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Abstract

Execution failures are common in daily life
when individuals perform procedural tasks,
such as cooking or handicrafts making. Re-
trieving relevant procedural documents that
align closely with both the content of steps
and the overall execution sequence can help
correct these failures with fewer modifications.
However, existing retrieval methods, which pri-
marily focus on declarative knowledge, often
neglect the execution sequence structures in-
herent in procedural documents. To tackle this
challenge, we introduce a new dataset Proce-
dural Questions, and propose a retrieval model
Graph-Fusion Procedural Document Retriever
(GFPDR) which integrates procedural graphs
with document representations. Extensive ex-
periments demonstrate the effectiveness of GF-
PDR, highlighting its superior performance in
procedural document retrieval compared to ex-
isting models.1

1 Introduction

In real life, humans often encounter execution fail-
ures when performing procedural tasks such as
cooking or handicrafts making, as shown in Fig-
ure 1. The causes and solutions to failures can be
found in procedural documents (e.g., cookbooks or
operation tutorials) containing the used materials
with their specific amounts, the sequence of operat-
ing steps, operating precautions, and so on (Zhou
et al., 2022). However, it is often labor-intensive
and time-consuming for humans to correctly re-
trieve the reference procedural documents that en-
able solving the failures effectively. In our paper,
we refer to such retrieval scenario as procedural
document retrieval.

* Equal Contributions
† Corresponding Author
1Data and code is available at https://github.com/

YeZhenqi/GFPDR
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pot ...
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Figure 1: Procedural document retrieval scenario. There
are various procedural documents for a procedural task.

Current retrieval scenarios are predominantly
centered around declarative knowledge (Jacobs and
Paris, 1987). Popular retrieval datasets like MS-
MARCO (Bajaj et al., 2016) and Natural Ques-
tions (Kwiatkowski et al., 2019) primarily consist
of declarative documents (e.g., Wikipedia pages)
and queries are simple like "What’s the largest
ice sheet?". Retrievers (Wang et al., 2023; Zhou
et al., 2024) mainly focus on capturing the key
elements of declarative documents, e.g., subjects,
facts, and entities. However, they neglect the execu-
tion sequence of steps within procedural document,
which provides crucial clues for retrieving relevant
documents in procedural document retrieval. For
instance, in Figure 2, although both documents
contain the same topic and similar step contents
(i.e., Place eggs, Heat water, and Simmer), the
sequences of these steps are executed differently.
Document 2 places eggs into water first, then heats
the water, whereas Document 1 reverses the se-
quence. This difference in sequence affects the
simmering time for different states of eggs. Since
both the step contents and sequence structure in
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Question: I'm trying to make soft-boiled

eggs with jammy yolks, but the yolks I end

up cooking are still too runny, and the

whites are overly soft. I'm not sure what

I'm doing wrong.

Operations:

1. I first poured water into the stainless-

steel pot and placed three eggs in it.

2. Subsequently, I began to heat the

water in the pot until many bubbles

started to form on the surface.

3. Then I turned off the heat and sit the

eggs in the boiling water for 2 minutes.

4. I took the eggs out of the pot and

placed them in an empty bowl to cool.

1. Heat water in a saucepan. Place a saucepan on your stove and…

2. Place the eggs in the pan. Set your egg in a slotted spoon and gently lower it into the

water…

3. Simmer the eggs. Start a timer, so you can perfectly boil the eggs…

· 5 minutes to get a runny yolk with a barely set white

· 6 minutes to get a barely setting yolk with a set white

· 7 minutes to get a softly set yolk with a set white

1. Cover the eggs with cold water. Put your eggs into a small saucepan and pour…

2. Bring the water to a boil and turn off the heat. Turn the heat on to medium-high…

3. Simmer the soft-boiled eggs to your liking. Try cooking the eggs for:

· 2 minutes to get a raw yolk and very soft egg white

· 4 minutes to get a really runny, thick yolk and set white

· 6 minutes to get a mostly set yolk and set white

Fill saucepan
with water

Heat
water

Place eggs in
the pan

Simmer for
5 minutes

Simmer for
6 minutes

Get a
runny yolk

Get a barely
setting yolk

Place
eggs

Boil
water

Simmer for 2
minutes

Simmer for 4
minutes

Pour water in
a saucepan

Pour
water into

a pot

Place
eggs in it

Heat the
water

Turn off
heat

Simmer
for 2

minutes

Take the
eggs out

The main issue lies in the cooking time. Leave the

eggs in the hot water for 4 minutes instead of 2

minutes. This will give you a jammy yolk.

To ensure consistent cooking and the desired

texture, you need to do:

• Heat the water until it reaches a rapid simmer.

• Lower the eggs into the simmering water gently.

•

• Remove the eggs and place them in an ice bath

immediately to stop further cooking.

Correct but complicated

Correct and concise

Mismatch in
sequence of steps

Turn off
heat

Procedural Graph

Procedural Graph

Procedural
Graph

Match in
sequence of steps

Solution generated by LLM

Query Document1: Make Soft Boiled Egg Using Hot Start

Document2: Make Soft Boiled Egg Using Cold Start

Get a
thick yolk

Get a
raw yolk

Simmer for 6-7 minutes to achieve a jammy yolk.

Figure 2: An example of procedural document retrieval. The Query describes a failure including the issue and the
operations taken. Document 1 and Document 2 are two relevant documents sharing several steps, such as Place eggs
in pan, Heat water, and Simmer eggs, but with different execution sequences. The execution sequence in Document
2 aligns more closely with the Query, resulting in a more concise and effective solution. However, ColBERTv2
incorrectly ranks Document 1 as more relevant than Document 2. A preliminary study on how retrieval quality
affects solution generation is provided in Appendix A.

Document 2 align better with the query’s procedure,
it is more relevant to the query and leads to a more
streamlined solution with fewer modifications.

Furthermore, we observe that the execution se-
quence structures in procedural documents often
include multiple semantic dependencies beyond
simple step-by-step sequences. These dependen-
cies (Pal et al., 2021; Ren et al., 2023) can involve
selection (e.g., Step 3 of Document 2 in Figure
2) and inclusion, where one action functions as
a sub-action of another. Additionally, declarative
sentences frequently appear to provide supplemen-
tary or constraints for specific actions. Existing
retrieval methods lack explicit modeling of these
diverse dependencies within procedural documents,
limiting their ability to learn the sequence structure.
Recent studies (Du et al., 2024; Shirai et al., 2023)
structure these semantic dependencies through pro-
cedural graphs, which are graph-based representa-
tions for procedural knowledge. These structured
representations facilitate capturing the sequence
structures in procedural documents. According
to our observation, as shown in Figure 2, proce-
dural graphs can summarize key procedural steps
and their dependencies, aiding in the identification
of differences in execution sequence structure be-
tween queries and documents.

In our paper, we propose Graph-Fusion
Procedural Document Retriever (GFPDR), a re-
triever that leverages procedural graphs to learn the
sequence structure of procedural documents. We

employ an Edge-Aware Graph Attention Module to
capture sequence structure from the graph. Then,
the Graph-Fusion Document Encoder encodes pro-
cedural document and fuses it with graph features.
To maintain low online computational complex-
ity, GFPDR adopts a late-interaction architecture
(Khattab and Zaharia, 2020), which allows offline
document encoding and performs fine-grained sim-
ilarity computation during retrieval. Furthermore,
due to the lack of retrieval datasets that use erro-
neous operations as queries, we construct a new
dataset named Procedural Questions. It contains
erroneous operations in procedures from various
procedural tasks as queries, paired with the most
relevant procedural document.

Our contributions are summarized as follows:

• We explore a problem of procedural document
retrieval, emphasizing the need to consider
both step contents and execution sequences
between queries and documents. To the best
of our knowledge, this is the first study fo-
cusing on procedural document retrieval with
consideration of sequence structure.

• We design a retriever GFPDR that captures the
sequence structure of procedural documents
by integrating procedural graphs. Existing
retrieval methods overlook the impact of se-
quence structure on retrieving relevant proce-
dural documents.
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• We create a procedural document retrieval
dataset Procedural Questions. Extensive ex-
periments on our dataset demonstrate the ef-
fectiveness of our proposed method in proce-
dural document retrieval.

2 Related Work

2.1 Procedural Knowledge

Prominent knowledge bases like WikiData (Vran-
dečić and Krötzsch, 2014), Wikipedia (Lehmann
et al., 2015), and FreeBase (Bollacker et al., 2007)
primarily focus on representing declarative knowl-
edge, which involves attributes or features of things.
However, these resources do not adequately cover
procedural knowledge—knowledge about the se-
quence of actions required to achieve specific goals.
Previous research on procedural knowledge falls
broadly into two categories. One is procedural
knowledge acquisition, aiming to better represent
procedural knowledge (Du et al., 2024; Shirai et al.,
2023; Ren et al., 2024; Zhou et al., 2022). The other
is procedural knowledge applications (Li et al.,
2024; Luo et al., 2021; Tandon et al., 2015). Luo
et al., 2021 formulates the problem of operations
diagnosis within procedural graphs. However, their
approach assumes that there is only a single, fixed
way to accomplish a task, overlooking the fact that
multiple methods may exist for the same procedu-
ral task.

2.2 Retriever and Reranker Architecture

With the advancement of language models (Yuan
et al., 2024), fine-tuned pre-trained models have
significantly improved retrieval and reranking per-
formance. The bi-encoder architecture is the most
commonly used (Karpukhin et al., 2020), where
the query and document are passed through en-
coders to generate a single vector, and the rel-
evance is computed by the similarity of embed-
dings. Recent works (Xiao et al., 2023; Wang
et al., 2023) have enhanced bi-encoders through
advanced distillation techniques. In addition to
the standard bi-encoder, there are variants (Gao
et al., 2020; Santhanam et al., 2022) that intro-
duce dense interactions for improved effectiveness.
ColBERT (Khattab and Zaharia, 2020) employs a
late-interaction paradigm, computing token-wise
dot products between the query and document vec-
tors, followed by max-pooling and sum-pooling to
obtain a relevance score. Cross-encoders (Kenton
and Toutanova, 2019; Dai and Callan, 2019), which

encode process query and document information
during inference, have proven effective in tradi-
tional retrieval settings. Additionally, generative
models such as T5 (Raffel et al., 2020) have shown
to be effective for retrieval and reranking (Zhuang
et al., 2023; Yoon et al., 2024). In this paper, we
investigate the performance of these architectures
for procedural document retrieval.

3 Methods

Task Formulation: The procedural document
retrieval task aims to search the most relevant doc-
uments given a query. Formally, given a query
q and a collection of procedural documents D,
the task is to retrieve top-k relevant documents
Dq = d∗1, ..., d

∗
k from D.

Graph-Fusion Procedural Document Retriever
(GFPDR) aims to capture sequence structure from
procedural graph and fuse with document embed-
dings. Our method has three components: 1) Edge-
Aware Graph Attention Module, which is designed
to construct procedural graphs from procedural doc-
uments and extract the sequence structure features
from the graphs. 2) Graph-Fusion Document En-
coder, which encodes procedural documents and
integrates with procedural graph. 3) Query En-
coder, a language model for encoding the query.
The overall architecture is shown in Figure 3.

3.1 Edge-Aware Graph Attention Module

3.1.1 Procedural Graph Construction

To construct procedural graphs, we first define the
types of nodes and edges for general procedural
graphs, as shown in Table 1. We follow the method
proposed by Du et al., 2024, which leverages LLMs
to extract procedural graphs from documents. This
approach transforms a procedural document into
a directed weighted graph G = {V,E}, where V
represents nodes comprising actions, constraints,
and gateways, while E denotes the dependencies
between nodes. An example and additional details
are provided in App. B.

3.1.2 Edge-Aware Graph Attention Layer

The nodes and edges extracted from the procedu-
ral graph above have text attributes. To obtain
node and edge features, we encode their text at-
tributes with a language model. Given a triple
t = {u, v, e} in the procedural graph, where u, v
and e are source node, destination node, and edge
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Procedure Document
Step 1: Heat water in a saucepan. Place a saucepan on your stove and fill it with ...

Step 2: Place the eggs in the pan. Set your egg in a slotted spoon and ...…

Step n: Simmer the eggs. Start a timer, …

Procedural Graph Construction
……

Global Tokens

Self Attention

Graph MHA

FFNFFN

……

Query
Question: I‘m trying to make soft boiled eggs, but ...

Operation 1: To make boiled eggs, I first poured water ...…

Operation m: Following this step, I took the eggs out …

…

Query Encoder

…

Muti-Vec Score
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Figure 3: The overall architecture of our Graph-Fusion Procedural Document Retriever.

Node Type Meaning
Action a specific step in a procedure
Constraint essential notices for the execution of the actions
AND gateway that indicates the following actions are executed in parallel
OR gateway that indicates one or more of the following actions are executed
LOOP gateway that indicates the following actions need to be re-executed
Edge Type Meaning
Sequence flow flow that represents the execution of sequential actions
Condition flow flow that indicates the following action or constraint is under the condition

Table 1: Types of node and edge in the procedural graph and their meanings.

respectively. Their features are processed as:

hu = LM(tu) hv = LM(tv) he = LM(te)

where tu, tv, te are the text of node u, node v
and edge e respectively. LM is a pre-trained lan-
guage model such as BERT(Kenton and Toutanova,
2019). hu, hv, he ∈ Rd are the [CLS] embeddings
which serve as the features of node u, node v and
edge e respectively. After obtaining the node and
edge features, we use GAT (Veličković et al., 2017)
to update nodes. Note that procedural graph is a
directed weighted graph. The direction and text
attribute of the edges are important properties in
the procedural graph. Thus, we introduce edge
features when updating the graph by self-attention
mechanism as follows:

e
(l)
ij = ϕ

(
a(l)

⊤
[
W

(l)
srch

(l)
vi ∥W

(l)
dsth

(l)
vj ∥W(l)

e heij
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α
(l)
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exp(e
(l)
ij )∑

k∈N (v
(l)
i )

exp(e
(l)
ik )

h(l+1)
vi = σ


 ∑

j∈N (vi)

α
(l)
ij W

(l)
atth

(l)
vj




where ϕ denotes the LeakyReLU activation func-
tion and a is a learnable vector. Wsrc and Wdst

are learnable weight matrices for source nodes and
destination nodes. We and Watt are learnable
weight matrices for edges and attention calculation.
∥ denotes concatenation, and αij is the attention
coefficient. l is the number of EAGAT layers. Af-
ter k EAGAT layers, each node aggregates features
from its k-hop neighbors. We do not update edge
features as their text attributes are simple and clear.
Preserving the original edge features across layers
helps reduce learning complexity.

3.2 Graph-Fusion Document Encoder
Procedural graph focuses on providing a clear se-
quence structure of the procedure while procedural
document comprises more details. However, node
embeddings of the graph and token representations
of the document are in different feature spaces.
To eliminate the modality gap between two em-
beddings and effectively integrate two modalities,
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inspired by Li et al., 2023, we propose the Graph-
Fusion Document Encoder, which is a transformer
encoder aims to align modalities by fusing token
representations with node embeddings. Specifi-
cally, we apply a set of learnable tokens as input,
termed global tokens G = {gi}Mi=1, where M is
the number of global tokens. Given a sequence
of text tokens S = {s1, s2, ..., sL} of the docu-
ment, both global tokens and text tokens interact
with each other through self-attention layers to cap-
ture overarching semantic information of the doc-
ument. Then, the global tokens interact with node
embeddings Hv = {h1, h2, ..., hI} of the graph
to introduce sequence structure features through
cross-modality multi-head attention layer(Graph-
MHA) as follows:

Gq = EGW
q, Hk = HvW

k, Gv = HvW
v

E′
G = SoftMax

(
Gq(Hk)⊤/

√
d
)
GvW out

where EG is the embeddings of global tokens af-
ter self-attention layers. Finally, two feed-forward
networks are used to encode the global tokens and
text tokens respectively. The document representa-
tions ED = {eg1 , ..., egM , ecls, es1 , ..., esL}, where
{egi}Mi=1 and {esj}Lj=1 are the correspond token
embeddings of gi and sj encoded by Graph-Fusion
Document Encoder. We share the parameters of
self-attention layers and feed-forward layers with
the language model of Edge-Aware Graph Atten-
tion Module to better align the two modalities.

3.3 Query Encoder
Although the users’ queries contains steps about
how they perform the procedural task, we observe
that these steps are always sequential and concise.
Based on the observation, we only adopt a language
model to encode query. Given a sequence of tokens
Q = {q1, q2, ..., qK} of query, the query represen-
tation EQ = {ecls, eq1 , ..., eqK}, where {eqi}Ki=1 is
the correspond token embedding of qi.

3.4 Objective Function
Given document representation ED and query rep-
resentation EQ, late interaction similarity (San-
thanam et al., 2022), a multi-vector similarity com-
putation, is utilized as follows:

Sim(Q,D) =
∑

ei∈EQ

max
ej∈ED

(ei · ej)

We apply InfoNCE Loss as the objective func-
tion. Specifically, for a given query Q, it computed

negative log-likelihood of a positive document D+

against a set of negatives {D−
1 , D

−
2 , ..., D

−
l } as fol-

lows:

LNCE = −log
eSim(Q,D+)/τ

eSim(Q,D+)/τ +
∑

l e
Sim(Q,D−

l )/τ

To better align node embeddings with text em-
beddings, we introduce an auxiliary loss function
termed the Graph-Document Match Loss. Specif-
ically, given a graph-document pair (G,D), the
embeddings of global tokens are passed through a
binary classifier and averaged to compute a match
score, defined as:

s(G,D) =
1

M

M∑

i=1

fcls(egi)

where egi is the embedding of i-th global token and
fcls is a binary classifier. The loss is as follows:

LGDM = BCE(s(G,D), y(G,D))

where y(G,D) ∈ {0, 1} indicates whether graph
and document match and BCE denotes to Binary
Cross Entropy Loss. The overall objective function
is as follows:

L = LNCE + LGDM

3.5 Time Complexity
Despite incorporating a GAT module for document
encoding, GFPDR adopts a late interaction design
that allows document embeddings to be computed
offline and efficiently indexed. At query time, only
query encoding and similarity computation are per-
formed. The resulting online time complexity is
O(q2+n×q×d′), where q is the number of query
tokens, and d′ = d + M denotes the number of
document tokens plus global tokens. Here, O(q2)
corresponds to query encoding, and O(n× q × d′)
to similarity computation. It is comparable to Col-
BERTv2’s O(q2 + n× q × d).

4 Experiments

4.1 Dataset & Annotation
Constructing a dataset through web scraping is chal-
lenging, as procedural questions on the internet are
dispersed and most answers lack corresponding ref-
erence documents. Thus, we curate our dataset Pro-
cedural Questions manually. We collect the corpus
from Wu et al., 2022 and Yuan et al., 2023, which
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Dataset Statistic Train Dev Test
Total Queries 4500 500 921

Avg. Tokens per Query 196 195 188
Avg. Sentences per Query 10 9.9 9.2

# Corpus 361500
Avg. Sentences per Doc. 564

Table 2: Dataset statistics for Procedural Questions.

provides a collection of human-created how-to ar-
ticles on WikiHow2 style. We develop an LLM-
based framework to generate erroneous procedural
operations as queries. Specifically, we define three
common types that cause failures when users exe-
cute procedural tasks: 1) Missing. Failure occurs
due to the missing of steps. 2) Swap. Failure oc-
curs due to the incorrect order of several steps. 3)
Wrong details. Failure occurs due to incorrect
details, such as time and dosage.

Given a procedural document, our framework
simulates failure scenarios based on predefined
types to generate queries consisting of a failure
description and an erroneous step sequence. A
self-refine step ensures that the step sequence log-
ically leads to the failure, and a rewriting phase
enhances query diversity. This process guaran-
tees that generated queries differ from the refer-
ence document while keeping the reference as the
most relevant. By automating query generation,
the framework significantly reduces annotation
workload, requiring only minimal human review.
We use DeepSeek-V2.5 (DeepSeek-AI, 2024) and
LLaMA3 (AI@Meta, 2024) to improve query di-
versity. More details are provided in App. C.

Four well-educated annotators were employed
to review the queries. Before starting the annota-
tion, we provided detailed guidelines and examples
to ensure consistency. With the framework’s assis-
tance, the annotators reviewed approximately 2,300
queries, filtering out 997. A second-round review
by a single annotator further refined the dataset to
921 queries, which are used as the test set. The
inner-annotator Cohen’s Kappa of 0.68 and reten-
tion rate of 0.85 indicate substantial agreement. An
additional 5,000 unreviewed queries are allocated
to the training and development sets. The statistics
of the dataset are summarized in Table 2, with re-
view criteria provided in App. C. Moreover, our
framework generates corrective solutions for each
query, allowing the Procedural Questions dataset
to also serve as a QA benchmark.

2https://www.wikihow.com/Main-Page

4.2 Experiment Settings

4.2.1 Baselines

We evaluate 14 models across various architec-
tures. For sparse retrievers, BM25 (Robertson et al.,
2009) a classic term-frequency-based method, and
SPLADE++ (Formal et al., 2022), which lever-
ages transformer-based expansion. For bi-encoders,
SimLM (Wang et al., 2023) employs a bottle-
neck architecture with self-supervised pretraining,
Longtriever (Yang et al., 2023) handles long docu-
ments with hierarchical encoding, BGE-base (Xiao
et al., 2023) is trained on large-scale corpora, and
T5-2K (Coelho et al., 2024) mitigates positional
bias with RoPE. For generative retrievers, ListT5
(Yoon et al., 2024) introduces a novel efficient list-
wise reranking algorithm. RepLLaMA(Ma et al.,
2024) is an LLM dense retriever fine-tuning by
LLaMA2-7B; RankZephyr(Pradeep et al., 2023)
and PRP-Sliding(Qin et al., 2024) are two zero-
shot LLM rerankers using different listwise rerank-
ing strategies. For cross-encoders, MonoBERT
(Nogueira and Cho, 2019) applies BERT to encode
query–document pairs, while Longformer (Belt-
agy et al., 2020) extends input capacity to handle
long contexts. Re2g (Glass et al., 2022) improves
reranking through multi-stage training. Finally,
ColBERTv2 (Santhanam et al., 2022) employs a
late-interaction architecture.

4.2.2 Implementation Details

Considering that several rerankers are selected as
baselines and reranking the whole corpus would
be computationally expensive, we unify the experi-
mental setting by having all models rerank the top
50 candidates retrieved by BM25. The top 50 can-
didates ensure coverage of relevant solutions for
each procedural task.

Our GFPDR consists of two EAGAT layers. The
Graph-Fusion Document Encoder and the query
encoder are initialized separately with RoBERTa-
based parameters. The number of global tokens is
set to 32. During training, each query is paired with
two hard negatives. The maximum input lengths
for the documents and queries are 512 and 300,
respectively. When training baselines, we align
key hyperparameters such as input length. We em-
ploy a token reduction algorithm to shorten lengthy
documents while preserving as much semantic in-
formation as possible. Additional implementation
details are provided in App. D.1. Our dataset, code
and model weights are publicly available.
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Model Hit@1 Hit@5 NDCG@3 MRR@5 MRR@10
Sparse retriever
BM25†(Robertson et al., 2009) 22.91 54.72 36.65 35.29 36.34
SPLADE++†(Formal et al., 2022) 39.2 66.45 50.93 49.57 50.76
Bi-encoder
Longtriever(Yang et al., 2023) 45.17 84.04 64.55 59.96 61.53
SimLM (Wang et al., 2023) 59.28 87.19 70.98 69.97 71.25
T5-2K (Coelho et al., 2024) 48.97 85.34 64.21 62.61 63.9
BGE-base (Xiao et al., 2023) 67.53 89.58 77.07 76.63 77.14
Cross-encoder
MonoBERT (Nogueira and Cho, 2019) 65.26 85.34 74.48 73.25 73.99
Longformer (Beltagy et al., 2020) 68.51 89.58 77.07 76.95 77.81
Re2g(Glass et al., 2022) 59.28 74.59 66.78 65.51 65.88
Generative model
ListT5(Yoon et al., 2024) 72.68 90.21 80.65 79.65 80.22
RepLLaMA-7B(Ma et al., 2024) 73.94 92.73 82.18 81.29 81.96
RankZephyr-7B†(Pradeep et al., 2023) 27.47 60.80 40.47 41.86 41.95
PRP-Sliding-20B†(Qin et al., 2024) 21.72 61.70 37.85 36.80 36.91
Late-interaction
ColBERTv2(Santhanam et al., 2022) 74.59 94.03 83.82 82.40 82.99
GFPDR (Ours) 85.45 96.74 91.03 90.17 90.42

Table 3: The experiment results of retrieval methods on Procedural Questions. † denotes zero-shot methods.

No. Method Hit@1 MRR@10
I GFPDR 85.45 90.42
II I w/o LGDM 84.04 89.37
III II w/o EAGAM 82.95 88.62
IV III w/o init sepa. 81.54 87.58

Table 4: Ablation study for GFPDR.

4.3 Main Results

We evaluate the performance on the test set of
Procedural Questions using Hit@n, NDCG@3,
and MRR@n, as shown in Table 3. Our model
achieves the best performance across all metrics,
with the most significant improvement of +10.86%
in Hit@1, highlighting its superior ability to dis-
tinguish between similar procedural documents by
integrating sequence structure features of proce-
dural graphs. We observe distinct performance
gaps between different retriever architectures in
this scenario. Sparse retrievers underperform due
to their reliance on lexical matching, which fails to
capture procedural sequence structure. Bi-encoder
models perform poorly due to the limited capacity
of single vector representation. For cross-encoder
models, Longformer performs much better than
MonoBERT and Re2g by handling longer con-
text inputs. RepLLaMA shows competitive per-

formance with better semantic representation, and
ListT5 performs well as it uses a novel sort algo-
rithm for listwise reranking. In contrast, zero-shot
LLM-based rerankers perform significantly worse,
suggesting these methods do not yet generalize
well in procedural document retrieval. ColBERTv2
is the strongest among baselines, likely due to its
fine-grained similarity computation, which can ef-
fectively leverage the detailed procedural queries
in procedural document retrieval. The zero-shot
results of baselines are provided in App. D.2.

4.4 Ablation Study

Table 4 shows the performance of GFPDR with pro-
gressively removed components. In Experiment II,
the model is trained with InfoNCE loss only. Exper-
iment III removes the Edge-Aware Graph Module,
and Experiment IV shares language model param-
eters between the query and document encoders
instead of using separate initializations. Additional
results on NDCG@3, MRR@5, and Hit@5 are
provided in App. Table 6.

Comparing Experiments I and III, the proposed
Edge-Aware Graph Module proves to be effective,
leading to improvements of +2.5% in Hit@1 and
+1.8% in MRR@10. It means that GFPDR can
leverage the sequence structure features captured
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Figure 4: Impact study for language model.
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Figure 5: Rank percentage of global tokens during simi-
larity computation. "Positive" refers to their rank in the
positive document, and "Negatives" in the negatives.

by the graph module. Experiments I and II, we
observe a 1.05% drop in MRR@10 after removing
the GDM loss, indicating that the loss helps better
align the representations of the graph and text. Ex-
periments III and IV show that using separate lan-
guage models for the query and document encoders
performs better than sharing. We hypothesize it is
because the steps in queries are always sequential,
while procedural documents exhibit more complex
sequence structures. Separate encoders allow better
modeling of these distinct characteristics.

Impact Study of Language Model: We observe
that the choice of language model backbone signif-
icantly affects retrieval performance. As shown in
Figure 4, we compare GFPDR and ColBERTv2
initialized with three different backbones. GF-
PDR achieves the best performance when using
RoBERTa-base. We hypothesize the strong seman-
tic representation and generalization capacity of
RoBERTa make it better to capture long-range de-
pendencies in both procedural graphs and texts. Ad-
ditionally, GFPDR consistently outperforms Col-
BERTv2 across all backbones, highlighting the ef-
fectiveness of our method. We discuss the impact
of the number of global tokens in App. D.3.

Figure 6: FLOPs of online computation at query time.

4.5 Further Analysis

To evaluate the capabilities of global tokens, we
analyze their role during similarity computation.
Specifically, all document tokens are computed
with each query token via doc-product, and we
measure the average rank percentage of the dot-
product scores of global tokens relative to other
document tokens for each query token. This cal-
culation is performed separately for positive and
negative documents.

We evaluate two GFPDR variants with 16 and
32 global tokens. As shown in Figure 5 and App.
Figure 13, global tokens in positive documents con-
sistently achieve higher rankings, suggesting they
carry a denser semantic representation compared to
most regular tokens. Moreover, the gap in average
rank percentage between positive and negative doc-
uments highlights the sensitivity of global tokens
to the differences between query and irrelevant doc-
uments. Most global tokens exhibit larger margins
than the [CLS] token, indicating they offer stronger
discriminative signals for procedural document re-
trieval. Additionally, we provide a case study in
App. D.5 to illustrate the effectiveness of GFPDR.
Efficiency in FLOPs: We report per-query FLOPs
in Figure 6, focusing on the online computations
required at query time. BGE-base is the most
efficient due to its bi-encoder architecture. GF-
PDR achieves comparable efficiency while out-
performing others in MRR@5. Longformer and
MonoBERT incur much higher costs, since their
inference is fully performed online. Overall, GF-
PDR offers a better trade-off between efficiency
and effectiveness. Measurement details are pro-
vided in App. D.4. Additional analyses, including
domain-specific performance, false negative evalua-
tion, and graph construction analysis, are presented
in App.D.6.
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5 Conclusion

In this paper, we address the problem of procedural
document retrieval, where both step content and
execution sequence structure should be considered
between queries and documents. While existing
retrieval methods primarily focus on learning top-
ical content, they overlook the complex sequence
structures inherent in procedural documents. To
tackle this, we introduce a new dataset for procedu-
ral document retrieval and propose a retriever that
integrates procedural graphs with document repre-
sentations. Extensive experiments demonstrate the
effectiveness of our approach.

Limitations

Our study has some limitations. First, the procedu-
ral graphs we construct may contain noise, such as
nodes representing multiple actions. The analysis
of graph construction in the Appendix shows that
there is a correlation between graph imperfections
and retrieval failures. We believe a more robust
method for procedural graph construction can help
model better capture the sequence structure.

Second, like many retrieval datasets, our dataset
may suffer from false negatives, where positive
documents are incorrectly labeled as negatives. For
example, some procedural documents have largely
similar step contents and execution sequences but
differ in titles. Although we conduct an initial ex-
periment about false negatives in the Appendix, a
more comprehensive evaluation would be neces-
sary to fully understand its impact.

Third, our corpus primarily consists of
WikiHow-style procedural documents, which are
relatively detailed. In contrast, documents from
other sources such as Allrecipes3 are more con-
cise. Expanding the evaluation to include more
diverse sources would better test the generalization
capability of our method.

Finally, while our experiments show that LLM-
based rerankers perform poorly on procedural doc-
ument retrieval, we have not deeply explored this
phenomenon. Given the increasing attention to
LLM-based retrievers and rerankers, a direction for
future work is to investigate how procedural graphs
can be effectively integrated with LLMs, enabling
rerankers to better capture sequence structures.

3https://www.allrecipes.com/
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Algorithm 1 Document Token Length Reduction

Require: Document steps {S1, S2, . . . , SN}, To-
ken limit L

Ensure: Reduced document D
1: Split each step Si into sentences

{si1, si2, . . . , sim}
2: Tokenize each sentence sij and compute total

token length Ttotal

3: while Ttotal > L do
4: Remove the last sentence from each step, if

available
5: Recompute Ttotal

6: end while
7: Reconstruct the document D by concatenating

remaining sentences
8: return D

A Preliminary Study on
Retrieval-Augmented Solution
Generation

To investigate whether providing relevant procedu-
ral documents helps generate more concise solu-
tions to user’s erroneous operations, we conduct a
preliminary experiment using a subset of our pro-
posed dataset. Specifically, we vary the number of
reference documents k (k = 0, 1, 5, 10) supplied
to the LLM for answer generation. When k > 0,
the reference set always includes the positive (i.e.,
most relevant) document.

The ground truth answers are concise solutions
manually annotated by humans. We evaluate the
responses generated by DeepSeek-V2.5 using auto-
matic metrics, including METEOR (Banerjee and
Lavie, 2005) and BERTScore (Zhang et al., 2019).
The results are presented in Figure 7. We observe
that the quality of answers is lowest when no ref-
erence document is provided. When the LLM is
given only the positive document, the quality sig-
nificantly improves, achieving a +4.5% increase
in Meteor and a +3.8% increase in BERTScore
compared to the zero-shot setting. However, as the
number of reference documents increases, the qual-
ity of the generated answers tends to decline. We
find that this decline is due to the LLM extracting
generalized suggestions from multiple procedural
documents rather than providing more targeted so-
lutions to specific failures.

Although we adopt a native RAG paradigm in
our experimental setup, the results demonstrate
that retrieving relevant procedural documents sig-

nificantly improves answer quality—particularly
when the retrieved document closely aligns with the
user’s original operations. Current RAG systems
have many variants with different retrieval strate-
gies. However, no matter what retrieval strategy
the RAG system uses, it still relies on a robust re-
triever to provide reliable references. For example,
Iterative RAG (Gao et al., 2024) performs multiple
rounds of retrieval, refining the query based on pre-
vious outputs. Despite its iterative nature, it still de-
pends on an effective retriever to identify relevant
documents. Similarly, Demand-based RAG (Su
et al., 2024) dynamically determines whether to
retrieve external documents based on the query.
This approach is similar to our setting and likewise
requires a retriever when internal knowledge is in-
sufficient. Graph-based RAG (Edge et al., 2024)
extends retrieval to structured knowledge sources,
such as knowledge graphs. However, building a
procedural graph system for RAG is particularly
challenging, as it requires modeling both intra-
document step relationships and inter-document
dependencies, making it difficult to implement in
practice.

B Procedural Graph Construction

An example of a generated procedural graph is
shown in Figure 12. We adopt the method proposed
by Du et al., 2024 to construct procedural graphs
by extracting nodes and edges from procedural doc-
uments using LLMs with few-shot in-context learn-
ing and chain-of-thought reasoning. This approach
involves summarizing key procedural steps and
extracting node-edge-node triples in text format.
Considering our task involves simpler node and
edge types compared to Du et al., 2024, we adjust
their prompts accordingly. To further enhance the
model’s understanding, we provide high-quality
document-graph examples that cover all possible
node and edge types. Due to the high computa-
tional cost of constructing procedural graphs for
the entire corpus, we focus on generating graphs
only for documents serving as negatives in queries.
Notably, around 95% of the extracted procedural
graphs conform to the required graph structure.

C Dataset

Figure 8 illustrates the overall framework, while
Table 11 presents the designed prompts for each
turn. Queries for the training and development sets
are generated using DeepSeek. To enhance nar-
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Figure 7: Performance of answer generation by LLM
with different numbers of reference documents.

[Prompt]: You need to construct a failure scenario that a user may encounter when doing the
procedural task mentioned in the document. Note: …
[Response]:

[Prompt]: Generate a question for this failure to ask
for help on the Internet. Note…
[Response]:Question: I’m trying to make a sweet 
treat for my friend, but ….

[Prompt]: You need to generate the incorrect
operations record as the failure occurs. Note: ...
[Response]:Operations: First, I pour warm 
water into …

[Prompt]: Determine whether the operations will
cause the failure. If yes, generate a response to
explain the reason and provide a solution. If no,
output “Negative” …
[Response]:Answer: The issue arises because you
 add too much … 

[Prompt]: Rewrite the query. Note: ….
[Response]:Operations: To begin, I fill two bowls
 with lukewarm water … 

Failure Simulation

Question Generation Operations Generation

Self-Refine Query Rewrite

Annotator
Filter

Modify

Procedural
Doc

Failure type: Incorrect order of steps 
Detail for failure: Step1->Step3->Step2->Step3->Step4 
Description: The user forgets to …. 

Figure 8: The illustration of the overall dataset construc-
tion framework.

rative diversity, test set queries are generated by
both DeepSeek and LLaMA3, then mixed and re-
viewed by annotators. Figures 9 show the statistics
of failure types and query domains for the test set.

Additionally, since the documents in Yuan et al.,
2023 only contain key steps for completing proce-
dural tasks, we leverage DeepSeek to reconstruct
them into WikiHow-style procedural documents,
incorporating more detailed steps and extra tips.
Considering the potential real-world issue of pro-
cedural document redundancy due to multi-source
origins, we synthetically generate additional doc-
uments by rewriting the top 20 negative test set
documents using LLMs, which also increases pro-
cedural document diversity.

For human review, annotators adhere to the fol-
lowing guidelines:

1) Validate the positive document associated
with the query, excluding recommendation-style
documents (e.g., "How to be a good person").

2) Ensure that the LLM-generated procedure
leads to task failure and that the failure is causally
linked to the procedural deviation.

Domain Distribution Type Distribution

Figure 9: Domains and types statistics of the test set.
The "Other" category includes queries for which the
category labels of positive documents are missing, as
well as those corresponding to domains with fewer than
20 queries.

3) Annotators may add, remove, or modify step
details or order, provided that such adjustments do
not affect the final execution outcome or the failure
reason.

D Experiments

D.1 Experiments Settings

Existing studies (Yuan et al., 2025) have employed
various methods to enhance the robustness of GNN
across different domains. To improve robustness
of GFPDR against potential noise in procedural
graphs generated by LLMs, we introduce structural
perturbations during training. Specifically, we ran-
domly add edges and merge nodes in the graph to
simulate noise, and treat these perturbed graphs as
negative samples in the GDM loss. This encour-
ages the Edge-Aware Graph Attention Module to
recognize and filter out incorrect structural infor-
mation. The perturbation rate is set to 0.3. During
GFPDR training, hard negative samples are dynam-
ically mined from the top-5 documents retrieved
by BM25. We found that the in-batch negative
strategy did not yield performance improvements
in our setting, and thus it was not adopted. The
model is trained on a single NVIDIA L20 GPU
for approximately 10 hours, using automatic mixed
precision and gradient accumulation for efficiency.

We provide the hyper-parameters for both base-
line methods and our model in Table 5. Elas-
ticSearch (Elasticsearch, 2018) is used to imple-
ment the BM25 algorithm with its default param-
eter settings. For SPLADE++, we use the splade-
cocondenser-ensembledistil language model check-
point 4. Except for MonoBERT and Longformer,
all neural network models are fine-tuned on their
respective checkpoints, which were initially trained

4https://huggingface.co/naver/
splade-cocondenser-ensembledistil
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Model lr batch size # negatives Len(query) Len(doc) in-batch negatives
Longtriever 1e-5 8 2 300 780 ✓

BGE-base 1e-5 16 5 300 512 ✗

SimLM 2e-5 16 50 300 512 ✓

T5-2K 5e-6 4 4 300 512 ✓

ListT5 1e-4 16 4 - - ✗

Longformer 1e-5 16 2 400 800 ✗

MonoBERT 3e-6 16 2 - - ✗

RepLLaMA-7B 1e-4 8 2 300 512 ✗

ColBERTv2 1e-4 16 2 300 512 ✓

Ours 1e-5 8 2 300 512 ✗

Table 5: The hyper-parameters for the baseline methods and our approach are summarized. # Negatives refers to
the number of negative documents per sample. Len(query) and Len(doc) indicate the maximum input lengths for
queries and documents, respectively. MonoBERT concatenates the query and document, truncating the input to a
maximum length of 512 tokens.

Method NDCG@3 MRR@5 Hit@5
GFPDR 91.03 90.17 96.74

I w/o LGDM 89.93 89.04 96.09
II w/o EAGAM 89.57 88.33 95.66
III w/o init sepa. 88.30 87.23 95.01

Table 6: Ablation studies for GFPDR on NDCG@3,
MRR@5 and Hit@5.

on retrieval datasets like MSMARCO, as training on
large-scale retrieval datasets can serve as an effec-
tive pretraining. We present the prompt templates
of the LLM-based rerankers RankZephyr and PRP-
Sliding in Table 10. To ensure faithful reproduction,
we directly adopt the original templates from their
respective papers without modification.

For some procedural documents that exceed the
512-token limit (the maximum input length for sev-
eral baseline methods using BERT as a language
model), we employ a token reduction algorithm,
as described in Algorithm 1, to reduce the total
token count while retaining as much semantic in-
formation as possible. Specifically, we observe that
the latter part of procedural documents typically
contains declarative sentences that provide supple-
mentary information. Removing these sentences
has minimal impact on the overall sequence struc-
ture of the procedure. Based on this observation,
when a document exceeds the token limit, we first
split each step into individual sentences, then itera-
tively remove the last sentence from each step until
the document’s length satisfies the token constraint.
This approach minimizes the loss of important con-
tent while reducing the document length.
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Figure 10: Impact study for the number of global tokens.

D.2 Zero-shot Retrieval Performance

We evaluate the zero-shot retrieval performance of
models with different architectures, as shown in
Table 7. RepLLaMA-7B achieves the best overall
performance, likely due to the strong representa-
tion capabilities of large language models. Among
lightweight baselines, ColBERTv2 performs best,
which we attribute to its fine-grained similarity
computation, particularly effective for handling
long procedural queries. ListT5 performs poorly
in the zero-shot setting, but its strong performance
after fine-tuning suggests that generative models
hold promise for procedural document retrieval.
Bi-encoders, particularly BGE-base, demonstrate
strong performance, which can be attributed to their
advanced distillation techniques. However, their re-
liance on a single-vector representation limits their
capacity, leading to limited performance improve-
ments after fine-tuning.
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Model Hit@1 Hit@5 NDCG@3 MRR@10
BM25 22.91 54.72 36.65 36.34
SPLADE++ 39.2 66.45 50.93 50.76
Longtriever 19.22 47.67 29.76 31.38
BGE-base 30.18 65.47 42.97 45.19
SimLM 25.51 48.10 33.33 36.87
T5-2K 26.17 55.59 37.30 39.09
ListT5 15.89 41.24 25.71 27.40
RankZephyr 27.47 60.80 40.47 41.95
PRP-Sliding 21.72 61.70 37.85 36.91
ColBERTv2 36.48 69.82 50.32 50.53
RepLLaMA 42.78 77.63 58.09 56.46

Table 7: The zero-shot performance of baselines with different architectures.

Model Complexity TFLOPs (×1012FLOPs) Times
BGE-base O(q2 + n) 0.017 1×
ColBERTv2 O(q2 + n× q × d) 0.028 1.68×
GFPDR(Ours) O(q2 + n× q × d) 0.033 1.99×
RepLLaMA O(q2 + n) 1.395 82.97×
MonoBERT O(n× (q + d)2) 2.467 146.70×
Longformer O(n× (q + d)2) 3.332 198.15×

Table 8: Per-query online inference cost (in TFLOPs) and relative computational complexity across different model
architectures. q and d denotes to the length of query and document, while n denotes to the number of documents.
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Figure 11: Error rate comparison across top-5 domains
with highest retrieval failure rates.

D.3 Impact Study of The Number of Global
Tokens

We investigate the impact of varying the number
of global tokens (M = 2, 4, 8, 16, 32, 64) on the
performance of GFPDR. The corresponding results
are presented in Figure 10. The model achieves the
best performance when M = 32, and performance
drops when M increases to 64. We hypothesize that
an excessive number of global tokens may hinder
their ability to generate compact and information-
rich representations. In contrast, too few global
tokens may fail to capture the complete sequence
structure features of the procedural graph.

D.4 Complexity Analysis

We measure the FLOPs of different models us-
ing the FlopCountAnalysis tool from the fvcore
library5. Specifically, we compute the total FLOPs
involved in query-time (online) computation and
report the average per query. For late-interaction
models such as GFPDR and ColBERTv2, online
computation includes query encoding and multi-
vector similarity calculation, while document en-
coding can be done offline, similar to bi-encoder
models. In contrast, cross-encoders must concate-
nate the query with each candidate document and
encode the entire pair online, resulting in signifi-
cantly higher online computational cost. For LLM-
based rerankers, the complexity depends on the
specific reranking strategy used. Regardless of the
approach, their query-time FLOPs are substantially
higher than those of lightweight retrieval models.
The measured FLOPs and computational complex-
ity of all baselines are summarized in Table 8.

D.5 Case Study

To intuitively explain the effectiveness of our pro-
posed model, we conduct a case study on procedu-

5https://github.com/facebookresearch/fvcore
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ral document retrieval by comparing ColBERTv2
(Santhanam et al., 2022) and GFPDR, as shown in
Figure 14. The query describes a failure in making
a cocoa drink, where the candy does not dissolve
properly. We analyze the top-ranked documents
retrieved by two models. We can observe that both
documents share the same topic of making cocoa
drinks and contain key actions, such as pour water,
microwave the drink, and add cream which align
with the query. However, ColBERTv2 fails to cap-
ture the actions of adding mint candy. Two steps
(i.e., chill cocoa drink and add ice) of the doc-
ument retrieved by ColBERTv2 are mismatched
with query’s execution sequence structure. Addi-
tionally, the execution sequence of microwaving
the drink differs between the query and this docu-
ment. In the query, the user microwaves the water
first and then pours it into a mug containing cocoa
powder and a candy cane, whereas in the docu-
ment, the cocoa powder is added to the mug first
before microwaving. This difference in sequence
may affect the heating time. In contrast, GFPDR
correctly retrieves a document that closely aligns
with the query’s operations in both step content
and sequence structure. The experimental results
in this case study highlight GFPDR can better cap-
ture the execution sequence structure of procedural
documents, along with the detailed steps within
the structure, leading to more accurate retrieval
compared to ColBERTv2.

D.6 Further Analysis

D.6.1 Domain Analysis
We investigate which domains of queries pose chal-
lenges for retrieval and where our model outper-
forms the baselines. Figure 11 presents the top five
domains with the highest retrieval error rates. Our
model exhibits superior performance in all domains
compared to the other two baselines. We hypoth-
esize that sequence structure plays a more critical
role in these domains and our model leverages its
strengths effectively. In contrast, two baselines un-
derperform in Home and Garden and Food and En-
tertaining, indicating that sequence structure may
be more important in these domains.

D.6.2 Experiments about False Negative
We conduct a simple experiment about the false
negative. Considering the scale of the document
corpus (360K documents), large-scale detection of
false negatives (i.e., documents with similar con-
tent but different titles) presents a computational

challenge. To estimate their influence, we use Sen-
tenceBERT to compute similarity scores for the
top-50 negative documents in the test set. Docu-
ments with scores above a threshold m (m = 0.9
and m = 0.95) are treated as duplicates. Results
are shown in Table 9. We observe that false nega-
tives have a limited impact on evaluation. However,
due to time and resource constraints, we are unable
to analyze the entire corpus, which may influence
the training process.

D.6.3 Analysis of Graph Construction Error
To better understand the impact of graph con-
struction quality on retrieval performance, we
manually inspected 75 randomly sampled queries.
Among these, 21 cases resulted in retrieval failures,
while the remaining 54 were successfully retrieved.
Across all samples, we found that 26 positive docu-
ments contained imperfections in their procedural
graphs rather than outright errors. Among them,
11 graphs exhibited minor issues such as missing
partial content, 13 had moderate flaws related to
few incorrect dependency extraction, and 4 showed
more serious structural inconsistencies. Notably,
the error rate in graphs corresponding to incorrectly
retrieved queries was 57%, compared to only 25%
in the correctly retrieved ones.

These findings suggest a clear correlation be-
tween graph construction errors and retrieval fail-
ures. Inaccurate or noisy graphs can misrepresent
the sequence structure and dependencies of pro-
cedural steps, potentially leading the retriever to
misjudge document relevance.

D.7 Other Metrics on Ablation Study
Table 6 reports the corresponding NDCG@3,
MRR@5, and Hit@5 scores on ablation study for
GFPDR.
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Threshold Model Hit@1 Hit@5 NDCG@3 MRR@5

Original
GFPDR 85.45 96.74 91.03 90.17
ColBERTv2 74.59 94.03 83.82 82.40

m = 0.9
GFPDR 86.64 96.74 91.55 90.82
ColBERTv2 75.68 94.57 84.68 83.27

m = 0.95
GFPDR 85.67 96.74 91.11 90.28
ColBERTv2 74.70 94.03 83.86 82.46

Table 9: Comparison of GFPDR and ColBERTv2 under different thresholds m

How to Make Green Eggs and Ham-Making Candy Green Eggs and Ham

Introduciton: You've heard of the famous dish in Dr. Seuss'sGreen Eggs and Ham.Now, you can make it yourself! With a little bit of food coloring, you can make a dish

that looks very close to the dish in the book. You can also make scrambled green eggs and ham. If you have a sweet tooth, then there's a sweet, sugary option just for

you!

Step 1: Get some white chocolate candy melts. Place a few wafers into a microwave-safe bowl which need to be cleaned first. Melt them in the

microwave for 30 seconds, then stir them with a spoon. Keep heating them for 30 seconds and stirring until they are completely melted.

Step 2: Place a piping bag or plastic bag depending on what your have into a cup and pour the melted chocolate into the bag.  •Do not cut the tip

off yet. •If you don't have a piping bag, use a plastic sandwich bag instead.

Step 3: At the same time, get two candy strips. You can use any kind you want. If you really want it to look like green eggs and ham, get the sour

kind in green. You will need two strips to make one serving of green eggs and ham. •If they are more than 2 to 3 inches (5.08 to 7.62 centimeters)

long, cut them in half.

Step 4: Cut the off the tip from the piping bag. Place a drop of melted white chocolate in the middle of one strip. To make it look artistic, don't

place too much. Place the second strip on top to make an X.

Step 5: Pull apart a mini, bit-sized Oreo and place it on strips. You can also use a different type of cookie as well. It needs to be about 1 inch (2.54

centimeters) wide. If you need to, glue the cookie down with another drop of melted chocolate.

Step 6: This will make the whites of the eggs. Pipe the chocolate around the edges of the cookie first. Next, fill the top of the cookie in with more

melted chocolate and then place M&M on it. •Jiggle the eggs and ham to help make the chocolate spread.
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Figure 12: An example of a procedural graph constructed.
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Model Prompt
RankZephyr <|system|> You are RankLLM, an intelligent assistant that can rank passages based on their relevancy to the

query. <|user|> I will provide you with {num} passages, each indicated by a numerical identifier []. Rank the
passages based on their relevance to the search query: {query}. [1] {passage 1} [2] {passage 2} ... [{num}]
{passage num} Search Query: {query}.
Rank the {num} passages above based on their relevance to the search query. All the passages should be
included and listed using identifiers, in descending order of relevance. The output format should be [] > [],
e.g., [4] > [2]. Only respond with the ranking results, do not say any word or explain.

PRP-
Sliding

Given a query query, which of the following two passages is more relevant to the query?
Passage A: document1
Passage B: document2
Output Passage A or Passage B:

Table 10: Prompt templates of LLM-based rerankers.

Question:
I'm trying to make a delicious and creamy cocoa drink. However, the candy I added is difficult to dissolve into cocoa drinks. This causes my drink to have a lot of
particles. Can someone help me figure out what went wrong?

Operations:
I pour chilled milk into a bowl designed for hot chocolate. 
Next, I add the complete mint candy cane to the cocoa powder. 
To accelerate the heating process, I microwave the water for a brief period of 30 seconds.
Following this step, I carefully pour the warm water into the mug containing cocoa powder and candy cane fragments. 
I stir the mixture , but there are still particles in the liquid in the end. 
I top the drink with a dollop of whipped cream. 
However, even this addition fails to fully rescue the beverage from its gritty nature. 

Step 1: Start with a mug of milk or water. Iced chocolate made with milk has a
much richer flavor. You may use water instead, but it's not recommended unless
you do not drink milk.

Step 2: Mix in cocoa powder and sugar to taste. Start with one teaspoon
(5mL) of each ingredient and adjust from there. You may use unsweetened
cocoa powder. •Dutch processed cocoa powder is less bitter. •You may replace
both ingredients with a pre-made hot chocolate mix.

Step 3: Microwave for 30–45 seconds. Yes, this recipe is for iced chocolate.
But in a cold liquid, cocoa powder and sugar tend to clump. Warm the liquid just
enough to dissolve the powder with a quick stir.

Step 4: Chill for 30–60 minutes. Let it cool for a few minutes at room
temperature, then move it to the fridge. Your chocolate should chill in about half
an hour to an hour, depending on how cold your fridge is. •You can put the drink
in the freezer for 5–10 minutes instead.

Step 5: Add ice. Add a few ice cubes to keep it cold, then drink. If you want a
slushy drink instead, blend it with the ice in a food processor or strong blender.

Step 6: Cover in toppings (optional). Try adding marshmallows, whipped
cream, or cinnamon.

Step 1: Tear open a packet of hot cocoa mix and pour the powder into a mug.
If your hot cocoa mix comes in a box, measure out 2 tablespoons. Adding the
powder first will help it mix better when you add the milk, water, or coffee.

Step 2: Add the crushed candy cane into the mug. Unzip the plastic bag, and
carefully tip the crushed candy into the mug. Consider saving a little bit to use as
a garnish later.

Step 3: Heat 1 cup (240 milliliters) of water, milk, or coffee . Any of the two
will work. Whatever you choose to use must be very hot or the powder won't
dissolve well. •Heat water in a kettle or in the microwave (about 1 to 2 minutes).
This will give you a lighter hot cocoa. •Heat milk in a saucepan or in the
microwave(about 1 to 2 minutes). This will give you a richer, creamer hot
cocoa. 

Step 4: Pour the hot liquid into the mug. Don't worry if you see the cocoa
powder float to the top.

Step 5: Stir with a spoon until everything is mixed together. Keep stirring until
the cocoa powder and candy dissolve completely. You should not see any
powdery clumps of cocoa or candy pieces.

Step 6: Garnish and serve the hot chocolate. Add a swirl of whipped cream
on top of the hot chocolate. •If you have any extra candy canes, you can stick it
into the hot chocolate, and use it to stir.

How to Make Iced Chocolate - Cold Drink Recipe How to Make Peppermint Hot Chocolate - Making Simple
Peppermint Hot Chocolate
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Figure 14: Retrieval comparison between ColBERTv2 and our proposed model GFPDR using a query about a cocoa
drink failure, where the candy does not dissolve properly. Both ColBERTv2 and GFPDR retrieve documents have
the same topic of making cocoa drinks. Key actions, such as pour water, microwave the drink, and add cream,
are shared between the query and both documents (highlighted in bold). Actions in red represent mismatched
operations with the query, while actions in green are exclusive to the query and the top retrieval document from
GFPDR.
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Phase Prompt
Failure Sim-
ulation

{Procedural Document}
Read the above procedural document, which is standard and correct. However, in reality, people often fail
to execute tasks related to procedural documents due to various reasons, which may include the following
category: 1. Incorrect execution order of steps: The order of steps has been swapped; 2. Missing steps:
missing step(can be multiple steps); 3. Specific details of the step are incorrect: the time, amount, tools, or
materials involved in a certain step are incorrect;
You now need to construct a failure scenario that a user may encounter when executing the process task, and
the reason for the failure is the type mentioned above. When constructing a failed situation, you need to pay
attention to the following rules: A. If the reason for the failure is a missing step, ensure that the deleted step
is not a necessary condition for the subsequent steps to be executed, that is, the subsequent steps can still be
executed without the missing step, but it will cause the failure to occur. B. Ensure that the entire process still
works causally and logically after modifying steps, that is, each step can still be executed, but it will cause
the failure to occur. C. Try to ensure the uniqueness of the reason for the failure as much as possible, that is,
the failure can only be caused by an error in this detail in the step, and it should be targeted.
Now, according to the above requirements, if a failure situation can be generated, your output should include
the type of failure reason, the specific reason for the failure, and a description of the failure situation. Here is
an output format example: {Examples}
If you are unable to generate a failure situation for this procedural document due to the above rules, simply
output NO.

Question
Generation

Suppose you don’t know the cause of this failure, and you need to ask for help on the Internet. Now please
generate a help question for this failure from the first person perspective.
The questions you generate should include the following: 1. Briefly explain the procedural task you are
currently working on. Note: You only need to explain what you are doing, not what you are using or how you
are doing it. Try to use more diverse expressions, such as using different words or applying the programmatic
task in different scenarios. Do not directly use the titles of procedural documents. You can use synonyms
instead. 2. Explain your failure situation and provide a brief description of the failure.
The questions you generate must not include the following: A. You must not mention information related to
procedural documents, such as steps. You need to pretend that you have not read the procedural documents.
B. You must not mention the reason for the failure you generated in the previous conversation, whether it
is the type of reason or the specific reason. You need to pretend that you are unaware of the reason for the
failure.
Here are examples of output formats: {Examples}
Now generate a question with less than 50 words.

Operations
Generation

If the failure occurs during the execution of the procedural task due to the reason you mentioned. You need
to generate this incorrect operations record to seek help on the Internet.
NOTE: 1. The operations record you generate should be able to lead to the occurrence of failure situations.
That is, if the reason for the failure is missing steps, you should exclude that step from your operations record
and ensure that there are no logical or causal conflicts before and after the operation after excluding that step.
If the reason for the failure is an incorrect execution order of steps, the corresponding execution order in your
operations record should also be incorrect. Ensure that there are no logical or causal conflicts before and
after the operation after swapping the execution order. If the reason for the failure is incorrect specific details
of the step, your operations record should also include a description of that detail and ensure that there are
no logical or causal conflicts before and after modifying the details. 2. You must provide more additional
detailed information on the operation details, such as time, dosage, etc.. But ensure that these details do not
affect the final result. 3. Do not directly mention procedural documents and the failure reason. Pretend not to
have read the procedural documentation, but know the necessary steps. Here are two examples of output
format: {Examples}
Now generate operation records within 10 sentences. Remember the operations record you generate should
be able to lead to the occurrence of failure situations due to the reason you mentioned.

Self-Refine You now have the reason for the failure and the record of the failed operation. Generate a response for this
failed operations record to explain the reason for the failure and provide a solution, with a length of no more
than 100 words. If you find that the reason for the failure of the operation does not match the reason you
mentioned in the previous conversation, simply output ’Negative’.
NOTE: Do not mention the information about procedural document. That is, statements like ’according to
step 3’ should not appear. Here are two examples of output formats: {Examples}
Now generate an answer.

Query
Rewrite

{Query}
The above content is an operations record. Now you need to rewrite this operations record. Use more diverse
words(such as synonyms) while maintaining the same meaning. Especially in the expression of actions and
nouns. In addition, you can also add extra details to some operations, such as enriching the actions before
and after the operation, providing details on usage or time, etc. But it is important to ensure that the added
details do not affect the final result. NOTE: The operations record is not completely correct, so please use an
objective and neutral writing style when rewriting. Do not use positive words, such as "satisfying me" and
"achieving perfection". Now rewrite the operation record within 10 sentences.

Table 11: Prompts for datasets generation.
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