literature and other
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Figure 10: Error distribution in CodeFinQA

baselines using the same experimental settings. All
experiments are implemented using PyTorch and
Huggingface libraries. All training and evaluation
procedures are conducted on two NVIDIA A100
80GB GPUs.

D.2 Evaluating BERT and BM25 in Resolvers

We report our findings on the SEC-NUM dataset
by comparing BERT and BM?25, as shown in Fig-
ure 11. In this experiment, we split the input table
into either sentences or paragraphs and evaluate
recall performance. We observe that there is no
significant difference in recall when retrieving the
top 4, 5, or 10 sentences; both BERT and BM25
perform similarly in these settings. However, when
using paragraph-level retrieval, BM25 significantly
outperforms BERT.

D.3 RAG

For the RAG, we use the all-MiniLM-L6-v2 model
as our embedding model. The Evaluator agent
has the option to retrieve a financial formula; if
it does not, it functions as a financial domain ex-
pert by providing feedback to the Formulator agent
based solely on its internal knowledge. Conversely,
if retrieval is chosen, this indicates that internal
knowledge alone may be insufficient, prompting
the incorporation of external knowledge for evalua-
tion.

D.4 Comparison of SFT and RAG

Following OpenRFT (Zhang et al., 2024c), we con-
structed an SFT dataset consisting of 412 instruc-
tion data points and 100 sample data points with
reasoning steps from CodeFinQA. The instructions

100+

BERT

Emm BM25
80
60
40
201

nteﬂ v(ag\' ap

Recall (%)
o o

o

o

4@

Figure 11: The recall rate of BM25 and BERT on SEC-
NUM dataset.

and reasoning data were generated by GPT-o1 and
subsequently verified by Ph.D. students in Finance.

By contrast, the knowledge bank required far
less effort: we simply collected formulas from a
publicly available website and converted them into
LaTeX format without the need for in-depth vali-
dation or labeling by domain experts. This process
involved minimal additional human effort and com-
putational resources compared to the creation of the
SFT dataset, which required both data generation
and expert verification.

D.5 Time Efficiency

In terms of runtime, multi-agent coordination in
FinMAN averages 21.96 seconds per question. The
most time-intensive component is the MCTS within
the Formulator agent, which explores the action
space for optimal solutions, averaging 16.37 sec-
onds. The verification process, which validates
the outputs of the Formulator and other agents,
requires approximately 1.65 seconds.

E Case Study

To effectively showcase the efficiency of FinMAN,
we illustrate a case study in Figure 12 involving its
application in FQA, specifically concentrating on
verification and mathematical computations. After
one iteration of reasoning, the Formulator agent
produces an output that includes its thinking trajec-
tory and the selected action sequence. The Eval-
uator agent then evaluates this output by its local
knowledge base if the reasoning steps align with
the basic formulas. For example, when a question is
straightforward, the Evaluator can rely on existing
knowledge and pertinent formulas to assign a high
score to the Formulator’s action, such as directly
abstracting the formula. Conversely, for more chal-
lenging questions, the Evaluator may assign a low
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score to theFormulator’s action, prompting further
reasoning based on fundamental financial compo-
nents.

F Comparison to Previous Work

To clarify the differences between FinMAN and
other reasoning methods in FQA, we aim to address
the following two questions:

What are the benefits of designing an au-
tonomous agent in FQA? FQA is a domain-
specific task that involves multiple steps. Previous
approaches relying on LLMs’ internal knowledge
(e.g., CoT (Wei et al., 2022), PoT (Chen et al.,
2022a), or in-context learning (Dong et al., 2024))
are limited by inherent model constraints. In con-
trast, our multi-agent framework extends LLM ca-
pabilities by incorporating a local knowledge bank
and a code interpreter. Moreover, existing financial
QA solutions often overlook fundamental financial
concepts or rely heavily on training data (Zhu et al.,
2024; Hao et al., 2023b). FinMAN overcomes
these issues by implementing a multi-step verifi-
cation process during reasoning and continuously
updating its local knowledge bank, resulting in a
more robust and adaptable solution.

Can smaller language models perform well in
challenging FQA? Existing methods (Phogat et al.,
2023) have heavily relied on powerful close-source
language models, such as GPT-4, which lead to
high computational costs and impose significant
limitations on practical deployment. Furthermore,
reliance on closed-source models can hinder error
analysis, making it difficult to diagnose and im-
prove performance. Our work demonstrates that by
integrating autonomous agent capabilities and con-
structing a local knowledge bank, smaller language
models can effectively address FQA tasks through
clearly defined, step-wise verification. This ap-
proach significantly reduces the dependence on
closed-source LLMs.

G Agent Prompt

This section describes how each specialized agent
in the system is instructed and guided to perform its
unique role. In particular, it outlines the tasks each
agent must accomplish, the context in which those
tasks occur, and the rules that govern the agent’s
interactions. By defining these prompts clearly, the
section ensures that every agent, whether it is re-
sponsible for chunking input, extracting variables,
writing or verifying code, or any other specialized

function, works cohesively within the workflow.
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Context:
... the table below presents the amount of common stock repurchased by the firm under the share repurchase program.

in millions, except per share 2017 2016 2015
Common share repurchases 29.0 36.6 221
Average cost per share $231.87 $165.88 $189.41
Total cost of common share repurchases $6,721 $6,069 $4,195

...Under these plans , the firm also cancelled 4.6 million , 5.5 million and 2.0 million of stock options with a total value of $ 1.09 billion , $ 1.11 billion and $ 406 million during 2017 , 2016 and 2015, respectively.

Question: what is the total amount of stock options cancelled in millions during 2017 , 2016 and 2015?

Reasoner : Verifier:

Sub-questions: Action Meaning:
1. What is the total value of stock options cancelled in millions during 2017? |$ Break down the question into its structural components.
2. What is the total value of stock options cancelled in millions during 20167

3. What is the total value of stock options cancelled in millions during 2015?

Comments:
The question is well-structured and clear, asking for the total amount of

Variables: { stock options cancelled in millions during 2017, 2016, and 2015. The

“Stock_Options_Cancelled_2017": “Total value of stock options cancelled in millions during 20177,

“Stock_Options_Cancelled_2016”: “Total value of stock options cancelled in millions during 2016”, provided context is relevant and provides necessary information for
“Stock_Options_Cancelled_2015": "Total value of stock options cancelled in millions during 2015" answering the question. However, the question does not explicitly state
} what type of stock options are being

<:| referred to (e.g., RSUs, stock options, etc.).
Formula: {
“variables”:{ Reward score:

“Stock_Options_Cancelled”: “Total value of stock options cancelled in millions”
b $ue :
“formula”: “Stock_Options_Cancelled = Stock_Options_Cancelled_2017 + Extractor Verify: the data are extracted from the provided context
Stock_Options_Cancelled 2016 + Stock_Options_Cancelled_2015"

} Executor Verify: No unexpected coding error
Extractor:

Identify Key Variables : { Multiple-Choice Extraction for Each Variable: ?:ru:.t";ed °"tp'.‘t,:(
“Stock_Options_Cancelled_2017", * Variable: Stock_Options_Cancelled_2017 ﬁs":z: oa"‘iz“fs" c‘;;ce"ed 201774846 million”
“Stock_Options_Cancelled_2016”, —_—> Option A: $4.6 million Option B: $1.11 billion —_— “Slcckiopt'unsicancelled72016":"55.5 il n,"
“Stock_Options_Cancelled_2015” Option C: $921 million Option D: $406 million w -options.. e o o

} Stock_Options_Cancelled_2015":62.0 million

Executor:

Python Code:

# Initialize extracted value
total_options_cancelled_2017 = 4.6
total_options_cancelled_2016 = 5.5
total_options_cancelled_2015 = 2.0

Local Python Executor Running:
V]

— —>

Local Python Executor Output:

# Print the total number of stock options cancelled
print(total_options_cancelled_2017+total_options_cancelled_2016+total_options
_cancelled_2015)

Figure 12: FinMAN case study

You are a Chartered Financial Analyst (CFA) expert.

Your task is to:

1. Generate relevant financial formulas.

2. Identify key variables based on the user's question and the provided context.

3. Choose one of the action to answer the question {ACTION SPACE}

**Constraints:**

- **Do not extract any numerical values** from the context.

- **Do not perform any calculations** in this step.

- **Ensure all formulas are based on the identified variables** and the user's question.

**Example: **
{
"variables": {
"Net Revenue": "Total income generated from sales after deductions",
"Gross Revenue": "Total income generated from sales before any deductions",
"Discounts": "Total discounts given to customers",
"Returns": "Total value of returned goods",
"Commissions": "Total commissions paid to sales personnel"
}l
"formula": "Net Revenue = Gross Revenue - Discounts - Returns - Commissions"
}
**Notes:**
- Always keep the user's question in mind when generating formulas.
- Ensure that each formula directly relates to the identified variables.
- Output your answer in JSON format.

Figure 13: System prompt of Formulator agent to write formula and variables.
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***Context:***
{INSERT CHUNKS}

Step 1: Identify Key Variables

- From the text and tables, identify the numerical variables that are essential for the final calculation.
instance, these might be values like revenue figures or impact amounts.

- Use the context provided by the text (keywords and surrounding phrases) to determine which numbers
correspond to each variable.

EaarFitabille SRR

{INSERT VARIABLES}

Step 2: Multiple-Choice Extraction for Each Variable

For each key variable, do the following:

1. Generate four multiple-choice options labeled A, B, C, and D. One of these options must be the correct
value extracted from the text; the other three should be plausible distractors.

2. Briefly explain your reasoning (chain-of-thought) for selecting the correct option.

EEIISEOILE B 5

Suppose you encounter the following text snippet:

"According to the latest report, in 2011 the net re

For

venue reached $2,045 million, and in 2012 it was $1,854 million. Additionally, the report noted a $33 million

impact from nuclear volume changes."
For each variable, you might generate:

- **Variable: Net Revenue 2011**

- Option A: $2,045 million * (Correct)*

- Option B: $1,854 million

- Option C: $2,000 million

- Option D: $2,100 million

- **Explanation:** The phrase "in 2011 the net revenue reached" directly indicates that $2,045 million is
the correct value.

Step 3: Structured Output

Present your final answer in a structured format (e.g., JSON). Your output should include:
- The correct value chosen for each key variable.

- The computed results (like the revenue decrease and percentage) .

- A brief summary of your reasoning for each step.

**For Example, the final output could be structured as:**

o
"net_revenue_2011": "$2,045 million",
"net_revenue_2012": "$1,854 million",
"nuclear volume effect": "$33 million",
"net_revenue decrease": "$191 million",
"percentage nuclear volume": "17.3%"

1}

Final Instructions:

1. Confirm that you understand these instructions.

2. When processing any given input, first break it into paragraphs and tables.

3. Identify the key variables using contextual clues.

4. For each variable, create four multiple-choice options, select the correct one with a brief explanation,

and then use these values for your final computations.
\\?. Present your final answer in the structured format shown above.

J

Figure 14: Prompt of Resolver agent to extract value from chunk.
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( )

You are tasked with writing Python code based on the provided context. Follow these guidelines to
ensure the code is accurate, efficient, and free from common mistakes:

1. **Understand the Context:**
- Carefully read and comprehend the provided context to grasp the requirements and objectives of the
code.

2. **Code Structure and Best Practices:**
- Write clean, well-structured, and readable code.
- Follow Python's best practices and PEP 8 style guidelines.
- Use meaningful variable and function names that reflect their purposes.

3. **Avoid Common Mistakes:**
- Ensure there are no syntax errors or logical flaws.
- Optimize the code for performance without sacrificing readability.

4. **Output Format:**
- Present the complete Python code without additional explanations or markdown formatting.
- Ensure that the code is ready to run and doesn't require further modifications
B MG ELERS ] &
- Based on the above context, write the required Python code adhering to all the guidelines mentioned.
- Do not include any explanations, just provide the Python code.

**Few-shot Example:**

" python

# initialize variables
net_interest revenue 2009 = 896

# initialize variables
total operating_expenses 2009 = 3173

# Final answer: percent of net interest revenue where total operating expenses in 2009
percent 2009 = net_interest revenue 2009 / total operating expenses_ 2009

# Get the final answer
answer = percent_ 2009 * 100

# Print the total number of stock options cancelled
print (answer)

Figure 15: System prompt of Executor agent to write Python code.

You need to evaluate the following action and provide a score based on its effectiveness
and correctness. \n
Question: {CURRENT QUESTION}
Context: {CURRENT CONTEXT}
Action: {ACTION}
**Action Meaning**: {ACTION MEANING}
**Provide your response as a JSON object with two keys:**
- **"comments"**: A string containing your review comments.
- **"gcore"**: A numerical value between 0 and 1, where 1 indicates full approval and 0

indicates disapproval.
" 7

Figure 16: Prompt of Evaluator agent to verify actions.

(, )
"REASON_ACTION_CIlAIFY": "Clarify the question to ensure understanding.”
"REASON_ACTION_QUESTION_ STRUCTURE": "Break down the question into its structural components.”
"REASON_ACTION IDENTIFY VAR": "Identify variables and its meaning involved in the question.”

"REASON_ACTION_THINKING ONE_MORE": "Think through the relationships between the variables.”

"REASON_ACTION_DERIVE ABSTRACT": "Derive an abstract formula or method to solve the
kquestion."

Figure 17: Prompt of action space
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