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Abstract

Medical question answering fundamentally re-
lies on accurate clinical knowledge. The domi-
nant paradigm, Retrieval-Augmented Gener-
ation (RAG), acquires expertise conceptual
knowledge from large-scale medical corpus
to guide general-purpose large language mod-
els (LLMs) in generating trustworthy answers.
However, existing retrieval approaches often
overlook the patient-specific factual knowl-
edge embedded in Electronic Health Records
(EHRs), which limits the contextual relevance
of retrieved conceptual knowledge and hin-
ders its effectiveness in vital clinical decision-
making. This paper introduces RGAR, a re-
currence generation-augmented retrieval frame-
work that synergistically retrieves both factual
and conceptual knowledge from dual sources
(i.e., EHRs and the corpus), allowing mu-
tual refinement through iterative interaction.
Across three factual-aware medical QA bench-
marks, RGAR establishes new state-of-the-
art performance among six medical RAG sys-
tems. Notably, RGAR enables the Llama-
3.1-8B-Instruct model to surpass the consider-
ably larger GPT-3.5 augmented with traditional
RAG. Our findings demonstrate the benefit of
explicitly mining patient-specific factual knowl-
edge during retrieval, consistently improving
generation quality and clinical relevance.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in general question
answering (QA) tasks, achieving impressive per-
formance across diverse scenarios (Achiam et al.,
2023). However, when facing domain-specific
questions that require specialized expertise, from
medical diagnosis (Jin et al., 2021) to legal charge
prediction (Wei et al., 2024), these models face
significant challenges, often generating unreliable
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Figure 1: a) Two Types of Medical Question Answering
Tasks. b) Medical Al Systems from the Perspective of
Bloom’s Taxonomy.

conclusions due to both hallucinations (Ji et al.,
2023) and potentially stale knowledge embedded
in their parameters (Wang et al., 2024a).

Retrieval-Augmented Generation (RAG)
(Lewis et al., 2020) has emerged as a promising
approach to address these challenges by leveraging
extensive, trustworthy knowledge bases to support
LLM reasoning. The effectiveness of this approach,
however, heavily depends on the relevance of
retrieved documents.

In the medical domain, current RAG approaches
concatenate all available contextual information
from a given example into a single basic query for
retrieval, aiming to provide comprehensive con-
text for model reasoning (Xiong et al., 2024a).
While this method has demonstrated substantial im-
provements on early knowledge-intensive medical
QA datasets such as PubMedQA (Jin et al., 2019),
its limitations have become increasingly apparent
with the emergence of EHR-integrated datasets that
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better reflect real-world clinical practices (Kweon
etal., 2024).

As shown in Figure 1 a), Electronic Health
Records (EHRs) typically contain extensive patient
data, including diagnostic test results, medical his-
tories, and other longitudinal information (Pang
etal., 2021; Johnson et al., 2023; Lovon-Melgarejo
et al., 2024). However, for any specific medical
query, only a small subset of this information is
typically relevant (Sackett, 1997; D’ Alessandro
et al., 2004). Incorporating all available EHRs into
retrieval queries often introduces substantial irrele-
vant information, which degrades the performance
of LLM- and RAG-based QA systems (Fang et al.,
2024; Shi et al., 2023). Despite ongoing efforts to
improve retrieval through query expansion and gen-
eration, such as Generation-Augmented Retrieval
(GAR) (Mao et al., 2021a), how to effectively ex-
tract and utilize query-relevant factual knowledge
from noisy and large-scale EHRs remains an open
problem (Yue et al., 2021).

As shown in Figure 1 b), inspired by Bloom’s
taxonomy (Forehand, 2010; Markus, 2001), we
categorize the knowledge required to address real-
world medical QA problems into four types: Fac-
tual Knowledge, Conceptual Knowledge, Proce-
dural Knowledge, and Metacognitive Knowledge.
The latter two represent higher-order knowledge
typically embedded within advanced RAG sys-
tems, rather than retrieved. Specifically, Procedu-
ral Knowledge refers to the processes and strategies
required to solve problems, such as problem decom-
position and retrieval (Wei et al., 2022; Zhou et al.,
2023), while Metacognitive Knowledge pertains to
an LLM’s ability to assess whether it has sufficient
knowledge or evidence to perform effective reason-
ing (Kim et al., 2023; Wang et al., 2023b; Yan et al.,
2025a).

Factual Knowledge, such as patient-specific in-
formation from EHRs, and Conceptual Knowledge,
such as general medical understanding from cor-
pora, together form the complete context inputs
required for answering medical questions. Pro-
cessing both types of knowledge requires navigat-
ing long contexts filled with irrelevant information.
Unfortunately, current RAG systems do not dif-
ferentiate between these types of retrieval targets,
overlooking the necessity of retrieval from EHRs.

To overcome this limitation, we propose RGAR,
a system designed to simultaneously retrieve
Factual Knowledge and Conceptual Knowledge
through a recurrent query generation and interac-

tion mechanism. This approach iteratively refines
queries to enhance the relevance of retrieved profes-
sional and factual knowledge, thereby improving
performance on knowledge-intensive and factual-
aware medical QA tasks.

Our key contributions are listed as follows:

* We are the first to analyze RAG systems
through the lens of Bloom’s taxonomy, ad-
dressing the current underrepresentation of
Factual Knowledge in existing frameworks.

* We introduce RGAR, a dual-end retrieval sys-
tem that facilitates recurrent interactions be-
tween Factual and Conceptual Knowledge,
bridging the gap between LLMs and real-
world clinical applications.

* Through extensive experiments on three medi-
cal QA datasets involving Factual Knowledge,
we demonstrate that RGAR achieves superior
average performance compared to state-of-the-
art (SOTA) methods, enabling Llama-3.1-8B-
Instruct model to outperform the considerably
larger RAG-based GPT-3.5-turbo.

2 Related Work

RAG Systems. RAG systems are characterized
as a "Retrieve-then-Read" framework (Gao et al.,
2023). The development of Naive RAG has primar-
ily focused on retriever optimization, evolving from
discrete retrievers such as BM25 (Friedman et al.,
1977) to more sophisticated and domain-specific
dense retrievers, including DPR (Karpukhin et al.,
2020) and MedCPT (Jin et al., 2023), which demon-
strate superior performance.

In recent years, numerous advanced RAG sys-
tems have emerged. Advanced RAG systems fo-
cus on designing multi-round retrieval structures,
including iterative retrieval (Sun et al., 2019), re-
cursive retrieval (Sarthi et al., 2024), and adap-
tive retrieval (Jeong et al., 2024; Moskvoretskii
et al., 2025). A notable work in medical QA is
MedRAG (Xiong et al., 2024a), which analyzes
retrievers, corpora, and LL.Ms, offering practical
guidelines. Follow-up work, i-MedRAG (Xiong
et al., 2024b), improved performance through
multi-round decomposition and iteration, albeit
with significant computational costs. With the
rise of the Agentic paradigm, Agentic RAG frame-
works have emerged, treating RAG and CoT as ex-
ecutable actions that can be flexibly invoked based
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on an LLM’s metacognitive capabilities (Qiao et al.,
2025; Li et al., 2025).

These approaches focus primarily on optimizing
the retrieval process, overlooking the retrievability
of factual knowledge. In contrast, RGAR intro-
duces a recurrent structure, enabling continuous
query optimization through dual-end retrieval and
extraction from EHRs and professional knowledge
corpora, thereby enhancing access to both knowl-
edge types.

Query Optimization. Query optimization, or
prompt optimization, is crucial for improving Al
system performance, especially for retrieval-based
tasks. It is widely applied in fields like text-to-
image (Liu et al., 2022; Wu et al., 2024b) and code
generation (Nazzal et al., 2024).

Existing approaches for retrieval tasks largely
follow two paths: query expansion and decompo-
sition. Query expansion methods range from aug-
menting queries with generated text (Mao et al.,
2021a), to using LLM-generated reasoning chains
as the query itself (Tran et al., 2025), or even re-
placing retrieved documents entirely with gener-
ated evidence (Yu et al., 2023; Frisoni et al., 2024).
Query decomposition breaks down complex ques-
tions into simpler, more targeted sub-queries (Dhu-
liawala et al., 2023; Ma et al., 2023). However,
these methods face key limitations. First, replac-
ing verifiable documents with generated content
compromises the transparency and traceability es-
sential for high-stakes domains like medicine. Sec-
ond, their effectiveness often relies on resource-
intensive fine-tuning, limiting scalability. While
some work has explored filtering retrieval outputs
(Chang et al., 2025; Yan et al., 2025b), the cru-
cial step of filtering and optimizing the input query
remains underexplored.

To address this gap, our work proposes a fine-
tuning-free approach to query optimization. We
conceptualize it as contextual filtering: we first re-
trieve pertinent factual knowledge from a trusted,
domain-specific source (e.g., EHRs). This knowl-
edge is then used to filter and refine the original
query, producing a more precise and factually-
grounded input for the main retrieval from a general
corpus.

3 Methodology

In this section, we introduce RGAR framework, as
illustrated in Figure 2. It begins by prompting a
general-purpose LLM to generate multiple queries

from an initial basic query. These multiple queries
are then used to retrieve conceptual knowledge
from the corpus (§ 3.2). Then retrieved conceptual
knowledge is subsequently used to extract fac-
tual knowledge from the electronic health records
(EHRs) and transform it into retrieval-optimized
representations (§ 3.3). The recurrence pipeline
continuously updates the basic query and iteratively
executes the two aforementioned components. This
process optimizes the retrieved results, ultimately
improving the quality of responses.(§ 3.4).

3.1 Task Formulation

In factual-aware medical QA, each data sample
comprises the following elements: a patient’s natu-
ral language query Q, the electronic health record
(EHR) as factual knowledge F, and a set of candi-
date answers A = {a, ..., a4 }. The overall goal
is to identify the correct answer & from A.

A non-retrieval approach directly prompts an
LLM to act as a reader, processing the entire con-
text and generating an answer, formulated as:

a=LLM(F, Q, AlT,) (1

where 7, is the prompts. However, this approach
relies exclusively on the conceptual knowledge en-
coded within LLM, without leveraging external,
trustworthy medical knowledge sources.

To overcome this limitation, recent studies have
explored retrieval-based approaches, which en-
hance the model’s knowledge by retrieving a
specified number N of chunks, denoted as C =
{c1,...,en}, from a chunked corpus (knowledge
base) K. This answering process is expressed as:

i =LLM(F,Q, A,C|T,). )

3.2 Conceptual Knowledge Retrieval (CKR)

To maintain consistency with the option-free re-
trieval approach proposed by (Xiong et al., 2024a),
we do not incorporate the answer options A dur-
ing retrieval. This design is in line with real-world
medical quality assurance scenarios, where answer
choices are typically not available in advance.

Following their method, we construct the basic
query by concatenating the EHR and the patient’s
query, formally defined as ¢, = Q @® F, where ®
denotes text concatenation.

Traditional dense retrievers, such as Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020), iden-
tify the top-N relevant chunks C' from the knowl-
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Figure 2: The Overall Framework of RGAR. a) The Recurrence Pipeline in § 3.4; b) Conceptual Knowledge
Retrieval in § 3.2; ¢) Factual Knowledge Extraction in § 3.3; d) Response Template in § 3.4.

edge base I by computing similarity scores using
an encoder F':

sim(qy, ¢;) = E(q) " E(¢),
C = top-N ({sim(gp, ;) }).

Vanilla GAR (Mao et al., 2021a) expands gy
using a fine-tuned BERT (Devlin et al., 2019) to
produce three types of content that enhance re-
trieval: potential answers ¢, contexts ¢¢, and titles
q.. With the growing zero-shot generation capa-
bilities of LLMs (Kojima et al., 2022), a common
practice is to prompt LLMs to serve as train-free
query generators, producing expanded content g,
using prompt templates 7, (Frisoni et al., 2024).
The three types of content generation process can
be formulated as:

3)

Ge = LLM(q[75"),

g
g = LLM(q|7), 4)
Gy = LLM(q|T;).

The final score Sc for retrieving C is then com-
puted by normalizing and averaging the similarities
of these expanded queries:

SC(CZ') =

Z ZeXP(SIm(Qea Cl)) ) (5)

Ge€{qe.as.at} exp(sim(ge, ¢;))

3.3 Factual Knowledge Extraction (FKE)

In EHR, only a small portion of necessary infor-
mation constitutes problem-relevant factual knowl-
edge (D’ Alessandro et al., 2004). Direct input of
lengthy EHR content containing substantial irrele-
vant information into dense retrievers can degrade
retrieval performance (Ren et al., 2023). While a
straightforward approach would be to retrieve EHR
content based on question Q (Lu et al., 2023), this
fails to fully utilize conceptual knowledge obtained
from the previous Conceptual Knowledge Retrieval
Stage. Furthermore, the necessary chunking of
EHR for retrieval introduces content discontinuity
(Luo et al., 2024).

Given that EHRs more closely resemble long
passages from the Needle in a Haystack task (Kam-
radt) rather than necessarily chunked corpus, and
inspired by large language models’ capability to
precisely locate answer spans in reading compre-
hension tasks (Cheng et al., 2024), we propose
leveraging LLMs for text span tasks (Rajpurkar
etal., 2016) on EHR to filter relevant factual knowl-
edge efficiently and effectively using conceptual
knowledge. We define this filtered factual knowl-
edge as F;, with prompts 7, expressed as:

Fs = LLM(F, Q,C|Ts). (6)

In addition, EHRSs often contain numerical re-
port results (Lovon-Melgarejo et al., 2024) that
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require conceptual knowledge to interpret their
significance. Furthermore, medical QA involves
multi-hop questions (Pal et al., 2022), where re-
trieved conceptual knowledge can generate explain-
able new factual knowledge conducive to reason-
ing. Drawing from LLM zero-shot summarization
prompting strategies (Wu et al., 2025), we analyze
and summarize the filtered EHR F; with prompts
T., yielding an enriched representation F:

Fe = LLM(Fs, Q.C[Te). )

This process, which we refer to as the LLM
Extractor, completes the extraction of original
EHR information. In practice, RGAR implements
these two phases using single-stage prompting to
reduce time overhead.

3.4 The Recurrence Pipeline and Response

Building on the F., we update the basic query for
Conceptual Knowledge Retrieval as ¢, = Q @ Fe.
This establishes a recurrence interaction between
factual and conceptual knowledge, guiding next
retrieval toward more relevant content. Iterative
execution enhances the stability of both retrieval
and extraction. The entire pipeline recurs for a
predefined number of iterations, ultimately yielding
the final retrieved conceptual knowledge C*.

During the response phase, we follow the ap-
proach in Equation 2 to generate answers. Notably,
the F. are restricted to the retrieval phase and are
not used in the response phase. The sole difference
lies in the retrieved chunks, highlighting the impact
of retrieval quality on the responses.

4 Experimental Setup

The core implementation of the RGAR framework
and the output JSON files can be accessed via our
repository on €) dbsxfz/RGAR.

4.1 Benchmark Datasets

We evaluated RGAR on three factual-aware medi-
cal QA benchmarks featuring multiple-choice ques-
tions that require human-level reading comprehen-
sion and expert reasoning to analyze patients’ clini-
cal conditions.

MedQA-US (Jin et al., 2021) and MedMCQA
(Pal et al., 2022) consist of questions derived from
professional medical exams, evaluating specialized
expertise such as disease symptom diagnosis and
medication dosage requirements. The problems fre-
quently involve patient histories, vital signs (e.g.,

Table 1: Medical QA Benchmark Statistics.

Benchmarks Max. Len Avg. Len Min. Len

Non-EHR QA Benchmarks

BioASQ-Y/N (Tsatsaronis et al., 2015) 52 17 9

PubMedQA (Jin et al., 2019) 57 23 10

MMLU-Med (Hendrycks et al., 2021) 961 87 17
EHR QA Benchmarks

MedMCQA (Pal et al., 2022) 207 41 11

MedQA-US (Jin et al., 2021) 872 197 50

EHRNoteQA (Kweon et al., 2024). 5782 3061 667

blood pressure, temperature), and final diagnostic
evaluations (e.g., CT scans), making it necessary
to retrieve relevant medical knowledge tailored to
the patient’s specific circumstances. However, due
to their exam-oriented format, the provided infor-
mation has already been filtered, reducing the diffi-
culty of extracting factual knowledge from EHR.

EHRNoteQA (Kweon et al., 2024) is a re-
cently introduced benchmark that provides authen-
tic, complex EHR data derived from MIMIC-IV
(Johnson et al., 2023). This dataset encompasses
a wide range of topics and demands that models
emulate genuine clinical consultations, ultimately
generating accurate discharge recommendations.
Consequently, EHRNoteQA challenges models to
identify which factual details within the EHR are
relevant to the questions at hand and apply domain-
specific knowledge to address them.

Table 1 highlights that the chosen datasets,
which include EHR information, tend to have sig-
nificantly longer content compared to datasets
without EHRs. Notably, the EHRNoteQA dataset
has a maximum length exceeding 4,000 tokens.
This raises concerns about the reasonableness of
directly employing these EHRSs for retrieval. While
the MMLU-Med dataset contains relatively long
questions, it is still categorized as a Non-EHR QA
Benchmark, as its content does not derive from fac-
tual information. Representative question samples
are provided in the Appendix D.2.

4.2 Retriever and Corpus

To ensure a fair comparison, we adopt the same
retriever, corpus, and parameter settings as previ-
ous work (Xiong et al., 2024a). We use MedCPT
(Jin et al., 2023), a dense retriever specialized for
the biomedical domain, configured to retrieve 32
chunks by default. For the corpus, we employ the
Textbooks corpus(Jin et al., 2019), a lightweight
collection of 125.8k chunks. Results on a much
larger-scale corpus are presented in Appendix A.5.
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4.3 LLMs and Baselines

We focus on the effect of RGAR on general-
purpose LLMs without domain-specific knowledge.
Therefore, we exclude LLMs fine-tuned on the
medical domain, such as PMC-Llama (Wu et al.,
2024a). We focus on models with fewer than 14
billion parameters, reflecting the requirements for
deploying a private personal health assistant (Qiu
et al., 2024) on a standard desktop. This setup
aligns with the definition of a resource-constrained
environment (Frisoni et al., 2024): running LLMs
on a single consumer-grade GPU (e.g., 24GB or
32GB VRAM) to ensure both competitive perfor-
mance and user privacy.

Our primary experiments utilize Llama-3.2-3B-
Instruct, while ablation studies include a range of
models from the Llama-3.1/3.2 (Dubey et al., 2024)
and Qwen-2.5 (Yang et al., 2024a) families, rang-
ing from 1.5B to 14B parameters. All selected
models feature a context length of approximately
128K tokens. Temperatures are set to zero to en-
sure reproducibility through greedy decoding. To
mitigate repetitive generation in smaller models,
we use a repetition penalty of 1.2 and limit the
maximum generation length to 8K tokens.

For non-retrieval methods, we consider a zero-
shot approach Custom (Kojima et al., 2022) as
a baseline and evaluate improvements relative to
it. To fully exploit the reasoning capabilities of
the LLMs, we incorporate chain-of-thought (CoT)
reasoning (Wei et al., 2022).

For retrieval-based methods, our evaluation
begins with the classic RAG model (Lewis
et al., 2020) and its domain-specific adaptations,
MedRAG (Xiong et al., 2024a) and :-MedRAG
(Xiong et al., 2024b).

We adopt GAR (Mao et al., 2021a) as a represen-
tative query-optimized RAG method, implemented
train-free in accordance with § 3.2. Our method
RGAR defaults to 2 rounds of recurrence.

Additionally, we adapt core mechanisms from
leading general-domain methods for comparison.
From Search-o1 (Li et al., 2025), we reproduce its
Reason-in-Documents mechanism. From RARE
(Tran et al., 2025), we implement its step-wise veri-
fication based on progressive CoT retrieval, exclud-
ing its computationally intensive Monte Carlo Tree
Search (MCTS) module to ensure fair comparisons
and a practical runtime.

4.4 Evaluation Settings

Following MIRAGE (Xiong et al., 2024a), we
adopt the following evaluation framework. In
Option-Free Retrieval, no answer options are pro-
vided for retrieval (§3.2), ensuring a more realistic
medical QA scenario. In Zero-Shot Learning,
RAG systems are evaluated without in-context few-
shot learning, reflecting the lack of similar exem-
plars in real-world medical questions. For Metrics,
we employ Accuracy, defined as the proportion of
correctly answered questions, and we extract model
outputs by applying regular expression matching to
the entire generated responses (Wang et al., 2024b).

4.5 Hardware Configuration

All experiments were conducted on an in-house
workstation equipped with two NVIDIA GeForce
RTX 4090 GPUs (each with 24 GB of VRAM),
an Intel® Core 19-13900K CPU, and 128 GB of
system RAM.

S Experimental Analysis

5.1 Cross-Dataset Performance Improvement

We evaluate RGAR using the LLaMA-3.2-3B-
Instruct model on three factual-aware medical
QA datasets, comparing it against several com-
petitive baselines. The results, presented in Ta-
ble 2, include the absolute performance of each
method as well as their relative improvements
over the Custom baseline. RGAR achieves the
highest average performance across all three
datasets, outperforming the leading medical-
domain SOTA method, :-MedRAG, by about
2%. Retrieval-based methods—despite variability
in quality—consistently surpass non-retrieval base-
lines (Custom and CoT), underscoring the impor-
tance of incorporating specialized medical knowl-
edge when leveraging general-purpose LLMs to
answer professional medical queries.

Among the retrieval-based approaches, GAR
outperforms vanilla RAG by approximately 3%
on average, with a maximum gain of 4.37% across
datasets. This demonstrates the effectiveness of
multi-query generation in improving retrieval qual-
ity. However, MedRAG, while performing well on
EHRNoteQA, exhibits degraded performance on
the other two datasets compared to vanilla RAG,
highlighting its limited robustness.

A key advantage of our proposed RGAR
framework lies in its stable and consistent per-
formance improvements—an essential property

4011



Table 2: Comparison of RGAR with SOTA Methods on Three Factual-Aware Datasets and MMLU-Med. A
Indicates Improvement Over Custom, Bold Represents the Best, and Underline Indicates the Second-Best.

Method MedQA-US (# 1273) MedMCQA (#4183) EHRNoteQA (# 962) | Average(]) || MMLU-Med (# 1089)

Acc. A Acc. A Acc. A ‘ Acc. A Avg.Rank H Acc. A

w/o Retrieval CUStom 5020 0.00 50.01 0.00 47.19 0.00 4913 000 767 | 64.46 0.00
CoT 5145 1.25 4453 -5.48 62.89 1570 5296 382 767 | 6299 -1.47

RAG 53.50 330 50.54 053 61.12 13.93 5505 592 500 | 6547 101

MedRAG  50.27 0.07 4753 248 70.58 2339 5613 699 600 | 63.91 -0.55

GAR 57.97 7.77 50.42 041 65.48 1829 5796 882 400 | 66.12 1.66

w/ Retrieval ~ Search-ol ~ 53.34 314 46.52 -3.49 75.05 27.86 5830 917 467 | 6529 0.83
i-MedRAG  56.24 6.04 44.94 -5.07 74.22 27.03 5847 933 467 | 64.74 0.28

RARE 58.68 8.48 50.15 0.14 68.50 21.31 5911 998 367 | 6639 193

RGAR 58.83 8.63 51.02 1.01 73.28 26.09 6104 1191 167 | 6648 202

for medical applications. As shown in Table 2,
RGAR ranks among the top three methods across
all datasets, delivering reliable gains over both
RAG and GAR. In contrast, i-MedRAG, despite in-
curring substantial time overhead, performs poorly
on MedMCQA and ranks near the bottom, which
significantly undermines its suitability for real-
world deployment.

Notably, the performance improvements of
RGAR over GAR exhibit a positive correlation
with the average context length in each dataset.
For example, in EHRNoteQA, which has an aver-
age context length exceeding 3000 tokens, RGAR
achieves a 7.8% improvement, validating the ben-
efit of our Factual Knowledge Extraction module
in enhancing retrieval effectiveness. This suggests
that RGAR is particularly well-suited to practical
clinical scenarios where complete electronic health
records must be analyzed to generate accurate med-
ical recommendations.

When analyzing performance across different
datasets, we find that retrieval-based methods
perform significantly better on MedQA-US and
EHRNoteQA, while MedMCQA shows a nega-
tive effect—consistent with results reported by
MedRAG (Xiong et al., 2024a). A closer analy-
sis reveals that MedMCQA incorporates arithmetic
reasoning questions (roughly 7% of the total), and
the addition of extensive retrieved contexts dimin-
ishes the model’s numerical reasoning capabilities,
which could potentially be fixed with larger base
LLMs (Mirzadeh et al., 2025). Nonetheless, among
retrieval-based methods, our RGAR stands out as
the only approach that outperforms vanilla RAG
on this dataset, delivering an improvement of more
than 1% over Custom.

To further assess generalizability, we evaluated
the models on Conceptual Knowledge-Intensive
Tasks, where factual knowledge extraction is ex-

Table 3: Comparison of LLMs on MedQA-US.

Model Custom RAG GAR RGAR
Llama-3.2-1B-Instruct 3896 29.30 30.79 29.85
Llama-3.2-3B-Instruct 50.20 53.50 57.97 58.83
Llama-3.1-8B-Instruct 60.80 62.14 6739 69.52
Qwen2.5-1.5B-Instruct  43.99  41.48 4342 42.58
Qwen2.5-3B-Instruct 48.23 4996 53.50 54.28
Qwen2.5-7B-Instruct 5946 58.83 63.39 63.86
Qwen2.5-14B-instruct 68.18 6646 7698 78.63
Average 52.83 51.67 56.21 56.79

pected to have less impact. On the MMLU-Med
dataset, RGAR continues to outperform GAR and
also surpasses :-MedRAG, demonstrating its ro-
bustness across diverse task scenarios.

5.2 Base LLMs with Different Sizes and
Model Families

To further assess the versatility of RGAR, we con-
duct evaluations on MedQA-US, a widely used
medical dataset, by utilizing base LLMs of various
sizes and model families, specifically from Llama
and Qwen. The results in Table 3 show that RGAR
consistently achieves the best average performance.

When considering model size, we find that
retrieval-based approaches fall short of the non-
retrieval Custom baseline for smaller models,
such as Llama-3.2-1B-Instruct and Qwen2.5-1.5B-
Instruct. These smaller models, constrained by
their weaker performance, are not well-suited
to leverage retrieval-enhanced information. As
the model size increases, however, all retrieval-
enhanced approaches exhibit notable performance
gains, with RGAR yielding the most significant im-
provements. This trend becomes particularly pro-
nounced for larger models. For example, RGAR
achieves a 7.38% improvement over RAG on
Llama-8B, 5.33% on Llama-3B, 5.03% on Qwen-
8B, and 4.32% on Qwen-3B.
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Figure 3: Accuracy with Different Numbers of Retrieved Chunks on EHRNoteQA Dataset.

Moreover, we find that under the same ex-
perimental conditions, Llama-3.1-8B-Instruct
achieves a performance of 69.52% with RGAR,
surpassing the 66.22% reported by MedRAG
for GPT-3.5-16k-0613 (Achiam et al., 2023). This
significant improvement underscores the practical-
ity of using well-optimized retrieval methods with
smaller models, enabling performance rivals those
of proprietary large-scale foundational models in
real-world medical recommendation tasks.

5.3 Ablation Study

Due to the absence of ground-truth retrieval chunks,
we evaluate retrieval effectiveness through QA per-
formance, systematically varying the number of re-
trieved chunks NV from 4 to 32. A reduced retrieval
number serves as a more stringent assessment of re-
trieval quality. We investigate three primary factors
in Figure 3: the effect of options generated by GAR
versus those originally provided by the dataset, the
contributions of CKR and FKE components, and
the impact of RGAR’s recurrence rounds.

We first compare the retrieval performance be-
tween LLM-generated options and original dataset
options. Figure 3a shows how RGAR and GAR per-
form across different values of V. Both approaches
maintain stable performance across different IV,
indicating reliable retrieval quality. While using
original options shows slightly higher average Ac-
curacy, the difference is minimal. This suggests
that even when GAR generates options that dif-
fer from the originals, it achieves similar retrieval
results as long as the core topics align.

We then examine the impact of RGAR’s two
main components—CKR and FKE—as shown in
Figure 3b. When we remove the conceptual knowl-
edge interaction from the FKE phase, the system
shows only moderate improvements when extract-
ing factual knowledge from EHR without concep-
tual knowledge, demonstrating the importance of
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Accuracy (%)

667-2059 2063-2458
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Figure 4: Fine-Grained Accuracy of EHRNoteQA After
Sorting by Length and Dividing into Four Equal Parts.

integrating both types of knowledge. Removing the
multi-query generation step from CKR causes per-
formance to degrade as [NV increases, indicating that
multiple queries are necessary to maintain stable
retrieval.

Finally, we analyze the effect of rounds in RGAR
(Round 0 means GAR), as illustrated in Figure
3c. Our results show that even a single iteration
significantly improves performance by enabling
interaction between factual and conceptual knowl-
edge. Multiple rounds work similarly to a rerank-
ing mechanism (Mao et al., 2021b), improving
the ranking of important chunks and showing sub-
stantial gains even with relatively small N. With
N = 8, the default two-round setup achieves a per-
formance of 75.78%, almost 1% better than using a
single round. However, adding more rounds shows
no clear benefits, as they tend to generate multi-hop
factual knowledge during the FKE phase, leading
CKR to retrieve multi-hop conceptual knowledge,
which may cause LLMs to over-infer (Yang et al.,
2024b). Given that each round involves one rea-
soning step from both the LLM extractor and LLM
query generator, two rounds sufficiently support
multi-hop reasoning needs (Lv et al., 2021).

5.4 Fine-Grained Performance Analysis

While the previous sections examined overall
dataset performance and established preliminary
findings, this section provides a detailed analysis of
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specific aspects of our results. In § 5.1, we showed
that RGAR performs better on real-world medical
recommendation tasks involving comprehensive
EHRs. To verify this finding, we conduct a detailed
analysis of EHRNoteQA by grouping questions
based on context length and dividing them into
four bins. Within each bin, we compare the perfor-
mance of RGAR, GAR, and Custom. As shown in
Figure 4, Custom shows decreasing accuracy with
increasing context length. GAR improves accuracy
across all bins, with RGAR achieving further per-
formance gains. Notably, the improvements are
more significant in the three bins with longer con-
texts compared to the first bin. The results show
that RGAR maintains consistent average perfor-
mance across different context length.

It is also important to note that generating mul-
tiple queries from different aspects within RGAR
helps stabilize retrieval. Figure 5 presents a t-SNE
visualization of different queries and their individu-
ally retrieved chunks for a sample question (details
provided in Appendix B). The basic query shows
limited suitability for retrieval, as its coverage area
differs from that of the three queries generated by
RGAR. RGAR clearly introduces some variation
in retrieval content. Although the regions corre-
sponding to the three generated queries overlap,
the specific chunks retrieved do not overlap sig-
nificantly. This underscores the need to average
the retrieval similarities of these three queries to
achieve more stable retrieval results.

5.5 Case Study

To illustrate the challenge of reasoning with multi-
ple interacting comorbidities, we use a representa-
tive query:

What assessments are needed for elderly
patients with diabetes and hypertension

prior to heart surgery?

Limitations of Decomposition-Based Meth-
ods. Methods that rely on decomposition, such
as Search-o1, i-MedRAG, and RARE, struggle
with such queries. By breaking the problem into
sub-questions or validating steps in isolation, they
retrieve fragmented knowledge and overlook the
crucial joint impact of the patient’s concurrent con-
ditions. This approach places a heavy burden on
the LLM to synthesize disconnected information, a
strategy that is particularly ineffective in resource-
constrained environments.

Advantages of RGAR’s Integrated Approach.
In contrast, RGAR employs an integrated two-
stage process. It first retrieves broad conceptual
knowledge (e.g., clinical guidelines) to provide
high-level context. Guided by this, it then per-
forms factual knowledge extraction to identify all
key patient-specific entities (elderly, diabetes, etc.).
These entities are combined into a single, holistic
query for the final retrieval, ensuring the relation-
ships between all interacting factors are preserved
for a more clinically relevant and accurate reason-
ing process.

A more detailed analysis and a discussion of
our method’s advantages compared to GAR can be
found in Appendix B.1, while Appendix A.6 offers
a further quantitative analysis of the differences
across all methods.

6 Conclusion

In this work, we propose RGAR, a novel RAG
system that distinguishes two types of retrievable
knowledge. Through comprehensive evaluation
across three factual-aware medical benchmarks,
RGAR demonstrates substantial improvements
over existing methods, emphasizing the signifi-
cant impact of in-depth factual knowledge extrac-
tion and its interaction with conceptual knowledge
on enhancing retrieval performance. Notably, our
RGAR enables the Llama-3.1-8B-Instruct model
to outperform the considerably larger, RAG-based
proprietary GPT-3.5. From a broader perspective,
RGAR represents a promising approach for enhanc-
ing general LLMs in real-world clinical diagnostic
scenarios that demand extensive factual knowledge
processing. This framework shows potential for ex-
tension to other professional domains where factual
awareness is crucial, offering a viable solution for
specialized applications requiring precise factual
knowledge management.
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Limitations

Despite RGAR achieving superior average perfor-
mance, several limitations warrant discussion.

Computational Overhead. As with all RAG-
based systems, RGAR'’s performance is inherently
tied to corpus retrieval, and its inference latency
scales with the size of the knowledge base. While
this avoids the frequent retraining costs associated
with domain-specific LLMs that generate knowl-
edge internally (Yu et al., 2023; Frisoni et al., 2024),
the retrieval step remains a computational consid-
eration.

Scope of Prompting Strategies. Our inves-
tigation focused specifically on validating how
factual knowledge processing improves retrieval,
without examining the synergistic impact of ad-
vanced prompting strategies like Chain-of-Thought
(Wei et al., 2022) or Self-Consistency (Wang et al.,
2023a), which have been shown to enhance reason-
ing in other systems (Xiong et al., 2024a,b).

Lack of Dynamic Optimization. Unlike multi-
round methods such as i-MedRAG (Xiong et al.,
2024b) that implement LLM-based early stopping
to reduce computational costs for simpler queries,
our system currently operates with a fixed number
of rounds. This provides predictable latency but
lacks the flexibility to dynamically adjust for query
difficulty.

Focus on Retrievable Knowledge. While we
introduce Bloom’s Taxonomy as a framework, our
work primarily focuses on enhancing the retrieval
of Factual and Conceptual knowledge, which are
externally accessible. The two higher-order knowl-
edge types (Procedural and Metacognitive) are con-
sidered to be handled by the RAG system’s inter-
nal reasoning processes and are not explicitly op-
timized. Future work could explore how to more
effectively unify all four knowledge types to con-
struct more holistically intelligent RAG systems.

Context Window Assumptions. Our EHR ex-
traction approach assumes the LLM can process
the complete EHR context. This is justified by
the large context windows of mainstream models
(e.g., >128K). However, extreme cases with excep-
tionally long records may require integration with
chunk-free approaches (Luo et al., 2024; Qian et al.,
2024).

Dependence on Instruction-Following. As
RGAR operates in a zero-shot setting without any
fine-tuning, its effectiveness is partially contingent
on the base model’s inherent instruction-following

capabilities, a factor we cannot fully mitigate.

Ethical Statement

This research adheres to the ACL Code of Ethics.
All medical datasets utilized in this study are ei-
ther open access or obtained through credentialed
access protocols. To ensure patient privacy protec-
tion, all datasets have undergone comprehensive
anonymization procedures.

While Large Language Models (LLMs) present
considerable societal benefits, particularly in
healthcare applications, they also introduce poten-
tial risks that warrant careful consideration. Al-
though our work advances the relevance of re-
trieved content for medical queries, we acknowl-
edge that LLM-generated responses based on re-
trieved information may still be susceptible to er-
rors or perpetuate existing biases.

Given the critical nature of medical information
and its potential impact on healthcare decisions, we
strongly advocate for a conservative implementa-
tion approach. Specifically, we recommend that
all system outputs undergo rigorous validation by
qualified medical professionals before any practi-
cal application. This stringent verification process
is essential to maintain the integrity of clinical and
scientific discourse and prevent the propagation of
inaccurate or potentially harmful information in
healthcare settings.

These ethical safeguards reflect our commit-
ment to responsible Al development in the med-
ical domain, where the stakes of misinformation
are particularly high and the need for reliability is
paramount.
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A Additional Experimental Results

A.1 Exploratory Experiments with Large
Reasoning Models

In our main analysis, we focused on enhancing the
retrieval of Factual and Conceptual knowledge. A
natural extension is to investigate whether mod-
els explicitly trained for reasoning—often termed
Large Reasoning Models (LRMs)—could further
improve performance. These models are designed
to excel at higher-order Procedural and Metacog-
nitive tasks. To this end, we conducted a series of
exploratory experiments.

Models and Setup. We tested two recently de-
veloped LRM models distilled via DEEPSEEK:
DeepSeek-R1-Distill-Qwen-7B and DeepSeek-
R1-Distill-Qwen-1.5B. The evaluation was per-
formed under our Custom setting (zero-shot, no-
retrieval, no-CoT (besides ‘<think></think>*)) to
isolate the models’ inherent capabilities.

Results and Analysis. Contrary to expecta-
tions, the experimental results were not satisfactory.
The 7B and 1.5B LRMs achieved only 37.08%
and 23.72% accuracy, respectively. These scores
are significantly lower than their corresponding
base models (Qwen2.5-7B at 59.46% and 1.5B
at 43.99%). Our analysis suggests two primary
challenges contributing to this underperformance:

* Increased Hallucination: The LRMs exhib-
ited a greater tendency toward hallucination.
When combined with Retrieval-Augmented

Generation (RAG), this can amplify incon-
sistencies between retrieved facts and the
model’s internal reasoning process.

* Poor Instruction-Following: We observed
limitations in the instruction-following behav-
ior of the smaller LRMs. Even outside the
designated ‘<think></think>‘ tags, they fre-
quently produced substantial extraneous to-
kens that deviated from the requested format,
complicating downstream answer extraction.

Conclusion. Overall, while LRMs hold con-
siderable promise, effectively integrating their ad-
vanced reasoning capabilities into RAG frame-
works for specialized domains remains a challeng-
ing and intriguing direction for future research.

A.2 Additional Evaluation Metric: Model
Confidence and Robustness Analysis

This work and all compared methods rely primar-
ily on accuracy as the evaluation metric. This is
because the corpora used for retrieval lack pre-
annotated ground truth chunks specific to each
question, which reflects real-world medical advi-
sory scenarios where the "correct” evidence is not
known beforehand.

Inspired by a recent study (Griot et al., 2025),
we introduce an additional metric—model confi-
dence—to provide a finer-grained assessment of
result "reliability". The core idea is to extract the
logits for the four answer options and use the soft-
max probability of the chosen option as the model’s
confidence.

However, a methodological challenge arises in
reliably extracting these logits. Our prompt re-
quests output in a strict { "answer_choice”: "X"
} format, but we observed that models often fail
to adhere to this, generating extraneous reasoning.
This leads to two implementation choices for logit
extraction for No-CoT methods:

1. Natural Generation (Natural): This is our
primary approach used in the main paper. We
parse the model’s full output to identify the
token where it naturally generated its answer
choice and extract the logits from that position.
This aligns perfectly with the process used for
accuracy evaluation.

2. Teacher Forcing (TF): forces the model’s
generation to conform strictly to the {
"answer_choice”: "X" 7} format, simpli-
fying logit extraction.
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While the Natural Generation method is more
faithful to the model’s unconstrained behavior, pre-
senting results from both implementations demon-
strates the robustness of our conclusions. Below,
we compare the results from both settings. As will
be shown, while absolute numbers exhibit minor
fluctuations, the relative performance ranking of all
methods and our core conclusions remain stable.

Table 4: Comparison of Accuracy and Average Model
Confidence across two implementations: Natural Gen-
eration (Natural) and Teacher Forcing (TF).

Custom RAG GAR RGAR

Metric

Natural TF Natural TF Natural TF Natural TF
Accuracy (%) 5020 5515 | 5350 5397 | 5797 5797 | 58.83 58.13
Avg. Confidence | 0.6632 0.6847 | 0.6524 0.6596 | 0.6811 0.6802 | 0.7116 0.7047

Table 4 shows that RGAR outperforms other
methods in both accuracy and average confidence
across both implementations. The most notable nu-
merical shift occurs in the ‘Custom* (non-retrieval)
method. Without retrieval grounding, the model’s
generation is less stable, and the constraint of
teacher forcing can sometimes incidentally im-
prove performance. For all retrieval-based methods,
the results are highly consistent.

Next, we analyze the accuracy and sample
counts within different absolute confidence brack-
ets for both implementations in Table 5.

Table 5: Full Accuracy and Sample Counts Across Ab-
solute Confidence Ranges for Natural Generation (Nat-
ural) and Teacher Forcing (TF) implementations.

Confidence Custom RAG GAR RGAR

“®| Natural TF | Natural TF | Nawral TF | Natural —TF
Accuracy (%)
>0.85 61.60 77.01 | 76.09 77.71 | 81.93 81.84 | 83.60 82.01
<0.85 46.10 46.05 | 45.84 45.89 | 4770 47.82 | 46.07 46.04
>0.9 6546 81.16 | 80.60 82.63 | 83.50 83.36 | 86.78 85.04
<0.9 46.48 4740 | 4745 4744 | 5061 50.51 | 47.69 4748
Number of Samples
>0.85 336 374 322 323 382 380 433 428
<0.85 937 899 951 950 891 893 840 845
>0.9 249 292 232 236 285 285 363 361
<0.9 1024 981 1041 1037 988 988 910 912

The results consistently show that RGAR
not only achieves the highest accuracy in high-
confidence predictions (e.g., >0.85) but also pro-
duces the largest number of such predictions, re-
gardless of the implementation. This robustly
demonstrates that RGAR’s answers are more re-
liable.

Finally, to calibrate for intrinsic model biases,
we rank samples by confidence within each method.
Table 6 compares the full accuracy breakdown by
relative confidence quartiles.

Table 6: Full Accuracy by Relative Confidence Ranking
for Natural Generation (Natural) and Teacher Forcing
(TF) implementations.

Ranking Custom RAG GAR RGAR
Natural TF | Natural TF | Natural TF | Natural TF
Top 25% 7421 79.56 | 7642 7799 | 8270 82.70 | 87.11 86.48
25%-50% 5535 6038 | 5943 59.75 | 66.67 66.98 | 63.52 63.21
50%-75% 40.88 4591 | 44.03 4371 | 49.37 49.06 | 49.06 48.74
75%-100% | 30.41 34.80 | 34.17 34.48 | 3323 3323 | 3574 34.17

The conclusion is again unequivocal across both
sets of results. In the top 25% confidence bracket,
RGAR demonstrates a significant accuracy advan-
tage over all other methods, a trend that holds true
in both implementations. The consistency of these
detailed findings across different logit extraction
methodologies strongly validates the robustness of
our claims.

A.3 Additional Analysis of Time Cost

Time cost across all methods on EHRNoteQA are
shown in Table 7.

Table 7: Comparison of different methods in terms of
execution time (hours).

Custom CoT RAG MedRAG GAR i-MedRAG RGAR

096 047 1.26 1.52 19.03 4.49
71.21 16.80

Method

Total Time/h 0.13
Avg. Time/s 049 359 176 4.72 5.69

Balancing time overhead and performance is cru-
cial, and our approach achieves this balance. As
shown in Tables 2 and 7, RGAR’s time overhead
is less than 0.3 x that of :-MedRAG while main-
taining comparable or superior performance. On
average, RGAR requires about 20 seconds per sam-
ple, whereas :-MedRAG exceeds 60 seconds, mak-
ing its overhead impractical. Although RGAR’s
per-round overhead is 1.5x that of GAR, Figure 3
shows a clear performance gain. For real-time ap-
plications, a single-round RGAR offers an optimal
trade-off. Other methods lag significantly behind
both -MedRAG and RGAR, making them unsuit-
able for medical applications where reliability is
critical.

We further analyze the overhead of different
pipeline components in all methods:

(1) Corpus retrieval: Since embedded vectors are
pre-saved, retrieval overhead is in the second range,
making multiple retrievals negligible. Custom and
RAG methods have similar costs.

(2) LLM generation: The CoT method has un-
stable token lengths (110-4096, avg. 2,433), mak-
ing its overhead only 0.6 x to GAR’s. GAR in-
volves three generations, each under 1,000 tokens.
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GAR’s three queries share input except for prompts
(see Equation 4), and existing methods (Pope et al.,
2023) suggest that sharing KV cache could poten-
tially make it more efficient.

(3) :--MedRAG: Its LLM generation’s overhead
in each round includes query decomposition, CoT-
based answering of each query, and summarization,
leading to a 4.2x higher cost than RGAR, even with
early stopping.

In summary, RGAR significantly improves upon
GAR in just one round, enabling flexible time-
performance trade-offs. GAR-like methods may
further reduce overhead via shared KV cache tech-
niques.

A.4 Advantages Over i-MedRAG

(1) The average performance improvement of
RGAR compared to i-MedRAG is relatively mod-
est, largely because i-MedRAG is an extremely
complex approach, with a time overhead three
times that of RGAR. The focus of RGAR is to
demonstrate the importance of extracting factual
knowledge from EHRs and the interaction between
factual and conceptual knowledge. This is con-
vincingly supported by the comparisons with RAG
and GAR in Section 5.1 and the ablation study in
Section 5.3.

(2) A key advantage of RGAR is its stable and
consistent performance improvement, which is crit-
ical for the requirements in medical applications.
As shown in Table 2, RGAR ranks among the top
two across all three datasets, demonstrating a stable
enhancement over both RAG and GAR. In contrast,
1-MedRAG, despite its substantial time overhead,
performs poorly on MedmcQA, ranking near the
bottom. This significantly limits its potential for
real-world deployment.

(3) An additional advantage of RGAR is its
flexibility. Its two main components—factual
knowledge extraction and conceptual knowledge
retrieval—can be easily integrated into various ex-
isting RAG frameworks. For instance, we exper-
imented by adding the factual knowledge extrac-
tion module to the initial cycle of i-MedRAG. On
the MedQA-US dataset, this improved its perfor-
mance from 56.24% to 58.13%, surpassing GAR’s
57.97% and coming close to RGAR’s 58.83%. This
highlights the extensibility and effectiveness of the
factual knowledge extraction module. However,
due to the prohibitive time overhead—:-MedRAG
generates m queries, and combining these with
the n queries from conceptual knowledge retrieval

would result in m * n queries—we did not pursue
further combinations. The focus of this paper is to
validate the effectiveness of the RGAR approach.
Future work will aim to integrate RGAR’s method-
ology with existing RAG techniques, reduce time
overhead, and develop systems that offer a better
trade-off between performance and efficiency.

A.5 Additional Corpus

While our main experiments are conducted using
corpus Textbooks, we acknowledge that corpus size
and coverage may influence absolute performance.
However, our objective is not to optimize the cor-
pus itself, but rather to investigate how explicit fac-
tual knowledge extraction can enhance the architec-
ture of RAG systems. As demonstrated in our main
results, the proposed method consistently outper-
forms strong baselines—including GAR—under
the same corpus conditions. This validates the ef-
fectiveness of our approach independent of corpus
scale.

It is important to note that prior work, such as
the MIRAGE benchmark (Xiong et al., 2024a), has
shown that while a larger corpus may improve over-
all accuracy, it does not fundamentally alter the
relative advantages among RAG architectures.

In our study, we focus on the practical sce-
nario of deploying a personal health assistant (Qiu
et al., 2024) on a consumer-grade GPU (e.g., 24GB
VRAM) and a standard desktop system. From
this perspective, extremely large corpora such as
MedCorp present significant resource challenges.
Specifically, the complete storage requirement for
MedCorp—including the raw documents and Med-
CPT embeddings—amounts to 336 GB, and its
deployment requires a minimum of 256 GB RAM
to load the retrieval index, which poses substan-
tial overhead for individual users or lightweight
healthcare applications.

To further support the generality of our findings,
we include additional experiments on a mid-sized
corpus (StatPearls) and a large-scale evaluation on
MedCorp in Table 8. These results reaffirm the ef-
fectiveness of our architecture, demonstrating that
it remains beneficial across different corpus scales,
without relying on massive storage or compute re-
sources.

Specifically, all retrieval-based methods benefit
from a larger corpus on the MedQA-US dataset.
However, even when using the much larger Med-
Corp corpus, GAR does not outperform RGAR
evaluated on the smaller textbook corpus. This
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Table 8: Performance of Different Methods with Vary-
ing Corpus Sizes on MedQA-US.

Corpora ‘ Custom RAG GAR RGAR
TextBooks(#125.8k) | 50.20% 53.50% 56.24% 58.83%
StatPearls(#301.2k) | 50.20% 54.83% 56.48% 58.99%
MedCorp(#65.3M) | 50.20% 55.77% 58.20% 60.64%

300 Method
RAG
GAR
250 MedRAG
i-MedRAG
s

Time per Sample (s)
g

Textbooks StatPearls MedCorp
(125.8k) (301.2k) (65.3M)

Corpus Size

Figure 6: Time Overhead of Different Methods with
Varying Corpus Sizes.

indicates that the performance gains of RGAR
over GAR remain stable across corpora of different
sizes.

In terms of runtime, as shown in Figure 6, all
multi-stage retrieval methods experience a signifi-
cant increase in latency on MedCorp, primarily due
to the cost of retrieval rather than generation—each
retrieval step incurs an average delay of approxi-
mately 10 seconds. This further highlights RGAR’s
suitability for deployment on consumer-grade sys-
tems, where both memory and latency are limited.

A.6 Quantitative analysis of method
differences

This qualitative observation is further supported by
our quantitative analysis on the MedQA-US dataset.
The number of unique errors between RGAR and
Search-ol were 111 and 181, respectively, while
for RGAR and RARE, they were 96 and 98. This
suggests that each SOTA method possesses distinct
strengths and failure modes, making them effec-
tive for different question archetypes. For future
work, a promising direction could be to leverage
these diverse capabilities by incorporating various
advanced retrieval methods as atomic operations
and dynamically selecting the most suitable one
based on the input question’s characteristics.

B Prompt Template and Case Study

For simplicity, we merged EHR and question in the
prompt words of the answer and treated them as

question in the prompt words. Table 9 shows the
prompts template of RGAR and compared work
(Using CoT ones). Table 10 shows the input of a
sample, Table 11 shows the final output of RGAR.

B.1 Another Case Study

Given that our method operates with a retrieval bud-
get of only 32 documents—and that medical ques-
tion answering inherently requires domain-specific
reasoning—we include a simplified case study to
illustrate why traditional approaches may fall short
under such constraints. This example highlights the
challenges faced by earlier methods in capturing
and integrating critical patient-specific risk factors
with external medical knowledge, and contrasts
them with the advantages of our proposed frame-
work.

Case. A 60-year-old male patient presents with
persistent cough, fever, and mild dyspnea. The
hospital’s EHR includes not only symptom descrip-
tions but also chest X-ray results, blood oxygen
levels, prior diagnoses (e.g., diabetes, COPD), al-
lergy history, and lab findings. In addition, external
medical literature provides authoritative guidelines
on pulmonary infections, comorbidity considera-
tions, and evidence-based treatment strategies.

Limitations of Traditional Methods. Basic
retrieval-based methods tend to issue dispersed
queries over all surface-level mentions in the
EHR, retrieving fragmented conceptual knowledge
loosely related to individual symptoms. This makes
it difficult to focus on high-risk factors specific to
the current condition—such as comorbid diabetes
or COPD. Query decomposition further fragments
retrieval results, lacking coherence or clinical focus.
These methods heavily depend on a sufficiently
strong language model to accurately identify crit-
ical information from a large and often noisy tex-
tual input after retrieval—whether it be high-risk
factors embedded in the original EHR or appropri-
ate treatment strategies extracted from retrieved
documents. This reliance becomes particularly
problematic when deploying LLMs on resource-
constrained environments, such as consumer-grade
GPUs, where inference capabilities and context
handling are limited.

Generative retrieval approaches like GAR allow
the model to generate an intermediate answer and
use it to retrieve supporting content. While this
enables partial recognition of high-risk factors and
relevant treatments, it heavily relies on the model’s
internal conceptual knowledge. As a result, its
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effectiveness declines in complex cases requiring
deeper medical understanding.

Advantages of RGAR. Our method explicitly
encourages the integration of conceptual and fac-
tual knowledge. In the first retrieval stage, exter-
nal conceptual knowledge (e.g., clinical guidelines
on comorbidities) is retrieved and provided to the
model. This serves as guidance for iterative rea-
soning, allowing the model to focus on identify-
ing patient-specific high-risk factors—such as the
interaction between diabetes, COPD, and current
symptoms.

Through multiple rounds of reasoning, the model
captures critical factual elements from the EHR
(e.g., allergy history, abnormal blood oxygen lev-
els) and aligns them with relevant conceptual in-
sights (e.g., recommended antibiotic choices for
diabetic patients). This integrated process results
in more accurate and interpretable treatment sug-
gestions, grounded in both structured medical evi-
dence and patient-specific context.

C Framework Insight

C.1 the Rationality of Bloom’s Taxonomy

We recognize that there may be concerns regarding
the use of Bloom’s Taxonomy in our framework,
particularly the potential implication that it imposes
arigid dichotomy between factual and conceptual
knowledge. However, both the original taxonomy
and our application through the RGAR framework
emphasize the integration—rather than the sepa-
ration—of these two forms of knowledge. Our
work does not advocate for treating factual and
conceptual knowledge as disjoint entities; rather, it
highlights their complementary roles in effective
problem-solving, a view that is explicitly articu-
lated in our abstract and substantiated through em-
pirical analyses, including targeted ablation studies.

In Section C.2, we further clarified that factual
and conceptual knowledge originate from funda-
mentally different sources, and this distinction nat-
urally aligns with the two types of knowledge de-
fined in Bloom’s Taxonomy. Traditional RAG se-
tups often fail to recognize the distinction between
factual and conceptual knowledge, which leads to a
lack of dedicated extraction for factual knowledge
and makes it impossible to facilitate interaction
between the two types of knowledge. In contrast,
our method is specifically designed to handle these
two forms of knowledge separately and enables
meaningful interaction between them.

If the concern is that using separate modules en-
forces an artificial separation, then by this logic
all RAG systems are inherently “bifurcated”, since
they embed a query including factual knowledge to
retrieve conceptual knowledge. The key distinction
of our work lies in foregrounding factual knowl-
edge extraction and promoting its interaction with
conceptual retrieval, which stands in contrast to
the rigid separation in existing systems. Our ap-
proach, RGAR, does not divide knowledge more
but integrates it more effectively.

C.2 Organization of Early Datasets

Early RAG-based methods were shaped by the
structure of existing QA datasets. For instance,
early benchmarks like PubMedQA provided only
the question as input for retrieval. Subsequent
datasets, such as MedQA-US, introduced associ-
ated factual knowledge but presented it concate-
nated with the question, effectively treating the two
as a single input. It was not until the introduc-
tion of EHRNoteQA that EHRs and questions were
explicitly provided as separate components. As
a result, existing retrieval methods were naturally
designed to operate on unified question—context
inputs, without explicitly distinguishing factual
knowledge from the query itself.

C.3 Another View of the Recurrence Pipeline

We conceptualize the Recurrence Pipeline as an
exploration-exploitation process within the rein-
forcement learning framework (Auer et al., 2002).
In GAR, even when generated content is only par-
tially accurate (or potentially inaccurate), it re-
mains valuable for retrieval if it correlates with
passages containing correct information (e.g., co-
occurrence with correct answers), thus representing
an exploratory phase. Conversely, EHR extraction
serves as an exploitation phase, thoroughly utiliz-
ing explored knowledge by selecting relevant com-
ponents and synthesizing new evidence (factual
knowledge). Based on this newly derived evidence,
subsequent iterations can initiate fresh exploration-
exploitation cycles, creating a continuous knowl-
edge transmission process (Zhu et al., 2024).

In scenarios where additional factual knowledge
is not required, the retrieved content tends to re-
main relatively constant, and utilizing this content
under identical prompting conditions would likely
yield similar factual knowledge through extraction
and summarization. However, when conceptual
knowledge is needed to derive new factual knowl-
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edge through reasoning from existing factual in-
formation, the updated basic query facilitates eas-
ier retrieval of conceptual knowledge supporting
current reasoned factual knowledge, thereby main-
taining the integrity of reasoning chains. Further-
more, leveraging current factual knowledge for re-
trieval enables the exploration and discovery of
novel knowledge domains.

C.4 Why No Flexible Stopping Criteria

Similar multiround RAG systems have adopted
more flexible stopping criteria. For instance, Adap-
tive RAG (Jeong et al., 2024) determines whether
to retrieve further by consulting the model itself.
1-MedRAG (Xiong et al., 2024b), while setting a
maximum number of retrieval iterations, also sup-
ports early stopping.

In our RGAR framework, we do not adopt such
settings. On the one hand, we focus on evaluating
how additional processing of factual knowledge
enhances retrieval performance, raising awareness
of this often-overlooked type of knowledge in pre-
vious RAG systems, while flexible stopping cri-
teria mainly showcase procedural knowledge and
metacognitive knowledge. On the other hand, the
metacognitive capabilities of current LLMs remain
under question, as a model’s self-evaluation of the
need for additional retrieval information often does
not match actual requirements (Kumar et al., 2024).

C.5 Generalizability of the Framework

Since RGAR maintains the same input-output struc-
ture as standard RAG systems, it is well-suited for
any retrieval scenario, regardless of the presence of
Electronic Health Records (EHRs). Its advantages
become particularly evident when handling long
EHR texts. The framework accepts a string input,
which undergoes additional partitioning to extract
EHRs and questions. In scenarios where EHRs are
unavailable, the factual knowledge extraction mod-
ule is not executed; instead, the question is rewrit-
ten with retrieved conceptual knowledge. The out-
put is formatted as a JSON object, facilitating the
inclusion of intermediate system outputs.

From the perspective of future scalability, the
evolution of LLM agents suggests that private LLM
health assistants will gain access to more exten-
sive historical health data from owners (patients),
including EHRs, enabling more comprehensive
question answering (Qiu et al., 2024). This an-
ticipated expansion emphasizes the importance of
distinguishing inputs beyond the question, partic-

ularly factual information, thereby validating the
rationale behind our framework.

To demonstrate the framework’s generalizability,
we evaluated its performance on the MMLU-Med
dataset (Hendrycks et al., 2021) in Table 2, which
lacks EHRs. Our experimental results, indicate
that RGAR consistently outperformed GAR, albeit
with a relatively modest improvement compared to
datasets containing EHRs.

C.6 Future Work

Our RGAR framework leverages retrieved medi-
cal domain knowledge to deliver exceptional an-
swer quality. However, we are concerned that such
powerful generative capabilities, if maliciously ex-
ploited, could pose security risks. For instance,
when the retrieved corpus contains private or copy-
righted information, malicious users could exploit
the LLM’s responses to extract and disclose sensi-
tive data from the corpus (Carlini et al., 2021). Ad-
ditionally, malicious users might attempt to repli-
cate our base LLM (Tramer et al., 2016) by collect-
ing large volumes of question-answer pairs or infer
internal details of our retrieval-based generation
framework (Carlini et al.). We will make every
effort to mitigate these risks, such as verifying the
legitimacy of queries (Inan et al., 2023), ensuring
that RGAR is used responsibly and legally.

D Dataset Description and Analysis

D.1 Dataset Coverage Overview

The datasets used in our study collectively span a
broad range of medical domains:

* MedQA-US focuses on general clinical
medicine within the scope of the USMLE ex-
amination.

* MedMCQA encompasses 21 medical special-
ties, including cardiology, oncology, derma-
tology, and more.

* EHRNoteQA covers real-world scenarios
such as inpatient management, emergency
medicine, and intensive care.

* MMLU-Med targets basic medical sciences
and related fields, including anatomy, genet-
ics, medical ethics, and public health.

The Textbooks corpus utilized in our study com-
prises content from 18 widely recognized med-
ical textbooks, extensively used by medical stu-
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dents and USMLE candidates. This corpus encom-
passes a broad spectrum of medical disciplines,
including internal medicine, pediatrics, surgery,
obstetrics and gynecology, psychiatry, pharmacol-
ogy, pathology, and foundational sciences such as
anatomy, physiology, and biochemistry. Given this
extensive coverage, the Textbooks corpus aligns
well with the domains addressed in our evaluated
datasets—MedQA-US, MedMCQA, EHRNoteQA,
and MMLU-Med—thereby serving as a represen-
tative and appropriate retrieval corpus for our ex-
periments.

Regarding question types, multiple-choice QA
is the most commonly used format and is the type
employed in all comparative analyses in this pa-
per. Open-ended (generative) QA datasets, which
primarily evaluate the quality of generated text sum-
maries rather than the ability to solve medical prob-
lems (Savery et al., 2020), are beyond the scope
of this study. However, addressing such datasets is
indeed a necessary step toward real-world applica-
tions.

D.2 Representative Examples of Different
Datasets

Figure 1 and Table 1 in the main text illustrate the
distinctions among datasets with respect to the in-
volvement of factual knowledge, specifically elec-
tronic health records (EHRS) in the case of medical
questions. In this section, we present representative
samples from all the datasets referenced throughout
the paper.

From the example of MMLU-Med in Table 15,
it can be observed that the length of the input
primarily stems from the inclusion of extensive
references to literature viewpoints and empirical
findings, which are used to support complex rea-
soning. This characteristic contributes to its sta-
tus as a representative and challenging medical
QA dataset. However, in comparison to the three
datasets discussed above, MMLU-Med still con-
tains little to no factual knowledge specific to in-
dividual patients; that is, it lacks detailed depic-
tions of patient-specific information. As shown
in Table 2, RGAR continues to exhibit strong per-
formance on this type of dataset. To some extent,
this highlights the generalizability of our approach:
the FKE module remains effective in scenarios in-
volving lengthy inputs that require distillation and
extraction of key information.

D.3 Comparative Analysis of Dataset Length
Distributions

In this section, we present additional visualizations
comparing the two categories of datasets we de-
scribed, and explain our rationale for excluding
the MMLU-Med dataset (Hendrycks et al., 2021).
We plotted smoothed Kernel Density Estimation
(KDE) curves for these datasets, as shown in Fig-
ure 7. Our analysis confirms that datasets contain-
ing Electronic Health Records (EHR) consistently
demonstrate greater length compared to those with-
out EHR content. However, certain datasets exhibit
complex question sources and types. For instance,
while the MMLU-Med dataset exhibits a consid-
erable mean length of 84 tokens and a maximum
length of up to 961 tokens, the primary source of
this length is not factual knowledge such as EHRs.
Moreover, its length distribution is highly skewed:
the majority of samples are relatively short, with
only a small fraction being significantly longer.
This distribution differs substantially from that of
medical QA datasets involving EHRs, where longer
inputs are more consistently present. As a result,
we exclude MMLU-Med from our main experimen-
tal evaluation. Nevertheless, we still report results
on this dataset, given its prominence and represen-
tativeness in the current landscape of medical QA
benchmarks.
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Figure 7: Length Distribution Analysis of Medical QA
Datasets with and without EHR.
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System prompts for Non-CoT

You are a helpful medical expert, and your task is to answer a multi-choice medical question us-
ing the relevant documents. Organize your output in a json formatted as Dict {"answer_choice":
Str{A/B/C/...} }. Your responses will be used for research purposes only, so please have a
definite answer. Please just give me the json of the answer.

System prompts for using CoT

You are a helpful medical expert, and your task is to answer a multi-choice medical ques-
tion. Please first think step-by-step and then choose the answer from the provided options.
Organize your output in a json formatted as Dict{"step_by_step_thinking": Str(explanation),
"answer_choice": Str{ A/B/C/...}}. Your responses will be used for research purposes only, so
please have a definite answer. Please just give me the json of the answer.

Answer prompts for Non-CoT

Here are the relevant documents: {{context}}

Here is the question: {{question} }

Here are the potential choices: {{options}}

Please just give me the json of the answer. Generate your output in json:

Answer prompts for Using CoT

Here are the relevant documents: {{context}}

Here is the question: {{question} }

Here are the potential choices: {{options}}

Please think step-by-step and generate your output in one json:

Extracting EHR prompts

Here are the relevant knowledge sources: {{context}}

Here are the electronic health records: {{ehr}}

Here is the question: {{question} }

Please analyze and extract the key factual information in the electronic health records relevant
to solving this question and present it as a Python list. Use concise descriptions for each item,
formatted as ["key detail 1", ..., "key detail N"]. Please only give me the list. Here is the list:

Generating Possible Answer prompts

Please give 4 options for the question. Each option should be a concise description of a key
detail, formatted as: A. "key detail 1" B. "key detail 2" C. "key detail 3" D. "key detail 4

Generating Possible Title prompts

Please generate some titles of references that might address the above question. Please give
me only the titles, formatted as: ["title 1", "title 2", ..., "title N"]. Please be careful not to give
specific content and analysis, just the title.

Generating Possible Contexts prompts

Please generate some knowledge that might address the above question. please give me only
the knowledge.

Table 9: Prompt templates used in RGAR and Compared Methods.
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EHR

A 39-year-old woman is brought to the emergency department because of fevers, chills, and
left lower quadrant pain. Her temperature is 39.1°C (102.3°F), pulse is 126/min, respirations
are 28/min, and blood pressure is 80/50 mm Hg. There is blood oozing around the site of
a peripheral intravenous line. Pelvic examination shows mucopurulent discharge from the
cervical os and left adnexal tenderness. Laboratory studies show: Platelet count 14,200/mm3
Fibrinogen 83 mg/mL (N = 200430 mg/dL) D-dimer 965 ng/mL (N < 500 ng/mL)

Questions

When phenol is applied to a sample of the patient’s blood at 90°C, a phosphorylated N-
acetylglucosamine dimer with 6 fatty acids attached to a polysaccharide side chain is identified.
A blood culture is most likely to show which of the following?

Options

A. Coagulase-positive, gram-positive cocci forming mauve-colored colonies on methicillin-
containing agar

B. Encapsulated, gram-negative coccobacilli forming grey-colored colonies on charcoal blood
agar

C. Spore-forming, gram-positive bacilli forming yellow colonies on casein agar

D. Lactose-fermenting, gram-negative rods forming pink colonies on MacConkey agar

Table 10: Case Study of a Sample Input.
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Generated Title

"Identification of Streptococcus pneumoniae in Clinical Specimens",
"Phosphorylcholine-Binding Protein A of Staphylococcus aureus”,
"D-Dimer Assay for Diagnosing Deep Vein Thrombosis",

"The Role of Fibrin Degradation Products in Hemostasis",

"Infection Control Measures for Hospital-Acquired Bloodstream Infections"

Generate Context

The description suggests Neisseria gonorrhoeae infection. Neisseria gonorrhoeae produces
lipopolysaccharides in its outer membrane, specifically LPS or endotoxin. When heated,
these lipopolysaccharides undergo cross-linking reactions resulting in the formation of
phosphorylcholine-attached oligomers such as those described in the question stem. These
structures can be detected by ELISA using antibodies against specific epitopes on the surface of
N. gonorrhoeae cells. The presence of this structure would suggest an active infection due to N.
gonorrhoeae. Blood cultures for N. gonorrhoeae typically require specialized media containing
antibiotics like vancomycin, colistin, and nystatin to inhibit competing bacteria

Generate Answer

Option 1: Streptococcus pneumoniae The presence of a high fever, tachycardia, hypoten-
sion, and low platelets suggests sepsis or severe infection. The laboratory findings also
indicate disseminated intravascular coagulation (DIC). The identification of a phosphorylated
N-acetylglucosane dimer with 6 fatty acid chains attached to a polysaccharide side chain after
applying phenol at 90°C is consistent with pneumococcal capsular polysacarcharides.

Option 2: Staphylococcus aureus Staphylococci can cause various infections but do not typically
produce this type of capsule structure when exposed to heat.

Option 3: Escherichia coli E. coli does have capsules that may be detected by certain methods
such as latex agglutination tests; however, they don’t match the description given in the prompt.
Option 4: Neisseria meningitidis Neisseria species like N. meningitidis would more commonly
present with symptoms related to central nervous system involvement rather than pelvic signs
described in the scenario.

Extract EHR

Patient age: 39 years

Symptoms: fever, chills, left lower quadrant pain

Vital signs: high temperature (39.1°C), tachycardia (126/min), tachypnea (28/min), hypotension
(80/50 mmHg)

Physical exam findings: mucopurulent discharge from cervix, left adnexal tenderness
Laboratory results: low platelet count (14,200/mm?), elevated D-dimer (965 ng/mL)

Phenol test result: phosphorylated N-acetylglucosamine dimer with 6 fatty acids attached to a
polysaccharide side chain

Output Json

{"answer_choice": "D"}

Table 11: Case Study of output in RGAR.
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Representative sample from the MedQA-US dataset (EHR QA)

A junior orthopaedic surgery resident is completing a carpal tunnel repair with the department
chairman as the attending physician. During the case, the resident inadvertently cuts a flexor
tendon. The tendon is repaired without complication. The attending tells the resident that the
patient will do fine, and there is no need to report this minor complication that will not harm
the patient, as he does not want to make the patient worry unnecessarily. He tells the resident to
leave this complication out of the operative report. Which of the following is the correct next
action for the resident to take?

A. Disclose the error to the patient and put it in the operative report

B. Tell the attending that he cannot fail to disclose this mistake

C. Report the physician to the ethics committee

D. Refuse to dictate the operative report

Table 12: Case study of a representative sample from the MedQA-US dataset.

Representative sample from the MedMCQA dataset (EHR QA)

29 yrs old woman with a pregnancy of 17 week has a 10 years old boy with down syndrome.
She does not want another down syndrome kid; best advice to her is

A. No test is required now as her age is below 35 years

B. Ultra sound at this point of time will definitely tell her that next baby will be down syndromic
or not

C. Amniotic fluid samples plus chromosomal analysis will definitely tell her that next baby will
be down syndromic or not

D. blood screening at this point of time will clear the exact picture

Table 13: Case study of a representative sample from the MedMCQA dataset.
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Representative sample from the EHRNoteQA dataset (EHR QA)

Patient ID: 15455707\nAdmission ID: 2401627 1\nChartdate: 2172-06-17\nName: ___ Unit
No: ___ \nAdmission Date:____ Discharge Date:___ \nDate of Birth:____ Sex: M\nService:
PLASTIC\nAllergies:\nNo Known Allergies / Adverse Drug Reactions\nAttending:___\nChief
Complaint:\nCrush injury to bilateral index fingers consistent with a flexor\ntendon lacera-
tion\nMajor Surgical or Invasive Procedure:\n____ Bilateral IF flexor tendon repairs\nHistory
of Present Illness:\n____ otherwise healthy male s/p work accident on __ when his\nhands
were pulled into conveyor belt. He is here today for\nrepair of bilateral index finger
crush injuries.\nPast Medical History:\nNone\nSocial History:\n___\nFamily History:\nNon-
contributory\nPhysical Exam:\nPre-procedure physical exam as documented in Dr.___: He
is well appearing.\nCARDIAC: He has palpable pulses without arrhythmia.\nLUNGS: He is
breathing room air without shortness breath or\ncough.\nMUSCULOSKELETAL: Focused
of upper extremity examination, hands\nare well perfused bilaterally with palpable radial
artery with\ngood cap refill in all five digits including lacerated digits\nwith volar lacerations
overlying the P2 of the left index finger\nand as well as the P2 and P3 of the right index
finger with\nsegmental lacerations transversely. He denies paresthesias in\nthe radial and
ulnar border of the index, middle, ring, small or\nthumb bilaterally. He is unable to make
a composite fist with\nno active motion demonstrated at the PIP of either index finger\nor
DIP of either index finger.\nBrief Hospital Course:\nThe patient was admitted to the plas-
tic surgery service on\n____ and had operative repair of bilateral index finger\ncrush injuries.
Please see operative note for further details\nof procedure. The patient tolerated the procedure
well.\n.\nNeuro: Post-operatively, the patient received IV pain medication\nwith good effect
and adequate pain control. When tolerating oral\nintake, the patient was transitioned to oral
pain medications.\n.\nCV: The patient was stable from a cardiovascular standpoint;\nvital signs
were routinely monitored.\n.\nPulmonary: The patient was stable from a pulmonary stand-
point;\nvital signs were routinely monitored.\n.\nGI/GU: Post-operatively, the patient was given
IV fluids until\ntolerating oral intake. His diet was advanced when appropriate,\nwhich was
tolerated well. He was also started on a bowel regimen\nto encourage bowel movement. Intake
and output were closely\nmonitored.\n.\nAt the time of discharge on POD#1, the patient was do-
ing well,\nafebrile with stable vital signs, tolerating a regular diet,\nambulating, voiding without
assistance, and pain was well\ncontrolled. Patient had bilateral splints in place.\nMedications
on Admission:\nNone\nDischarge Medications:\n1. Acetaminophen 650 mg PO Q6H:PRN
pain\n2. OxycoDONE (Immediate Release) __ mg PO Q4H:PRN pain\nDischarge Dispo-
sition:\nHome\nDischarge Diagnosis:\nbilateral index fingers crush injury consistent with
bilateral\nflexor tendon lacerations\nDischarge Condition:\nMental Status: Clear and coherent.
___Speaking)\nLevel of Consciousness: Alert and interactive.\nActivity Status: Ambulatory -
Independent.\nDischarge Instructions:\nFollowup Instructions: ___ \nQuestion: What was the
patient’s condition like at the time of discharge, particularly focused on his vital signs, pain
management and mobility?

A. The patient was fairly stabilized, with pain under control, consuming a regular diet, and able
to walk and relieve himself without assistance

B. The patient was on a repetitive intake of IV fluids and required I'V painkillers.

C. Patient was experiencing altered states of consciousness, still in distress due to pain, and not
able to ambulate

D. The patient was responding well to the oral pain medications and was capable of consistent
motion at the PIP of index fingers

E. Patient still required high-dependency care with heart rate and blood pressure under constant
monitoring

Table 14: Case study of a representative sample from the EHRNoteQA dataset.
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Representative sample from the MMLU-Med dataset (Non-EHR)

Sauna use, sometimes referred to as §auna bathing,is characterized by short-term passive expo-
sure to extreme heat. This exposure elicits mild hyperthermia \u2013 an increase in the body’s
core temperature \u2013 that induces a thermoregulatory response involving neuroendocrine,
cardiovascular, and cytoprotective mechanisms that work together to restore homeostasis and
condition the body for future heat stressors\u2026 In recent decades, sauna bathing has emerged
as a means to increase lifespan and improve overall health, based on compelling data from
observational, interventional, and mechanistic studies. Of particular interest are the findings
from studies of participants in the Kuopio Ischemic Heart Disease Risk Factor (KIHD) Study,
an ongoing prospective population-based cohort study of health outcomes in more than 2,300
middle-aged men from eastern Finland, which identified strong links between sauna use and
reduced death and disease\u2026 The KIHD findings showed that men who used the sauna two
to three times per week were 27 percent less likely to die from cardiovascular-related causes
than men who didn’t use the sauna. [2] Furthermore, the benefits they experienced were found
to be dose-dependent: Men who used the sauna roughly twice as often, about four to seven
times per week, experienced roughly twice the benefits \u2013 and were 50 percent less likely
to die from cardiovascular-related causes. [2] In addition, frequent sauna users were found to be
40 percent less likely to die from all causes of premature death. These findings held true even
when considering age, activity levels, and lifestyle factors that might have influenced the men’s
health. [2]... The KIHD also revealed that frequent sauna use reduced the risk of developing
dementia and Alzheimer’s disease in a dose-dependent manner. Men who used the sauna two
to three times per week had a 66 percent lower risk of developing dementia and a 65 percent
lower risk of developing Alzheimer’s disease, compared to men who used the sauna only one
time per week\u2026 The health benefits associated with sauna use extended to other aspects
of mental health, as well. Men participating in the KIHD study who used the sauna four to
seven times per week were 77 percent less likely to develop psychotic disorders, regardless
of the men’s dietary habits, socioeconomic status, physical activity, and inflammatory status
(as measured by C-reactive protein)\u2026Exposure to high temperature stresses the body,
eliciting a rapid, robust response. The skin and core body temperatures increase markedly, and
sweating ensues. The skin heats first, rising to 40\u00bOC (104\u00bOF), and then changes
in core body temperature occur, rising slowly from 37\u00bOC (98.6\u00bOF, or normal) to
38\u00b0C (100.4\u00bOF) and then rapidly increasing to 39\u00b0C (102.2\u00bOF)\u2026
Cardiac output, a measure of the amount of work the heart performs in response to the body’s
need for oxygen, increases by 60 to 70 percent, while the heart rate (the number of beats per
minute) increases and the stroke volume (the amount of blood pumped) remains unchanged.
[5] During this time, approximately 50 to 70 percent of the body’s blood flow is redistributed
from the core to the skin to facilitate sweating. The average person loses approximately 0.5
kg of sweat while sauna bathing.[11] ...(other corpus) \n \nBased on the article, which of the
following statements is the author likely to agree with?

A. Heart surgery patients who cannot run on treadmills may benefit from sauna use.

B. Patients on a diet would benefit from sauna use.

C. Salt restriction would be equal to sauna use for hypertensive patients.

D. Patients with skin conditions may be cured with sauna use.

Table 15: Case study of a representative sample from the MMLU-Med dataset.
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Representative sample from the BioASQ-Y/N dataset (Non-EHR)

Can losartan reduce brain atrophy in Alzheimer’s disease?
A. Yes
B. No

Table 16: Case study of a representative sample from the BioASQ-Y/N dataset.

Representative sample from the PubMedQA dataset (Non-EHR)

Is anorectal endosonography valuable in dyschesia?
A. Yes

B. No

C. Maybe

Table 17: Case study of a representative sample from the PubMedQA dataset.
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