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Abstract

While Multimodal Large Language Models
(MLLMs) have achieved remarkable progress
in open-ended visual question answering, they
remain vulnerable to hallucinations. These are
outputs that contradict or misrepresent input
semantics, posing a critical challenge to the re-
liability and factual consistency. Existing meth-
ods often rely on external verification or post-
hoc correction, lacking an internal mechanism
to validate outputs directly during training. To
bridge this gap, we propose ReLoop, a unified
closed-loop training framework that encour-
ages multimodal consistency for cross-modal
understanding in MLLMs. ReLoop adopts a
ring-shaped structure that integrates three com-
plementary consistency feedback mechanisms,
obliging MLLMs to "'seeing twice and think-
ing backwards''. Specifically, ReLoop em-
ploys the frozen Consistency Feedback Plu-
gin (CFP), comprising semantic reconstruction
and visual description modules, along with
an attention supervision module for attention
alignment. These components collectively en-
force semantic reversibility, visual consistency,
and interpretable attention, enabling the model
to correct its outputs during training. Exten-
sive evaluations and analyses demonstrate the
effectiveness of ReLoop in reducing halluci-
nation rates across multiple benchmarks, es-
tablishing a robust method for hallucination
mitigation in MLLMs. The code is available
at: https://github.com/ZiyanHuang1 1/Reloop-
hallucinations.

1 Introduction

In recent years, MLLMs (Liu et al., 2023b; Ope-
nAl, 2023; Li et al., 2023a) have demonstrated sig-
nificant progress in bridging vision and language,
addressing tasks such as visual question answer-
ing (VQA), image captioning, and instruction ad-
herence. However, a fundamental difficulty that
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Figure 1: Illustration of four major hallucination types
in open-ended VQA. Despite being visually grounded,
MLLMs produce fluent but hallucinated responses
across object, attribute, relation, and event dimensions.

persists is hallucination, where the generation of
outputs that are inconsistent with or unsupported
by visual inputs (Kalavasis et al., 2024). Hallucina-
tions are especially common in open-ended VQA
circumstances, in which unclear or underspecified
questions can result in factual mistakes. These
hallucinations span diverse categories, including
Object, Attribute, Relation, and Event. Figure 1
illustrates that a singular image of "a dog grasp-
ing an orange frisbee" can elicit various forms of
hallucination: a fictitious "cat" (object), an incor-
rectly identified "green" frisbee (attribute), an er-
roneous spatial relation "under the paw" (relation),
or a temporal misrepresentation "sleeping” (event).
These errors are semantically plausible yet visually
unfounded, posing major challenges for trustwor-
thiness and safety of MLLMs across critical appli-
cations, including medical decision-making (Kim
et al., 2025), robotic perception (Park et al., 2023),
and autonomous navigation (Alsulaimawi, 2025).

Existing works (Sun et al., 2023; Ayala and
Béchard, 2024; Sun et al., 2024) often regard hal-
lucination as an output-level anomaly that is cor-
rected post hoc, overlooking its underlying cause.
In practice, hallucinations frequently arise from
misalignment between the input, visual content,
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and the model’s latent reasoning. Without an in-
ternal supervision mechanism, models may pro-
duce fluent yet ungrounded answers. We argue that
hallucination stems from the model’s inability to
validate its own output across modalities and rec-
ommend injecting this ability directly into training.

We subsequently derive inspiration from human
cognitive processes. When answering visual ques-
tions, individuals rarely rely on a single forward
guess. Instead, after answering, they may reassess
the question’s intent, examine the visual scene,
and refine conclusions—especially in the face of
ambiguity or uncertainty. However, most mod-
els operate in a unidirectional manner, mapping
(Q,I — A). As aresult, once the model makes
a prediction, there is no structured way to assess
whether it actually understood the question, if the
answer aligns with the visual evidence, or whether
the model attended to the right regions in the image.

To address this issue, we propose ReLoop, a
cognitively inspired unified training framework
that encourages multimodal consistency for cross-
modal understanding in MLLMs. ReL.oop imple-
ments a feedback-driven closed-loop supervision
process, allowing the model to reassess its predic-
tions and validate their consistency with the orig-
inal input through multi-level supervision during
training. Specifically, after MLLMs produce an an-
swer from the image-question pair, Reloop enables
the model to recapture input semantics and assess
internal consistency via: a Consistency Feedback
Plugin (CFP), comprising two frozen modules: (1)
CFP-Lang reconstructs the question Q* from (A, I)
to supervise semantic alignment, and (2) CFP-Vis
generates a description [* to assess factual ground-
ing. In parallel, an attention supervision module
extracts the model’s token-to-image attention map
‘H and compares it with an entropy-based pseudo-
ground truth. All signals are integrated as differen-
tiable losses in the overall optimization objective.
This design encourages the model to "see twice and
think backward"—first look to answer (Q, I — A),
look twice to reassess (4,1 — Q*, I*,H), and
finally to correct (Q*, I, H ~ Q, 1, Hpseudo)-

ReLoop bridges the gap between perception and
output. It turns the black-box understanding pro-
cess into an interpretable, feedback-aware loop that
continuously refines the model’s internal represen-
tations. Our key contributions can be summarized
clearly as follows:

* We propose ReL.oop, a cognitively inspired

closed-loop training framework that ensures
consistency among image, question, and answer
modalities, effectively mitigating hallucinations
in MLLMs.

* We introduce three complementary consistency
signals: semantic reconstruction, visual descrip-
tion, and attention alignment, to emulate the
humanlike "reversible thinking" process and im-
prove cross-modal consistency during training.

* We provide a novel use of pretrained vision-
language models by repositioning them as
frozen Consistency Feedback Plugins (CFPs)
in the training loop. Rather than functioning
as typical forward-only encoders, they now per-
form in a reflective, backward supervisory role,
producing feedback signals to guide the main
model’s alignment with multimodal semantics.

2 Related Work

Hallucination Mitigation in MLLMs. Multi-
modal LLMs frequently produce hallucinations:
responses conflicting with visual inputs, such as
inventing entities or misaligning semantics (Li
et al., 2023b). Recent mitigation efforts com-
bine post-hoc correction and architectural refine-
ment. Retrieval-augmented methods like (Mala
et al., 2025) grounds outputs in external knowledge
via hybrid retrievers, while (Ayala and Béchard,
2024) reduces hallucinations in structured outputs.
Architectural solutions such as OPERA (Huang
et al., 2024) penalize over-trust during decoding,
and preference-aligned training like TPO (Gu and
Wang, 2025) enhances vision grounding. Post-
generation verification (Woodpecker (Yin et al.,
2023)) and decoding-time personalization (PAD
(Chen et al., 2024)) complement training-time
alignment; concurrent work improves multimodal
ICL efficiency and task control (Li et al., 2025a,b)
and instruction-tuned dialog grounding (Luo et al.,
2024b). Beyond images, video hallucination is di-
agnosed via fine-grained spatio—temporal ground-
ing (Luo et al., 2025).

Semantic Reversibility and Bidirectional Su-
pervision. Human cognition leverages bidirec-
tional reasoning to validate hypotheses: a princi-
ple termed "cognitive reversibility" (Johnson-Laird,
1983). Recent works explore this idea through
decoding-time strategies: Self-RAG (Asai et al.,
2023) integrates retrieval-augmented generation
with self-reflection, enabling models to critique
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Figure 2: Seeing Twice and Thinking Backwards: ReLooping Hallucination Suppression in Multimodal
Language Models. This diagram aligns human cognitive phases (left) with model modules (right) in a closed-
loop process. The main model M produces an answer which is then introspected via CFP-Lang (language
reconstruction), CFP-Vis (visual description), and internal cross-attention maps. Semantic aggregation, CLIP
similarity, and entropy-based soft masks produce feedback losses that are summed and back-propagated to update

M and the semantic aggregator .S.

and refine their outputs iteratively, while DeepSeek-
Math employs Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024), enhancing mathe-
matical reasoning by optimizing policy decisions
based on group sampling strategies. Similarly,
back-translation methods (Sennrich et al., 2016) en-
force answer-question consistency through round-
trip translation.

Cross-modal Consistency. Ensuring cross-
modal consistency is vital for mitigating
hallucinations in MLLMs. Recent methods
enhance visual-text alignment to reduce semantic
drift. VCD (Leng et al., 2024) contrasts outputs
from original and perturbed images to promote
grounding and reduce unimodal bias. HACL
(Jiang et al., 2024) treats hallucinated captions
as hard negatives to improve alignment. EAGLE
(Villa et al., 2025) further refines visual encoders
post-pretraining, yielding better grounding and
fewer hallucinations. Broader benchmark efforts
catalog the MLLM evaluation landscape (Li et al.,
2024), including conversational aspect-based
sentiment settings (Luo et al., 2024a).

3 Preliminaries

3.1 Task Formulation: Open-ended Visual
Question Answering

We consider the task of open-ended VQA, where
the model receives an image I and a natural lan-

guage question (), and produces a free-form an-
swer A. Unlike multiple-choice settings, this task
requires the model to produce linguistically co-
herent and visually grounded responses without
predefined options.

In this case, hallucination refers to answers that
contradict the image I, misinterpret the question
@, or introduce unsupported content.

3.2 Consistency Signals

To encourage faithful understanding, we supervise
the model using three types of cross-modal consis-
tency signals:

Linguistic Consistency. We verify whether the
model’s answer A implies the same question intent
as the original @), by attempting to reconstruct ()
from (A, I). This tests whether the model under-
stood the question meaningfully.

Visual Consistency. We evaluate whether the an-
swer A is factually grounded in image I, by gen-
erating a descriptive caption I* based on (A, )
and checking its alignment with the image. This
ensures that the response reflects the actual visual
content.

Attention Consistency. We examine whether the
model attends to the correct regions of the image
while producing A. This is assessed by comparing
its internal attention map H with a soft pseudo-
ground truth Hseudo derived from entropy-based
cues.
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Together, these consistency signals serve as in-
direct evidence of whether the model truly grasps
both the visual input and the question semantics.

4 ReLoop Framework: Reflect,
Recapture, and Optimize through a
Closed-Loop Process

We introduce ReLoop, a unified training frame-
work aimed at reducing hallucinations in MLLMs
for open-ended VQA answering. As illustrated in
Figure 2, the framework incorporates three com-
plementary consistency feedback mechanisms: se-
mantic reconestruction, visual description, and
attention alignment to supervise the model toward
producing answers faithful to both the question and
the image.
These feedback signals are instantiated through
a frozen Consistency Feedback Plugin (CFP):
semantic reconstruction (CFP-Lang) and visual de-
scription (CFP-Vis), and attention supervision
from the model itself. The CFP module is broadly
compatible with a range of encoder-decoder or
decoder-only MLLMs. During inference (First
Look — Answer), the model receives a question-
image pair and produces an initial answer. The
training process then begins with Reflect — Second
Look — Correct: the model examines its output
through structured consistency feedback. Specifi-
cally, it "introspectively" asks:
* "Did I understand the ()?" (— semantic recon-
struction)

* "Did I say it right?" (— visual description)

* "Did I focus on the right region?" (— attention
alignment)

ReLoop decomposes hallucination mitigation
into two interacting components:

* ""Re'' emphasizes recapturing details, encourag-
ing the model to reassess the semantic and visual
cues from both question and image through CFP
modules and token-level attention heatmaps.

* "Loop'" denotes a feedback-driven training loop.
After each forward prediction, feedback from
the three consistency pathways is aggregated
into the loss function (Laiign, Lvis, Lawn), driving
iterative updates that refine the model’s multi-
modal grounding and answer reliability.

4.1 A Closed-loop Training

The entire training process follows a closed-loop
pattern, emulating "seeing twice and thinking back-
ward". Each training step proceeds as follows:

1. First Look: The main model M takes the image
I and question @ as input to produce an initial
answer A.

2. Reflect: The model introspects on A by recon-
structing a proxy question Q, generating a vi-
sual description I*, and extracting token-level
attention .

3. Second Look: The reconstructions are com-
pared against the original inputs to compute
consistency losses, capturing discrepancies in
semantics, visual grounding, and attention fo-
cus.

4. Correct: All feedback signals are aggregated
into Ly, to update M and the semantic aggre-
gator S via backpropagation.

This multi-stage loop is repeated across train-
ing epochs, leading to the model M that gradually
reduces hallucinations.

4.2 Re: Recapturing Details for Consistency
Supervision

This stage corresponds to the training-time pro-
cesses of "Reflect" and "Second Look", where the
model reassesses its answers to recapture over-
looked semantic and visual details. Three feedback
pathways modules examine whether the model un-
derstood the question, correctly grounded its an-
swer in the image, and attended to salient regions.

4.2.1 CFP-lang: Language Reconstruction
and Adaptive Consistency Weighting

To evaluate whether the model correctly interprets
the input question, we introduce a frozen lan-
guage reconstruction module, CFP-lang. Given the
answer-image pair (A, '), CFP-lang produces a set
of candidate reverse questions {Ql, Qs ..., Qk}
that approximate possible intents underlying the
predicted answer. A lightweight semantic aggrega-
tor S, composed of a BERT encoder and a single-
layer MLP, scores each candidate against the orig-
inal question @) using BERTScore. The highest-
ranked proxy Q* is selected to reflect the model’s
inferred intent.

However, directly enforcing alignment on all re-
constructed questions may introduce noise, particu-
larly when the produced answer is short or under-
specified. To mitigate this, we introduce an Adap-
tive Consistency Weighting (ACW) mechanism,
which adjusts the attention supervision (mentioned
in section 4.2.3) strength based on the similarity
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’7:

(1
Rather than discarding low-confidence pairs, this
soft weighting ensures that stronger semantic
matches contribute more prominently to the learn-
ing objective. The language consistency loss is
computed as:

Lajign = 1 — BERTScore(Q, Q) )

4.2.2 CFP-visual: Visual Description and
Similarity Supervision

To validate whether the produced answer A is visu-
ally grounded in the image I, we employ a frozen
visual description module, CFP-visual. Given
(A, ), it generates a caption I* describing the
image content implied by the answer. We then
compute the cosine similarity between the CLIP-
encoded vectors of I and I*, and derive the visual
consistency loss as:

Lyis = 1 — cos(CLIPipg (1), CLIPx (1*))  (3)

4.2.3 Attention Supervision via Heatmap
Consistency

To enhance interpretability and mitigate hallucina-
tions arising from inattentive or unstable decod-
ing, we explicitly supervise the model’s token-
level cross-attention patterns. From the decoder
of the main model M, we extract attention maps H,
which indicate the spatial focus during answer gen-
eration. We construct a soft pseudo-ground-truth
heatmap H seudo Using entropy-based masking (De-
tailed explanation can be found in Appendix C).

This method preserves uncertainty information and
avoids brittle hard labels. As illustrated in Fig-
ure 3, well-grounded tokens (e.g., dog) yield con-
centrated heatmaps aligned with visual evidence,
while hallucinated tokens (e.g., playing) produce
offset patterns. We enforce alignment between H
and Hpseudo by minimizing the KL divergence:

Ly = KL(H || Hpseudo) (4)

4.3 Loop: Feedback Aggregation, Alignment,
and Optimization

After consistency signals are computed from lan-
guage, vision, and attention supervision, ReL.oop
aggregates them into a unified training objective.
This stage corresponds to the "Correction" step in
the loop, where the model updates its parameters
based on multi-perspective feedback. The total
loss combines standard supervision with the three
consistency terms:

Ltotal = Lsft +a- La]ign +/8 : Lvis +- Lattn +A 9(9)

&)
where Ly is the token-level cross-entropy loss, and
(0) is an L2 regularization term. The consistency
weights are empirically set as o = 1.0, 5 = 0.7,
A = 107° and 7 is defined in Equation 1.

Only the parameters of the main model M and
the semantic aggregator .S are updated during train-
ing. All feedback modules, including CFP-Lang,
CFP-Vis, attention supervision, and CLIP, remain
frozen.

5 Experimental Setup

Training Data. We curate 30K high-quality
{I,Q, A} from LLaVA-Instruct-150K. To simulate
hallucination supervision, we generate contrastive
examples by perturbing key semantics (e.g., objects,
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Type Module Signal Type Baseline ReLoop AMean Baseline ReLoop ARate
Hallu. Hallu.

Visual CLIP(I, I*) 28.02+3.10 29.46 + 3.27 11.44

Object Language BERT(Q, Q) 0.862 +0.022 0.873 &+ 0.024 10.011 24.5% 103%  |142%
Attention Entropy(H) 1.31£040 1.28+045 10.03
Visual CLIP(I, I*) 26,59 +3.31 26.81 +3.41 10.22

Attribute Language BERT(Q, Q) 0.868 +0.025 0.894 & 0.028  10.026 7.3% 4.0% $3.3%
Attention Entropy(H) 1.36 £046 1.324+0.52 10.04
Visual CLIP(I, I*) 27.22+3.26 28.01 £3.38 10.79

Relation Language  BERT(Q, Q) 0.85540.020 0.875+0.023  10.020 13.2% 7.6% 15.6%
Attention Entropy(#) 1.39 £ 043 1.34+0.50 10.05
Visual CLIP(I, I") 26.63 +3.08 26.94 4+ 3.37 10.31

Event Language  BERT(Q, Q) 0.861+0.024 0.877 £0.029 10.016 10.4% 5.2% 15.2%
Attention Entropy(H) 1.33+042 151 +£0.55 10.18

Table 1: Effect of ReLoop on consistency and hallucination reduction across different hallucination types. We
compare MiniGPT-4 (baseline) and ReLoop in terms of signal outputs from three frozen feedback modules: visual
grounding (CLIP similarity), semantic alignment (BERTScore), and attention focus (entropy). A denotes the
absolute change in signal quality after applying ReLoop.

Type-wise Hallucination Reduction: Baseline vs ReLoop

25 Baseline (MiniGPT-4)
W Reloop

= = N
o 5 =)

Hallucination Rate (%)

«

Object Attribute Relation Event

Figure 4: Type-wise hallucination rates (%) for baseline
(MiniGPT-4) and ReLoop models.

attributes, relations, event), enabling fine-grained
control over hallucination types. Details can be
found in Appendix A.1 A.2.

Evaluation Benchmarks and Metrics. We eval-
uate ReLLoop on a broad range of hallucination
and multimodal understanding benchmarks, includ-
ing POPE (Li et al., 2023b), CHAIR (Rohrbach
etal., 2018), AMBER (Wang et al., 2023), MMHal-
B (Sun et al.,, 2023), HallusionBench (Guan
et al., 2024), Faith/FaithS (Jing et al., 2024), and
MME (Fu et al., 2023). Full definitions can be
found in Appendix A.3 A.4.

Baselines. We use MiniGPT-4 as the base-
line model in Experiment 6.1 and compare
against LLaVA-1.5 variants trained with LLaVA-
RLHF (Sun et al., 2023), HA-DPO (Zhao et al.,
2023), POVID (Zhou et al., 2024), and Visual

Contrastive Decoding (VCD) (Sicong Leng, 2023).
For robustness analyses, we adopt LLaVA-1.5 +
ReLoop as the canonical setting and report stress
tests under noisy external supervision and nonsen-
sical answers (Table 5). Unless otherwise specified,
all baselines share the same backbone, data, and
training protocol for a fair comparison. Implemen-
tation details are provided in Appendix A.S.

6 Results and Analysis

6.1 Identify Internal Causes of Hallucinations:
Module Signals vs. Hallucination States

We first aim to pinpoint internal representation de-
ficiencies that drive hallucination behaviors across
different hallucination types. We analyze con-
sistency signal deviations produced by ReLLoop’s
frozen supervision modules, with hallucinated
versus non-hallucinated samples. Responding:
"Did I understand the question?” (language, via
BERTScore); "Did I say it right?” (visual, via
CLIP similarity); "Did I focus on the right region?”
(attention, via entropy).

Multimodal hallucinations stem from struc-
tured, modality-specific representation gaps. As
shown in Table 1, hallucinated responses are con-
sistently associated with lower CLIP similarity
(-2.25), reduced BERTScore (-0.034), and higher
attention entropy (+0.31). Figure 5 reveals distinct
signal patterns associated with different halluci-
nation types. Object hallucinations correspond to
a clear leftward shift in CLIP similarity, indicat-
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Figure 5: KDE distributions of CLIP similarity, BERTScore, and attention entropy for hallucinated and non-
hallucinated samples. ReL.oop’s frozen modules exhibit sharp signal shifts that serve as reliable supervision sources.

Cross-modal Faithfulness

Hallucination Suppression

Model
POPE?T CHAIR,; | CHAIR; | F1T Faith? FaithSt

MiniGPT-4 82.3 49.0 22.7 63.2 86.7 68.5
+ ReLoop 83.9 38.8 20.5 69.9 88.6 71.3
InstructBLIP 83.8 47.8 20.6 68.4 87.3 69.8
+ ReLoop 85.3 36.9 17.5 67.0 88.5 73.2
LLaVA-1.5 85.7 53.5 242 65.8 89.5 75.8
+ ReLoop 86.3 40.2 16.2 70.3 89.2 75.3
LLaVA-1.6 86.8 52.0 21.8 67.3 89.4 76.6
+ ReLoop 87.9 38.5 16.1 71.1 89.2 76.2
Qwen-VL-2.5 89.3 473 20.8 69.1 89.7 76.5
+ ReLoop 90.7 37.6 16.6 72.5 90.4 77.8
mPLUG-owl 89.1 62.5 31.0 58.9 88.3 72.7
+ ReLoop 90.9 42.5 21.8 66.5 87.9 71.0
ShareGPT4V 88.2 50.2 21.8 68.0 88.2 73.6
+ ReLoop 89.7 44.9 21.5 69.2 89.3 74.8

Table 2: Performance comparison of various LVLMs with and without ReLoop. Hallucination is measured by
POPE, CHAIR, and CHAIR;; cross-modal faithfulness is evaluated using F1, Faith, and FaithS. | indicates lower

is better; 7 indicates higher is better.

ing weaker visual grounding. Attribute hallucina-
tions are marked by lower BERTScore, reflecting
reduced semantic alignment. Event hallucinations
show higher attention entropy, suggesting that the
model distributes focus more broadly, which may
help in capturing complex scenes but also increases
the risk of focusing on irrelevant regions.

Signal dynamics vary by hallucination type. (1)
Object hallucinations are primarily rooted in the
visual module. They often manifest as hallucinated
entities not present in the image. ReLoop yields
a significant gain in CLIP similarity (11.44) and a
decrease in attention entropy (10.03), suggesting
enhanced image-text alignment and focused visual
grounding. (2) Attribute hallucinations show the
largest improvement in BERTScore (10.026) and
only a slight change in CLIP similarity (10.22), in-
dicating that semantic reconstruction plays a more
important role than visual grounding. This aligns

with their nature: attributes often relate to textual
misinterpretation (e.g., color or size), even when
visual cues are present. (3) Relation hallucina-
tions involve complex spatial or relational seman-
tics and display moderate improvements across
all three signals (CLIP10.79, BERT10.020, En-
tropy|0.05), suggesting that ReL.oop’s multi-signal
supervision addresses cross-modal misalignment
collaboratively. (4) Event hallucinations are pri-
marily tied to attention misallocation. ReLoop im-
proves CLIP (10.31) and BERT (10.016) slightly,
but entropy increases (10.18), reflecting broader at-
tention scopes. This likely helps avoid fixation on
irrelevant regions, especially in dynamic or tempo-
rally inferred scenes. Figure 4 shows that ReLoop
successfully mitigates hallucinations compared to
MiniGPT-4 across four hallucination types.
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Ablation Version

Hallucination Suppression

Cross-modal Faithfulness

POPET CHAIR; | CHAIR; | F11 Faith? FaithS1
MiniGPT-4 83.0 49.0 22.7 60.2 84.3 64.2
w/o Consistency Supervision 84.2 474 21.6 60.7 86.7 68.5
w/o Gating & Aggregator 854 39.8 19.7 60.4 88.1 71.6
w/o Attention Supervision 83.6 40.2 20.1 61.9 86.3 67.5
Full ReLoop 84.9 38.3 18.9 63.1 88.6 72.8

Table 3: Performance comparison of ReLoop under different ablation configurations on MiniGPT-4. Removing
consistency supervision results in the worst faithfulness and hallucination rate, while full ReLoop delivers the best
overall performance. Although gating removal slightly improves POPE, it hurts precision (F1) and consistency.

Hallucination Suppression

Cross-modal Faithfulness

Method
POPE? CHAIR; | CHAIR; | F11 Faitht FaithSt

LLaVA-1.5 83.5 53.9 23.5 63.2 86.9 70.5
+ LLaVA-RLHF 88.2 44.5 20.1 67.0 89.0 74.4
+ HA-DPO 86.7 523 21.6 65.4 88.4 73.5
+ POVID 84.3 53.2 24.2 64.7 87.3 71.8
+VCD 86.8 43.1 20.2 66.9 88.8 73.6
+ ReLoop 87.9 42.0 19.5 67.4 89.5 751

Table 4: Performance comparison of ReLoop with alignment-enhancing baselines for LLaVA-1.5 on hallucination
suppression and cross-modal faithfulness. Best scores are in bold and the second best are underlined.

6.2 Effects of Structured Feedback in ReL.oop

Motivated by earlier findings, we evaluate how ef-
fectively ReLoop’s structured feedback enhances
semantic grounding across five representative
LVLMs (Table 2). The observed improvements
span models with diverse architectures and training
paradigms, showing that ReLoop is broadly com-
patible and easily integrable into various LVLMs.

Hallucination Suppression. RelLoop signifi-
cantly reduces references to non-existent enti-
ties. InstructBLIP shows 22.8%/15.0% reductions.
LLaVA-1.5 improves by 24.9%/33.1%, and strong
backbones exhibit the same trend: LLaVA-1.6
achieves ~26%/~26% drops, while Qwen-VL-2.5
yields ~20.5%/~20.2%. Similar effects hold for
mPLUG-owl and ShareGPT4V. These reductions
confirm that ReL.oop enhances visual grounding
and spatial precision across backbones.

Cross-modal Faithfulness. ReLoop also en-
hances cross-modal faithfulness. F1 increases
on MiniGPT-4 (+10.6%), LLaVA-1.5 (+6.8%),
LLaVA-1.6 (~5.6%), and Qwen-VL-2.5(~4.9%);
InstructBLIP maintains comparable F1 while gain-
ing on faith metrics. FaithS improves for MiniGPT-
4 (4+2.8), InstructBLIP (+3.4), Qwen-VL-2.5 (+1.3),
and ShareGPT4V (+1.2), and remains near-parity
on LLaVA-1.6. These gains suggest that the model
not only grounds responses more accurately in the
image but also maintains semantic alignment with
the question intent.

6.3 Robustness Under Noisy Supervision

We next ask whether closed-loop training remains
stable when external supervision is imperfect or
when the initial answer signal is degenerate. We
stress-test ReLoop under (i) noisy teacher feedback
on the visual channel and (i1) nonsensical answers
that could mislead the loop.

Closed-loop supervision is resilient to noisy
teachers. We corrupt 15% of visual descriptions
fed to the CFP-Vis branch with pseudo-random text.
As shown in Table 5, the average CLIP similarity
decreases (ACLIP = —0.11), yet core hallucina-
tion metrics remain stable (POPE 87.9 — 86.8,
CHAIR-s 42.0 — 42.6, CHAIR-i 19.5 — 20.2).
This suggests that multi-signal aggregation dilutes
spurious teacher cues, preserving cross-modal con-
sistency even when the visual supervisor is noisy.

ACW suppresses nonsensical answers with-
out destabilizing training. We replace 15%
of answers with meaningless strings while keep-
ing ACW active. Table 5 shows a predictable
reallocation of per-sample weights: the mass
at high confidence shrinks (y=1.0: 52% —
35%), medium/low weights grow (0.1/0.01:
41/9% — 43/22%), and semantic alignment
only mildly drops (ABERTScore= —0.06), while
POPE/CHAIR remain essentially unchanged. This
confirms that ACW down-weights misleading an-
swer signals before they influence learning.
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POPE{ CHAIR-s| CHAIR-i] ACLIP-sim (1) ~ dist. (1.0/0.1/0.01) ABERTScore (1)

Setting
LLaVA-1.5 + ReLoop (clean) 87.9 42.0 19.5
+ Teacher noise (15%) 86.8 42.6 20.2
+ Answer noise (15%) 87.2 43.1 20.4

— 52/41/9 —
—0.11 — —
35/43/22 —0.06

Table 5: Robustness under noisy supervision. Teacher-side visual description corruption (15%) and answer-side
nonsense injection (15%) have limited impact on core hallucination metrics. CLIP similarity drops under teacher
noise, whereas ACW re-allocates per-sample weights under answer noise (smaller high-confidence mass).

Natural noise robustness via fourfold filtering.
ReLoop’s robustness emerges from a fourfold fil-
ter: three orthogonal supervision signals (language
via BERTScore, visual via CLIP, attention via
entropy-aware Hpseudo) plus ACW’s discrete gating
~v€{1,0.1,0.01} (Sec. 4.2). Noisy teacher feed-
back is first cross-validated across modalities, then
attenuated by ACW, and finally diluted in the multi-
loss objective (Sec. 4.3), so that biased cues have
limited influence on the update direction. Empiri-
cally, the stability of POPE/CHAIR under teacher-
side corruption and the expected shift in the v dis-
tribution under answer nonsense together indicate
that the closed loop self-regularizes and converges
stably despite imperfect teachers.

6.4 Ablation Study

To assess the contribution of each component in
ReLoop, we perform a coarse-grained ablation
study over four configurations (Table 3). Remov-
ing consistency supervision leads to the highest
hallucination rates (CHAIR: 47.4) and lowest se-
mantic faithfulness (FaithS: 68.5), highlighting its
central role. Attention supervision also proves im-
portant, as its removal moderately reduces FaithS.
While removing gating slightly improves POPE,
it harms F1 and hallucination suppression. Full
ReLoop achieves the best overall results, reducing
CHAIR; by 10.7 and increasing FaithS by 8.6 over
the baseline. These findings underscore the com-
plementary roles of all modules and the importance
of structured feedback for robust alignment.

6.5 Unified Comparison with Alignment
Strategies

We compare ReL.oop with representative alignment
methods, LLaVA-RLHF, HA-DPO, and POVID on
both fine-grained hallucination metrics and broader
benchmark evaluations. As shown in Table 4,
ReLoop consistently outperforms alternatives on
POPE, CHAIR, F1, and faithfulness metrics, indi-
cating stronger hallucination suppression and cross-
modal faithfulness. On benchmark-level evalua-

Method AMBERT MMET MMHal-B1 Hallu-B{
LLaVA-1.5 73.9 1513 65.4 48.6
+LLaVA-RLHF  73.8 1231 64.3 432
+ HA-DPO 772 1374 65.6 49.9
+ POVID 75.8 1421 65.9 514
+ ReLoop 80.3 1505 68.9 52.3

Table 6: Benchmark-level comparison of ReLoop with
alignment strategies across four evaluation baselines.

tions (Table 6), ReLoop leads on AMBER, MMHal-
B, and HallusionBench, while remaining compet-
itive on MME. The slight MME drop may reflect
a common trade-off between alignment supervi-
sion and low-level perception, also observed in
other alignment-based methods like LLaVA-RLHF.
These findings underscore ReLoop’s effectiveness
across both targeted and comprehensive settings.

6.6 Additional Analyses

To further substantiate the effectiveness and practi-
cality of RELOOP, we provide supplementary anal-
yses in the appendices. Appendix A.6 reports a
Training Cost Breakdown: cross-method cost, CFP
overhead attribution, and convergence/epoch-level
timing. Appendix A.7 ablates contrastive augmen-
tation to isolate closed-loop gains. Appendix B
provides a Case Study over four hallucination types
and a nonsensical-answer failure mode, illustrat-
ing early rejection, ACW ~y-downweighting, and
entropy-aware masking.

7 Conclusion

We present ReL.oop, a closed-loop training frame-
work that mitigates hallucinations in MLLMs by
enforcing semantic and visual consistency through
bidirectional feedback. By incorporating language
reconstruction, visual description, and attention
alignment, ReLoop allows models to verify and re-
fine predictions during training. Experiments show
consistent gains in hallucination suppression and
interpretability, establishing ReLoop as a general
foundation for building more reliable MLLMs.
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Potential Limitations

Performance Variability Across Hallucination
Types. While ReLoop substantially improves hal-
lucination suppression in object and attribute cate-
gories, its effectiveness on relation and event hallu-
cinations remains relatively modest. These halluci-
nation types often involve higher-order reasoning
and temporal or spatial understanding, which are
less easily corrected through current consistency
signals. Future extensions may incorporate special-
ized supervision tailored to relational semantics or
causal cues to address this gap.

Supervision Dependency and Domain Adapt-
ability. Rel.oop relies on access to paired im-
age—question—answer data to compute consistency
signals. This requirement poses challenges in do-
mains with limited high-quality supervision, such
as medical or scientific imaging. Moreover, the
training framework assumes reasonably clean and
grounded reference answers, which may not hold
in low-resource or noisy environments. Reducing
ReLoop’s dependence on strongly supervised in-
puts and exploring semi-supervised or synthetic
feedback generation remain promising directions
for broader applicability.

Scope of evaluation. Our study focuses on stan-
dard VQA-style image benchmarks and general-
domain LVLMs. We have not evaluated text-heavy
or long-tail domains (e.g., dense OCR, charts) or
temporal reasoning tasks, where attention alloca-
tion and signal reliability may differ. Extending
evaluation to these regimes is left for future work.

Ethics Statement

All datasets utilized in this work are either pub-
licly released or ethically sourced, ensuring full
compliance with associated data usage policies.
For evaluation purposes, we additionally include
Al-generated content produced under controlled
prompting conditions. These samples are clearly
labeled and subjected to careful human verification
to ensure factual accuracy and annotation quality.
We acknowledge the broader implications of hal-
lucination mitigation in Al systems and advocate
for responsible model development that prioritizes
reliability, fairness, and interpretability.
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A Additional Experimental Details

A.1 Implementation Details

Backbone and Setup. We apply ReLoop to
five representative LVLMs with diverse archi-
tectures: MiniGPT-4, InstructBLIP, LLaVA-1.5,
mPLUG-owl, and ShareGPT4V. To assess gen-
eralizability on stronger backbones, we further
evaluate on LLaVA-1.6 and Qwen-VL-2.5 (Ta-
ble 2). Importantly, we do not alter the internal
structures of these models. ReLoop is introduced
as a lightweight, external consistency-supervision
framework during training. All backbones are ini-
tialized with their public checkpoints and keep their
visual encoders (e.g., ViT, CLIP) frozen.

ReLoop Components. RelLoop introduces
three frozen feedback modules: (1) CFP-Lang
(MiniGPT-4-based reverse question reconstructor);
(2) CFP-Vis (BLIP-2-based visual describer); (3)
Attention Supervision that aligns decoder attention
maps with entropy-based soft pseudo-labels. A
frozen BERT encoder plus an MLP scorer serves
as a lightweight semantic aggregator. All feedback
modules remain frozen; only the backbone and the
aggregator are updated.

Training Details. Experiments are performed
on 8xA100 GPUs (80GB) using mixed-precision
training (fp16) for 3 epochs. We adopt the AdamW
optimizer with parameters 5; = 0.9, 82 = 0.98,
and a weight decay of 0.05. The effective batch
size is 128, with a gradient accumulation step of 8.
The initial learning rate is set to 5 x 107>, along
with 1,000 warm-up steps and cosine learning rate
decay scheduling. Unless otherwise stated, all accu-
racy and resource measurements follow this main
setup. For efficiency-only timing and method-level
comparability, we additionally report a controlled
regime: 4xXA100 GPUs, batch size 12/GPU, and a
fixed 2k-step schedule.

Loss Function. The overall objective is

Liotal = Lt + Ealign + B Lyis + v Latn + A Q(H)

(6)
We set the hyper-parameters as o« = 1.0, 8 = 0.7,
and A = 107°. The weight  is dynamically
adjusted by the Adaptive Consistency Weighting
(ACW) mechanism, which modulates ~ based on
the BERTScore between the original and recon-
structed questions (see Section 4.2.1).
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A.2 Training Dataset Construction

We curated approximately 30K high-quality QA-
image triplets from the LLaVA-Instruct-150K cor-
pus (Liu et al., 2023a), each containing an image,
an open-ended question, and a human-annotated
answer. To simulate hallucination supervision, we
generated semantically contradictory answers by
modifying key elements (e.g., objects, attributes,
or relations) in the references. These hallucinated
samples were automatically constructed and man-
ually verified for quality and type diversity. In
Experiment 6.1, we selected 500 representative
QA-image pairs from the filtered validation set
based on POPE and MMHalBench, equally split
between hallucinated and non-hallucinated cases.
In Experiment 6.2, we evaluated five LVLMs on
this curated set to assess the impact of ReLoop.
Models with open alignment architectures (e.g.,
MiniGPT-4, InstructBLIP) showed the greatest im-
provement, while high-performing black-box mod-
els (e.g., ShareGPT4V) saw minimal gains, sug-
gesting ReLoop’s effectiveness hinges on align-
ment signal compatibility.

A.3 Evaluation Metrics

To comprehensively evaluate the effectiveness of
ReLoop in mitigating hallucinations and enhancing
visual grounding, we adopt a structured set of met-
rics covering both hallucination suppression and
cross-modal consistency. In particular, shown in Ta-
ble 4, we group the metrics into two key categories:
Hallucination Suppression, which quantifies the
presence of non-existent or spurious content, and
Cross-modal Faithfulness, which assesses the se-
mantic and perceptual alignment between gener-
ated text and visual input.

A3.1

For hallucination evaluation, we incorporate
CHAIR (Rohrbach et al., 2018) to measure hal-
lucination frequencies at instance levels and in-
clude POPE (Li et al., 2023b), a probing-based
diagnostic benchmark to evaluate object hallucina-
tions through direct VQA-style interactions. To-
gether, these metrics allow us to holistically assess
ReLoop’s ability to suppress hallucinated content
while preserving descriptive quality.

Metrics on Hallucination Suppression

¢ CHAIR (Rohrbach et al., 2018) (Caption Hal-
lucination Assessment with Image Relevance)
quantifies hallucinations by detecting whether
the model-generated captions mention objects

that do not exist in the image. It provides two
variants:

|{hallucinated objects}|
|{all objects}|

CHAIR; = (7
|{hallucinated responses} |

CHAIR¢ =
s |{all responses }|

®)

where CHAIR; measures instance-level hallu-
cination (object granularity) and CHAIR g mea-
sures sentence-level hallucination (response gran-
ularity).

* POPE (Li et al., 2023b) (Polling-based Object
Probing Evaluation) automates hallucination de-
tection via instance-level object probing. It:

— Segments objects in the image;

— Asks the model about object existence and
introduces distractor queries;

— Computes metrics such as F1 score to mea-
sure detection precision.

POPE offers direct insights into a model’s vi-
sual grounding capability through objective vi-
sual questioning.

A.3.2 Metrics on Cross-modal Faithfulness

On the side of Cross-modal Faithfulness, we adopt
Faith and Faithg (Jing et al., 2024), which eval-
uate how well the generated text is grounded in
the visual input. Faith focuses on overall align-
ment, while Faithg specifically checks whether
statements are supported by the visual evidence
in a token-level or segment-wise manner. In addi-
tion, we report the F'1 score, a standard metric that
captures the harmonic mean of precision and recall
between the predicted and reference entities. In our
context, it reflects how well the model identifies
relevant visual content without fabricating or omit-
ting essential elements, thus serving as a practical
indicator of the model’s grounding precision and
completeness.

* F1 Score reflects the harmonic mean of precision
and recall in detecting whether queried objects
exist. High F1 indicates accurate recognition and
rejection of hallucinated entities:

Precision - Recall

Fl =2 ©)

" Precision + Recall

* Faith (Jing et al., 2024) measures the overall se-
mantic alignment between image and response.

4174



It uses automated matching or human verifica-

tion to assess whether the content is factually

grounded in the image:

|Aligned Statements|
|Total Statements|

Faith = 10)

 Faithg (Jing et al., 2024) extends Faith to a finer
granularity by evaluating the support of specific
sentence segments or tokens using cross-modal
supervision or saliency alignment:

Faithg — |Grounded Segments or Tokens|

|Total Segments or Tokens|
(11

A.4 Evaluation Benchmark

Besides, to provide a fine-grained and multi-
perspective assessment of ReLLoop’s effectiveness
in suppressing hallucinations and enhancing cross-
modal faithfulness, we adopt four complemen-
tary benchmarks. AMBER (Wang et al., 2023)
targets object-level hallucinations, while MMHal-
B (Sun et al., 2023) and HallusionBench (Guan
et al., 2024) assess errors in attributes, spatial rela-
tions, and perceptual consistency. MME (Fu et al.,
2023) covers general multimodal capabilities such
as OCR and counting. These benchmarks collec-
tively evaluate generative and discriminative capa-
bilities, entity grounding, perceptual consistency,
and multimodal reasoning:

* AMBER (Wang et al., 2023): An LLM-free
multi-dimensional benchmark that diagnoses hal-
lucinations in both generative and discrimina-
tive tasks. It explicitly tests object existence,
attributes, and relations, allowing us to assess
ReLoop’s object-level grounding fidelity, at-
tribute correctness, and relational accuracy. This
supports the evaluation of semantic precision in
visual grounding.

« MMHal-B (Sun et al., 2023): A benchmark
built upon fact-augmented reinforcement learn-
ing (RLHF) that penalizes hallucinated attributes
and spatial configurations. MMHal-B offers tar-
geted diagnostics for hallucination suppression
in factual and compositional dimensions, par-
ticularly assessing whether ReLLoop can resist
overgeneralization and maintain factual ground-
ing under complex prompts.

¢ HallusionBench (Guan et al., 2024): A bench-
mark that probes visual-linguistic robustness un-
der ambiguous image-text settings. It empha-
sizes contextual grounding, requiring models to

handle subtle visual cues and nuanced linguistic
traps. HallusionBench evaluates ReL.oop’s abil-
ity to maintain perceptual consistency and reject
misleading contextual cues that typically trigger
hallucinations.

e MME (Fu et al., 2023): A broad-spectrum
benchmark measuring multimodal perception
and cognition across 14 sub-tasks, including
OCR, object counting, spatial reasoning, and
commonsense grounding. MME validates
whether ReLoop’s structured supervision trans-
lates into generalized improvements in visual un-
derstanding and multimodal reasoning, beyond
hallucination mitigation.

Together, these benchmarks offer layered super-
vision signals from fine-grained object hallucina-
tion detection to holistic multimodal cognition, pro-
viding strong empirical evidence of ReLoop’s reli-
ability across diverse real-world tasks.

A.5 Baseline Implementation

To evaluate ReLoop’s generalizability and addi-
tive benefit, we compare it with three represen-
tative alignment-based hallucination mitigation
strategies: LLaVA-RLHF (Sun et al., 2023), HA-
DPO (Zhao et al., 2023) , and POVID (Zhou et al.,
2024). These baselines span a diverse range of su-
pervision paradigms, from reinforcement learning
to contrastive grounding. Importantly, all methods
are applied on top of the same backbone (LLaVA-
1.5) with consistent training configurations, ensur-
ing fair comparison.

* LLaVA-RLHF (Sun et al., 2023) aligns re-
sponses to human preferences through reinforce-
ment learning from human feedback. While ef-
fective for improving general fluency and tone,
it does not explicitly penalize visual or factual
inconsistencies.

e HA-DPO (Zhao et al.,, 2023) adopts
hallucination-aware  preference  optimiza-
tion by contrasting faithful versus hallucinated
generations. This method introduces targeted
loss signals during fine-tuning, encouraging the
model to avoid semantically spurious content.

¢« POVID (Zhou et al., 2024) enhances visual
grounding via perturbed image inputs, injecting
contrastive visual signals to reduce reliance on
textual priors and promote visual fidelity.
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Object Hallucination \ Attribute Hallucination | Relation Hallucination | Event Hallucination
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Figure 6: Case Study: Comparison between MiniGPT-4 and ReLoop across four types of hallucination in open-
ended VQA: Object, Attribute, Relation, and Event. ReLoop produces more accurate and grounded responses by
aligning its outputs with both the visual evidence and the question semantics.

* VCD (Sicong Leng, 2023) is a training-free,
inference-time method that contrasts output dis-
tributions from the original image and a visu-
ally distorted counterpart, down-weighting to-
kens supported mainly by unimodal/language
priors and thereby mitigating object hallucina-
tions without further tuning.

Results from both fine-grained hallucination met-
rics (Table 4) and benchmark-level evaluations (Ta-
ble 6) demonstrate that ReLLoop consistently out-
performs all competing methods. These results val-
idate ReLoop as a robust and generalizable frame-
work capable of enhancing multimodal model per-
formance beyond what is achievable by current
alignment-based techniques alone.

A.6 Training Cost Breakdown

We quantify ReLoop’s computational footprint and
efficiency trade-offs from four angles: (i) cross-
method training cost, (ii) overhead attribution via
CFP-component ablations, (iii) convergence ver-
sus training steps, and (iv) per-epoch cost under a
controlled regime. Unless otherwise stated, CFP
modules are frozen (no gradient), and only the main
model M and the Semantic Aggregator S are up-
dated.

A.6.1 Cross-Method Training Cost

We compare ReLoop against representative align-
ment methods. As summarized in Table 7, ReL.oop
updates only M and S with frozen CFPs, substan-
tially reducing optimizer/memory footprint com-
pared to end-to-end baselines. Despite extra for-
ward passes for CFPs, ReLLoop avoids optimizer

states for large frozen modules, yielding substan-
tially lower GPU hours and memory than end-to-
end RLHF/DPO. This design preserves training
affordability while enabling closed-loop supervi-
sion.

A.6.2 Overhead Attribution via CFP
Components

We attribute runtime and memory overheads to
individual CFP branches on LLaVA-1.5, keeping
data/backbone constant. Table 8 reports GPU
hours, memory, latency, and POPE. As seen in
Table 8, both language and visual CFPs contribute
positively to hallucination suppression, with addi-
tive gains. The per-branch overhead is bounded
and predictable. Since CFPs are optional at infer-
ence, the training-time penalty does not translate
to deployment latency. Both language and visual
CFPs contribute positively to hallucination suppres-
sion, with additive gains. The overhead is bounded
and predictable per component. Since CFPs are op-
tional at inference, the training-time penalty does
not translate to deployment latency.

A.6.3 Convergence and Epoch-Level Cost

We study returns versus training steps and re-
port per-epoch cost under the controlled regime
(4xA100, batch 12/GPU, fixed 2k steps) for
method-level comparability. Step-wise gains are
summarized in Table 10; the end-to-end throughput
and slowdown are reported in Table 9.! Table 10
shows fast early gains with diminishing returns
beyond 2k steps. Under a fixed budget, Table 9 in-

!Scores here follow the controlled 2k-step regime and are
not directly comparable to full-training results elsewhere.
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Trainable

Feedback

GPU

GPU

Peak

Method Params Modules Hours Type VRAM Notes

ReLoop Fastest;
(MiniGPT-4) M+S (~1.2B) Frozen 3 A100-40G  ~26GB ablation

ReLoop Core experiment.
(LLaVA-1.5) M+S (~13B) Frozen 6 A100-80G  ~48GB (Sec. 5.2)

RLHF Whole model

finetuning (~13B) End-to-end 20 A100-80G  ~70GB -

DPO Whole model  End-to-end 8-16 A100-80G  >50GB -

Contrastive Whole model ~ EPCOder 10 A100-80G  ~32GB -

alignment fusion

Table 7: Cross-method training cost. ReLoop updates only M and S with frozen CFPs, reducing optimizer/memory

footprint relative to end-to-end baselines.

Variant CFP Modules GPU Hours Peak Mem Train Latency POPE 1
ReLoop (Full) Lang + Vis 6.0 48GB 1.8x 82.2
w/o Lang CFP Vis only 5.2 40GB 1.4x 81.5
w/o Vis CFP Lang only 4.7 38GB 1.3x 81.1
No CFP None 3.0 26GB 1.0x 77.2

Table 8: CFP-component ablations (LLaVA-1.5). Each CFP adds ~1 GPU hour and ~10-12GB VRAM, yielding
+3-5 POPE. CFPs are frozen yet incur forward attention/encoding; batch size may reduce (e.g., 16— 12 on A100).

dicates that a moderate training slow-down trades
for sizable hallucination reduction, while inference
cost remains unchanged by dropping CFPs at test
time.

A.7 Contrastive Augmentation Ablation

To evaluate whether RELOOP depends on the man-
ually perturbed semantic negatives (Appendix A.2),
we ablate this contrastive augmentation and train
on the standard LLaVA-Instruct data only, keeping
all other settings identical to the main experiments.
Even without contrastive augmentation, RELOOP
significantly improves over the LLaVA-1.5 base-
line on all metrics (Table 11), demonstrating that
the core closed-loop alignment mechanism is effec-
tive when trained purely on standard supervision
data. The contrastive examples provide further re-
finement, most notably on AMBER and MMHal-B,
but they are not essential for RELOOP to outper-
form existing alignment strategies.

B Case Study

We present a qualitative case study to analyze how
ReLoop mitigates hallucination across four repre-
sentative types:

* Object Hallucination: The baseline model in-
correctly asserts the presence of a "referee stand"
which is not in the image. ReLoop corrects this
by recognizing the absence of such an entity.

 Attribute Hallucination: An animal is misla-
beled as "dog" instead of "chihuahua." ReLoop
identifies the finer-grained attribute correctly.

* Relation Hallucination: The spatial relation-
ship "on a sofa" is incorrectly predicted; ReLoop
grounds the child’s location more accurately.

* Event Hallucination: The action "not playing"
contradicts visual evidence; ReLoop revises the
answer to match the depicted motion.

As shown in Figure 6, baseline models such as
MiniGPT-4 frequently produce fluent yet inaccu-
rate answers that are not grounded in the image.
ReLoop corrects these errors by leveraging consis-
tency feedback to align its answers with both the
question intent and visual content. The examples
highlight ReL.oop’s capacity to suppress diverse
hallucination patterns and improve factual reliabil-
ity in open-ended VQA.

B.1 Handling Nonsensical or Unrelated Initial
Answers

This section complements the above qualitative
cases by focusing on an orthogonal failure mode
raised by reviewers: how ReLoop handles instances
where the initial answer A is nonsensical or un-
related to the question. ReLoop employs a set
of structured safeguards: early rejection, y-based
downweighting via ACW, and entropy-aware mask-
ing of attention. The set of structured safeguards
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Time Total GPU Peak Throughput Slowdown CFP @
Model / Epoch Hrs (2k) Memory  (img/s/GPU) vs. Base POPET Inference
LLaVA-1.5 (base) ™ fff 3.0 26GB 11.6 1.0x 77.2 N/A
LLaVA-1.5 ~103 Optional
+ ReLoop min 6.0 48GB 6.4 1.77x 82.2 (off)

Table 9: Per-epoch cost under the controlled regime. ReLoop increases epoch time by ~77% yet converges within
comparable steps. CFPs are disabled at inference, so deployment latency remains unchanged.

Steps lﬁ)‘;& POPE! APOPE (2n
0 0.0 77.2 - -
(no Training) : )
3.6 80.1 +2.9 0.81
2k 7.2 81.6 +1.5 0.21
3k 10.9 82.2 +0.6 0.08

Table 10: Diminishing returns with steps (LLaVA-1.5).
>90% of gains appear within 2k steps (~7 GPU hours).

Method AMBERT MME{ MMHal-B1 Hallu-B{

LLaVA-1.5
(baseline) 73.9 1513 65.4 48.6
ReLoop
(Woaug- 205 1450 671 50.1
mentation)
Full
ReLoop 80.3 1505 68.9 52.3
Table 11: Ablation on contrastive augmentation

(LLaVA-1.5 backbone). Even without augmentation,
RELOOP improves over the base model across all bench-
marks; augmentation yields additional gains.

can prevent misleading updates when the feedback
is deemed unreliable. The representative examples
in Table 12 illustrate how these filters operate at the
case level before gradients are applied. In addition,
the quantitative stress tests in the main text (see
Table 5). demonstrate stable performance under in-
jected noise, corroborating the robustness of these
safeguards.

C Entropy-based Pseudo Ground-Truth
Attention Hpseudo

This section details the construction of the entropy-
based pseudo ground-truth attention used in
Sec. 4.2.3. We describe tensor shapes, multi-
layer/head aggregation, token filtering, smooth-
ing/normalization, and edge cases to facilitate re-
production.

Notation and Shapes. Let the decoder cross-
attention at decoding step t be {AEZ”” €

RS }e=1..1, h=1..1r over S visual patches (keys), for

L layers and H heads. We first aggregate heads and
layers to obtain a single distribution over patches
for token t:

H
S wl ) 4{
1 h=1

(12)

L
ar =
=

S wl =3 u® =1 (13)
¢ h

where w® and u(" are fixed convex weights. In
a default setting, we set uniform across heads
(uM=1 /H) and a back-loaded layer prior (w® o
exp(k /L) with k=1.5) to emphasize later lay-
ers. We row-normalize to obtain a probability over
spatial patches:

= —=———; € |0,1], s = L
pt,S ZS, at [SI] [ ] Zs:pt S
(14)
Per-token Entropy and Confident Set.

For each generated token ¢, we excludes
BOS/EOS/padding/special tokens and computes
entropy:

S
& = = pislogprs € [0,logS] (15
s=1

and form a confident token set:

7;0nf = {t ‘ 5t§7_} (16)

In a default setting, we set 7=2.0 (nats). In low-
entropy regimes (&; ~ 0) the attention is highly
focused; high entropy indicates diffuse/unstable
focus. In an optional variant (ablation only) setting,
we reweight votes by wy=max (0,1 — 1()5?); we
do not apply this by default to keep the scheme
simple and robust.

Voting and Temperature-normalized Map.
Confident tokens vote for patch importance by sum-

mation: .
h[S] = Z DPt,s
teﬁnnf

(17)
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Failure Type Q A Action Taken
« . » Early rejection: sample skipped; no
?
Empty Output 'What is on the table? (empty) feedback loss computed.
@ s y-downweighting: low-confidence
Overly Generic pg}l;:(;r’s,?ort is being “I’m not sure.” ACW weight; skipped if below length

Nonsensical

« 1 o9’
Repetition What is the man holding?

help!”

Unrelated Semantic ~ “What color is the bus?”

“What are the people

Hallucinated Words c o
doing?

“Banana banana banana sky

“Apples grow in the summer.”

threshold.

Syntactic abnormality detection: reject
via regex/#token heuristics; no update.

Semantic mismatch: ~y~0 from
BERTScore = loss suppressed.
Entropy + token validation: flat

“Grockling spinners do fleeb!” attention masked; spurious tokens

filtered before loss.

Table 12: Case-level handling of nonsensical or unrelated initial answers in ReLoop. Structured safeguards (early
rejection, ACW ~-based downweighting, and entropy-aware masking) prevent misleading gradients from invalid

feedback.

We convert & to a soft target by temperature soft-
max (Default: T,,=0.7):

exp(F[s)/T.)
> ¢ €XP (h[s’]/Ta)

Spatial Reshaping and Smoothing. Let the S
patches correspond to a (H, x W),) grid from the
vision encoder (e.g., ViT patch tokens). We reshape
Hpseudo € RS to RFE»>*Wr apply light Gaussian
smoothing (3x3 kernel, 0=0.8; reflect padding),
then flatten back to length S. A final ¢; normaliza-
tion ensures ) . Hpseudo[s]=1.

Hpseudo [8] = (18)

Special Tokens, Padding, and Masking. We
exclude special tokens (BOS/EOS, padding) and
punctuation-only tokens from 7cons. For subword
tokenization, all subpieces are treated uniformly;
no external POS/saliency tools are used to preserve
the unsupervised nature.

Empty-set and Degenerate Cases. If 7 onr =
& (rare; e.g., extremely diffuse attention), we
fall back to a min-entropy top-k strategy: pick
the k=max(1, [0.017"]) lowest-entropy tokens to
form Tcons and proceed with Eq. (17). If h is flat
(numerically), we use a near-uniform prior slightly
peaked at the global min-entropy token’s argmax.

Objective and Gradient Flow. The attention su-
pervision minimizes a KL divergence between the
model’s cross-attention map H (from the current
forward pass) and H pseudo:

»Catm = KL(H H Hpseudo)

= Z H]s] < log H[s] — log HpseudO[SD
’ 19)

Algorithm 1 Constructing Entropy-based Pseudo
Attention Hpseudo

Require: Cross-attn {A"") € RS}, weights {w(®},
{u(M}, threshold 7, temperature T},
Ensure: Hpseudo € R® (stop-gradient)
I: Teont <9
2: for each token ¢ in generated tokens (exclude spe-
cials) do
a< thLzl Z}?:l w(é)“(h)Ay’h)
pea/ 3 als]

3 > Eq. 13
4:

5: Er——> . pls]logp[s]

6.

7

8

> Eq. 14
> Eq. 15
if £ < 7 then
7::onf <*7;0nf U {(ﬂp)}
: end if
9: end for
10: if Teonr = < then
11: Teont < top-k lowest-entropy tokens
12: end if
130 hé=3 21 pyeToone P > Eq. 17
14: Hpseudo softmax(ﬁ/Ta) >Eq. 18
15: Hpseudo <—smooth(reshape_grid(Hpseudo))
16: Hpseudo < Hpseudo/”HpseudOH 1 > {1 norm
17: return stopgrad(Hpseudo)

We stop gradients through H pseudo; only the main
model’s attention is updated. The loss is weighted
by 7 in the total objective (Sec. 4.2.1).

Pseudocode The procedure (Algorithm 1) is
unsupervised and self-adaptive, relying solely on
model-internal attentional confidence and requir-
ing no external saliency or human annotation. Its
design (entropy gating, temperature control, and
mild spatial smoothing) yields stable targets for the
KL alignment used in Sec. 4.2.3.
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