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Abstract
Vision language models (VLMs) perform well
on many tasks but often fail at spatial reason-
ing, which is essential for navigation and in-
teraction with physical environments. Many
spatial reasoning tasks depend on fundamental
two-dimensional (2D) skills, yet our evaluation
shows that state-of-the-art VLMs give implau-
sible or incorrect answers to composite spatial
problems, including simple pathfinding tasks
that humans solve effortlessly. To address this,
we enhance 2D spatial reasoning in VLMs by
training them only on basic spatial capabilities.
We first disentangle 2D spatial reasoning into
three core components: direction comprehen-
sion, distance estimation, and localization. We
hypothesize that mastering these skills substan-
tially improves performance on complex spatial
tasks that require advanced reasoning and com-
binatorial problem solving, while also general-
izing to real-world scenarios. To test this, we
introduce Sparkle, a framework that generates
synthetic data to provide targeted supervision
across these three capabilities and yields an in-
struction dataset for each. Experiments show
that VLMs fine-tuned with Sparkle improve
not only on basic tasks but also on composite
and out-of-distribution real-world spatial rea-
soning tasks. These results indicate that en-
hancing basic spatial skills through synthetic
generalization effectively advances complex
spatial reasoning and offers a systematic strat-
egy for boosting the spatial understanding of
VLMs. Source codes of Sparkle are available
at https://github.com/YihongT/Sparkle.

1 Introduction
Vision language models (VLMs) (OpenAI, 2023;
Liu et al., 2023b; Chen et al., 2024c; Hong et al.,
2024; Wang et al., 2023) have demonstrated near-
human performance in tasks like image caption-
ing (Chen et al., 2015), visual question answer-
ing (VQA) (Goyal et al., 2017; Singh et al., 2019)
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Given the 
grid graph with 
nodes(N1, N2, ... 
N16), find the 
shortest path 
from the 
green node to the 
red node.

Answer: 
["N5",""N9","N13"]

Image

The shortest path can be represented as:
["N5","N6","N10","N11","N15","N14","N13"].

The shortest path from N5 to N13 is:
["N5","N6","N10","N9","N13"].

       ChatGPT 4o (Commercial)

       InternVL2-Pro (Open-sourced)

Question

Figure 1: VLMs fail to solve the pathfinding problem

and abundant downstream tasks by combining vi-
sual and text inputs to reason about the physical
world. However, these models exhibit significant
limitations in understanding spatial relationships.
For instance, as shown in Figure 1, state-of-the-art
(SoTA) VLMs GPT-4o and InternVL2-Pro (Ope-
nAI, 2023; Chen et al., 2024c) generate implausible
responses to a shortest path problem that a human
could solve at a glance, a simple 2D spatial reason-
ing task.

Nevertheless, 2D spatial reasoning is essential
for VLMs to understand and interact with the phys-
ical environments, shaping their ability to solve
mazes (Ivanitskiy et al., 2023; Wang et al., 2024),
plan routes (Feng et al., 2024; Chen et al., 2024b),
and solve geometric problems like humans (Fernan-
des and de Oliveira, 2009). These tasks emphasize
2D spatial reasoning, requiring VLMs to process
and navigate flat visual planes, interpret spatial rela-
tionships, and make decisions based on geometric
understanding. Such capabilities are fundamental
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in translating visual input into actionable insights.
While more and more VLMs are developed with
larger training datasets and extensive benchmarks
(Ge et al., 2024; Zhang et al., 2024), the focus on
enhancing spatial reasoning has received compara-
tively less attention, despite its importance to the
core capabilities of VLMs.

In this paper, we study VLMs’ spatial reasoning
capabilities in a 2D space by investigating three
key questions: (1) How well do existing models
perform on 2D spatial reasoning? (2) What funda-
mental tasks affect spatial reasoning capabilities in
2D? (3) Can mastering basic tasks help improve
composite and real-world spatial reasoning?

We begin by providing a systematic breakdown
of 2D spatial reasoning, grounded in the princi-
ples of coordinate systems that represent 2D space.
From this analysis, we identified three basic ca-
pabilities fundamental for spatial reasoning in 2D
space: direction comprehension, distance estima-
tion, and localization. A systematic evaluation
of the performance of existing open-source and
closed-source VLMs on these three basic capabil-
ities reveals that even the most advanced VLMs
sometimes struggle with these fundamental tasks.
For instance, in a simple 2D direction classifica-
tion task, where a model is asked to determine the
relative direction (top left, top right, bottom left,
bottom right) of one object relative to another on
a straightforward diagram with only two objects,
the state-of-the-art VLM GPT-4o can achieve only
76.5% accuracy. In contrast, a human should an-
swer these questions correctly with little effort.

Most real-world spatial reasoning tasks, such
as pathfinding (Lester, 2005; Cui and Shi, 2011),
inherently require the composition of the basic ca-
pabilities identified above. A composite task is
often subject to specific constraints that necessitate
tailored solutions, unlike improving basic spatial
reasoning capabilities, which can exhibit generaliz-
ability. In order to effectively improve the model’s
overall spatial reasoning capabilities in 2D space,
we raise a conjecture: whether a VLM that mas-
ters the three basic capabilities can generalize and
perform better on more complex composite spatial
tasks. In other words, can a VLM exhibit compo-
sitional generalizability (van Zee, 2020) in spatial
reasoning tasks?

To test this, we propose Sparkle, which stands
for SPAtial Reasoing through Key capabiLities
Enhancement. This framework fine-tunes VLMs
on these three basic spatial capabilities by program-

matically generating synthetic data and providing
supervision to form an instruction dataset for each
capability. Additionally, Sparkle creates simplified
visual representations to reduce recognition errors,
allowing us to focus specifically on enhancing and
evaluating VLMs’ spatial capabilities. Our experi-
mental results show that models trained on Sparkle
achieve significant performance gains, not only in
the basic tasks themselves (e.g., improving from
35% to 83% for InternVL2-8B on direction com-
prehension) but also in generalizing to composite
and out-of-distribution general spatial reasoning
tasks (e.g., improving from 13.5% to 40.0% on
the shortest path problem). Additionally, our ab-
lation study confirms the importance of mastering
all three basic spatial reasoning capabilities. To
summarize, our contributions are:
• We show that existing VLMs struggle with spatial

reasoning tasks that humans solve effortlessly.

• We identify three basic spatial reasoning com-
ponents and propose the Sparkle framework to
improve these three fundamental spatial reason-
ing capabilities.

• Our experiments prove Sparkle’s effectiveness
in significantly enhancing the basic spatial ca-
pabilities of VLMs, with strong generalizability
to out-of-distribution composite and real-world
spatial reasoning tasks.

2 Related Work

2.1 Vision Language Models and Applications

Early works on VLMs, such as CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021), lever-
aged contrastive learning to align visual and textual
embeddings in a shared latent space, demonstrating
strong capabilities in linking visual content with
corresponding natural language descriptions. With
the rapid advancement of Large Language Mod-
els (LLMs), modern VLMs increasingly combine
pretrained vision models (Dosovitskiy et al., 2021;
Chen et al., 2023b) with powerful LLMs (Chiang
et al., 2023; Bai et al., 2023a; Jiang et al., 2023;
Cai et al., 2024) to facilitate a more cohesive un-
derstanding of both modalities (Liu et al., 2023b;
Bai et al., 2023a; Chen et al., 2024c). This ap-
proach enables richer visual reasoning, open-ended
image captioning, and more interactive multimodal
dialogue systems.

VLMs have been applied in various pre-training
tasks, such as image-text matching, masked im-
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Figure 2: The proposed Sparkle framework.

age modeling, and multimodal reasoning (Li et al.,
2022, 2023b; Wang et al., 2022b). In downstream
tasks, they excel in applications like visual ques-
tion answering (Antol et al., 2015; Wang et al.,
2022a; Tang et al., 2025), image captioning (Li
et al., 2020; Yu et al., 2024; Sidorov et al., 2020;
Wang et al., 2021), image generation based on tex-
tual prompts (Ramesh et al., 2022; Baldridge et al.,
2024), and aiding human-machine interactions in
complex real-world settings, showcasing their ver-
satility and potential across a broad range of vision
language applications.

2.2 Spatial Reasoning in LLMs and VLMs

Spatial reasoning in LLMs involves understanding
and manipulating spatial relationships described
in text. Early work focused on extracting spatial
information from natural language (Hois and Kutz,
2011; Kordjamshidi et al., 2011). Recent efforts
emphasize improving multi-hop spatial reasoning
(Li et al., 2024b; Tang et al., 2024), especially in
complex scenarios like 2D visual scenes (Shi et al.,
2022). Methods include pretraining on synthetic
datasets to better capture spatial patterns (Mirzaee
et al., 2021), and using in-context learning to gen-
eralize spatial reasoning across tasks, such as trans-
forming spatial data into logical forms or visualiz-
ing reasoning trace (Yang et al., 2023b; Wu et al.,
2024).

Building on these foundations, VLMs extend

spatial reasoning by integrating visual inputs and
often implicitly encode spatial knowledge through
large-scale pretraining on visual-text datasets (Rad-
ford et al., 2021; Li et al., 2023c). Early studies
on VLMs primarily focus on understanding spa-
tial relationships between objects in front-view im-
ages (Liu et al., 2023a), laying the groundwork for
2D spatial reasoning. More recently, research on
VLMs has expanded to 3D reasoning tasks, which
introduce additional challenges such as depth es-
timation (Chen et al., 2024a) and path planning
(Chen et al., 2024b; Deng et al., 2020), as seen in
applications like robotic grasping (Xu et al., 2023)
and navigation (Shah et al., 2023; Chiang et al.,
2024) in the embodied AI field (Li et al., 2024c).
Despite these advances, 2D spatial reasoning re-
mains more fundamental and flexible, as it can be
applied to various tasks, including VQA (Ge et al.,
2024; Kamath et al., 2023; Li et al., 2024a) and user
interface grounding (Rozanova et al., 2021). Due
to its broad applicability and foundational role, this
work focuses on exploring 2D spatial reasoning
capabilities within VLMs.

3 Methodology

In order to systematically evaluate and enhance
the spatial reasoning capabilities of VLMs in 2D
environments, we introduce the Sparkle framework,
as illustrated in Figure 2.
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Q: Which distance is the 
shortest? N1 and N2, N1 
and N3, N2 and N3
A: N1 and N3

Q: Compare the distances: 
N1 and N3 and N2 and N3. 
Which one is longer?
A: N2 and N3

Q: In a 10x10 image, 
what is the distance 
between the N1 and N3 
objects?
A: 4.07

Q: Determine the 
direction from the N2 
object to the N3 object.
A: top left
 
Q: From the N1 object to 
the N2 object, which 
direction should you move?
A: down

Q: What is the direction 
from the N1 object to the 
N3 object?
A: down left

Q: Which relative location 
is the N2 located at?
A: down right

Q: Which relative position 
is the N1 located at?
A: top right

Q: Identify the location 
of the N3.
A: top left

Q: In a 10x10 image, what 
is the coordinate of the 
N3 object?
A: (3.59, 7.34)

DistanceLocalizationVisual Representation

Figure 3: An instruction data sample from Sparkle.

3.1 Disentangling Spatial Reasoning

2D spaces are usually represented by coordinate
systems, which provide a structured way to de-
scribe objects’ positions and spatial relationships
within a plane (Byrne and Johnson-Laird, 1989).
These systems rely on core principles to articulate
an object’s position: direction defines orientation,
distance represents magnitude, and localization in-
tegrates both to precisely describe a location (Just
and Carpenter, 1985). Building on these princi-
ples and characteristics of 2D spaces, we identify
three foundational components of 2D spatial rea-
soning: (1) Direction Comprehension: The ability
to understand the orientation of an object relative
to a reference object; (2) Distance Estimation: The
ability to measure the spatial displacement between
objects; (3) Localization: The ability to determine
the position of an object in space. Cognitively,
Freksa (Freksa, 1991) identifies orientation, prox-
imity, and the spatial arrangement of objects as
universally useful conceptual properties for spatial
reasoning. Frank (Frank, 1992) also adopted a sim-
ilar decomposition to study human reasoning about
space and spatial properties. The conceptual neigh-
borhoods theory (Freksa, 1991) demonstrates that
simpler conceptual distinctions naturally general-
ize to broader reasoning contexts (our hypothesis).
These evidences support the disentangled spatial
capabilities form the foundation of 2D spatial rea-
soning, offering essential elements required to fully
describe, understand, and reason about an object’s
position and relationships with other objects within
a 2D space. This decomposition enables a sys-
tematic and comprehensive evaluation of spatial
reasoning by disentangling these basic spatial capa-
bilities, enhancing specificity in assessing spatial
reasoning capabilities in VLMs.

3.2 Sparkle

To comprehensively investigate our hypothesis, we
introduce Sparkle, a simple yet effective frame-
work for constructing an instruction dataset focused
on enhancing a model’s spatial reasoning abilities.
This framework only improves VLMs’ basic spatial
capabilities, and this design enables us to evaluate
whether models that perform well on basic spatial
reasoning tasks can also excel in more complex and
composite problems.

3.2.1 Instruction Data Generation

The design of our instruction dataset focuses on
three basic spatial capabilities: direction, distance,
and localization, based on insights provided in Sec-
tion 3.1. The proposed fine-tuning pipeline does
not require manual labeling, as all data can be pro-
grammatically generated.

We use G to denote a data generator that can gen-
erate a set of objects, P = {Ni}ni=1, representing a
training sample of basic spatial capabilities. Each
object Ni = (xi, yi) ∈ R2 consists of randomly
sampled coordinates within a bounded region. For
each basic capability T ∈ {dir., dist., loc.}, we con-
struct a dataset DT containing input-output pairs
(X T ,YT ), where X T represents the inputs and YT

represents the corresponding ground truth outputs.
Each input X T consists of: (1) A visual input X T

V :
A labeled diagram representing the spatial configu-
ration of a sample of objects through a visual repre-
sentation function VT (P ), (2) A language prompt
X T
L : A question querying some aspects of spatial

properties for P . For example, to craft a training
sample for direction comprehension, two objects,
N1 and N2, are selected from P , and a question
such as “What is the direction of N2 relative to N1?”
is posed. The corresponding correct answer Y T
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can be easily computed since we can access the ex-
act coordinates of these objects, e.g., we can obtain
the answer to the above question by calculating the
vector from N1 to N2 based on their coordinates
and map it to the corresponding directional label.
Details are in Appendix §A.

The resulting training dataset consists of these
generated questions and answers, paired with the
corresponding visual representations, as shown in
Figure 3. Specifically, the training pairs are rep-
resented as {(X train

L ,X train
V ,Y train)}, where X train

L

represents the language-based queries, X train
V rep-

resents the visual representations, and Y train rep-
resents the corresponding answers. We provide
a complete training sample from Sparkle in Ap-
pendix §D.1.

3.2.2 Instruction Finetuning for Basic Tasks
To enhance the spatial reasoning capabilities of
VLMs, we use the Sparkle training set, denoted as
X train = {(X train

L ,X train
V )}. The objective is to min-

imize the negative log-likelihood of the predicted
answers. The loss function L is defined as:

L(θ) = −E(X train,Y train)

[
log p(Y train | X train

V ,X train
L ; θ)

]

where θ represents the parameters of the VLM. The
training aims to improve the model’s proficiency in
basic spatial reasoning tasks, which subsequently
allows for evaluation of its performance on more
complex spatial challenges.

3.3 Tasks
The goal of the employed tasks is to evaluate the
2D spatial reasoning capabilities of VLMs and pro-
vide a foundation for studying how acquiring basic
spatial capabilities can enhance performance on
complex tasks. To achieve this, we follow key de-
sign criteria: (1) focus on spatial reasoning, and (2)
progression from basic to composite tasks.

3.3.1 Basic Tasks
As shown in Figure 4 (left), the basic tasks in
Sparkle are designed to assess the model’s under-
standing of three basic spatial capabilities: (1) di-
rection comprehension, (2) distance estimation, (3)
localization. In each basic task, the VLM is pro-
vided with an image containing several labeled data
objects and a multiple-choice question about the
spatial properties of these objects, with the goal of
having the model answer these questions correctly.
We first generate labeled diagrams that serve as vi-
sual inputs, then generate the questions (in multiple-

choice format) and corresponding answer pairs to
obtain the basic task test set.

3.3.2 Composite Tasks
Composite tasks test whether the model can inte-
grate basic spatial skills to solve more complex
problems, rather than learning each skill in isola-
tion. We use the Shortest Path Problem (SPP) and
Traveling Salesman Problem (TSP) for evaluation.

Shortest Path Problem (SPP) SPP evaluates the
ability to compute the most efficient route between
two objects on a 2D grid, requiring a combina-
tion of distance estimation and spatial planning.
Consider a grid G of size n × n, with two spe-
cial objects: the start object Nstart = (xs, ys) and
the end object Nend = (xe, ye). We employ a lan-
guage model LM generates the prompt X spp

L using
a predefined prompt template Pspp, expressed as:
X spp
L = LM(Pspp(G,Nstart, Nend)). The visual in-

put is produced similar to basic tasks: X spp
V =

Vspp(G,Nstart, Nend). The combined input for the
VLM is X spp = (X spp

V ,X spp
L ), and the model is

expected to predict the shortest path Ŷspp, which
is evaluated against the true shortest path, Yspp,
computed using standard algorithms.

Traveling Salesman Problem (TSP) As shown
in Figure 4 (middle), the TSP represents a more
challenging spatial reasoning task, involving com-
binatorial optimization. The model must find
the shortest possible route that visits each ob-
ject exactly once and returns to the starting ob-
ject. Given n objects P tsp = {Ni}ni=1 sampled
from G, the ground truth solution Y tsp is com-
puted using a TSP solver Mtsp(P

tsp). Similarly,
the input to VLMs consists of a visual represen-
tation X tsp

V = Vtsp(P
tsp) and a corresponding lan-

guage prompt X tsp
L . The complete input query is

X tsp = (X tsp
V ,X tsp

L ). Similarly, the model’s pre-
dicted order of visiting all objects, Ŷ tsp, is then
evaluated against the ground truth solution Y tsp.

Discussion Given that the SPP can be solved in
polynomial time, we expect that if the model can
effectively combine its knowledge of basic spatial
concepts, it will show significant improvements in
solving this task efficiently. On the other hand, the
TSP is an NP-hard problem, requiring combinato-
rial optimization to obtain the exact solution. We
include the TSP to push the limits of the model’s
spatial reasoning capabilities, aiming to investigate
how well the model can manage more complex
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Shortest Path 
Problem

Basic Spatial Relationships
Understanding

Q: Which distance is the shortest? 

Options: A. N1 to N4, B. N1 to N3, 

C. N4 to N3

A: A

 

Q: Determine the direction from 

N1 to N2. Options: A. top left, B. 

top right, C. down left, D. down 

right

A: B

Q: What is the position of the N4 

object? Options: A. top left, B. 

top, C. top right, D. left, E. 

center, F. right, G. down left, H. 

down, I. down right

A: I

Q: The image shows a grid graph 

where each node is labeled (N1, 

N2, ... N16) and connected to 

neighboring nodes. 

Based on the image, find the 

shortest path from the start node 

(green) to the end node (red) 

without loops or backtracking.

Example Output:

[N16, N12, N8, N4, N3] 

Q: Given an image with exactly 5 

objects, analyze their spatial 

relationships and find the 

shortest path that:

1. starts at the N1 object 

2. visits each object exactly 

once

Example Output:

[N1, N3, N4, N5, N2]

Traveling Salesman 
Problem

General Spatial VQA
Tasks (1 Object)

Q: Pick the correct option that 

matches the image. Options: 

A. A dog under a table, 

B. A dog on a table, 

C. A dog to the left of a table, 

D. A dog to the right of a table

A: D

Q: Pick the correct option that 

matches the image. Options: 

A. A photo of a fire hydrant on 

the right, 

B. A photo of a fire hydrant on 

the left

A: A

General Spatial VQA
Tasks (2 Objects)

Figure 4: Evaluation samples used in our experiments.

problem-solving tasks beyond the basic integration
of spatial skills.

3.3.3 General Visual-Spatial Tasks
Sparkle uses simplified visual representations to
focus on improving the spatial reasoning abilities
of vision-language models (VLMs). The goal is
for these enhanced spatial capabilities to generalize
across different visual distributions. To evaluate
this, we incorporate visual-spatial tasks with real-
world images from standard VQA datasets.

4 Experiments

In this section, we provide our findings and re-
sults to demonstrate the effectiveness of the Sparkle
framework. Specifically, the experiments are de-
signed to answer the following research questions:
RQ1: Can mastering basic 2D spatial compo-
nents enhance overall spatial reasoning capability
in VLMs? RQ2: What insights from the results
of evaluations (Section 4.2), enhancements (Sec-
tion 4.2), and spatial components (Section 4.3) can
guide improvements in model design, training, and
data collection for spatial reasoning in VLMs?

4.1 Settings

Models We tested open-source and commercial
models to evaluate and enhance VLMs’ spatial rea-
soning capabilities. For commercial VLMs, we
used GPT-4o from OpenAI (Yang et al., 2023a) and
Google-Gemini (GeminiTeam et al., 2023). We in-
cluded LLaVA1.6 (Liu et al., 2024), Qwen-VL (Bai
et al., 2023b), ChatGLM-4V (GLM et al., 2024),
MiniCPM-llama3-V2.5 (Yao et al., 2024) and In-
ternVL2 (Chen et al., 2024c) for open-source mod-
els. For all adopted tasks, we report accuracy as
the evaluation metric. We use the MS-Swift library
(Zhao et al., 2024) and apply the LoRA (Hu et al.,
2022) fine-tuning strategy, with low-rank dimen-

sion of 32. We set a constant learning rate of 1e-4
and a batch size of 1. All training and evaluation
are performed on GPU clusters with 8×NVIDIA
A100 GPUs. More details are in Appendix §A.

Data We built the Sparkle training dataset by
generating 10K synthetic images, each paired with
spatial reasoning instructions and answers covering
three capabilities: direction, distance, and localiza-
tion, resulting in 170K training samples in total
(see detailed statistics and examples in Appendix B
and Figure 10 in Appendix D.1). Numerical val-
ues were learned using a standard autoregressive
cross-entropy loss, standard in visual grounding
tasks (Chen et al., 2023a; Liu et al., 2023c).

We evaluated VLMs on (1) shortest path problem
(SPP), (2) traveling salesman problem (TSP), and
(3) basic spatial relationship understanding tasks,
comprising 2,000 samples each. Additionally, we
assessed generalizability by testing performance
on out-of-distribution, real-world spatial reasoning
benchmarks, including What’s Up (Kamath et al.,
2023), COCO-spatial (Lin et al., 2014), and GQA-
spatial (Hudson and Manning, 2019). Further de-
tails of task setups and variations are provided in
Appendix B.

4.2 Main Results

Evaluation of Existing VLMs From Table 1, we
observe that even the state-of-the-art commercial
VLMs cannot obtain satisfactory results on com-
posite tasks like SPP and TSP. Open-source models
achieve even worse performance (≤25% accuracy)
on these tasks.

Specifically, LLaVA performs poorly particu-
larly on SPP compared to TSP, which may be at-
tributed to the grid data structure in SPP being more
complex for VLMs to perceive, understand, and
generate valid paths grounded on the grid compared
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Table 1: VLM performance on spatial reasoning tasks before and after Sparkle enhancement. ∆ indicates the
relative improvement.

Basic Tasks Composite Tasks General Tasks
Model

Loc. Dist. Dir.
SPP TSP

What’s Up
COCO-Spatial GQA-Spatial

4Grid 5Grid 4Obj 5Obj 1Obj 2Obj 1Obj 2Obj

GPT-4o 68.2 43.2 77.2 75.2 76.2 23.4 21.5 95.9 88.2 49.7 89.4 63.6
Gemini 61.4 41.2 56.2 66.4 64.2 14.3 16.4 69.4 50.8 34.1 42.9 21.7

LLaVA1.6-7B 25.2 37.3 30.8 1.7 0.9 12.0 4.0 44.9 82.3 68.5 82.7 80.4
+ Sparkle 40.7 57.2 75.9 6.2 2.3 15.8 6.8 51.4 86.8 84.2 92.3 84.1
∆ +61.5% +53.4% +146.4% +264.7% +155.6% +31.7% +70.0% +14.5% +5.5% +22.9% +11.6% +4.6%

Qwen-VL-7B 25.0 37.6 24.4 2.2 1.2 11.7 3.7 42.7 89.8 74.3 98.5 94.0
+ Sparkle 59.6 61.3 64.8 5.4 4.6 18.4 12.0 49.6 96.8 87.1 99.0 96.4
∆ +138.4% +63.0% +165.6% +145.5% +283.3% +57.3% +224.3% +16.2% +7.8% +17.2% +0.5% +2.6%

ChatGLM-4V-8B 49.7 45.7 41.6 15.8 8.7 9.8 4.4 96.4 75.9 66.5 78.3 75.5
+ Sparkle 72.6 70.3 67.9 36.3 17.1 20.4 8.6 98.4 85.4 82.9 90.5 81.8
∆ +46.1% +53.8% +63.2% +129.7% +96.6% +108.2% +95.5% +2.1% +12.5% +24.7% +15.6% +8.3%

MiniCPM-V2.5-8B 42.5 26.2 44.2 16.4 11.4 14.7 4.2 76.2 70.1 73.1 80.3 53.3
+ Sparkle 66.0 82.0 79.6 31.9 14.0 17.2 13.9 80.2 88.0 88.7 91.8 79.4
∆ +55.3% +213.0% +80.1% +94.5% +22.8% +17.0% +231.0% +5.2% +25.5% +21.3% +14.3% +49.0%

InternVL2-8B 61.3 44.2 34.6 15.4 13.9 17.1 9.6 92.7 92.5 71.3 97.5 85.3
+ Sparkle 74.4 83.8 83.2 38.8 39.0 21.6 14.4 94.9 94.2 78.7 99.0 90.4
∆ +21.4% +89.6% +140.5% +151.9% +180.6% +26.3% +50.0% +2.3% +1.8% +10.4% +1.5% +6.0%

to ordering just a few objects in TSP, indicating that
these VLMs struggle with visual representations in-
volving intricate spatial structures. Performance on
the TSP task worsens as the number of objects in-
creases across most models, highlighting the grow-
ing difficulty of spatial reasoning with more objects.
However, in SPP, we discover that increasing the
grid size has little impact on performance, indicat-
ing that a larger grid does not increase the difficulty
of reasoning. This result aligns with our initial
design principles, where SPP was intended to com-
bine basic spatial understanding with straightfor-
ward spatial planning. For general tasks involving
real-world images, VLMs still struggle to identify
correct spatial relationships and perform spatial
reasoning, leaving a significant gap compared to
human capability. To delve into how VLMs behave
poorly on spatial reasoning tasks, we further exam-
ine their performance on basic spatial relationship
understanding, i.e. direction, location and localiza-
tion comprehension. As shown in Table 1, even the
state-of-the-art VLM GPT-4o struggles with basic
spatial relationship understanding, achieving only
68.2%, 43.2%, and 77.2% accuracy on the direc-
tion, distance, and localization tasks, respectively.
These findings explain why VLMs underperform
on composite and general tasks, as their weak basic
spatial capabilities directly hinder their ability to
handle more complex spatial challenges.

Effectiveness of Sparkle To demonstrate the ef-
fectiveness of Sparkle, we present results from fine-

tuning all selected open-source VLMs using this
method. The results reveal significant improve-
ments in both basic and composite tasks, with gen-
eralized improvements to general tasks, indicating
that 2D spatial reasoning capabilities can be signif-
icantly improved when a model masters the basic
components of spatial reasoning. When combining
these enhanced spatial abilities with the inherent
generalizability of VLMs, the performance gains
can be effectively extended to complex spatial rea-
soning tasks in real-world image domains. Specifi-
cally, Sparkle only contains instructions for basic
spatial relationship understanding. However, after
fine-tuning with this data, VLMs improved in basic
spatial reasoning (around 90%) and showed signifi-
cant gains (around 120%) in composite tasks and
general tasks (around 12%). This justifies that im-
proving these basic spatial reasoning capabilities
could effectively enhance VLMs’ overall spatial
reasoning, enabling them to tackle more complex
tasks and comprehend more sophisticated visual
representations. This outcome also justifies the ra-
tionality of adopting a simplified visual representa-
tion, with the hope of helping VLMs acquire inher-
ent spatial reasoning capabilities that can transfer
to more complex visual representations.

It is worth noting that the TSP involves more
complex spatial reasoning than the SPP. However,
VLMs find the SPP more challenging because their
outputs must be precisely aligned with the grid. In
contrast, solving the TSP only requires determin-

4089



ing the optimal order of objects. When comparing
the improvements of VLMs on SPP and TSP, we
observe that the gains (around 90%) on TSP are
much smaller than those on the SPP task (150%).
One possible explanation is that the TSP involves
more complex optimization challenges, which may
not be as easily addressed by simply improving
basic spatial reasoning skills, as discussed in Sec-
tion 3.3.2. This underscores the need for further
research into the optimization capabilities of lan-
guage models, a topic we hope our findings will
inspire.

Generalizability In the previous subsection, we
have shown that spatial reasoning improvements
can generalize from simple tasks to more com-
plex ones. In this section, we evaluate this gen-
eralization further by testing spatial reasoning per-
formance in an out-of-distribution visual setting
to assess whether these enhanced capabilities ex-
tend to broader VLM spatial tasks. Specifically,
we explore whether the enhanced spatial reasoning
capabilities transfer to other general VLM spatial
tasks. As shown in Table 1 , there are consistent
gains across general VLM benchmarks related to
spatial reasoning. For instance, the COCO-spatial
and GQA-spatial benchmarks illustrate that cur-
rent VLMs often struggle to accurately capture
spatial relationships between two objects. With
our Sparkle framework, this capability is greatly
improved. This generalized improvement demon-
strates that Sparkle enhances the inherent spatial
reasoning capabilities of VLMs, supporting the
effectiveness of using simplified visual represen-
tations. These findings indicate that the Sparkle
framework offers a simple yet powerful method for
enhancing spatial reasoning capabilities in VLMs.
Future VLM research could benefit from incorpo-
rating Sparkle’s approach by decomposing spatial
tasks into foundational skills and systematically im-
proving them in pretraining and fine-tuning stages,
thereby enhancing model performance on complex
and general spatial reasoning tasks.

4.3 Ablation Studies

Table 2: Random perturbation results for InternVL2-8B.
Perturbation What’s Up COCO-1 COCO-2 GQA-1 GQA-2
Direction 85.4 90.9 62.4 96 76.8
Distance 90.5 91.4 64.6 96.4 78.8
Localization 87.6 89.6 65.8 94.6 80.5
N/A 94.9 94.2 78.7 99.0 90.4

Impact of Training Components To evaluate
the impact of different training components, we
first conduct random perturbation (i.e., perturb
training labels randomly) to InternVL2-8B on each
spatial capabilities to justify the derivation of dis-
entangled spatial capabilities. As shown in Table 2,
the VLM’s performance degrades drastically after
perturbation, confirming the critical role of each
identified basic spatial component.
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Figure 5: Sparkle variants: Sparkle ■; Sparkle with-
out numerical information ■; Sparkle (Localization) ■;
Sparkle (Distance) ■; Sparkle (Direction) ■.

We also trained InternVL2-8B on individual spa-
tial reasoning tasks with our Sparkle framework,
resulting in Sparkle(Direction, Distance, Localiza-
tion). We also tested a version called Sparkle w/o
Num that excludes numerical information (i.e., dis-
tance and location estimation) in Sparkle. All the
four variants are trained with the same number of
total samples as the full Sparkle model. The re-
sults shown in Figure 5 reveal two key insights:
First, Sparkle w/o Num consistently underperforms
compared to the full Sparkle model, particularly in
tasks that require strong distance reasoning, such
as TSP. This suggests that incorporating numerical
information during training significantly enhances
the model’s capability in tasks involving distance
reasoning and other related composite challenges.
Second, training on specific spatial reasoning sub-
sets can sometimes yield optimal performance for
certain tasks. For example, Sparkle (Direction)
achieves 96.4% accuracy on the What’s Up bench-
mark, indicating that task-specific training can be
highly effective. This highlights the importance of
tailoring the training process to the unique char-
acteristics of individual tasks. When a task em-
phasizes a particular spatial reasoning capability,
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focusing the training data on that aspect can im-
prove performance on the targeted task. The full
Sparkle framework consistently delivers the best
results across most benchmarks, demonstrating the
effectiveness of a more comprehensive approach to
training.

Figure 6: Results of Sparkle on InternVL2 and
MiniCPM with varying training sample sizes.

Impact of Training Sample Size We varied the
training sample size in Sparkle and evaluated its
impact on general spatial reasoning tasks. The
results are shown in Figure 6. We observe a general
improvement in VLM performance as the training
sample size increases, despite some fluctuations
in the curve. However, a noteworthy finding is
the existence of task-specific sweet spots, beyond
which performance gains taper off or degrade.

4.3.1 Performances on Common VLM
Benchmarks

Table 3: Performance on common VLM benchmarks.

Model
SEED-I MME BLINK MMBench

All SR All Pos All SR All SR
InternVL2 75.4 62.1 1641 143 50.3 80.4 82.4 46.7

+Sparkle 75.5 64.5 1644 151 52.3 81.1 83.2 53.3

While VLMs show significant improvements in
spatial reasoning with Sparkle enhancement, we
also evaluate them on common benchmarks. As
shown in Table 3, Sparkle-trained models show
substantial improvement in spatially related sub-
dimensions, while maintaining or improving over-
all performance, demonstrating that Sparkle does
not negatively affect the overall abilities of VLMs.
This suggests that incorporating Sparkle into the
pretraining process could further enhance these
general capabilities.

4.4 Discussion
The results confirm that mastering basic 2D spatial
reasoning capabilities through Sparkle can signif-
icantly enhance VLMs’ overall spatial reasoning
in composite tasks (e.g., spatial planning) and gen-
eral spatial tasks. This directly addresses RQ1 and

supports the assumption presented in the methods
section. Turning to RQ2, the evaluation results
revealed the limitations of existing VLMs, par-
ticularly in their capability to perceive complex
spatial structures, as evidenced in tasks like SPP.
This highlights the need for improved model and
training designs to support more detailed spatial
reasoning. Moreover, introducing synthetic data
focusing on basic spatial relationships has proven
to enhance overall VLM spatial reasoning perfor-
mance, offering a clear path for future spatial data
collection. Lastly, our ablation study suggests that
training specific spatial reasoning capabilities in
isolation yields the best results for tasks that de-
mand focused spatial abilities. Therefore, in terms
of training strategy, our findings suggest adopting a
pre-train and fine-tune approach (i.e., using diverse
spatial data in pretraining and fine-tuning specific
spatial capabilities tailored to particular tasks) to
improve VLMs’ performances on corresponding
tasks.

5 Conclusion
We present the Sparkle framework to address the
limited spatial reasoning ability of Vision Lan-
guage Models (VLMs). It is designed to enhance
spatial reasoning by focusing on three basic capa-
bilities: direction, distance and localization. Ex-
periments show that fine-tuning on these basic ca-
pabilities leads to substantial improvements in the
basic tasks and composite tasks, showcasing its
compositional generalizability. It also leads to gen-
eralization on broader tasks, strengthening VLMs’
ability to interact with the physical world.

Limitations

While Sparkle shows strong improvements in 2D
spatial reasoning, there are still areas for further ex-
ploration. Our framework is based on synthetic 2D
data with simplified visuals. Although it demon-
strates strong performance in 2D spatial problem-
solving and generalizes to real-world domains, it
may not fully capture the diversity and complexity
of real-world imagery. Additionally, the current
focus is on basic spatial capabilities. Extending the
approach to more complex reasoning, including
temporal and 3D spatial understanding, and de-
veloping synthetic generalization strategies specifi-
cally for 3D spatial tasks remains an open direction.
Finally, although we observe promising generaliza-
tion, further evaluation across broader tasks and
domains would strengthen our findings.
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Appendix

A Implementation Details

We built the Sparkle training dataset by generating 10K images, each with 17 instruction–answer pairs
that describe the spatial relationships between objects, resulting in a total of 170K samples. Among
these pairs, 3 focus on directions between objects, 7 on distances (including 4 for comparing distances
and 3 for estimating numerical distances), and 6 on localization (with 3 for identifying object locations
and 3 for estimating exact positions). The final pair describes the overall spatial relationships in the
image in natural language. This setup ensures that the VLM maintains its ability to follow instructions
effectively. Numerical values are learned using a standard autoregressive cross-entropy loss, as is standard
for grounding tasks in VLM training (Chen et al., 2023a; Liu et al., 2023c). A complete sample can be
found in Figure 10 in Appendix D.1. Our evaluation includes tasks of: (1) shortest path problem (SPP),
(2) traveling salesman problem (TSP), and (3) basic spatial relationship understanding. For each of them,
we generated 2000 samples, which together make up the evaluation set. For SPP and TSP, we use LLaMA
3.1 (Dubey et al., 2024) to process the VLMs’ responses into list formats to enable metric computation.
For the basic tasks, we structured them in a multiple-choice question format. In addition, for SPP and TSP,
we designed experiments that vary by grid size and the number of objects involved. Detailed data statistics
and sample data are provided in Appendix B. To further assess the generalizability of the improved spatial
reasoning capabilities, we evaluated VLMs on existing general spatial reasoning-related benchmarks to
examine their out-of-distribution performance. We use general benchmarks include What’s Up (Kamath
et al., 2023), COCO-spatial (Lin et al., 2014), and GQA-spatial (Hudson and Manning, 2019), featuring
real-world images and spatial reasoning questions.

In addition to the experimental settings outlined in Section 4.1, we provide the following categorized
implementation details for this work.

For model specifications, the GPT-4o model used in our experiments and demonstrations is based on
the gpt-4o-2024-05-13 version, while the Gemini model is Gemini 1.5 Flash. For TSP data generation,
we used an open-source Python TSP solver1 to obtain the ground truth visiting order of the given object
coordinates.

For VLM evaluations, we focused on four directional categories (top left, top right, bottom left, and
bottom right) to make it easier for VLMs to distinguish between directions. To discretize object locations
for localization learning in VLM, the 2D space is proportionally divided using 40% and 60% thresholds
along both the x and y axes, creating nine distinct regions (center, top, bottom, left, right, top-left,
top-right, bottom-left, bottom-right). Detailed data statistics and distribution visualizations are provided
in Section B.

To extract and format the VLMs’ responses, we used the LLaMA 3.1 language model (Dubey et al.,
2024), which converts the results into the required format for metric calculations. The specific prompts
used for each task are detailed in Section C. The evaluation for basic spatial relationship understanding is
intuitive, as it follows a multiple-choice question format. For the SPP evaluation, we check two criteria:
(1) whether the solved path is valid on the grid, and (2) whether the length of the solved path is indeed the
shortest between the given start and end objects. For the TSP evaluation, a path is considered “correct”
only if it exactly matches the solution from the TSP solver mentioned above. To reduce the difficulty for
VLMs in solving TSP, we explicitly specify the starting object in our implementation.

For the benchmark evaluation of Vision-Language Models (VLMs), we utilized the following bench-
mark datasets: MMBench dev (Liu et al., 2023d), SeedBench (Li et al., 2023a), MME (Fu et al., 2023), and
BLINK (Fu et al., 2024) Additionally, we employed the VLMEvalKit (Duan et al., 2024), an open-source
evaluation toolkit, to ensure standardized and reproducible evaluation of the VLMs.
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Figure 7: Data statistics of basic spatial relationships (from left to right: distance, direction, and localization
statistics).

B Data Statistics

To complement Section 4.1, this section provides detailed statistics of the data from Sparkle training set
and evaluation. We begin by discussing data related to basic spatial relationships (i.e., distance, direction,
localization), covering both Sparkle training set and the spatial relationship understanding task in the
evaluation set.

Figure 7 illustrates various statistics. In the left column, we see the distribution of questions and
instructions related to the distance between objects, which includes comparative expressions (e.g., shortest,
shorter, longer, longest) and numerical distance estimations considered only in Sparkle training set. The
training set shows a fairly even distribution of comparison queries, while in the test set, queries involving
the “shortest” and “longest” distances occur more frequently than those involving “shorter” and “longer”.

The middle column of Figure 7 presents the data concerning directional relationships between objects.
We divided the 2D space into direction sectors: four sectors for testing and eight for training. The
directional relationships of “bottom-right”, “bottom-left”, “top-right”, and “top-left” each make up about
19% of the training data, while “top”, “bottom”, “left”, and “right” each account for roughly 6%. In the
test set, the four main directional relationships are distributed evenly.

Lastly, the right column in Figure 7 shows the localization data. Objects are most frequently located in
the corners of the space (i.e., top-left, top-right, bottom-left, and bottom-right) in both the training and
test sets. The number of objects placed in “top”, “bottom”, “left”, and “right” positions is about half that
of those in the corners, while the fewest objects are placed in the center. This is due to the intentional
narrowing of the center area as we explained in Section A, which reduces the likelihood of randomly
generated objects being placed there. Since there is no clear distinction between regions like “left” and
“top-left”, this narrowed design encourages VLMs to accurately distinguish specific areas such as the
“center”, “top”, “bottom”, “left”, and “right”.

Figure 8: Data statistics of composite spatial reasoning tasks in the evaluation set.

Figure 8 presents data statistics for composite spatial reasoning tasks. The two left subfigures show the
distribution of ground truth shortest path lengths in 4× 4 and 5× 5 grids, while the two right subfigures
depict the distribution of total distances for the optimal path in the TSP with 4 and 5 objects.

1https://github.com/fillipe-gsm/python-tsp
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C Prompts for Extracting Inference Results from VLMs

In this section, we provide the designed prompts for a language model to extract results from VLMs’
responses.

C.1 Multi-choice Questions

Prompt for Extracting Results from VLMs’ Responses to Multiple-Choice Questions

Extract the option capital letter from the result and return it as \\boxed{{X}}, where X is the letter.

Provide no additional content. The result is: ```{result}```.

Make sure your response is in the \\boxed{{X}} format.

The above prompt is adopted for all evaluations that in a Multi-choice Questions format.

C.2 Shortest Path Problem

Prompt for Extracting Results from VLMs’ Responses to Shortest Path Problems

Extract the sequence of node labels from the given input and return it as a Python list.

**Return Format:**
- Do not include any additional text or explanations.
- Ensure that the response is a single list containing only the node text labels (N1, N2, ...).
- If no valid action sequence is found, return 'None'.

**Example Output format:**
```
[node1 text label, node2 text label, ...]
```

Now, extract the result from the following input: ```{result}```. Strictly adhere to the return format.

C.3 Traveling Salesman Problem

Prompt for Extracting Results from VLMs’ Responses to Traveling Salesman Problems

Extract the sequence of movements from the given input and return it as a Python list of object names.

**Return Format:**
- Do not include any additional text or explanations.
- Ensure that the response is a single list containing only the object names.

**Expected Output Format:**
```
{output_format}
```

Now, extract the result from the following response: ```{result}```. Strictly adhere to the output format.
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D Sample Data Demonstration

In this part, we provide detailed data sample from our experiments.

D.1 Data Sample from Sparkle Training Set and Evaluation

Directions

N3_N2: top left
N3_N1: top right
N2_N1: bottom right

Coordinates

N3: [4.57, 1.78]
N2: [1.82, 8.39]
N1: [7.14, 4.23]

Localizations

N3: bottom
N2: top left
N1: right

Direction:
Q: What is the direction from the N2 object to the N1 object?
A: bottom right
Q: From the N3 object to the N2 object, which direction should you 
move?
A: top left
Q: From the N3 object to the N1 object, which direction should you 
move?
A: top right

Distance:
Q: Compare the distances: N3 and N2 and N3 and N1. Which one is 
longer?
A: N3 and N2
Q: Compare the distances: N2 and N1 and N3 and N2. Which one is 
longer?
A: N3 and N2
Q: Which distance is the shortest? N3 and N2, N3 and N1, N2 and N1
A: N3 and N1
Q: Which distance is the shortest? N3 and N2, N3 and N1, N2 and N1 
A: N3 and N1
Q: In a 10x10 image, what is the distance between the N2 and N1 
objects? 
A: 6.75
Q: The image is 10x10. What is the distance between the N3 and N2 
objects?
A: 7.16
Q: In a 10x10 image, what is the distance between the N3 and N1 
objects?
A: 3.55

Localization: 
Q: What is the location of the N2?
A: top left
Q: What is the location of the N1?
A: right
Q: Identify the location of the N3.
A: bottom
Q: The image is 10x10. What is the absolute location of the N2?
A: (1.82, 8.4)
Q: The image is 10x10. What is the absolute location of the N3? 
A: (4.57, 1.78)
Q: The image is 10x10. What is the absolute location of the N1?
A: (7.14, 4.23)

Distances

N3_N2: 7.16
N3_N1: 3.55
N2_N1: 6.75

Q: Please provide a description of the spatial 
relationships among the various objects in the 10 by 10 
picture.
A: Let's describe the spatial relationships among the 
objects in the image:

Direction:
From the N3 object, you can go top left to reach the N2 
object.
You can reach the N1 object by going top right from the 
N3 object.
Starting at the N2 object, head bottom right to find 
the N1 object.

Localization:
The N3 object is located at the bottom of the image.
You'll find the N2 object at the top left of the image.
The N1 object is at the right of the image.
The coordinate of the N3 object is (4.57, 1.78).
The coordinate of the N2 object is (1.82, 8.40).
The coordinate of the N1 object is (7.14, 4.23).

Distance:
The distance from N3 to N2 is longer than the distance 
from N3 to N1.
The distance from N3 to N2 is longer than the distance 
from N2 to N1.
The distance from N2 to N1 is longer than the distance 
from N3 to N1.
The distance between the N3 and N2 objects is 7.16.
The distance between the N3 and N1 objects is 3.55.
The distance between the N2 and N1 objects is 6.75.

Image Raw Data

Instructions (Description) Instructions ( Queries & Answers)

  Sparkle

Figure 9: A data sample from the Sparkle training set.

D.2 Data Sample from the Basic Spatial Relationship Understanding task

Distance:
Q: Which distance is the shortest? Options: A. N1 to N4, B. N1 to N3, C. N4 to N3

Direction:
Q: Determine the direction from N1 to N2. Options: A. top left, B. top right, 
C. down left, D. down right 

Localization:
Q: What is the location of the N4 object? Options: A. top left, B. top, C. top right, 
D. left, E. center, F. right, G. bottom left, H. bottom, I. bottom right

A: A (Distance), B (Direction), I (Localization)

Queries & AnswersImage

  Basic Spatial Relationship Understanding

Figure 10: A data sample for Basic Spatial Relationship Understanding

4099



D.3 Data Sample from the Shortest Path Problem

Shortest Path Problem:
Q: The image shows a grid graph where each node 
is labeled (N1, N2, ... N25) and connected to 
neighboring nodes. 

Based on the image, find the shortest path from 
the start node (green) to the end node (red) 
without loops or backtracking.

return the solved shortest path in a Python list 
format. Example output format: ["Na", "Nb", "Nc"]

Ground Truth: 5 (The shortest path length)
VLM’s Output Format: [N3, N8, N13, N18, M19, N20]

Queries & AnswersImage

  Shortest Path Problem

Figure 11: A data sample from the Shortest Path Problem.

D.4 Data Sample from the Traveling Salesman Problem

Traveling Salesman Problem:
Given an image containing exactly 5 objects:

Task:
1. Analyze the spatial relationships between these objects.
2. Find the shortest path that:
   a. Starts at the N5 object
   b. Visits each object exactly once
3. Return the optimal order as a Python list of objects.

Requirements:
- Use only the 5 objects listed above.
- **directly provide reasoning and don't write any code**.
- Provide only the Python list as your answer.
- The list must start with N5.

A: [N5, N1, N4, N3, N2]

Queries & AnswersImage

  Traveling Salesman Problem

Figure 12: A data sample from the Traveling Salesman Problem.

D.5 Data Sample from General Spatial Tasks

General Spatial Tasks (What’s Up):

Q: Pick the correct option that matches the image.
Options: 
A. A dog under a table, B. A dog on a table, 
B. C. A dog to the left of a table, 
C. D. A dog to the right of a table

A: D

Queries & AnswersImage

  General Spatial Tasks (What’s Up)

Figure 13: A data sample from the General Spatial Tasks ("What’s Up").
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E Screenshots of Chat with VLMs

E.1 GPT-4o

Figure 14: Screenshot supporting Figure 1 in the main paper: Chat interactions with GPT-4o.
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Figure 15: Screenshot supporting Figure 1 in the main paper: Chat interactions with GPT-4o.
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E.2 InternVL2-Pro

Figure 16: Screenshot supporting Figure 1 in the main paper: Chat interactions with InternVL2-Pro.
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