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Abstract

Recent advancements in large language mod-
els (LLMs) have enabled LLM-based agents to
successfully tackle interactive planning tasks.
However, despite their successes, existing ap-
proaches often suffer from planning hallucina-
tions and require retraining for each new agent.
To address these challenges, we propose the
Meta Plan Optimization (MPO) framework,
which enhances agent planning capabilities by
directly incorporating explicit guidance. Un-
like previous methods that rely on complex
knowledge, which either require significant
human effort or lack quality assurance, MPO
leverages high-level general guidance through
meta plans to assist agent planning and en-
ables continuous optimization of the meta plans
based on feedback from the agent’s task execu-
tion. Our experiments conducted on three rep-
resentative tasks demonstrate that MPO signif-
icantly outperforms existing baselines. More-
over, our analysis shows that MPO provides a
portable solution that enhances both task com-
pletion efficiency and generalization capabili-
ties across new agents and unseen scenarios.

1 Introduction

Recent advancements in large language mod-
els (LLMs) (Achiam et al., 2023; Liu et al., 2024;
Yang et al., 2024a) have enabled LLM-based agents
to tackle complex multi-step tasks, including em-
bodied housework (Shridhar et al., 2020) and sci-
ence experiments (Wang et al., 2022). These tasks
require sophisticated planning abilities, as agents
need to understand long-term dependencies (Zhang
et al., 2024), reason about sequential actions, and
adapt to dynamic environments (Yao et al., 2022b).
The planning quality of these agents plays a crucial
role in determining their overall performance.
Current mainstream LLM-based agents primar-
ily develop their planning capabilities through
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Figure 1: Unlike previous implicit plan enhancing meth-
ods that require agent parameter updates, our method
incorporates meta plans into prompts for direct planning
guidance and can improve them based on feedback.
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implicit methods, either directly leveraging the
model’s inner ability or fine-tuning from expert tra-
jectories. For example, ReAct (Yao et al., 2022b)
and Reflexion (Shinn et al., 2024) perform plan-
ning on-the-fly during task execution and are prone
to getting lost due to planning hallucination (Zhu
et al.,, 2024). The works including AgentTun-
ing (Zeng et al., 2023), Lumos (Yin et al., 2023),
and ETO (Song et al., 2024b) employ trajectory
tuning to enhance implicit planning capabilities
and require retraining for each new agent, resulting
in huge computational cost (Figure 1(a)).

Beyond implicit planning, recent studies have
explored the use of human knowledge to guide
agents in task execution, capitalizing on the bene-
fits of explicit guidance and low integration costs
of such knowledge (Zhu et al., 2024; Qiao et al.,
2024). However, these approaches face significant
challenges: they either require extensive manual
efforts or struggle to ensure quality in the process
of acquiring complex knowledge, potentially lead-
ing to inconsistent improvements in agent perfor-
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mance (Wang et al., 2024). To overcome these
limitations, we propose to automatically generate
a high-level abstract guidance, termed Meta Plan,
which emulates human prior knowledge. Unlike
previous implicit plans derived during execution,
meta plans are decoupled from specific environ-
mental details and complex agent trajectories, re-
ducing the difficulty of knowledge acquisition. Fig-
ure 1(b) illustrates an abstract meta plan for the
task "put some watch on safe". In contrast to the
concrete plan in Figure 1(a), the meta plan omits
fine-grained details (e.g., cabinet 4). To further
enhance meta plan quality, we design a Meta Plan
Optimization (MPO) framework that iteratively
improves plans based on environmental feedback.
This process mirrors how humans refine their strate-
gies through experience, ensuring that meta plans
evolve over time for optimal task execution.

The MPO framework comprises two key compo-
nents: a meta planner and an agent. The meta plan-
ner generates high-level meta plans, while the agent
provides execution feedback to evaluate the qual-
ity of the input meta plans and guide meta planner
refinement. Initially, we collect meta plans from
expert trajectories and cold-start the meta planner
through supervised fine-tuning. To further opti-
mize the meta planner, we use Monte Carlo (MC)
sampling to estimate the task completion rate of
the agent as feedback. Specifically, given a task,
the planner generates multiple meta plans through
sampling. Then for each meta plan, the agent is
also sampled to produce multiple execution trajec-
tories, and the task completion rate is estimated
accordingly. After identifying contrastive meta
plan pairs—those yielding the highest and lowest
task completion rates—we apply DPO (Rafailov
et al., 2024) to refine the meta planner on these
plan pairs. Finally, the trained meta planner can be
detached from the MPO framework and function as
a portable component, capable of generating high-
quality meta plans for tasks in the target environ-
ment. This facilitates task completion for any new
agent without incurring additional training costs.

We evaluate our approach on three representative
benchmarks: ALFWorld (Shridhar et al., 2020) for
embodied household tasks, ScienceWorld (Wang
et al., 2022) for textual science experiment tasks
and WebShop (Yao et al., 2022a) for online web
navigation tasks. Across all test tasks, agents
equipped with our meta planner consistently out-
perform those without it, achieving at least a 5.6%
average improvement in performance. Addition-

ally, the meta planner is compatible with various
agent training frameworks, and its meta plans can
be directly inserted into task instructions. Com-
bined with these methods, our approach yields even
greater performance gains, demonstrating effective-
ness in a larger application scope. Further analy-
sis reveals that our generated meta plans signifi-
cantly increase the agent’s average reward per ac-
tion, thereby improving task completion efficiency.
In summary, our contributions are as follows:

* We introduce the MPO, which leverages meta
plan optimization to improve the performance
of LLM agents. This progress provides an in-
novative approach to explicitly enhance agents’
planning capabilities while maintaining compati-
bility with previous agent training frameworks.

» Extensive experiments conducted on three rep-
resentative benchmarks demonstrate that our
method has significantly improved the perfor-
mance of existing LLM agents.

e Further analysis indicates that: (1) Our proposed
method substantially boosts the agent’s task com-
pletion efficiency; (2) A lightweight meta planner
can guide more powerful agents in their planning.
and (3) MPO increases the correctness, followa-
bility, and standardization of the meta plan.

2 Task Formulation

LLM Agent Planning The primary scope of
this study is the planning of LLM agents interact-
ing with the environment and receiving feedback
for task solution. Following Song et al. (2024b),
the agent’s task planning trajectory can be repre-
sented as e = (u,a1,01,...,a,), where u € U
is the task instruction, a € A the agent actions,
and o € O the observation from the environment.
At each time step ¢, the agent performs implicit
planning and generates the corresponding action
a; ~ my(-|u,ay,01,...,0._1). The probability of
generating the task planning trajectory is given by:

n
779(6|u) = Hﬂ-e(at|u7 a17017"'70t71) (1)
t=1

Finally, the final reward r(u, e) € [0, 1] represent-
ing the task completion rate is calculated.

Meta Plan The meta plan serves as high-level,
natural guidance to assist in agent planning. It out-
lines an abstract, general strategy for task comple-
tion that is decoupled from specific environmental
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Figure 2: The overall architecture of MPO. The meta planner is first supervised fine-tuned on the seed meta
plan (MP) set. Then we optimize the meta planner through preference learning on contrastive meta plan pairs.

details, indicating its potential to generalize across
various agents. For instance, given the instruction
"look at the CD under the desklamp", the meta
plan could be: "1. Go to where the CD may be
placed. 2. Take the CD from where you found it.
3. Go to where the desklamp is located. 4. Use
the desklamp to look at the CD." A low-quality
meta plan might mislead the agent’s planning pro-
cess. To ensure meta plan quality, MPO develops a
lightweight parameterized meta planner 7, to gen-
erate meta plans, which can be further optimized
to produce better results. After incorporating the
meta plan p ~ 7,4(-|u), the probability of the agent
generating trajectory e is formulated as:

HWG at|u p,ai, ...

t=1

(e|u, p) so-1)  (2)

3 Method

The overall framework of our method is illustrated
in Figure 2. First, we construct a seed meta plan
training set to initialize a basic meta planner (§ 3.1).
Then, we develop the MC method to assess the
quality of the meta plan through exploration (§ 3.2).
Finally, we further enhance the meta planner via
preference-based optimization using contrastive
meta plan pairs (§ 3.3).

3.1 Supervised Fine-tuning Initialization

To equip the meta planner with the foundational
capabilities to generate meta plans based on task
instructions and the environmental state, we initial-
ize the model using supervised fine-tuning. How-
ever, existing agent datasets only provide golden

task completion trajectories without corresponding
meta plans. Therefore, we first need to construct
a training dataset for meta plan generation. To
achieve this, we leverage GPT-40 to assist in cre-
ating the dataset. We provide the model with the
original task instruction u and the corresponding
golden trajectory e as the prompt, allowing it to
summarize a generalizable plan p from the trajec-
tory. The specific prompt template can be found in
Appendix E.1. To ensure the quality of the meta
plan p, we manually review the results generated
by GPT-40 and refine any meta plans that are incor-
rect, overly complex, or non-standard. This quality
control process ensures that each meta plan p rep-
resents a reusable planning strategy that effectively
assists agents in task completion. The detailed pro-
cess for controlling the quality of the seed meta
plan set can be found in Appendix C. Since the
meta planner needs to generate plans without ac-
cess to golden trajectories during inference, we
remove them from the training data, thus obtaining
the initialization dataset for the meta planner:

D, = {(u, p)W}Z1 3)

We then fine-tune the model on the auto-regressive
loss the get the initialized meta planner 7:

ESFT = _E(u,]z))r\/D5 [IOg Tg (p‘U)] (4)

3.2 Meta Plan Quality Evaluation

To further enhance the meta planner, we need to
evaluate the quality of its generated meta plans.
While prior studies typically rely on reward models
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trained on human preference annotations (Bai et al.,
2022a; Ouyang et al., 2022; Dubey et al., 2024) or
advanced Al (Bai et al., 2022b; Lee et al., 2023)
models to assess model outputs, these approaches
have limitations. They not only incur additional
costs for human labeling or API calls, but may also
be less applicable to LLM agents, as their prefer-
ences for meta plans are not aligned with the agent
or task environment. To circumvent these chal-
lenges, we adopt an exploration-based approach to
evaluate the quality of meta plans.

Intuitively, a higher-quality meta plan should
enable the agent to more easily succeed in the task.
Therefore, for a give meta plan p, we insert it into
the prompt of the agent and have the agent attempt
to complete the task N times. This results in N
task completion trajectories generated by the agent:

{eWi=1,.,N} ~mylelu,p) (5

For each trajectory eV, the environment returns the
task completion rate (u, (). Thus, the quality of
the meta plan p is determined by the agent success
rate in completing the task based on it, which can
be represented as:

1 Y .
Q) = 5 D r(ue) 6)
i=1

In this paper, we use Llama-3.1-8B-Instruct (Dubey
et al., 2024) as the agent to evaluate the quality of
the meta plans. This model demonstrates strong
instructing-following capabilities and is already ef-
fective at completing agent tasks. Moreover, the
meta plans evaluated with this model can be gener-
alized to agents based on other models, which we
verify in the experiments later.

3.3 Meta Planner DPO Training

After we are able to automatically evaluate the
quality of meta plans, we can further optimize the
SFT-initialized meta planner through reinforcement
learning. We choose DPO (Rafailov et al., 2024)
as our optimization algorithm due to its training
stability and low resource consumption. The DPO
algorithm requires paired preference data to opti-
mize the meta planner, specifically pairs of high-
and low-quality meta plans. We construct the DPO
preference dataset D, from the task training set,
where the SFT-initialized meta planner generates
M meta plans {p;|i = 1,..., M} ~ m4(plu). We
then compute scores for each meta plan using the
MC method described in Section 3.2. The highest

Dataset Train Test Seen Test Unseen Action Space
ScienceWorld 1483 194 241 19
ALFWorld 3321 140 134 13
WebShop 1624 200 - 8

il

Table 1: Statistics overview of test datasets. “Test Seen’
and “Test Unseen” are test set with seen and unseen
scenarios respectively.

and lowest quality meta plans are selected as the
chosen and rejected pairs p,, and p;. If all meta
plans are of the same quality, we skip this sample.
This forms our preference training dataset:

D, = {(U,pw,pz)(i)}lpcl @)

Given the preference dataset D., DPO optimizes
the model to increase the likelihood of the chosen
meta plan p,, over the rejected one p;. We fine-tune
the meta planner by minimizing the DPO loss:

7o (Pw|w)
ﬂv‘ef(pwlu)
mo(pi|u)
—Blog m) )

[/DPO (779; 7T7‘cf) = _]E(u,p,uJ ,p1)~De¢ IOg U(B IOg

This equation reflects the goal of maximizing the
probability of generating the higher-quality meta
plan p,, over the lower-quality meta plan p; for a
given task instruction u. By constructing the pref-
erence dataset and applying DPO optimization, the
meta planner becomes more effective at generating
high-quality meta plans, therefore better guiding
the agent planning process.

4 Experiments

4.1 Experiment Settings

Datasets We conducted experiments on three rep-
resentative agent datasets: ScienceWorld (Wang
et al., 2022) for textual science experiment tasks,
ALFWorld (Shridhar et al., 2020) for embodied
household tasks, and WebShop for online web navi-
gation tasks (Yao et al., 2022a). Both ScienceWorld
and WebShop provide dense rewards ranging from
0 to 1, while ALFWorld offers only binary rewards
to indicate whether the task is completed. For de-
tails of the datasets, please refer to Appendix A.

The statistical information of our datasets is pre-
sented in Table 1. It is important to note that in addi-
tion to the in-distribution test sets, both ALFWorld
and ScienceWorld include test sets that include out-
of-distribution unseen variations. These additional
test sets enable us to evaluate the generalization
capabilities of the meta planner.
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| ScienceWorld ~ ALFWorld ~ WebShop | Average

Model w/o Exp. Guid.
‘ Seen Unseen Seen Unseen Seen ‘
Agents w/o Training
GPT-40 (Achiam et al., 2023) X 60.0 56.0 78.6 83.6 63.5 68.3
GPT-40-mini (Achiam et al., 2023) X 49.1 42.7 32.1 41.0 55.7 44.1
Llama-3.1-8B-Instruct (Dubey et al., 2024) X 47.7 422 22.9 28.4 56.3 39.5
Llama-3.1-8B-Instruct + Reflexion X 49.6 43.1 26.5 33.1 57.4 41.9
Qwen2.5-7B-Instruct (Yang et al., 2024a) X 38.5 38.8 71.4 75.4 58.3 56.5
Llama-3.1-70B-Instruct (Dubey et al., 2024) X 72.6 70.2 78.6 73.9 59.4 70.9
Llama-3.1-8B-Instruct + MPO v 56.5 55.5 50.0 52.2 63.2 55.5
Llama-3.1-8B-Instruct + Reflexion + MPO v 57.5 56.4 52.0 53.4 63.9 56.6
GPT-40-mini + MPO v 55.7 52.8 64.3 79.9 64.0 63.3
GPT-40 + MPO v 67.3 67.8 89.3 93.3 66.3 76.8
Llama-3.1-70B-Instruct + MPO v 80.4 79.5 85.7 86.6 65.1 79.5
Agents w/ Training

Llama-3.1-8B-Instruct + SFT (Zeng et al., 2023) X 65.3 57.0 79.3 71.6 63.3 67.3
Llama-3.1-8B-Instruct + ETO (Song et al., 2024b) X 81.3 74.1 77.1 76.4 68.4 75.5
Llama-3.1-8B-Instruct + KnowAgent (Zhu et al., 2024) v 81.7 69.6 80.0 74.9 64.8 74.2
Llama-3.1-8B-Instruct + WKM (Qiao et al., 2024) v 82.1 76.5 77.5 78.2 66.9 76.2
Llama-3.1-8B-Instruct-SFT + MPO v 70.2 65.9 80.7 81.3 65.5 72.7
Llama-3.1-8B-Instruct-ETO + MPO v 834 80.8 85.0 79.1 70.2 79.7

Table 2: Performance of different methods on two datasets. MPO-optimized meta plans significantly improve
performance across various models or agent frameworks, surpassing other explicit guidance (Exp. Guid.) methods.

Implementation Details We use Llama-3.1-8B-
Instruct (Dubey et al., 2024) as the base model to
construct the meta planner. For SFT initialization,
we set the batch size to 32, the learning rate to le-
5 and employ a cosine scheduler with 3 training
epochs. For DPO (Rafailov et al., 2024) training,
we configure the meta planner to generate M = 5
meta plans per task with a generation temperature
of 0.7. To evaluate meta plan quality, we set the
agents to generate N = 5 task completion trajec-
tories for each meta plan, also using a temperature
of 0.7. We utilize vLLM (Kwon et al., 2023) to ac-
celerate the generation process. For DPO training,
the batch size is 32, and the learning rate is le-5
with a 3% warm-up phase, and a cosine scheduler
is used. The S parameter in the DPO loss function
is set to 0.1 for the ALFWorld, ScienceWorld and
WebShop datasets, with training conducted over 3
epochs. All training procedures are implemented
using Llama-Factory (Zheng et al., 2024) with full
parameter fine-tuning. The experiments are con-
ducted on 8 NVIDIA A100 80GB GPUs.

Base Agents We evaluate our method on two
types of agents, guided by MPO-optimized meta
plans: (1) Agents without training, which de-
ploy the ReAct framework using foundation mod-
els without additional training. We test two pro-
prietary models, including GPT-40 and GPT-4o-
mini (Achiam et al., 2023) as well as several open-

source models, including Llama-3.1-8B-Instruct,
Llama-3.1-70B-Instruct (Dubey et al., 2024), and
Qwen2.5-7B-Instruct (Yang et al., 2024a). (2)
Agents with training, which enhance agent plan-
ning capabilities via parameter updates to founda-
tion models. We examine two agent frameworks:
AgentTuning (Zeng et al., 2023), which uses Super-
vised Fine-Tuning from expert trajectories to im-
prove the agent capabilities of the base model, and
ETO (Song et al., 2024b), which learns from failed
trajectories and proposes an exploration-based tra-
jectory optimization method to enhance the task-
solving process. We also compare with KnowA-
gent (Zhu et al., 2024) and WKM (Qiao et al.,
2024), which also inject explicit guidance into the
agent planning process. These two methods re-
quire fine-tuning the base models, making them
incompatible with other agent frameworks.

Evaluation To ensure experimental reproducibil-
ity, we set the decoding temperature to O for both
meta plan generation by the meta planner and task
trajectory generation by the agent. For meta plan
generation, we employ a zero-shot prompting ap-
proach. When generating task completion trajec-
tories, we include a 1-shot in-context example for
each task. The detailed prompts are provided in
Appendix E.2. Note that once the meta plans for
the test set tasks are generated by the meta plan-
ner, we use them across all agents without further
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modification. Our primary evaluation metric is the
Average Reward, which calculates the mean re-
ward across all test set task instances. We also
report the Success Rate in Appendix B. We will
release the generated meta plans and parameters of
the optimized meta planner upon acceptance.

4.2 Results

As shown in Table 2, the incorporation of MPO-
optimized meta plans consistently improves agent
performance across all tasks and frameworks, with
the average performance increasing by up to 40.5%
for the Llama-3.1-8B-Instruct based agent. More-
over, our meta planner is compatible with other
agent training frameworks. The MPO-enhanced
Llama-3.1-8B-Instruct-ETO achieves an average
reward 3.5 higher the the current SOTA explicit
guidance method, WKM. These results demon-
strate that our general high-level meta plan, op-
timized through agent feedback, outperforms com-
plex knowledge-based guidance that relies heavily
on manual efforts, lacks generalization ability, and
offers no quality assurance. This underscores the
effectiveness of our approach in significantly boost-
ing agent performance. Furthermore, our method
demonstrates strong effectiveness in unseen sce-
narios. For the unseen parts of ScienceWorld and
ALFWorld, despite never having encountered these
tasks, the meta planner is able to generalize to them
and generate high-quality meta plans. This im-
proves the success rate of GPT-40 on the unseen
part of ALFWorld by 9.7, achieving a success rate
of 93.3. These results highlight that MPO can fur-
ther enhance the agent’s generalization capabilities,
particularly in out-of-distribution scenarios.

5 Analysis
5.1 Ablation Study

We conduct ablation experiments on the training
methods of the meta planner. For ScienceWorld
and ALFWorld, we evaluate on the unseen test set.
As shown in Table 3, the meta planner optimized
by MPO vyields greater improvements in agent
performance compared to other training methods.
It also outperforms directly prompting GPT-40
as the meta planner, which relies solely on its
prior knowledge without optimizing the meta plan
through environment exploration. This suggests
that exploring the environment and learning from
comparisons enable the meta planner to produce
higher-quality meta plans. Additionally, when us-

Base LLM Setting ‘ SciWorld ALFWorld WebShop
- 56.0 83.6 63.5
SFT 59.5 91.0 63.1
GPT-40 GPT 60.2 91.3 64.2
RFT 61.8 89.6 65.5
MPO 67.8 93.3 66.3
- 38.8 754 58.3
SFT 37.4 73.9 59.2
Qwen2.5-7B-Ins | GPT 38.3 75.6 60.8
RFT 41.9 78.3 62.4
MPO 43.7 82.8 63.6

Table 3: Ablation study on meta planner optimization
methods. “—" indicates no meta plan. RFT uses reject
sampling with only the best sampled meta plan for train-
ing. GPT directly prompts GPT-40 as the meta planner.

Base LLM | Type | SciWorld ALFWorld
Inst. 67.8 93.3
GPT-4o0 Thou. 65.3 85.1
Obs. 67.6 91.8
Inst. 55.5 52.2
Llama-3.1-8B Thou. 38.0 343
Obs. 53.3 50.8
Inst. 65.9 81.3
Llama-3.1-8B-SFT | Thou. 479 25.4
Obs. 60.6 67.2

Table 4: The impact of different meta plan insertion
positions on agent performance.

ing SFT-initialized meta plans, the performance of
the Qwen2.5-7B-Instruct model decreases on both
evaluation datasets, indicating that a low-quality
meta plan may mislead the agent planning process.

5.2 How to Use Meta Plan?

In our main experiments, the meta plan is incorpo-
rated into the task instructions to guide the agent
planning process. Here, we investigate the im-
pact of different insertion positions on agent per-
formance: in the task instruction, in the agent’s
thought process and in the environment observation.
As shown in Table 4, we find that insertion into the
task instruction consistently yields the best perfor-
mance across all agents and tasks, while insertion
into the thought process leads to the worst perfor-
mance. This suggests that disrupting the agent’s
normal reasoning process negatively affects plan-
ning accuracy. Additionally, we observe that insert-
ing the meta plan at other positions causes greater
performance drops in agent frameworks with train-
ing, likely because the training data does not in-
volve meta plans. In contrast, insertion into the
instruction causes minimal disruption to the origi-

3919



ALFWorld (Unseen) ALFWorld (Seen)

10
& N/A 10 N/A
v SFT SFT
S 81 mm MPO g | = MPO
=
<
g6 6
.:4
&
2 )
<

> e
,\“& \)‘2’ ¢;\Q’ N ,\“& \‘27 (.)f\% :\gb
> v & > > > & >
& & & ¢ & & &
O S O O S O
SciWorld (Unseen) SciWorld (Seen)
10

& N/A N/A
@ g SFT SFT
5 | mm wmro
ER

z
23
I~
4
£
153

>
Z

Figure 3: The average reward per step.

nal task completion process. These results suggest
that inserting the meta plan in the task instruction
ensures optimal performance.

5.3 Efficiency Analysis

Another advantage of incorporating high-quality
meta plans is that it prevents agents from unneces-
sary exploration, thus improving their task comple-
tion efficiency. Following Xiong et al. (2024), we
evaluate action efficiency using the average reward
per step, calculated for each task as the ratio of
the final reward to the number of steps required
to complete the task, and then averaging these val-
ues across the entire test set. Figure 3 shows the
significant improvements in average step rewards
achieved by our MPO compared to both the no-
meta-plan (N/A) and SFT-initialized meta plans. It
is also clear that for the unseen test tasks, MPO
leads to an even greater increase in average reward
per step, demonstrating its strong generalization to
out-of-distribution tasks. These results underscore
the superior performance of MPO, confirming its
effectiveness in enhancing agent action efficiency.

5.4 Effect on Agents with Scaling Parameters

To further validate the effectiveness of our method,
we conduct experiments on models of varying pa-
rameter sizes. We choose the Qwen2.5-Instruct
family as test models, selecting a range of param-
eter sizes from small to large: 3B, 7B, 14B, 32B,
and 72B, and evaluate their performance on both
the seen and unseen parts of ScienceWorld and
ALFWorld.
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Figure 4: The effectiveness of MPO across agents with
different parameter sizes.
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trastive meta plan construction on agent performance.

As shown in Figure 4, MPO can enhance agent
performance across a wide range of parameter sizes,
with the most significant improvements observed in
agents with medium-sized parameters. Moreover,
as a lightweight model, the meta planner has the
potential to enhance more powerful agents portably
without requiring their retraining.

5.5 Effect of Sampling Count on Performance

We analyze how the sampling counts, M for meta
plan generation and N for task trajectory sampling
affect the trained meta planner’s performance. We
use the average score of the agent enhanced by the
optimized meta plans as the evaluation metric, vary-
ing one parameter while fixing the other. As shown
in Figure 5, lower sampling counts significantly
reduce meta plan quality, with N having a stronger
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Figure 6: The comparison of SFT-initialized and MPO-optimized meta plans on ALFWorld.

effect. This is likely because insufficient task tra-
jectories reduce the accuracy of meta plan quality
estimation. Moreover, the performance gains from
increasing N and M quickly saturate. Considering
sampling efficiency, we set N = M =5 in the main
experiments, striking a balance between sampling
cost and meta planner performance gains.

5.6 What Makes a Good Meta Plan?

We further investigate why the meta plans opti-
mized through exploration in MPO outperform
those obtained soly through SFT initialization. We
evaluate the meta plans from three perspectives:
correctness, followability, and standardization, us-
ing GPT-4o0 for automated assessment. The eval-
uation details and prompts can be found in Ap-
pendix E.3. As shown in Figure 6, MPO-optimized
meta plans consistently outperform SFT-initialized
ones across all three dimensions. The advantages
in correctness and followability make it easier for
the agent to effectively plan and execute tasks, lead-
ing to higher task completion rates. Please refer to
Appendix D for a more detailed case study.

6 Related Work

LLM as Agents With advancements in reasoning
and instruction-following capabilities of large lan-
guage models (Wei et al., 2022a), researchers have
begun using prompting methods (Wei et al., 2022b;
Song et al., 2023) or more complex strategies (Koh
et al., 2024) to build agents capable of leveraging
tools (Qin et al., 2023), solving problems, writing
code (Qian et al., 2023), and completing real-world
tasks (Patil et al., 2023; Gur et al., 2023; Yang et al.,
2024b). To enhance open-source models as agents,
some works (Zeng et al., 2023; Song et al., 2024a)
use expert trajectories for supervised fine-tuning
LLMs, while others (Song et al., 2024b; Xiong
et al., 2024; Zhao et al., 2024b) enable agents to ex-
plore the environment autonomously and leverage

reinforcement learning to learn from failed experi-
ences. However, these methods require retraining
each time a new agent is deployed, leading to sig-
nificant computational overhead.

Planning in LLM Agents Planning (Huang
et al., 2024) is essential for intelligent agents to
complete real-world tasks, involving the decompo-
sition of complex instructions into sub-tasks and
acting on them sequentially. Previous works (Yao
et al., 2022b; Shinn et al., 2024) primarily focus on
implicit planning, where planning occurs through
interleaved reasoning and action generation. To
address the challenges of myopic reasoning and
planning hallucination in implicit planning (Zhu
et al., 2024), some approaches (Guan et al., 2024;
Li et al., 2024; Zhao et al., 2024a; Zhu et al., 2024)
have explored using explicit knowledge to guide
task execution. However, these methods often re-
quire manually designed prompt templates or task
procedures, limiting their transferability across en-
vironments. Some works (Logeswaran et al., 2022;
Ye et al., 2023; Fu et al., 2024) use language mod-
els to automate task knowledge synthesis or sub-
goal planning, but the generated knowledge cannot
be further refined through exploration and envi-
ronmental feedback, leading to suboptimal perfor-
mance. In contrast, our MPO introduces an auto-
matically generated meta plan that provides high-
level, abstract guidance to assist in agent planning,
while allowing further quality enhancement based
on feedback from the task completion process.

7 Conclusion

In this paper, we introduce MPO, a novel frame-
work for enhancing the performance of LLM-based
agents. MPO incorporates abstract, high-level guid-
ance via meta plans, offering an innovative solution
to explicitly improve the agent’s planning capabil-
ities. By utilizing feedback from the agent’s task

3921



execution, MPO enables continuous enhancement
of the meta plan quality. Extensive experiments on
three benchmarks demonstrate that our framework
consistently outperforms existing baselines and is
applicable to agents across a wide range of param-
eter sizes. These findings highlight the potential
of our approach to advance agent planning capa-
bilities, paving the way for future developments in
artificial general intelligence.
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application of MCTS methods to improve the effi-
ciency of the sampling process.
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A Dataset Details

ScienceWorld ScienceWorld (Wang et al., 2022)
is a text-based virtual environment that provides
a testing platform for Al research, specifically de-
signed to evaluate and improve Al systems’ scien-
tific reasoning abilities. Researchers can use this
platform to assess the performance of Al agents in
open, complex environments. ScienceWorld sim-
ulates tasks from standard elementary school sci-
ence curricula, covering areas such as state changes
of matter, measurement, electricity, life sciences,
plant growth, chemical reactions, and genetics.
Agents are deployed in an embodied interactive
environment to understand and apply complex sci-
entific concepts. Tasks in ScienceWorld involve
several subgoals, and the overall final reward is cal-
culated based on the completion of these subgoals.

The original test set of ScienceWorld includes
unseen task variations. For example, in the train-
ing set, a task may involve boiling water, while in
the test set, the task may be boiling lead. Follow-
ing Song et al. (2024b), we use the original test set
to evaluate the generalization ability of our meta
planner in unseen scenarios, and the original vali-
dation set serves as our test set for seen scenarios.

ALFWorld ALFWorld (Shridhar et al., 2020)
are household tasks that require agents to explore
rooms and use commonsense reasoning to perform
tasks, such as "put a pencil on the desk". The en-
vironment provides the outcome on whether the
agent successfully completes the task within given
steps. The original ALFWorld dataset comprises
both seen and unseen evaluation sets. The seen set
is designed to assess in-distribution generalization,
whereas the unseen set with new tasks measures
out-of-distribution generalization of the agents.

WebShop WebShop (Yao et al., 2022a) is a simu-
lated e-commerce website environment containing
1.18 million real-world products. In this environ-
ment, agents are required to navigate through vari-
ous types of webpages and perform diverse actions
to find, customize, and purchase items based on nat-
ural language instructions. Once the agent clicks
the "buy" option, the environment provides a final
reward, which is calculated based on the matching
heuristics of the product’s attributes and price.

B Success Rate

We report the success rate of our experiments in
Table 6. Note that the definition of success rate dif-

fers between the two tasks. For ScienceWorld, the
original paper does not provide a specific definition
for success rate. However, based on the official
environment, a trajectory is considered successful
if the agent reaches a predefined latent state, even
if the reward is not exactly 1.0. For ALFWorld,
since it only provides binary final rewards, the suc-
cess rate is equivalent to the average final reward.
After inserting the MPO-optimized meta plan, all
agents show consistent and significant success rate
improvements across both tasks.

C Seed Meta Plans Quality Control

A high-quality seed meta plan training set is crucial
for initializing a more effective meta planner. As
such, we carefully control the quality of the meta
plans generated by GPT-40. We have identified
several key issues with the meta plans it produces:
(1) they often include excessively detailed steps
or environmental information, which makes them
difficult to generalize and optimize; (2) they some-
times feature manipulation types that are not appli-
cable to the environment; (3) they fail to adhere to
the predefined meta plan format. To address the
first two issues, we adjust the temperature during
GPT-40’s generation and re-summarize the meta
plan. For the third issue, we additionally prompt
GPT-4o to extract correctly formatted meta plans
from the response. Although manual verification
is required to ensure quality, the human effort in-
volved in this process is negligible compared to
the manual construction of knowledge in Zhu et al.
(2024).

D Case Study

Here we provide a detailed comparison of agent
trajectories on the same task within ALFWorld, af-
ter inserting meta plans optimized by two different
methods: SFT and MPO. This comparison demon-
strates how MPO provides higher-quality plan guid-
ance. The case is shown in Figure 14. The agent
used in this case study is Llama-3.1-8B-Instruct.
In the ALFWorld scenario, the meta plan gener-
ated by the SFT-initialized meta planner mistakenly
includes the instruction "go to sidetable", which
misleads the agent into repeatedly executing the
erroneous plan "I can try to go to sidetable first,"
resulting in plan hallucination. In contrast, the
MPO-optimized meta planner generates a higher-
quality meta plan: "go to where the first pillow
may be located." This plan outlines an abstract,
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Table 5: The average reward comparison of different agents after incorporating MPO-optimized meta plans on two
datasets.

ScienceWorld ALFWorld
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Seen Unseen Seen Unseen‘

Model w/o Meta Plan

Agents w/o Training

59.8 57.8 78.6 83.6 70.0
61.3 65.9 89.3 933 71.5

38.7 28.9 32.1 41.0 352
41.2 41.2 64.3 79.9 56.7

25.8 25.6 22.9 28.4 25.7
47.9 53.6 50.0 522 50.9

22.7 30.8 714 754 50.1
32.0 33.2 81.4 82.8 57.4

67.5 64.9 78.6 739 71.2
71.7 69.7 85.7 86.6 78.4

GPT-40 (Achiam et al., 2023)
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Table 6: The success rate comparison of different agents after incorporating MPO-optimized meta plans on two
datasets. For ALFWorld, the success rate is equivalent to the average final reward.

3926



general task completion strategy, decoupled from
specific environmental details, and correctly guides
the agent in planning to locate the pillow in the
environment with "I can check one by one, starting
from armchair 1."

E Prompts Used in Our Work

E.1 Prompt for Seed Meta Plans Collection

We show the prompt for GPT-40 to generate the
seed meta plan dataset based on the task instruc-
tions. We provide the task instruction, environmen-
tal information, and the current task completion
trajectory, then prompt GPT-40 to extract a meta
plan that includes environmental priors and can
guide the task completion process. The prompt is
shown in Figure 7, Figure 8 and Figure 9.

E.2 Prompt for Evaluation

We show the instruction prompts for ScienceWorld,
ALFWorld and WebShop in Figure 10, 11 and 12,
respectively.

E.3 Prompt for GPT Automated Assessment

We show the prompt in Figure 13 that enables
GPT-40 to automatically evaluate the quality of
the MPO-optimized meta plan from three aspects:
correctness, followability, and standardization. Cor-
rectness assesses whether the plan accurately ful-
fills the task requirements, followability evaluates
whether the plan is clear, easy to understand, and
whether the steps are reasonable, while standard-
ization checks if the meta plan follows a consistent
and standardized format. For each dimension, GPT-
4o is asked to first identify which set of plans is
better and provide the reasoning procedure. Finally,
an overall assessment is given.
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Prompt for ScienceWorld Meta Plan Collection

Please generate a step-by-step meta plan for a scientific task:

<task>

You are a helpful assistant to do some scientific experiment in an environment.

In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway.

{task}

</task>

You should explore the environment and find the items you need to complete the experiment. You
can teleport to any room in one step.

All containers in the environment have already been opened, you can directly get items from the
containers.

The available actions are:
open OBJ: open a container
close OBIJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBIJ]: use a device/item
look around: describe the current room
examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBJ: signal intent on a task object
wait: task no action for 10 steps
waitl: task no action for a step

Below is the standard and detailed procedure for solving this task:
<conversation>

{conversation }

</conversation>

You need to conclude abstract steps as a meta plan, which can be used to solve similar tasks in the
future.

The meta plan should be a commonly-reused routine of the tasks.

The generated meta plan should be written in the following format:

<meta_plan>

Step 1: ...

Step 2: ...

</meta_plan>
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Figure 7: Prompt for ScienceWorld Meta Plan Collection.

Prompt for ALFWorld Meta Plan Collection

Please generate a step-by-step meta plan for a house holding task:
<task>

{task}

</task>

The action list you can take:
1. go to recep

. task obj from recep

. put obj in/on recep

. open recep

. close recep

. toggle obj recep

. clean obj with recep

. heat obj with recep
9. cool obj with recep

where obj and recep correspond to objects and receptacles.
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Below is the standard and detailed procedure for solving this task:
<conversation>

{conversation}

</conversation>

The generated meta plan should be written in the following format:
<meta_plan>

Step 1: ...

Step 2: ...

</meta_plan>

Figure 8: Prompt for ALFWorld Meta Plan Collection.

Prompt for WebShop Meta Plan Collection

Please generate a step-by-step meta plan for a webshopping task:

You are web shopping. I will give you instructions about what to do. You have to follow the
instructions.

<task>

{task}

</task>

Every round I will give you an observation and a list of available actions, you have to respond an
action based on the state and instruction. You can use search action if search is available. You can
click one of the buttons in clickables.
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The available actions are:
click[value]: click a button
search[keywords]: search for a keyword

If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.

Below is the standard and detailed procedure for solving this task:
<conversation>

{conversation}

</conversation>

The generated meta plan should be written in the following format:
<meta_plan>

Step 1: ...

Step 2: ...

</meta_plan>

Figure 9: Prompt for WebShop Meta Plan Collection.

Instruction Prompt for ScienceWorld

You are a helpful assistant to do some scientific experiment in an environment.

In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway.

You should explore the environment and find the items you need to complete the experiment. You
can teleport to any room in one step.

All containers in the environment have already been opened, you can directly get items from the
containers.

For each of your turn, you will be given the observation of the last turn. You should choose from
two actions: "Thought" or "Action". If you choose "Thought", you should first think about the
current condition and plan for your future actions, and then output your action in this turn. Your
output must strictly follow this format:"Thought: your thoughts.\n Action: your next action"; If
you choose "Action", you should directly output the action in this turn. Your output must strictly
follow this format:"Action: your next action". Remember that you can only output one "Action:"
in per response.

The available actions are:
open OBJ: open a container
close OBIJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room
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examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBIJ: signal intent on a task object
wait: task no action for 10 steps
waitl: task no action for a step

Here is an example.

{example}

Now, it’s your turn and here is the task.
{task_instruction }

This meta plan maybe helpful for you to complete the task:
{meta_plan}

Figure 10: Instruction prompt for ScienceWorld.

Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning of
your interactions, you will be given the detailed description of the current environment and your
goal to accomplish.
For each of your turn, you will be given the observation of the last turn. You should choose from
two actions: "Thought" or "Action". If you choose "Thought", you should first think about the
current condition and plan for your future actions, and then output your action in this turn. Your
output must strictly follow this format:"Thought: your thoughts.\n Action: your next action"; If
you choose "Action", you should directly output the action in this turn. Your output must strictly
follow this format:"Action: your next action".
The available actions are:

1. go to recep
. take obj from recep
. put obj in/on recep
. open recep
. close recep
. toggle obj recep
. clean obj with recep
. heat obj with recep

9. cool obj with recep
where obj and recep correspond to objects and receptacles.
After your each turn, the environment will give you immediate feedback based on which you plan
your next few steps. if the envrionment output "Nothing happened", that means the previous action
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is invalid and you should try more options.

Reminder:

1. The action must be chosen from the given available actions. Any actions except provided
available actions will be regarded as illegal.

2. Think when necessary, try to act directly more in the process.

Here is an example.
{example}

Now, it’s your turn and here is the task.
{task_instruction}

This meta plan maybe helpful for you to complete the task:
{meta_plan}

Figure 11: Instruction prompt for ALFWorld.

Instruction Prompt for WebShop

You are web shopping. I will give you instructions about what to do. You have to follow the
instructions.
Every round I will give you an observation and a list of available actions, you have to respond an
action based on the state and instruction. You can use search action if search is available. You can
click one of the buttons in clickables.
An action should be of the following structure:

search[keywords]

click[value]
If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.
Your response should use the following format:
Thought: I think ...
Action: click[something]

Here is an example.
{example}

Now, it’s your turn and here is the task.
{task_instruction }

This meta plan maybe helpful for you to complete the task:
{meta_plan}

Figure 12: Instruction prompt for WebShop.
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Instruction Prompt for GPT Automated Assessment

Please act as a professional instruction evaluator and assess the following two sets of meta plans.
Task description: {task}

DPO Plan:
{dpo}

SFT Plan:
{sft}

Please compare these two sets of meta plans across the following three dimensions:

1. Correctness - Does the meta plan accurately fulfill the task requirements?

2. Followability - Is the meta plan clear, easy to understand, and are the steps reasonable?
3. Standardization - Does the meta plan follow a consistent and standardized format?

For each dimension, please indicate which meta plan is better and provide reasoning. Finally,
provide an overall assessment.
Please output the result in JSON format, including the following fields:

{

"correctness_better": "dpo"/"sft"/"tie",

"correctness_reason": "reason",
"followability_better": "dpo"/"sft"/"tie",
"followability_reason": "reason",
"standardization_better": "dpo"/"sft"/"tie",

"standardization_reason": "reason",
"overall_better": "dpo"/"sft"/"tie"

Figure 13: Instruction prompt for GPT automated assessment.
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Case Study of ALFWorld

SFT

Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
armchair 1, a cabinet 4, a cabinet 3, a cabinet 2,
acabinet 1, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan
1, a safe 1, a shelf 12, a shelf 11, a shelf 10, a
shelf 9, a shelf 8, a shelf 7, a shelf 6, a shelf 5, a
shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable
1, and a sofa 1. Your task is to: find two pillow
and put them in sofa.

# Bad Meta Plan

Meta Plan: Step 1: go to sofa. Step 2: go to
sidetable. Step 3: take pillow from sidetable.
Step 4: go to sofa. Step 5: put pillow in/on sofa.
Step 6: go to sidetable. Step 7: take another
pillow from sidetable. Step 8: go to sofa. Step
9: put second pillow in/on sofa.

Thought: To solve the task, I need to find two
pillow and put them in sofa. The meta plan
suggests that I should go to sofa first, then go
to sidetable.

Action: go to sofa

Observation: Nothing happens.

Thought: It seems that the action "go to sofa"
is invalid. I can try to go to sofa again, or [ can
try to go to sidetable first.

Action: go to sidetable

Observation: Nothing happens.

Thought: It seems that the action "go to
sidetable" is also invalid. I can try to go to
sofa again, or I can try to go to a cabinet or a
drawer instead.

Action: go to cabinet 1

Observation: The cabinet 1 is closed.
Thought: Now that I am in front of the cabinet
1, I can try to open it to see if there are any
pillow inside.

Action: open cabinet 1

Observation: You open the cabinet 1. The cab-
inet 1 is open. In it, you see a tissuebox 1.
Thought: It seems that there is no pillow in the
cabinet 1. I can try to go to sidetable/again/to
see if there is a pillow.

Action: go to sidetable

Observation: Nothing happens.

MPO

Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
armchair 1, a cabinet 4, a cabinet 3, a cabinet 2,
acabinet 1, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan
1, a safe 1, a shelf 12, a shelf 11, a shelf 10, a
shelf 9, a shelf 8, a shelf 7, a shelf 6, a shelf 5, a
shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable
1, and a sofa 1. Your task is to: find two pillow
and put them in sofa.

# Good Meta Plan

Meta Plan: Step 1: go to where the first pillow
may be located. Step 2: take first pillow. Step
3: go to where sofa is. Step 4: put first pillow
in/on sofa. Step 5: go to where the second
pillow may be located. Step 6: take second
pillow. Step 7: go back to sofa. Step 8: put
second pillow in/on sofa.

Thought: A pillow is more likely to appear
in armchair (1), cabinet (1-4), drawer (1-5),
dresser (1), shelf (1-12), sofa (1). I can check
one by one, starting with armchair 1.

Action: go to armchair 1

Observation: On the armchair 1, you see a
pillow 2, a pillow 1, and a remotecontrol 1.
Thought: Now I find the first pillow (1). Next,
I need to take it. I can find the second pillow
(2) later in armchair 1.

Action: take pillow 1 from armchair 1
Observation: You pick up the pillow 1 from
the armchair 1.

Thought: Now I take the first pillow (1). Next,
I need to put it in/on sofa. I can directly go to
sofa.

Action: go to sofa 1

Observation: On the sofa 1, you see nothing.
Thought: Now I go to sofa. Next, I need to put
the first pillow in/on sofa. I can directly put the
first pillow in/on sofa.

Action: put pillow 1 in/on sofa 1
Observation: You put the pillow 1 in/on the
sofa 1.

Thought: Now I put the first pillow in sofa.
Next, I need to find the second pillow. I can
directly go to armchair 1.
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Thought: It seems that the action "go to
sidetable" is still invalid. I can try to go to
sofa again to start the workflow.

Action: go to sofa

Observation: Nothing happens.

Thought: It seems that the action "go to sofa"
is still invalid. I can try to go to a drawer in-
stead, as the workflow does not specify which
drawer to go to.

Action: go to drawer 1

Observation: The drawer 1 is closed.

Thought: It seems that there is no pillow in the
cabinet 2. I can try to go to a different cabinet
or location.

Action: go to cabinet 3

Observation: The cabinet 3 is closed.
Thought: Now that I am in front of the cabinet
3, I can try to open it to see if there are any
pillow inside.

Action: open cabinet 3

Observation: You open the cabinet 3. The
cabinet 3 is open. In it, you see a box 3, and a
tissuebox 2.

Reward: 0.0

Action: go to armchair 1

Observation: On the armchair 1, you see a
pillow 2, and a remotecontrol 1.

Thought: Now I find the second pillow (2).
Next, I need to take it.

Action: take pillow 2 from armchair 1
Observation: You pick up the pillow 2 from
the armchair 1.

Thought: Now I take the second pillow (2).
Next, [ need to put it in/on sofa.

Action: go to sofa 1

Observation: On the sofa 1, you see a pillow
1.

Thought: Now I go to sofa. Next, I need to put
the second pillow in/on sofa. I can directly put
the second pillow in/on sofa.

Action: put pillow 2 in/on sofa 1
Observation: You put the pillow 2 in/on the
sofa 1.

Reward: 1.0

Figure 14: Case study of ALFWorld.
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