
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 385–402
November 4-9, 2025 ©2025 Association for Computational Linguistics

DAC: Decomposed Automation Correction for Text-to-SQL

Dingzirui Wang, Longxu Dou, Xuanliang Zhang, Qingfu Zhu, Wanxiang Che*

Harbin Institute of Technology
{dzrwang, lxdou, xuanliangzhang, qfzhu, car}@ir.hit.edu.cn

Abstract

Text-to-SQL is an important task that helps ac-
cess databases by generating SQL queries. Cur-
rently, correcting the generated SQL based on
large language models (LLMs) automatically
is an effective method to enhance the quality of
the generated SQL. However, previous research
shows that it is hard for LLMs to detect mis-
takes in SQL directly, leading to poor perfor-
mance. Therefore, in this paper, we propose to
employ the decomposed correction to enhance
text-to-SQL performance. We first demonstrate
that detecting and fixing mistakes based on the
decomposed sub-tasks is easier than using SQL
directly. Then, we introduce Decomposed Au-
tomation Correction (DAC), which first gener-
ates the entities and skeleton corresponding to
the question, and then compares the differences
between the initial SQL and the generated enti-
ties and skeleton as feedback for correction. Ex-
perimental results show that, compared with the
previous automation correction method, DAC
improves performance by 1.4% of Spider, Bird,
and KaggleDBQA on average, demonstrating
the effectiveness of our method1.

1 Introduction

Text-to-SQL is an important task, significantly re-
ducing the overhead of obtaining information from
the database by generating corresponding SQL
based on user questions (Deng et al., 2022). Specif-
ically, about the text-to-SQL task, users provide
the question and the related database, and then
the model generates the corresponding SQL. Cur-
rently, the methods based on Large Language Mod-
els (LLMs) have become the mainstream for text-
to-SQL because LLMs can achieve higher perfor-
mance than fine-tuned models, without fine-tuning
(Hong et al., 2024b; Li et al., 2024a; Shi et al.,
2024; Kanburoğlu and Tek, 2024). Therefore, in

*Corresponding author.
1Our code and data is released in github.

Input Information

Initial SQL:
SELECT idx FROM stock

User Question:
Order the stock idx with earning more than 5,000.

Direct Correction
Instruction: Find the error and fix
the SQL.

Corrected SQL: SELECT idx
FROM stock ORDER BY earning

Decomposed Feedback
Instruction: Detect the mistakes of the
entities and skeleton.

Feedback: Entity “5,000” is not used
and the skeleton should be “SELECT _
FROM _ WHERE _ > _ ORDER BY _”

Decomposed Correction
Instruction: Fix the SQL with the given
feedback.

Corrected SQL: SELECT idx FROM
stock WHERE earning > 5000 ORDER …

Direct Feedback
Instruction: Detect the mistakes
in the generated SQL.

Feedback: The generated SQL is
incorrected since the question
requires order the stock idx …

Figure 1: The comparison between direct correction
(left) and decomposed correction (right). Direct correc-
tion shows poor performance since LLMs do not know
how to detect mistakes. Decomposed correction brings
better performance based on the decomposed tasks of
entity linking and skeleton parsing.

this paper, we mainly focus on how to enhance the
text-to-SQL performance based on LLMs.

Recent research shows that automated correction
is an effective method to improve text-to-SQL per-
formance (Chen et al., 2024; Askari et al., 2024;
Xie et al., 2024; Wang et al., 2024a), where LLMs
first generate an initial SQL and then detect mis-
takes of the SQL as correction feedback (Pan et al.,
2024). For instance, SQL-CRAFT (Xia et al., 2024)
assesses whether the SQL execution results on
databases satisfy the user question and corrects the
SQL accordingly. EPI-SQL (Liu and Tan, 2024)
builds an example library of error cases and then re-
trieves similar cases from the library to guide each
correction. However, previous studies indicate that
it is hard for LLMs to directly detect and correct
all mistakes in the generated SQL (Zhang et al.,
2024a; Kamoi et al., 2024; Zhang et al., 2024c).

Previous works (Chen et al., 2023b; Dhuliawala
et al., 2024; Vacareanu et al., 2024) show that cor-
rection with the decomposed reasoning process

385

has better performance than directly correcting be-
cause detecting the mistakes in the reasoning pro-
cess is easier than in the final answer. Therefore,
in this paper, we discuss that: (i) Experimentally,
we present that correction with decomposed sub-
tasks is more effective than direct correction; (ii)
Methodologically, we propose correcting the text-
to-SQL results based on the decomposed tasks of
entity linking and skeleton parsing to enhance the
performance of the automation correction.

First, we discuss that correction with the de-
composed sub-tasks can bring better correction
performance than the direct correction, as shown
in Figure 1. We present that decomposing into
sub-tasks can lower the difficulty of detecting and
correcting errors. Based on the above analysis,
we propose Decomposed Automation Correction
(DAC), which corrects the generated SQL with
the mistakes of entity linking and skeleton pars-
ing as feedback, which are the two most crucial
capabilities for addressing the text-to-SQL task
(Li et al., 2023a; Deng et al., 2022; Hong et al.,
2024b). Schema linking denotes detecting the table
and column names related to the question, where
we directly generate relevant entities based on the
user question and the database, following Li et al.
(2023c). Skeleton parsing denotes generating the
SQL skeleton corresponding to the user question,
where we generate the skeleton by parsing the user
question without databases (Guo et al., 2024b,a).
After generating the entities and skeleton, we take
their inconsistencies with the initial SQL as feed-
back for the correction, as shown in Figure 1.

To validate DAC, we conduct experiments on
three mainstream text-to-SQL datasets: Spider (Yu
et al., 2018), Bird (Li et al., 2023b), and KaggleD-
BQA (Lee et al., 2021). The experiments show
that DAC achieves an average improvement of
1.4% compared to the previous correction method,
showing the effectiveness of DAC. Further analysis
shows that DAC indeed improves the performance
by improving the entity and the skeleton accuracy.

Our contributions are as follows:
• We experimentally discuss that decomposed cor-

rection has better performance than direct correc-
tion, shedding light on future research;

• We present DAC, which improves text-to-SQL
automated correction performance by decompos-
ing text-to-SQL into sub-tasks of entity linking
and skeleton parsing;

• Experiments show that DAC improves perfor-
mance by 1.4% on average compared to the pre-

Decompose into
Sub-Tasks

Direct Correction
Initial SQL:
SELECT idx FROM stock
ORDER BY earning

Decomposed Correction
Linked Entities:
stock.idx, stock.earning

Parsed Skeleton:
SELECT _ FROM _ ORDER BY _

• • •

Figure 2: The illustration of our discussion, taking the
question “Order the stock idx with earnings more than
5,000” as an example. About the direct correction (left),
it is challenging for LLMs to pinpoint specific mistakes.
After decomposing the SQL into sub-tasks (right), it is
easier for LLMs to identify that the linked entities are
correct, while the parsed skeleton is incorrect.

vious automated correction methods, proving the
effectiveness of our method.

2 Preliminaries

In this section, we discuss that decomposing text-
to-SQL into sub-tasks can effectively enhance
SQL correction performance. First, we demon-
strate that correction by decomposing into sub-
tasks is more effective than direct correction since
sub-tasks are easier to satisfy than the original task,
making it less difficult to detect and correct errors.
Then, we adapt the above conclusion to the text-to-
SQL task by decomposing the task into two sub-
tasks: entity linking and skeleton parsing, thereby
enhancing the SQL correction performance.

2.1 Performance of Sub-Task Correction

We consider the correction performance of task de-
composition in two parts: correction results satisfy
the sub-tasks, and correction results that satisfy the
sub-tasks also satisfy the original task. We propose
that decomposing the task into sub-tasks can make
the correction results better satisfy the sub-tasks,
while the correction results satisfying the sub-tasks
could not satisfy the original task. The illustration
of the above proposition is shown in Figure 2.

Intuitively, the original task can be viewed as
a combination of multiple sub-tasks (Khot et al.,
2023). Since the sub-tasks used are included in
the original task, according to Wang et al. (2024b),
generating correct answers to sub-tasks is easier
than the original task, thereby it is easier to detect
the mistakes based on these sub-tasks than the orig-
inal task. However, because the used sub-tasks do
not entirely encompass the original task, even if
the correction results satisfy all the used sub-tasks,
it cannot guarantee that the results fully meet the
original task. Therefore, when decomposing sub-
tasks, it is necessary to ensure that the sub-tasks
can maximally cover the original task so that the
correction results satisfying the sub-tasks are more

386

likely to satisfy the original task.

2.2 Adaption to Text-to-SQL
We apply the discussion above to the text-to-SQL
task, where we use entity linking and skeleton pars-
ing as sub-tasks for automated correction. Entity
linking refers to identifying relevant table and col-
umn names from the given database schema based
on the user question (Liu et al., 2021). Skeleton
parsing denotes creating the corresponding SQL
skeleton of the user question, which removes the ta-
ble names, column names, and values in SQL (Guo
et al., 2024b). We use these two sub-tasks because
previous work regards them as the most crucial ca-
pabilities for text-to-SQL (Li et al., 2023a; Deng
et al., 2022; Hong et al., 2024b).

While based on the discussion above, correction
of the sub-tasks could not ensure the result cor-
rectness of the text-to-SQL task. Therefore, we
calculate the proportion of correct SQL among all
SQL with correct entities and skeletons, as shown
in Table 5. The result in the table shows that the
generated SQL in line with our proposed sub-tasks
is also in line with the text-to-SQL task, demonstrat-
ing the effectiveness of our sub-task decomposition
method for the text-to-SQL automated correction.

3 Methodology

Following the discussion above, in this section,
we present DAC, which generates automated cor-
rection feedback by decomposing the text-to-SQL
task into the sub-tasks of entity linking and skele-
ton parsing. The illustration of DAC is shown in
Figure 3, and the prompts we used for DAC are
present in Appendix A. We further discuss the effi-
ciency of DAC in Appendix C.

3.1 SQL Generation
Before the correction, we first generate an initial
SQL to be corrected using LLMs. Following pre-
vious work (Xia et al., 2024), we use few-shot
learning to generate SQL. We use BM25 to select
demonstrations similar to the user question from
the given demonstration pool, together with the
database and the user question as the input. With
the input, LLMs directly generate a single SQL as
the initial result to be corrected.

3.2 Entity Linking
After obtaining the initial SQL, we aim to iden-
tify mistakes in the linked entities. To achieve
this, it is essential to know the entities related to

the user question, specifically the table and col-
umn names in the question-related database. Fol-
lowing previous work (Andrew et al., 2024; Goel
et al., 2023), we use LLMs to select the question-
related tables and columns. We employ the tok-
enized user question and the database as inputs and
output the entity linking information in the format
of List[Dict[str, str]] in Python, where the
length of the list matches the number of tokens
in the tokenized question. We use this format be-
cause the performance of entity linking generated
in programmatic format by LLMs is superior to
only generating entities (Li et al., 2023c).

Following Liu et al. (2021), each Dict includes
three keys: (i) token: the corresponding token in the
original question; (ii) schema: the corresponding
table name or column name in the database; (iii)
type: including “tab”, “col”, and “val”, represent-
ing the table name, column name, or a condition
value that the token corresponds to respectively.

3.3 Skeleton Parsing
After identifying the linked entities, we seek to
parse the skeleton corresponding to the user ques-
tion to identify mistakes in the initial SQL gener-
ation on the skeleton. Previous research indicates
that LLMs can parse the SQL skeleton based solely
on the user question since the skeleton corresponds
to the syntactic logic of the question without requir-
ing database information (Gu et al., 2023; Pour-
reza et al., 2024; Kothyari et al., 2023). Therefore,
we only use the user question as the input with-
out the database, asking LLMs to parse an SQL
skeleton corresponding to the question solely. Sub-
sequently, we remove entities from the parsed SQL,
since we do not provide the database in the input,
where these entities do not correspond to the col-
umn names or table names in the original database,
thus obtaining the SQL skeleton.

3.4 Comparison
After obtaining the linked entities and parsed skele-
ton, we directly compare and identify the inconsis-
tency parts between them and the initial SQL as
the correction feedback, without employing LLMs.
We first extract the entities and skeletons in the ini-
tial SQL according to the SQL syntax. For linked
entities, we determine which linked entities are
mentioned in the question but not used in the initial
SQL. We do not consider entities that are present in
the SQL but not mentioned in the question as mis-
takes because the user question could not explicitly

387

Input Information
Database:
stock(idx, earning, yield, portfolio, …), bonds(idx, earning, …), …

User Question:
Order the stock idx with earning more than 5,000.

1. SQL Generation
Instruction: Generate SQL to answer
the question with given schemas…
Input: <Database> <User Question>

Initial SQL: SELECT idx FROM stock

 2. Entity Linking 3. Skeleton Parsing
Instruction: Align the tokens in the
given question to the table entities…
Input: <Database> <User Question>

Linked Entities: Order the stock idx
(stock.idx) with earning (stock.earning)
more than 5,000 (stock.earning).

Instruction: Hallucinate a
SQL to answer the question…
Input: <User Question>

Parsed Skeleton: SELECT _
FROM _ WHERE _ > _
ORDER BY _

4. Comparison
Entity Feedback: The entity “5,000” is
mentioned by the question but is not in
the generated SQL.

Skeleton Feedback: The skeleton
could be “SELECT _ FROM _ WHERE
_ > _ ORDER BY _”

5. Correction
Instruction: Fix the SQL of the question
with schemas, it should be noticed that..
Input: <Database> <User Question>
<Initial SQL> <Feedback>

Corrected SQL: SELECT idx FROM
stock WHERE earning > 5000 ORDER
BY earning

Figure 3: The pipeline of DAC, which consists of five steps: (i) SQL Generation: Generate the initial SQL; (ii)
Entity Linking: Detect the question-related entities; (iii) Skeleton Parsing: Generate the SQL skeleton of the
question; (iv) Comparison: Determine the inconsistencies between the initial SQL and the linked entities and
parsed skeletons as feedback; (v) Correction: Correct the SQL with the comparison feedback.

mention some entities used in the SQL. For exam-
ple, some tables are used to bridge the other two
tables by the foreign keys without being mentioned
by the user question. About the parsed skeleton,
we correct the initial SQLs whose skeletons are in-
consistent with the parsed skeletons. We input the
completed parsed skeleton as the feedback, where
we do not indicate mistaken keywords because dif-
ferent keywords could appear multiple times in the
SQL, while too specific information could confuse
the model about which keywords to modify.

3.5 Correction
We use the comparison results and the error mes-
sage during the execution as the feedback, follow-
ing Chen et al. (2024). We take the database, user
question, initial SQL, and feedback as input, and
ask LLMs to output the corrected SQL. During
the correction, we first correct entity mistakes, fol-
lowed by skeleton mistakes. We do not correct
both simultaneously because overly complex feed-
back could confuse the LLM. We first correct the
linked entities since the entity information can help
LLMs correct the skeleton. For example, if the user
question asks for the “student with the top-ranked
score”, and the database directly provides a “rank”
column, the generated SQL can directly select data
with “rank=1” without changing the SQL skeleton
with “ORDER BY score”.

4 Experiments

4.1 Settings
4.1.1 Datasets
We use Spider (Yu et al., 2018), Bird (Li et al.,
2023b), and KaggleDBQA (Lee et al., 2021) to
evaluate DAC, where we adapt DAC on the dev

sets of these datasets. Spider is one of the most
mainstream text-to-SQL datasets, which covers
multi-domain questions. Compared with Spider,
Bird is more difficult, and databases are more com-
plex and more near to the practical application. The
difficulty of KaggleDBQA is close to that of Bird,
but the scale of the database is larger2.

4.1.2 Metric
In this paper, following the previous works (Askari
et al., 2024; Cen et al., 2024), we use execution
accuracy (EX) to evaluate our method. EX refers to
the proportion of predicted SQL execution results
that are the same as correct SQL execution results.

4.1.3 Models
We verify our methods on the instruction
fine-tuning version of Llama3 (Meta, 2024),
Deepseek-Coder (Deep.C.) (Guo et al., 2024c),
gpt-3.5-turbo-1106 (GPT-3.5) (Ye et al., 2023)
and gpt-4o (GPT-4o) (OpenAI et al., 2024).
Llama3 and Deepseek-Coder are the most main-
stream general and code LLMs in the current open-
source LLMs, respectively. While GPT-3.5 and
GPT-4o are the most popular closed-source LLMs.
Therefore, our experimental LLMs can cover dif-
ferent application scenarios well.

4.2 Baselines

We compare DAC with the following two base-
lines: (i) Few-Shot: generate SQL with few-shot
inference (Brown et al., 2020) without correction;
(ii) Self-Debug: LLMs correct the generated SQL
according to the errors during execution or found
by themselves (Chen et al., 2024).

2We call KaggleDBQA as Kaggle for simplicity.

388

4.2.1 Implementation Details
We employ few-shot (Brown et al., 2020) inference
for each step in DAC. Following the previous work
(Chang and Fosler-Lussier, 2023), we use 5-shot
for the inference. We use the Spider training set as
the candidate demonstration pool and use BM25
to select the most similar demonstrations for each
user question. For the entity linking, we employ
the labeled linking information of Spider collected
by Liu et al. (2021), which is used to guide the
generation format (Madaan et al., 2023) and can be
adapted to different databases as shown in Table 1.
The prompts we used can be seen in Appendix A.

4.3 Main Experiment

The main experiment results of our method are
shown in Table 1. From the table, it can be found
that DAC brings performance improvement on
all datasets and all models, with an average im-
provement of 1.4% compared with the Self-Debug
method, proving the effectiveness and generaliza-
tion of our method. We further discuss the perfor-
mance on different SQL hardness of DAC in Ap-
pendix D and the main error types in Appendix E.
Besides, from Table 1, we can also see that:

Dataset DAC improves performance across dif-
ferent datasets. Compared to Spider, our method
achieves more performance gains on Bird and Kag-
gleDBQA in most settings. This is because, with
more complex questions and databases, LLMs are
more likely to make entity-linking mistakes or
generate incorrect skeletons. Consequently, our
method enhances model performance more effec-
tively in Bird and KaggleDBQA by correcting
skeleton or entity mistakes.

Model Our method also brings significant per-
formance improvements across different models.
Compared to code-specific LLMs, the average im-
provement by our method is more pronounced in
general LLMs compared to the Self-Debug method.
This is because the general LLMs have better en-
tity linking and skeleton parsing ability than the
code-specific LLMs, leading to higher correction
performance, as the discussion in §4.5.2 and §4.5.3.

Scale DAC improves performance across dif-
ferent model scales, showing the effectiveness of
DAC. The performance improvement is more sig-
nificant for small-scale models compared to large-
scale models. This is because small-scale models
are more prone to mistakes in entities and skeletons

due to their performance limitations. Our method,
by correcting from sub-tasks, lowers the difficulty
of detecting and correcting errors, thereby effec-
tively guiding the model to generate correct results.

To better study the effectiveness of DAC, we
also compare our method with other text-to-SQL
correction methods, as shown in Table 2. It can
be observed that on GPT-3.5, our method achieves
better performance improvement despite having a
lower baseline performance, demonstrating that our
method outperforms existing text-to-SQL correc-
tion methods on GPT-3.5.

4.4 Ablation Study

To validate the effectiveness of each step that our
method designed, we conduct ablation experiments
on entity linking and skeleton parsing. The results
are shown in Table 3, from which we can see that:
(i) Removing either entity linking or skeleton pars-
ing results in a performance drop, confirming the
effectiveness of each step of DAC; (ii) The per-
formance drop is more significant when skeleton
parsing is removed compared to entity linking, indi-
cating that the primary performance bottleneck of
the current model lies in skeleton parsing; (iii) The
performance degradation is more pronounced in
models with smaller scales after ablation, suggest-
ing that errors in the results generated by smaller
models are more significant, and thus DAC can
bring greater performance improvements.

4.5 Analysis

4.5.1 Is SQL with the correct entity and
skeleton the correct SQL?

In §2.1, we propose that automated correction from
the perspective of sub-tasks could not yield correct
SQL results. To demonstrate the effectiveness of
DAC, we calculate the proportion of correct SQL
among those with correct entities and skeletons, as
shown in Table 5. From the table, we can observe
that: (i) The results under most settings are close to
100%, proving a strong consistency between auto-
mated correction from the perspectives of entities
and skeletons and the correct SQL, thereby vali-
dating the effectiveness of our method; (ii) Com-
pared to Spider, the accuracy of results on Bird and
KaggleDBQA is lower, indicating that these two
datasets are more challenging and require abilities
beyond entity linking and skeleton parsing, like
how to fill the entities into the skeleton correctly.

389

Dataset Method Llama3 Deepseek-Coder GPT-3.5 GPT-4o†

8b 70b 6.7b 33b - -

Spider
Few-Shot 70.7 80.7 74.1 77.0 76.9 82.8

+ Self-Debug 72.1 80.8 76.1 79.4 79.2 84.4
+ DAC 75.0 81.3 77.1 80.1 80.6 85.2

Bird
Few-Shot 30.4 47.0 42.4 48.3 40.0 49.2

+ Self-Debug 34.6 47.6 43.6 51.6 43.5 50.8
+ DAC 37.3 48.4 44.7 52.7 44.9 52.3

KaggleDBQA
Few-Shot 24.6 31.4 21.7 27.0 24.3 37.5

+ Self-Debug 28.7 33.6 25.0 27.8 29.8 40.6
+ DAC 29.4 35.1 25.4 29.2 30.9 45.3

Table 1: The main experiment results of DAC on the dev set of each dataset. The baseline Few-Shot method uses
the initial SQL as the result. † denotes the results on 128 examples randomly sampled from the dev set of each
dataset due to the limited computational resources. The best performance of each setting is marked in bold.

Model Method Spider Bird

gpt-3.5-turbo
Self-Debug 72.2 −
SQL-CRAFT 79.3 −
DAC 80.6 44.9

gpt-4o

Self-Debug 73.6 −
EPI-SQL 85.1 −
SQL-CRAFT 85.4 55.2
MAGIC 85.7 −
CHESS 87.2 55.8
DAC 87.5 56.3

Table 2: The EX performance on dev sets of DAC
compared with other text-to-SQL correction methods
on gpt-3.5-turbo and gpt-4o. The best performance
under each setting is marked in bold.

4.5.2 Can LLMs generate entity linking
information effectively?

To validate the performance of LLMs in entity link-
ing, we conduct experiments on the Spider dev
set in Table 4, where we employ the evaluation
metric and use the annotated entity-linking infor-
mation following Liu et al. (2021). We compare
our method with direct gram matching (gram) and
training a classifier (EtA). From the table, we can
see that: (i) In most metrics, the performance of en-
tity linking based on LLMs is superior to that based
on grams or fine-tuning small-scale models (Liu
et al., 2021), demonstrating the effectiveness of
LLMs in entity linking for the text-to-SQL task; (ii)
Compared to code-specific LLMs, general LLMs
exhibit better entity-linking performance in most
metrics, indicating that general-purpose LLMs are
more suitable for the entity-linking task. (iii) How-
ever, the F value of LLMs is lower than the past
method, indicating that LLMs could omit or add
irrelevant tokens during the linking, lowering the
linking performance, which demands better entity
linking methods in future work.

4.5.3 Is the skeleton not based on databases
better than based on databases?

To verify whether the skeletons generated by LLMs
are better than those generated directly, we evalu-
ate the accuracy of the skeletons of generated SQL.
The experimental results are shown in Table 6, from
which we can observe: (i) Across all datasets and
models, the accuracy of the parsed skeletons is
higher than that of directly generated SQL, demon-
strating the effectiveness of using parsed skeletons
for correction; (ii) The improvement in skeleton
accuracy is more significant in LLMs with smaller
scales since small-scale models are less robust and
more affected by disturbances in database informa-
tion, leading to worse initial SQL.

4.5.4 What is the performance of DAC using
oracle entities and skeletons?

To explore the bottlenecks in improving the per-
formance of DAC, we conduct experiments using
oracle entities and skeletons. The experimental
results are shown in Table 7, from which we can
observe: (i) Introducing oracle entities or skeletons
further improves the performance of DAC, demon-
strating that enhancing entity linking or skeleton
parsing can further enhance the performance; (ii)
The performance improvement using oracle skele-
tons is greater than using oracle entities, indicating
that the performance limitation of skeleton parsing
is more severe than that of entity linking; (iii) The
performance improvement using the oracle entities
and skeletons is not significant, suggesting that cur-
rent LLMs can not effectively utilize the provided
oracle entities and skeletons to generate SQL, de-
manding future work to ensure that LLMs make
full use of the given entities and skeletons during
the SQL generation and correction.

390

Model Scale Method Spider Bird Kaggle

Llama3

8b
DAC 75.0 37.3 29.4

- Entity 74.9 (−0.1) 36.4 (−0.9) 29.2 (−0.2)
- Skeleton 73.3 (−1.7) 35.3 (−2.0) 29.0 (−0.4)

70b
DAC 81.3 48.4 35.1

- Entity 81.2 (−0.1) 47.1 (−1.3) 34.9 (−0.2)
- Skeleton 80.9 (−0.4) 47.1 (−1.3) 33.8 (−1.3)

Deepseek-Coder

6.7b
DAC 77.1 44.7 25.4

- Entity 77.0 (−0.1) 44.1 (−0.6) 25.4 (−0.0)
- Skeleton 76.5 (−0.6) 44.6 (−0.1) 25.2 (−0.2)

33b
DAC 80.1 52.7 29.2

- Entity 79.9 (−0.2) 52.1 (−0.6) 28.3 (−0.9)
- Skeleton 79.4 (−0.7) 51.6 (−1.1) 28.9 (−0.3)

Table 3: The ablation experiments of DAC on: (i) Entity: remove the linked entities during the correction; (ii)
Skeleton: remove the parsed skeleton during the correction.

Method Table Column
P R F P R F

N-Gram 78.2 69.6 73.6 61.4 69.1 65.1
EtA+BERT 81.1 85.3 83.1 86.1 79.3 82.5

Llama3-8b 80.9 86.4 81.6 76.6 78.3 75.5
Llama3-70b 88.9 89.1 87.4 78.9 83.1 79.0

Deep.C.-6.7b 69.4 74.6 70.0 72.8 72.6 70.3
Deep.C.-33b 79.1 82.5 79.1 86.2 78.6 79.9

Table 4: The entity linking performance on Spider. P, R,
and F represent the macro average of accuracy, recog-
nition rate, and F1 respectively. The results of N-Gram
and EtA+BERT are reported by Liu et al. (2021). The
best performances are marked in bold.

Model Scale Spider Bird Kaggle

Llama3 8b 99.7 93.8 94.0
70b 99.7 93.3 96.8

Deepseek-Coder 6.7b 99.7 96.1 98.9
33b 99.7 94.2 96.0

Table 5: The proportion of the correct SQL in the results
that the linked entities and the skeleton are correct.

4.5.5 Is DAC still effective if entity and
skeleton are provided in generating?

To demonstrate that DAC can improve perfor-
mance even when entity and skeleton are pro-
vided during generation, we apply DAC to DIN-
SQL (Pourreza and Rafiei, 2023) and TA-SQL (Qu
et al., 2024), both of which incorporate entity link-
ing and skeleton parsing during SQL generation.
The experimental results are shown in Table 8.
Based on the table, DAC further improves perfor-
mance, since models could misuse the entity and
skeleton information, leading to mistakes. Thus,
self-correction from the perspectives of entities and
skeletons is necessary.

Model Scale Method Spider Bird Kaggle

Llama3
8b Initial 32.0 8.1 18.2

Parsed 35.1 10.1 19.5

70b Initial 36.1 11.7 24.3
Parsed 37.4 12.0 25.2

Deep.C.
6.7b Initial 36.0 13.2 15.4

Parsed 37.7 18.3 19.9

33b Initial 35.0 11.5 17.5
Parsed 36.5 16.2 19.3

Table 6: The skeleton accuracy of initial SQL and parsed
skeletons by DAC. The best performance of each model
and each dataset is marked in bold.

5 Related Works

5.1 Text-to-SQL

Research on the text-to-SQL task investigates how
to generate corresponding SQL results based on
given user questions and databases (Deng et al.,
2022). The past research is mainly based on small-
scale models (Guo et al., 2019; Bogin et al., 2019;
Wang et al., 2020; Scholak et al., 2021; Dou et al.,
2022). Currently, the methods based on LLMs
have become the mainstream of the text-to-SQL
task since their brilliant performance without fine-
tuning (Hong et al., 2024b). One type of approach
is to fine-tune LLMs to help them better adapt to
the text-to-SQL task by directly using the text-to-
SQL data (Zhang et al., 2024b; Li et al., 2024b;
Pourreza and Rafiei, 2024), or merging the data of
the tasks related to the text-to-SQL task (e.g., entity
linking, knowledge generation) (Sun et al., 2024;
Hong et al., 2024a). Another type of approach uses
LLMs by few-shot inference, achieving significant
performance improvement without the overhead of
fine-tuning, like in-context learning (Pourreza and
Rafiei, 2023; Gao et al., 2024; Chang and Fosler-

391

Model Scale Method Spider Bird Kaggle

Llama3

8b

DAC 75.0 37.3 29.4
+ Oracle Entity 75.9 (+0.9) 37.7 (+0.4) 29.8 (+0.4)
+ Oracle Skeleton 75.6 (+0.6) 37.9 (+0.6) 30.5 (+1.1)
+ Oracle Both 76.4 (+1.4) 38.0 (+0.7) 30.7 (+1.3)

70b

DAC 81.3 48.4 35.1
+ Oracle Entity 81.8 (+0.5) 48.6 (+0.2) 37.3 (+2.2)
+ Oracle Skeleton 83.6 (+2.3) 48.9 (+0.5) 36.9 (+1.8)
+ Oracle Both 83.8 (+2.5) 49.5 (+1.1) 38.6 (+3.5)

Deepseek-Coder

6.7b

DAC 77.1 44.7 25.4
+ Oracle Entity 77.9 (+0.8) 44.7 (+0.0) 26.3 (+0.9)
+ Oracle Skeleton 78.9 (+1.8) 44.8 (+0.1) 26.5 (+1.1)
+ Oracle Both 78.9 (+1.8) 45.4 (+0.7) 27.2 (+1.8)

33b

DAC 80.1 52.7 29.2
+ Oracle Entity 80.7 (+0.6) 52.7 (+0.0) 31.1 (+1.9)
+ Oracle Skeleton 81.0 (+0.9) 52.8 (+0.1) 30.0 (+0.8)
+ Oracle Both 81.6 (+1.5) 53.1 (+0.4) 31.1 (+1.9)

Table 7: The performance of DAC with oracle entities and skeletons. Entity and Skeleton denote using the oracle
entities and the oracle skeleton respectively, and Both denote using the oracle of them both.

Dataset Method 8b 70b

Spider DIN-SQL 69.0 77.5
+ DAC 75.2 79.8

Bird TA-SQL 29.7 43.8
+ DAC 31.0 45.3

Table 8: EX Performance of the method provided entity
and skeleton during generation with and without DAC
using Llama3.1 on the dev sets. The best performance
under each setting is marked in bold.

Lussier, 2023), self-consistency (Ni et al., 2023;
Zhong et al., 2023; Lee et al., 2024), and multi-
agent (Wang et al., 2024a; Xie et al., 2024).

However, it is hard for the existing methods to
effectively detect and correct errors of generated
SQL (Zhang et al., 2024a; Kamoi et al., 2024),
limiting their practical application. Therefore, we
propose our method, which automatically assesses
the correctness based on the decomposed sub-tasks
of entity linking and skeleton parsing, thereby cor-
recting the mistakes in the generated SQL.

5.2 Automated Correction

The automated correction approach first determines
the correctness of the generated result after pro-
ducing an answer, where if the answer is incor-
rect, it makes the necessary corrections (Pan et al.,
2024). The most mainstream automated correc-
tion methods primarily focus on the code genera-
tion task, such as using feedback during training
to correct errors (Ouyang et al., 2022; Feng et al.,
2024; McAleese et al., 2024) or having the model

judge and correct errors after inference (Chen et al.,
2023a, 2024; Wu et al., 2024; Zhang et al., 2024c).
For the text-to-SQL task, automated correction
methods pay more attention to the characteristics
of the task itself, such as correcting based on exe-
cution results from the database (Li and Xie, 2024;
Zhong et al., 2023; Xia et al., 2024) or generating
SQL-related error messages (Chen et al., 2023b;
Liu and Tan, 2024; Askari et al., 2024).

However, previous work shows that LLMs strug-
gle to directly identify SQL mistakes (Zhang et al.,
2024a; Kamoi et al., 2024). Therefore, we propose
DAC to provide decomposed feedback from the
sub-tasks of entity linking and skeleton parsing,
thereby helping correct mistakes.

6 Conclusion

In this paper, we try to alleviate the problem of
LLMs performing poorly when directly correct-
ing generated SQL for the text-to-SQL task. We
first propose that correcting by decomposing the
original task into sub-tasks is more effective than
directly correcting the generated results. Based
on this discussion, we propose DAC that decom-
poses the text-to-SQL task into two sub-tasks: en-
tity linking and skeleton parsing. We ask LLMs to
generate entity and skeleton information, identify
inconsistencies with the initial SQL as feedback,
and use this feedback for correction. Experimental
results show that our method brings a 1.4% perfor-
mance improvement on three mainstream text-to-
SQL datasets compared with the previous correc-
tion method, showing the effectiveness of DAC.

392

Limitations

(i) We do not conduct complete experiments on
more advanced models, such as gpt-4o (Ope-
nAI et al., 2024), where we will conduct experi-
ments with more advanced models on the complete
datasets when the computing resources are suffi-
cient in the future; (ii) We have limited types of
sub-tasks for the correction with only experimented
on two sub-tasks, entity link and skeleton parsing,
where in the future, we will study error correction
from the perspective of more types of sub-tasks.

Ethics Statement

All datasets and models used in this paper are pub-
licly available, and our usage follows their licenses
and terms.

Acknowledgment

We gratefully acknowledge the support of the Na-
tional Natural Science Foundation of China (NSFC)
via grant 62236004, 62206078 and 62476073.

References
Judith Jeyafreeda Andrew, Marc Vincent, Anita Burgun,

and Nicolas Garcelon. 2024. Evaluating LLMs for
temporal entity extraction from pediatric clinical text
in rare diseases context. In Proceedings of the First
Workshop on Patient-Oriented Language Processing
(CL4Health) @ LREC-COLING 2024, pages 145–
152, Torino, Italia. ELRA and ICCL.

Arian Askari, Christian Poelitz, and Xinye Tang. 2024.
Magic: Generating self-correction guideline for in-
context text-to-sql. Preprint, arXiv:2406.12692.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Global reasoning over database structures for text-
to-SQL parsing. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3659–3664, Hong Kong, China. Association
for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Jipeng Cen, Jiaxin Liu, Zhixu Li, and Jingjing Wang.
2024. Sqlfixagent: Towards semantic-accurate sql
generation via multi-agent collaboration. Preprint,
arXiv:2406.13408.

Shuaichen Chang and Eric Fosler-Lussier. 2023. Se-
lective demonstrations for cross-domain text-to-SQL.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 14174–14189, Sin-
gapore. Association for Computational Linguistics.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023a.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2024. Teaching large language models
to self-debug. In The Twelfth International Confer-
ence on Learning Representations.

Ziru Chen, Shijie Chen, Michael White, Raymond
Mooney, Ali Payani, Jayanth Srinivasa, Yu Su, and
Huan Sun. 2023b. Text-to-SQL error correction with
language models of code. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1359–1372, Toronto, Canada. Association for Com-
putational Linguistics.

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Re-
cent advances in text-to-SQL: A survey of what we
have and what we expect. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 2166–2187, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Shehzaad Zuzar Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason E Weston. 2024. Chain-of-verification reduces
hallucination in large language models.

Longxu Dou, Yan Gao, Mingyang Pan, Dingzirui Wang,
Jian-Guang Lou, Wanxiang Che, and Dechen Zhan.
2022. Unisar: A unified structure-aware autoregres-
sive language model for text-to-sql. arXiv preprint
arXiv:2203.07781.

Yunlong Feng, Yang Xu, Libo Qin, Yasheng Wang, and
Wanxiang Che. 2024. Improving language model
reasoning with self-motivated learning. Preprint,
arXiv:2404.07017.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Akshay Goel, Almog Gueta, Omry Gilon, Chang Liu,
Sofia Erell, Lan Huong Nguyen, Xiaohong Hao,
Bolous Jaber, Shashir Reddy, Rupesh Kartha, Jean
Steiner, Itay Laish, and Amir Feder. 2023. Llms

393

https://aclanthology.org/2024.cl4health-1.18
https://aclanthology.org/2024.cl4health-1.18
https://aclanthology.org/2024.cl4health-1.18
https://arxiv.org/abs/2406.12692
https://arxiv.org/abs/2406.12692
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.18653/v1/D19-1378
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2406.13408
https://arxiv.org/abs/2406.13408
https://doi.org/10.18653/v1/2023.findings-emnlp.944
https://doi.org/10.18653/v1/2023.findings-emnlp.944
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.18653/v1/2023.acl-short.117
https://doi.org/10.18653/v1/2023.acl-short.117
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://aclanthology.org/2022.coling-1.190
https://openreview.net/forum?id=VP20ZB6DHL
https://openreview.net/forum?id=VP20ZB6DHL
https://arxiv.org/abs/2203.07781
https://arxiv.org/abs/2203.07781
https://arxiv.org/abs/2404.07017
https://arxiv.org/abs/2404.07017
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://proceedings.mlr.press/v225/goel23a.html

accelerate annotation for medical information extrac-
tion. In Proceedings of the 3rd Machine Learning for
Health Symposium, volume 225 of Proceedings of
Machine Learning Research, pages 82–100. PMLR.

Zihui Gu, Ju Fan, Nan Tang, Songyue Zhang, Yuxin
Zhang, Zui Chen, Lei Cao, Guoliang Li, Sam
Madden, and Xiaoyong Du. 2023. Interleaving
pre-trained language models and large language
models for zero-shot nl2sql generation. Preprint,
arXiv:2306.08891.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Shasha Li,
Zhihua Wen, Kaixuan Wang, and Ting Wang. 2024a.
Retrieval-augmented gpt-3.5-based text-to-sql frame-
work with sample-aware prompting and dynamic revi-
sion chain. In Neural Information Processing, pages
341–356, Singapore. Springer Nature Singapore.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng
Wang, Zhihua Wen, Kang Yang, and Ting Wang.
2024b. Prompting gpt-3.5 for text-to-sql with de-
semanticization and skeleton retrieval. In PRICAI
2023: Trends in Artificial Intelligence, pages 262–
274, Singapore. Springer Nature Singapore.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024c. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-SQL in cross-domain database
with intermediate representation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4524–4535, Florence,
Italy. Association for Computational Linguistics.

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang,
Feiran Huang, and Xiao Huang. 2024a. Knowledge-
to-sql: Enhancing sql generation with data expert llm.
Preprint, arXiv:2402.11517.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024b.
Next-generation database interfaces: A survey of llm-
based text-to-sql. Preprint, arXiv:2406.08426.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han,
and Rui Zhang. 2024. When can llms actually cor-
rect their own mistakes? a critical survey of self-
correction of llms. Preprint, arXiv:2406.01297.

Ali Buğra Kanburoğlu and F. Boray Tek. 2024. Text-to-
sql: A methodical review of challenges and models.
Turkish Journal of Electrical Engineering and Com-
puter Sciences, 32(3):403–419. Publisher Copyright:
© TÜBİTAK.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh

International Conference on Learning Representa-
tions.

Mayank Kothyari, Dhruva Dhingra, Sunita Sarawagi,
and Soumen Chakrabarti. 2023. CRUSH4SQL:
Collective retrieval using schema hallucination for
Text2SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 14054–14066, Singapore. Association for
Computational Linguistics.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261–2273, Online. As-
sociation for Computational Linguistics.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. Preprint, arXiv:2405.07467.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024a. The dawn of natural lan-
guage to sql: Are we fully ready? Preprint,
arXiv:2406.01265.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings
of the Thirty-Seventh AAAI Conference on Artifi-
cial Intelligence and Thirty-Fifth Conference on In-
novative Applications of Artificial Intelligence and
Thirteenth Symposium on Educational Advances in
Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23.
AAAI Press.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024b. Codes: Towards
building open-source language models for text-to-sql.
Proc. ACM Manag. Data, 2(3).

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023b. Can LLM already serve as
a database interface? a BIg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023c.
CodeIE: Large code generation models are better
few-shot information extractors. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15339–15353, Toronto, Canada. Association
for Computational Linguistics.

394

https://proceedings.mlr.press/v225/goel23a.html
https://proceedings.mlr.press/v225/goel23a.html
https://arxiv.org/abs/2306.08891
https://arxiv.org/abs/2306.08891
https://arxiv.org/abs/2306.08891
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://arxiv.org/abs/2402.11517
https://arxiv.org/abs/2402.11517
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.01297
https://arxiv.org/abs/2406.01297
https://arxiv.org/abs/2406.01297
https://doi.org/10.55730/1300-0632.4077
https://doi.org/10.55730/1300-0632.4077
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2023.acl-long.855

Zhenwen Li and Tao Xie. 2024. Using llm to se-
lect the right sql query from candidates. Preprint,
arXiv:2401.02115.

Qian Liu, Dejian Yang, Jiahui Zhang, Jiaqi Guo, Bin
Zhou, and Jian-Guang Lou. 2021. Awakening la-
tent grounding from pretrained language models for
semantic parsing. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1174–1189, Online. Association for Computa-
tional Linguistics.

Xiping Liu and Zhao Tan. 2024. Epi-sql: Enhancing
text-to-sql translation with error-prevention instruc-
tions. Preprint, arXiv:2404.14453.

Aman Madaan, Katherine Hermann, and Amir Yazdan-
bakhsh. 2023. What makes chain-of-thought prompt-
ing effective? a counterfactual study. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 1448–1535, Singapore. Associ-
ation for Computational Linguistics.

Nat McAleese, Rai (Michael Pokorny), Juan Fe-
lipe Cerón Uribe, Evgenia Nitishinskaya, and Maja
Trebacz. 2024. Llm critics help catch llm bugs. Tech-
nical report, OpenAI.

Meta. 2024. Introducing meta llama 3: The most ca-
pable openly available llm to date. Technical report,
Meta.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,
Wen-tau Yih, Sida I. Wang, and Xi Victoria Lin. 2023.
Lever: learning to verify language-to-code generation
with execution. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,

Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,

395

https://arxiv.org/abs/2401.02115
https://arxiv.org/abs/2401.02115
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2021.findings-acl.100
https://doi.org/10.18653/v1/2021.findings-acl.100
https://arxiv.org/abs/2404.14453
https://arxiv.org/abs/2404.14453
https://arxiv.org/abs/2404.14453
https://doi.org/10.18653/v1/2023.findings-emnlp.101
https://doi.org/10.18653/v1/2023.findings-emnlp.101
https://cdn.openai.com/llm-critics-help-catch-llm-bugs-paper.pdf
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2303.08774

Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2024.
Automatically correcting large language models: Sur-
veying the landscape of diverse automated correction
strategies. Transactions of the Association for Com-
putational Linguistics, 12:484–506.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction. In Thirty-seventh Con-
ference on Neural Information Processing Systems.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Dts-sql: Decomposed text-to-sql with small large
language models. Preprint, arXiv:2402.01117.

Mohammadreza Pourreza, Davood Rafiei, Yuxi Feng,
Raymond Li, Zhenan Fan, and Weiwei Zhang. 2024.
Sql-encoder: Improving nl2sql in-context learn-
ing through a context-aware encoder. Preprint,
arXiv:2403.16204.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy for
mitigating hallucinations in text-to-SQL generation.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 5456–5471, Bangkok,
Thailand. Association for Computational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Liang Shi, Zhengju Tang, and Zhi Yang. 2024. A survey
on employing large language models for text-to-sql
tasks. Preprint, arXiv:2407.15186.

Yinggang Sun, Ziming Guo, Haining Yu, Chuanyi
Liu, Xiang Li, Bingxuan Wang, Xiangzhan Yu, and
Tiancheng Zhao. 2024. Qda-sql: Questions en-
hanced dialogue augmentation for multi-turn text-
to-sql. Preprint, arXiv:2406.10593.

Robert Vacareanu, Anurag Pratik, Evangelia
Spiliopoulou, Zheng Qi, Giovanni Paolini,
Neha Anna John, Jie Ma, Yassine Benajiba, and
Miguel Ballesteros. 2024. General purpose verifi-
cation for chain of thought prompting. Preprint,
arXiv:2405.00204.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024a. Mac-sql:
A multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Dingzirui Wang, Longxu Dou, Wenbin Zhang, Junyu
Zeng, and Wanxiang Che. 2024b. Exploring equa-
tion as a better intermediate meaning representation
for numerical reasoning of large language models.
Proceedings of the AAAI Conference on Artificial
Intelligence, 38(17):19116–19125.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan
Tan, Chao Shen, and Meng Jiang. 2024. Large lan-
guage models can self-correct with minimal effort.
In AI for Math Workshop @ ICML 2024.

Hanchen Xia, Feng Jiang, Naihao Deng, Cunxiang
Wang, Guojiang Zhao, Rada Mihalcea, and Yue
Zhang. 2024. Sql-craft: Text-to-sql through inter-
active refinement and enhanced reasoning. Preprint,
arXiv:2402.14851.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, MingXiong Lin,
Liang Chen, Chenyun Yu, Lei Cheng, ChengXi-
ang Zhuo, Bo Hu, and Zang Li. 2024. Decompo-
sition for enhancing attention: Improving llm-based
text-to-sql through workflow paradigm. Preprint,
arXiv:2402.10671.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao
Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui,
Qi Zhang, and Xuanjing Huang. 2023. A comprehen-
sive capability analysis of gpt-3 and gpt-3.5 series
models. Preprint, arXiv:2303.10420.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu,
Zhishuai Li, Sun Yang, Chi Harold Liu, Rui Zhao,
Ziyue Li, and Hangyu Mao. 2024a. Benchmark-
ing the text-to-sql capability of large language
models: A comprehensive evaluation. Preprint,
arXiv:2403.02951.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun
Gao, Lu Chen, Dongfang Lou, and Jinshu Lin. 2024b.

396

https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://openreview.net/forum?id=p53QDxSIc5
https://openreview.net/forum?id=p53QDxSIc5
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2403.16204
https://arxiv.org/abs/2403.16204
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2406.10593
https://arxiv.org/abs/2406.10593
https://arxiv.org/abs/2406.10593
https://arxiv.org/abs/2405.00204
https://arxiv.org/abs/2405.00204
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://doi.org/10.1609/aaai.v38i17.29879
https://doi.org/10.1609/aaai.v38i17.29879
https://doi.org/10.1609/aaai.v38i17.29879
https://openreview.net/forum?id=mmZLMs4l3d
https://openreview.net/forum?id=mmZLMs4l3d
https://arxiv.org/abs/2402.14851
https://arxiv.org/abs/2402.14851
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://arxiv.org/abs/2303.10420
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2403.02951
https://arxiv.org/abs/2403.02951

Finsql: Model-agnostic llms-based text-to-sql frame-
work for financial analysis. In Companion of the
2024 International Conference on Management of
Data, SIGMOD/PODS ’24, page 93–105, New York,
NY, USA. Association for Computing Machinery.

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuy-
ing Peng, Jun Wang, Yueting Zhuang, and Weim-
ing Lu. 2024c. Self-contrast: Better reflection
through inconsistent solving perspectives. Preprint,
arXiv:2401.02009.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jason Eis-
ner. 2023. Non-programmers can label programs
indirectly via active examples: A case study with
text-to-SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5126–5152, Singapore. Association for
Computational Linguistics.

397

https://doi.org/10.1145/3626246.3653375
https://doi.org/10.1145/3626246.3653375
https://arxiv.org/abs/2401.02009
https://arxiv.org/abs/2401.02009
https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2023.emnlp-main.312

A Prompts of DAC

The prompts of DAC is shown in Table 9, Table 10,
Table 11, Table 12, and Table 13.

B Case Study

Although the effectiveness of DAC is demonstrated
in Table 1, how our method specifically enhances
text-to-SQL performance remains to be studied.
Therefore, we conduct a case study, as shown in
Figure 4. From the figure, we can see that, without
our method, the model output misses using enti-
ties and generates an incorrect skeleton. With our
method, the model generates the correct skeleton
and utilizes all relevant entities, thereby enhancing
text-to-SQL performance.

C Efficiency of DAC

Admittedly, DAC is less efficient compared to di-
rectly generating SQL. However, DAC demon-
strates a significant improvement in performance
over direct SQL generation. Considering that most
other SQL correction methods also require two or
more steps of reasoning, our method is compara-
ble to other SQL correction approaches in terms of
efficiency. In practical applications, balancing effi-
ciency and effectiveness based on computational re-
sources is necessary. For instance, when resources
are limited, corrections can only employ entities or
skeletons.

D What is the performance of DAC on
SQLs with different hardness?

To evaluate the performance of DAC on questions
of varying difficulty, we analyze the results of Spi-
der, as shown in Table 14. From the table, we can
observe: (i) Our method significantly improves per-
formance across questions of different hardness,
demonstrating its effectiveness on both easy and
hard questions; (ii) The performance improvement
is more pronounced on harder questions, showing
that LLMs are likelier to make mistakes in the en-
tity or skeleton of harder questions.

E What is the main error of DAC?

To analyze the limitations of DAC and inspire fu-
ture research, we analyze the error cases with and
without DAC. The error cases are shown in Fig-
ure 5, from which we can observe: (i) Our method
significantly reduces errors across all categories,
demonstrating its effectiveness; (ii) The primary

error remains in skeleton generation, showing that
compared with entity linking, improving the skele-
ton accuracy demands more attention.

398

The prompt of SQL Generation.

Generate a SQL to answer the question with the given schema.
Quote your answer with:
“‘sql
<answer sql>
“‘

—

For example:

“‘sql
{schema of demonstrations}
“‘

Question: {question of demonstrations}
“‘sql
{sql of demonstrations}
“‘

—

...

—

Based on the instruction and the examples, answer the following question:

“‘sql
{schema}
“‘

Question: {question}

Table 9: The prompt of SQL Generation of DAC.

Database:

User Question:
Return the lowest version number, along with its corresponding
template type code.

Initial SQL:
SELECT MIN(t.version_number), t.template_type_code FROM
Templates t GROUP BY t.template_type_code

Corrected SQL:
SELECT MIN(templates.version_number), templates.template_
type_code FROM templates

User Question:
What other details can you tell me about students in reverse
alphabetical order?

Initial SQL:
SELECT * FROM Students ORDER BY othet_details DESC

Corrected SQL:
SELECT other_details FROM Students ORDER BY
other_details DESC

Pa
ra
gr
ap
h paragraph_id document_id …

16514113 6 …
3540024 25 …

… … …

D
oc
um

en
t document_id template_id …

16514113 6 …
3540024 25 …

… … …

Te
m
pl
at
e template_id version_number …

6 2 …
25 6 …
… … …

Database:

C
ou

rs
es

country city …
16514113 6 …
3540024 25 …

… … …

Te
ac
he
rs

teacher_id address_id …
16514113 6 …
3540024 25 …

… … …

St
ud

en
ts other_details email_address …

xxx xxx@xxx.xxx …
yyy yyy@yyy.yyy …
… … …

Figure 4: The case study with and without DAC of the Spider dev set using Llama3-70b. The mistake in the SQL is
annotated with bold.

399

The prompt of Entity Linking.

Align the tokens in the given question to the table entities or the column entities of the schema above, considering
the given SQL.
Present the aligned tokens in the python format List[Dict[str, str]], where each Dict[str, str] denoting each token in
the question containing the following keys:
{
"token": the token in the question
"schema": the schema entity aligned to the token
"type": the type of the entity aligned to the token
}
The "type" can be one of the following:
* "tbl": the table name
* "col": the column name
* "val": the value
"schema" and "type" are either both null or not null at the same time.

Here are some examples.

—

{schema of demonstrations}

SQL: {sql of demonstrations}
Question: {question of demonstrations}
Alignments: {alignment of demonstrations}

—

...

—

Based on the instruction and the examples above, solve the following question:

{schema}

SQL: {sql}
Question: {question}
Alignments:

Table 10: The prompt of Entity Linking of DAC.

400

The prompt of Skeleton Parsing.

Hallucinate a SQL to answer the question.
Quote your answer with:
“‘sql
<answer sql>
“‘

—

For example:

Question: {question of demonstrations}
“‘sql
{sql of demonstrations}
“‘

—

...

—

Based on the instruction and the examples, answer the following question:

Question: {question}

Table 11: The prompt of Skeleton Parsing of DAC.

The prompt of Correction with the entity feedback.

“‘sql
{schema}
“‘

Fix the sql "{sql}" to answer the question "{question}" based on the above database and the alignment.
Present your sql in the format:
“‘sql
<your sql>
“‘
It should be noticed that {notification}. Your sql must contain the tables and columns mentioned by the question.

Table 12: The prompt of Correction of DAC with the entity feedback. The format of “{notification}” is like
“<tables or columns> are mentioned by the question”.

The prompt of Correction with the skeleton feedback.

“‘sql
{schema}
“‘

Fix the sql "{sql}" to answer the question "{question}" with the above schema.
Present your sql in the format:
“‘sql
<your sql>
“‘
It should be noticed that the SQL skeleton could be like "{skeleton}", where each ’_’ can only be replaced with one
single table, column or value.

Table 13: The prompt of Correction of DAC with the skeleton feedback.

401

Method Easy Medium Hard Extra

Llama3-8b 87.1 78.0 59.8 38.0
+ DAC 89.9 81.8 61.5 48.8

Llama3-70b 92.3 87.0 68.4 59.0
+ DAC 94.0 86.5 69.0 61.4

Deep.C.-6.7b 86.7 83.0 61.5 44.6
+ DAC 90.3 84.8 66.7 47.6

Deep.C.-33b 92.3 85.7 59.8 48.8
+ DAC 95.2 86.8 62.1 58.4

Table 14: Performance on questions with different hard-
ness of the Spider dev set with and without DAC. Each
model name denotes the few-shot performance. The
best performance of different settings is marked in bold.

Table Column Skeleton Execution
0

200

400

600

195.2

403.3

497.2

133.5
173.6

370.9

458.3

42.2

Error Type

#E
xa

m
pl

e

Few-Shot
+ DAC

Figure 5: The error analysis with and without DAC.
#Example denotes the average error examples across
both models (Llama3, Deepseek-Coder) and all three
datasets (Spider, Bird and KaggleDBQA). The table and
column errors denote that the generated SQL contains
incorrect tables or columns. The skeleton error denotes
the incorrect skeleton. The execution error denotes that
the generated SQL can not be executed.

402

