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Abstract

Routing large language models (LLMs) is a
new paradigm that uses a router to recommend
the best LLM from a pool of candidates for a
given input. In this paper, our comprehensive
analysis with more than 8,500 LLMs reveals
a novel model-level scaling up phenomenon
in Routing LLMs, i.e., a capable router can
significantly enhance the performance of this
paradigm as the number of candidates increases.
This improvement can even surpass the perfor-
mance of the best single model in the pool and
many existing strong LLMs, confirming it a
highly promising paradigm. However, the lack
of comprehensive and open-source benchmarks
for Routing LLMs has hindered the develop-
ment of routers. In this paper, we introduce
RouterEval , a benchmark tailored for router
research, which includes over 200,000,000 per-
formance records for 12 popular LLM evalu-
ations across various areas such as common-
sense reasoning, semantic understanding, etc.,
based on over 8,500 various LLMs. Using
RouterEval, extensive evaluations of existing
Routing LLM methods reveal that most still
have significant room for improvement. See
project page for all data, code and tutorial.

1 Introduction

Routing LLMs (Jitkrittum et al., 2025; Lu et al.,
2023a; Zhao et al., 2024a; Shnitzer et al., 2023a;
Chen et al., 2024a) aims to establish an efficient
router capable of selecting an LLM from a pool
of candidates with varying abilities to effectively
handle a given input, in order to achieve specific
goals such as high overall accuracy, low compu-
tational cost, or minimal hallucination, as shown
in Fig. 1. Since this paradigm only involves in-
put assignment, it is naturally compatible with het-
erogeneous LLMs of different structures, as well
as most model enhancement methods, including
fine-tuning (Hu et al., 2022; Zhang et al., 2023b),
Mixture-of-Experts (Jiang et al., 2024; Zhong et al.,
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Figure 1: The Overview of Routing LLMs. For each
given input, the router distributes it to the appropriate
LLM to achieve specific objectives, such as high accu-
racy, low computational cost, reduced hallucinations,
etc. We find that Routing LLMs is a promising paradigm
for LLMs to achieve model-level scaling up.

2024a), model merging (Goddard et al., 2024; Yang
et al., 2024), etc. This allows for the creation of
a sufficiently large LLM candidate pool. In this
paper, through extensive experiments, we find a
model-level scaling up phenomenon in LLMs, i.e.,
using some capable router, the rapid performance
improvement as the number of candidates in the
LLM pool increases, can even easily surpass the
performance of the best single model in the pool
and most existing strong LLMs. Moreover, the ma-
jority of LLMs in the candidate pool are relatively
small and open-source models whose individual
capabilities are far below those of commercialized
LLMs, like GPT-4 (Achiam et al., 2023), which
demonstrates Routing LLM is a highly promising
paradigm (See Section 3 for details).

However, current Routing LLMs methods are
still in the early stages of rapid development and
lack comprehensive and open-source benchmarks
specifically designed for routers, which hinders
their progress. For example, some existing bench-
marks (Lu et al., 2024a; Hu et al., 2024a) still
have the issues of insufficient LLM candidates,
limited evaluation diversity, closed-source or inad-
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Figure 2: The Model-level Scaling Up Phenomenon in Routing LLMs. As shown in Section 3, the Prob. p
indicates the performance of the router, with values closer to 1 representing greater similarity to the oracle router’s
capability. If p → 0, then ro(p) degenerates into a random sampler. When the router ro(p) reaches a certain level
of capability, it induces a scaling up phenomenon in the Routing LLMs paradigm. Specifically, as the number of
LLM candidates increases, performance rapidly improves. "Ref. LLM" denotes a representative LLM with strong
performance on given benchmark, such as GPT-4. Further details are provided in Section 5.1. For more examples of
model-level scaling up phenomenon, please refer to the Appendix G.

equate performance records, etc. To address these
challenges, in this paper, we collect and clean 12
popular LLM evaluations covering fields such as
knowledge-based Q&A, commonsense inference,
semantic understanding, etc. From these evalua-
tions, we use performance records from over 8,500
LLMs, amounting to more than 200,000,000 en-
tries, to construct a comprehensive Router bench-
mark named RouterEval in Section 4. Utilizing
RouterEval, in Section 5, we conduct a compre-
hensive exploration of several existing router con-
struction methods across various settings and find
that these methods still have considerable room for
improvement. We show the related works in Ap-
pendix C, and summarize the contributions of this
paper as follows:

• We find the model-level scaling up phenomenon
in LLMs, i.e., capable router in Routing LLMs
can significantly enhance the performance as
the number of candidates increases.

• Based on over 8,500 LLMs and their perfor-
mance records exceeding 200 million entries
across various LLM evaluations, we construct
a comprehensive benchmark tailored for router
design, named RouterEval, to re-examined a
wide range of existing router methods.

2 Preliminary

Notation. Assume there is a LLM pool contain-
ing m LLMs {ℓi}mi=1 and input set {sj}nj=1. For
a given input sj , its representation κ(sj) can be
obtained using an encoder κ. Based on the per-
formance records of these LLMs on sj , we can
obtain a m-dimensional one-hot selection vector
vj , where the dimension marked as 1 indicates that
the corresponding LLM indexed by that dimension
achieves the dominant performance among {ℓi}mi=1

on the input s, otherwise it is marked as 0. The
vector vj indicates the optimal choice for the router
on the input sj . Specifically, taking m = 3 as ex-
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ample, if the performance metric is correctness or
incorrectness, the dimensions of v0 corresponding
to the LLMs that provide correct answers can be
simultaneously marked as 1, such as v0 = [1, 1, 0]
or even v0 = [1, 1, 1], since these LLMs can all
be considered as the optimal choices for the router.
Moreover, If the metric is continuous, the index
of the LLM whose performance is within 95% of
the optimal performance can be marked as 1, other-
wise, it is marked as 0.
Router. In practice, the task of the router rθ with
learnable parameters θ is to establish the following
mapping using the given input set {sj}nj=1 and
the corresponding selection vectors {vj}nj=1, and
possible external data D as the training set:

rθ[κ(sj)|D] → vj . (1)

If there is no external data, then D = ϕ. After
training, for an unseen input s′, the trained router
is required to generate a selection vector v′, and
based on this vector, determine the optimal LLM
from the LLM pool for the current input. Thus,
the acquisition of the router can be regarded as a
classic classification problem (Deng et al., 2009;
Hu et al., 2018; Zhong et al., 2023b,a; Liang et al.,
2020; Huang et al., 2020).

Given that the development of routers is still
in its nascent stage, in this paper, we prioritize
the performance corresponding to each benchmark
when selecting LLMs, without considering factors
such as computational cost, hallucination rate, etc.
See Section 6 for more analysis.

3 Model-level Scaling Up Phenomenon

In this section, we comprehensively explore the re-
lationship between the number of LLM candidates
and the final performance under different router
capabilities, to demonstrate the immense poten-
tial of Routing LLMs paradigm. Specifically, we
consider the four well-known LLM benchmarks
ARC (Clark et al., 2018), MMMU-PRO (Wang
et al., 2024), MATH Lvl 5 (Hendrycks et al., 2021),
TruthfulQA (Lin et al., 2021), and collect perfor-
mance records of thousands of LLMs on these
benchmarks. Using collected performance records,
we can construct an oracle router ro, which can
select the optimal LLM to process a given input s
from any m LLM candidates. Furthermore, we can
construct other routers with different capabilities

by defining ro(p) as

ro(p) =

{
ro, with probability p,

ωm, with probability 1− p,
(2)

where ωm is a router that samples uniformly
from the m candidate LLMs with probability 1/m.
As p → 1, ro(p) approaches the oracle router ro,
resulting in strongest classification performance on
m LLM candidates. Conversely, as p → 0, ro(p)
degenerates into a random sampler.

Subsequently, for a given m, we repeatedly sam-
ple m LLMs from the LLM pool with equal prob-
ability, 100 times, forming 100 candidate subsets
each containing m LLM candidates. We then cal-
culate the average performance of different routers
ro(p) on these subsets. The statistical results are
shown in Fig. 2, and we have following finding:

(1) Model-level Scaling Up for LLMs.

As the number of candidates increases, most routers
ro(p) can rapidly enhance performance, especially
when p ≥ 0.5. This implies that, given sufficiently
well-constructed routers, Routing LLM is an effec-
tive paradigm for scaling up LLMs at the model-
level. In fact, this phenomenon aligns with the
classical neural scaling law (Kaplan et al., 2020),
as the increase in the number of candidates can be
regarded as an implicit increase in the number of
parameters, which is manifested in a sparse manner
under the Routing LLM paradigm.

(2) Weak Candidates Can Also be Promising.

In fact, the vast majority of LLMs discussed in
this paper are open-source and can be deployed
locally (see Appendix B for details). The individ-
ual performance of these models is not particularly
remarkable and generally falls significantly short
of mainstream LLMs. However, as shown in Fig. 2,
even relatively weak candidates can achieve com-
plementary performance among multiple heteroge-
neous models under the Routing LLMs paradigm.
They can obtain fine-grained division of labor for
each input and outperform mainstream LLMs. This
shows that relatively weak candidates can also be
promising for obtaining high performance within
this paradigm. See more details in Section 4.2.

(3) Small Number of Candidates is Enough.

In Fig. 2, we not only observe that a sufficiently
large number of candidates can achieve excellent
performance, but also note that even with only 3 ∼
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10 candidates, the performance can obtain strong
performance, and even surpass that of the strong
reference model. Therefore, when only moderately
good performance is required, a small number of
candidates is sufficient, which is highly advanta-
geous for users with limited resources to adopt the
Routing LLMs paradigm. Coupled with the afore-
mentioned observation that weak candidates also
hold great potential, the Routing LLMs paradigm
demonstrates significant utility and applicability.

4 The Construction of RouterEval

In this section, we elaborate on the construc-
tion of our comprehensive benchmark for Rout-
ing LLMs, named RouterEval. We collected
over 200,000,000 performance records for 12 pop-
ular LLM evaluations spanning areas such as
knowledge-based Q&A, commonsense reasoning,
semantic understanding, and instruction following,
based on more than 8,500 LLMs. The bench-
marks (Zellers et al., 2019; Clark et al., 2018;
Wang et al., 2024; Hendrycks et al., 2020; Lin
et al., 2021; Sakaguchi et al., 2021; Cobbe et al.,
2021; Zhou et al., 2023; Suzgun et al., 2022; Rein
et al., 2024; Sprague et al., 2023) involved include
ARC, HellaSwag, MMLU, TruthfulQA, Wino-
grande, GSM8k, IFEval, BBH, GPQA, MUSR,
MATH Lvl 5, and MMLU-PRO. See Appendix B,
A and D for more details.

4.1 Data format
As shown in Eq. (1), our objective is to train a router
rθ with learnable parameters θ, which is essentially
an m-way classifier. Given the representation κ(sj)
of an input s, the router fits a selection vector vj ∈
{0, 1}m and identifies the optimal LLM for the
input s, corresponding to the position of 1 in vj .
Accordingly, the input X and label Y format of
RouterEval is

(X ,Y) = {κ(sj), vj}nj=1, (3)

where sj encompasses all test samples from the 12
LLM benchmarks considered in this study. We
also provide versions using four different pre-
trained models (Beltagy et al., 2020; Reimers and
Gurevych, 2019; Liu et al., 2019) as encoders
κ: Sentence BERT, RoBERTa, the last layer of
RoBERTa, and Longformer. The training, valida-
tion, and test sets are split in a ratio of 8:1:1. In all
experiments, Roberta is used as an example. Re-
searchers can select any embedding in our code or
design their own embedding based on input.

4.2 The Construction of LLM Candidates
The selection vector vj ∈ {0, 1}m in Eq. (3) de-
pends on the choice of m LLM candidates. In
this paper, we set two difficulty levels: an easy
level with m ∈ {3, 5} and a hard level with
m ∈ {10, 100, 1000}. We focus primarily on the
easy level, as the analysis in Fig. 2 and Section 3
shows that performance grows most rapidly when
2 ≤ m ≤ 10. Moreover, the deployment cost of
Routing LLMs is low in this range, making these
values of m the most cost-effective and worthy of
attention. The hard level of m is mainly used to
explore the limits of router design, in preparation
for the strong performance demonstrated by the
scaling up phenomenon in Section 3.

For each given benchmark and m, we construct
three types of LLMs candidate G, and the final
model performance is the average of the results
from these three candidates. Specifically, we sort
all N LLMs with performance between 0.1 and 0.9
based on their individual performance on the given
benchmark, obtaining {ℓ′i}Ni=1. We then consider
the following optimization problem regarding the
performance of G and its corresponding oracle ro,
as shown in Eq. (4),

Ĝ = maxG Perf.(ro, G). (4)

When the m LLMs in G are all selected from
{ℓ′i}

⌊0.2N⌋
i=1 and {ℓ′i}Ni=⌊0.8N⌋ respectively, Ĝ forms

the "all-strong" group and the "all-weak" group.
And Ĝ forms the "strong-to-weak" group, when
the j-th LLM in G is selected from {ℓ′i}

min(jm,N)
i=(j−1)m .

Through this process, we can explore the router
from multiple perspectives and investigate the po-
tential of Routing LLMs. For instance, in MMLU
and m = 10, while the individual performance of
each LLM in the "all-weak" group does not exceed
0.3, its oracle performance can reach 0.95. See Ap-
pendix D for more details. Additionally, through
validation, we ensure that in all candidate groups, at
least 1030 routers can achieve oracle performance,
showing the learnability of the routers.

4.3 Extra Training Data
Note that, the direct training set in RouterEval
typically ranges from several hundred to tens of
thousands. This poses a significant challenge for
training a reliable router, especially for the hard
level m discussed in Section 4.2. Therefore, sim-
ilar to what is shown in Eq. (1), we provide an
extra dataset D to aid in the training of the router.
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Specifically, we open-source over 200,000,000 per-
formance records constructed from various LLMs
and benchmarks involved in this study. Utilizing
these data, researchers can explore various data aug-
mentation techniques (Shorten and Khoshgoftaar,
2019; Qin et al., 2024), few-shot learning (Vinyals
et al., 2016; Huang et al., 2024), regularization
method (Srivastava et al., 2014; Huang et al., 2021,
2023), pre-training approaches (Zoph et al., 2020;
Zhong et al., 2024b), and recommendation sys-
tems (Zhao et al., 2025; Zhong et al., 2024c), etc.
Additionally, to further enhance the capabilities of
the router, our proposed RouterEval encourages the
use of any external data and pre-trained models.

5 Experiments

In this section, we present the performance of var-
ious existing routers on our proposed RouterEval.
Specifically, in these experiments, we do not con-
sider the extra data mentioned in Section 4.3, since
the utilization of such data is highly diverse and
can be considered from multiple perspectives.

5.1 Metrics

We establish three metrics to investigate the perfor-
mance of different routers rθ: (1) Original metric
µo(rθ), i.e., the overall performance of the LLMs
selected by router rθ on the given benchmark.
(2) Reference value VR. For each benchmark, we
select a representative LLM with strong perfor-
mance as the reference, such as GPT-4, with its
performance denoted as Perf.(ref.). Then,

VR = µo(rθ)/Perf.(ref.). (5)

See details of reference LLMs in Appendix A.
(3) Best single model value VB . In addition to the
global metric VG, we also need a local metric to
explore the potential of the router. Specifically,
given a set of candidate models, let the best per-
formance of a single model in the candidate set be
Perf.(BSM). Then,

VB = µo(rθ)/Perf.(BSM). (6)

(4) Classification bias Ep. As mentioned in Sec-
tion 4.3, under the current settings, the classifi-
cation of the router is prone to bias if an effec-
tive training method for the router is not proposed.
Therefore, we use entropy to measure the diver-
sity of the classifier’s prediction distribution. If the
router always select same LLM, the entropy of its

prediction distribution will be low, indicating a lack
of diversity. Specifically,

Ep = − 1

n

∑n

j=1

∑m

i=1
P

(j)
i logP

(j)
i , (7)

where P
(j)
i ∈ [0, 1]m represents the probability

that the router selects the LLM with index i for the
j-th test sample.

5.2 Baselines
In this paper, we consider two kind of base-
lines for RouterEval. Specifically, these include:
(1) Strong router. To directly evaluate the per-
formance of routers, we introduce the oracle
router ro and ro(0.5) mentioned in Section 3 .
(2) Existing router. We also compile some re-
cently router methods, such as LinearR, MLPR,
C-RoBERTa, MLC, and PRknn (Hu et al., 2024a;
Srivatsa et al., 2024; Zhao et al., 2024a). See Ap-
pendix E or our code for detailed implementation.

5.3 Result
In this section, we present the results of the base-
lines shown in Section 5.2, evaluated using the
metrics described in Section 5.1. The results under
easy level settings, m ∈ {3, 5}, are shown in Table
1 and Table 2. See more results under hard level
settings m ∈ {10, 100, 1000} in Appendix F.

The experimental results show that most existing
routers have some classification capability. How-
ever, the selected LLMs still lag significantly be-
hind the best single models in most settings and the
strong reference model in terms of performance,
i.e., VR ≤ 1 and VB ≤ 1. Moreover, no single
router consistently outperforms other router across
different benchmarks. Additionally, some routers
exhibit lower Ep values, where low entropy Ep sug-
gests potential overfitting, resulting in biases when
selecting LLMs. For a detailed analysis, please
refer to Section 6.

6 Analysis

In this Section, We conduct a more comprehensive
analysis of the proposed RouterEval.

(1) The differences between Routing LLM and
existing paradigms.

In fact, several existing paradigms in other fields
are related to Routing LLMs. This section aims
to analyze their relationships and differences. See
related works in Appendix C for more details.
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ARC HellaSwag MMLU TruthfulQA

Router µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep

m
=

3

Oracle ro 0.80 0.94 1.34 1.02 0.80 0.84 1.08 1.32 0.89 1.03 1.35 1.00 0.85 1.27 1.21 1.05
ro(0.5) 0.67 0.79 1.11 1.47 0.74 0.78 1.00 1.53 0.75 0.87 1.11 1.47 0.74 1.10 1.04 1.47
LinearR 0.61 0.71 0.96 1.42 0.75 0.79 1.00 1.43 0.74 0.85 1.04 1.30 0.72 1.08 1.00 1.36
MLPR 0.61 0.71 0.96 1.42 0.75 0.78 1.00 1.43 0.74 0.86 1.04 1.26 0.71 1.06 0.96 1.30
C-RoBERTa 0.62 0.73 1.00 1.03 0.75 0.79 1.00 0.29 0.73 0.84 1.02 0.62 0.71 1.06 0.96 0.31
MLC 0.63 0.74 1.00 0.81 0.75 0.78 1.00 1.01 0.73 0.85 1.02 0.79 0.70 1.05 0.95 0.49
PRknn 0.60 0.71 0.97 1.56 0.72 0.76 0.97 1.57 0.70 0.81 0.98 1.55 0.70 1.04 0.95 1.55
Random 0.54 0.64 0.89 1.59 0.68 0.71 0.91 1.59 0.62 0.71 0.88 1.59 0.62 0.93 0.86 1.59

m
=

5

Oracle ro 0.85 1.00 1.34 1.57 0.81 0.85 1.10 2.00 0.92 1.07 1.63 1.49 0.89 1.33 1.27 1.72
ro(0.5) 0.70 0.82 1.09 2.16 0.74 0.78 1.00 2.25 0.75 0.87 1.24 2.14 0.75 1.12 1.05 2.19
LinearR 0.64 0.75 0.93 2.15 0.75 0.79 1.00 2.19 0.69 0.80 1.01 2.04 0.72 1.08 0.97 2.15
MLPR 0.64 0.75 0.93 2.13 0.75 0.79 1.01 2.20 0.70 0.81 1.02 2.00 0.71 1.05 0.93 2.11
C-RoBERTa 0.66 0.78 0.97 0.82 0.75 0.79 1.00 0.52 0.68 0.79 0.98 1.02 0.70 1.04 0.92 0.84
MLC 0.63 0.74 0.90 1.28 0.75 0.78 1.01 1.65 0.69 0.79 0.99 1.11 0.68 1.02 0.91 1.04
PRknn 0.63 0.74 0.95 2.30 0.71 0.74 0.95 2.31 0.64 0.74 0.94 2.30 0.70 1.04 0.95 2.29
Random 0.55 0.65 0.83 2.32 0.67 0.71 0.91 2.32 0.58 0.67 0.86 2.32 0.61 0.92 0.83 2.32

Winogrande GSM8k IFEval BBH

m
=

3

Oracle ro 0.95 1.09 1.22 1.20 0.87 0.95 1.29 1.10 0.79 1.02 1.33 1.04 0.82 0.99 1.42 0.97
ro(0.5) 0.86 0.98 1.09 1.51 0.76 0.82 1.10 1.49 0.67 0.87 1.08 1.47 0.68 0.82 1.15 1.46
LinearR 0.76 0.87 0.95 1.45 0.71 0.77 0.97 1.37 0.70 0.91 1.08 1.10 0.63 0.76 1.04 1.34
MLPR 0.78 0.89 0.98 1.30 0.69 0.75 0.95 1.33 0.70 0.91 1.08 0.94 0.63 0.76 1.05 1.30
C-RoBERTa 0.78 0.89 0.98 0.60 0.69 0.75 0.94 0.61 0.70 0.91 1.09 0.79 0.60 0.72 0.98 0.80
MLC 0.76 0.87 0.96 1.56 0.70 0.76 0.97 0.74 0.68 0.88 0.98 0.40 0.62 0.74 1.02 0.38
PRknn 0.74 0.84 0.92 1.57 0.70 0.76 0.99 1.56 0.69 0.90 1.04 1.55 0.61 0.73 1.00 1.56
Random 0.77 0.88 0.96 1.59 0.64 0.70 0.90 1.59 0.54 0.71 0.82 1.59 0.53 0.64 0.88 1.59

m
=

5

Oracle ro 0.98 1.12 1.31 1.77 0.89 0.96 1.33 1.67 0.81 1.06 1.36 1.63 0.88 1.06 1.69 1.43
ro(0.5) 0.85 0.97 1.12 2.21 0.74 0.81 1.09 2.19 0.67 0.87 1.06 2.17 0.70 0.84 1.29 2.13
LinearR 0.75 0.85 0.96 2.15 0.72 0.78 0.98 2.01 0.67 0.87 0.95 1.86 0.63 0.75 1.08 2.11
MLPR 0.80 0.91 1.03 2.08 0.72 0.78 0.98 1.99 0.67 0.87 0.96 1.80 0.62 0.74 1.05 2.05
C-RoBERTa 0.76 0.87 0.97 0.83 0.72 0.78 0.99 0.82 0.67 0.87 0.92 1.02 0.59 0.71 0.99 1.03
MLC 0.74 0.84 0.93 2.21 0.71 0.78 0.96 1.11 0.53 0.69 0.75 0.57 0.60 0.72 1.00 0.41
PRknn 0.72 0.83 0.93 2.30 0.71 0.77 1.00 2.30 0.62 0.80 0.91 2.29 0.58 0.70 1.00 2.29
Random 0.72 0.82 0.93 2.32 0.60 0.65 0.85 2.32 0.53 0.68 0.76 2.32 0.52 0.62 0.89 2.32

Table 1: The Results on RouterEval (part1).See Section 5.1 for detials of various metrics. Red area and blue area
highlights indicate the "Strong router" and "Existing router" mentioned in Section 5.2, respectively. The best results
in existing router methods are highlighted with underlines and on bold. The values in the table are rounded to two
decimal places. The results on hard level settings are shown in Appendix F.

Recommender system. In fact, Routing LLMs are
a specialized type of Recommender System (RS),
where the input can be seen as the user in the RS,
LLM candidates as the items to be recommended,
and the performance record as the interaction his-
tory between items and users. Given the input, the
router needs to recommend an appropriate LLM
to achieve various objectives, such as high accu-
racy, low computational cost, or minimal hallu-
cination. However, compared to traditional RS,
Routing LLMs have very limited “user informa-
tion” that can be collected, and labeling this data is
challenging. Most of the data is private and rarely
open-source. The over 200,000,000 performance
records we have organized and open-sourced repre-
sent only a small step toward building a router with
strong recommendation capabilities.

LLMs ensemble. For a given input, the LLMs en-
semble paradigm focuses more on requiring all
LLM candidates to perform inference, then aggre-
gating and organizing their results, with the final
output achieved through strategies such as majority
voting. In contrast, the Routing LLMs paradigm
performs an efficient assignment before the can-
didates’ inference, making it a more computation-
ally efficient approach. Of course, since differ-
ent paradigms can borrow from each other, there
is still some technical overlap between these two
paradigms in many improvement methods.
LLMs fusion. The paradigm of LLM fusion,
which combines different LLMs to achieve supe-
rior performance, is a promising technology. It
typically requires the LLMs being fused to have
the same structure. However, Routing LLMs can
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GPQA MUSR MATH Lvl 5 MMLU-PRO

Router µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep

m
=

3

Oracle ro 0.68 1.71 2.00 0.72 0.74 1.05 1.74 0.81 0.56 1.39 1.33 1.14 0.67 1.05 1.45 1.05
ro(0.5) 0.49 1.24 1.43 1.41 0.56 0.81 1.32 1.43 0.45 1.14 1.06 1.49 0.55 0.86 1.13 1.48
LinearR 0.39 0.99 1.14 1.48 0.43 0.61 0.99 1.43 0.44 1.11 0.95 1.37 0.54 0.85 1.01 1.37
MLPR 0.36 0.91 1.05 1.29 0.43 0.62 0.99 1.40 0.43 1.08 0.92 1.32 0.54 0.85 1.01 1.36
C-RoBERTa 0.33 0.82 0.92 0.60 0.44 0.63 1.01 1.02 0.45 1.13 0.99 0.65 0.54 0.84 0.97 0.33
MLC 0.30 0.75 0.93 0.00 0.39 0.56 0.91 0.00 0.42 1.06 0.88 0.53 0.53 0.84 0.95 0.49
PRknn 0.32 0.81 0.93 1.56 0.40 0.57 0.92 1.56 0.40 1.01 0.88 1.56 0.50 0.79 0.92 1.56
Random 0.30 0.76 0.87 1.59 0.39 0.56 0.90 1.59 0.35 0.88 0.79 1.59 0.43 0.67 0.82 1.59

m
=

5

Oracle ro 0.87 2.18 2.52 0.84 0.82 1.17 1.77 1.31 0.61 1.51 1.52 1.60 0.72 1.14 1.69 1.50
ro(0.5) 0.58 1.47 1.69 1.99 0.61 0.87 1.30 2.10 0.46 1.16 1.13 2.16 0.56 0.88 1.23 2.14
LinearR 0.40 1.00 1.15 2.19 0.46 0.65 0.96 2.24 0.43 1.08 0.97 2.12 0.54 0.85 1.01 2.06
MLPR 0.36 0.92 1.05 2.04 0.45 0.65 0.95 2.24 0.44 1.10 0.99 2.06 0.54 0.86 1.02 2.05
C-RoBERTa 0.33 0.84 0.95 0.82 0.46 0.65 0.93 1.54 0.42 1.05 0.91 0.65 0.53 0.84 0.97 0.33
MLC 0.30 0.76 0.86 0.00 0.40 0.58 0.85 0.09 0.41 1.04 0.87 0.77 0.54 0.85 1.00 0.74
PRknn 0.32 0.80 0.91 2.30 0.43 0.61 0.90 2.30 0.39 0.97 0.88 2.30 0.49 0.76 0.93 2.30
Random 0.30 0.75 0.85 2.32 0.40 0.57 0.84 2.32 0.32 0.80 0.73 2.32 0.40 0.62 0.78 2.32

Table 2: The Results on RouterEval (part2). See Section 5.1 for detials of various metrics. Red area and blue area
highlights indicate the "Strong router" and "Existing router" mentioned in Section 5.2, respectively. The best results
in existing router methods are highlighted with underlines and on bold. The values in the table are rounded to two
decimal places. The results on hard level settings are shown in Appendix F.
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Figure 3: The Results on Different Candidate Group.

integrate not only homogenous models but also het-
erogeneous ones, offering greater flexibility from
an application perspective.

Mixture-of-Experts (MoE). Traditional MoE
mainly focuses on the mixture of local parameters,
such as FFN, within a single LLM to achieve better
performance like a larger model by activating only
a subset of parameters. Similarly, Routing LLMs
can be viewed as a larger-granularity MoE, specif-

ically a Model-level “MoE”, where the experts
refer to the candidate LLMs. Both are effective
methods for improving LLM performance.

In summary, although the Routing LLMs
paradigm shares similarities with many existing ap-
proaches, it is important to note that Routing LLMs
can actually be compatible with these paradigms.
This compatibility allows the integration of het-
erogeneous models from these paradigms into the
candidate pool, leading to further enhancements in
performance.

(2) How do different types of candidate com-
binations affect performance?

In Section 4.2, we constructed three types of
candidate combinations, namely "all-strong," "all-
weak," and "strong-to-weak" groups. In this part,
we attempt to analyze how the selection of these
different groups affects the performance of Rout-
ing LLMs. As shown in Fig. 3, taking m = 5 as
example, we consider two types of strong routers,
ro and ro(0.5), as well as two existing routers, C-
RoBERTa and PRknn.

We observe that, overall, the "all-strong" group
typically exhibits the best performance, while the
"all-weak" group lags behind. However, when the
router has sufficiently strong classification capabili-
ties, like ro, even the "all-weak" group can achieve
satisfactory performance. For instance, in MMLU
result in Fig. 3, the performance of each individ-
ual LLM in the "all-weak" group does not exceed
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0.3, but under the capable router ro, it can approx-
imatively approach the performance of reference
model, i.e., GPT-4. This indicates that heteroge-
neous models can effectively complement each
other under the guidance of Routing LLMs, pro-
vided that the router is sufficiently capable.

Router all-strong all-weak strong-to-weak

m
=

3

Oracle ro 1.39 0.77 0.96
ro(0.5) 1.55 1.42 1.45

LinearR 1.54 1.54 0.81
MLPR 1.50 1.52 0.76

C-RoBERTa 0.93 0.94 0.00
MLC 1.52 0.34 0.52

PRknn 1.58 1.56 1.52
Random 1.59 1.59 1.59

m
=

5

Oracle ro 2.09 0.90 1.49
ro(0.5) 2.27 2.00 2.15

LinearR 2.27 2.28 1.58
MLPR 2.26 2.25 1.50

C-RoBERTa 1.53 1.53 0.00
MLC 2.25 0.03 1.06

PRknn 2.31 2.30 2.28
Random 2.32 2.32 2.32

Table 3: The Ep on Various Candidate Groups. Some
router methods suffer from the classification bias, i.e.,
Ep is close to 0.

(3) Classification bias in routers.

In Section 5.1, we proposed using Ep to analyze
the classification bias of routers and found that
existing router methods may exhibit classification
bias, as shown in Tables 1 and 2. In this part, taking
MMLU benchmark as an example, we conduct a
more detailed analysis. As illustrated in Table 3, the
bias is severe in several settings and router methods,
where strong models are more likely to be selected
with higher probability.

In fact, if Ep → 0 , the router degrades into
an individual router, which is actually the best-
performing router in the training set. While this
strategy can still achieve decent performance, it
fails to leverage the advantages of the Routing
LLMs paradigm. From the results in Table 3, even
in the "strong-to-weak" group, a strong router like
ro requires diverse selections to integrate the com-
plementary strengths of different candidates for
better performance. Thus, debiasing is crucial for
further enhancing the router’s capability.

(4) How to boost the performance of router?

As shown in Table 1 and 2, the current router has
significant room for improvement, with potential

directions including the following. First, fully lever-
aging the extra data of performance records in Sec-
tion 4.3 may be crucial. For instance, data augmen-
tation, pre-training methods, and few-shot learning
techniques could be constructed based on this data.
Additionally, as mentioned in Section 6 (1), if we
regard Routing LLMs as a recommender system
(RS), future research could focus on utilizing ex-
tra data to design effective representation learning
for LLMs and inputs (Zhuang et al., 2024a), ad-
dressing the cold start (Schein et al., 2002; Lam
et al., 2008; Wei et al., 2021) problem of the router,
and employing causal inference techniques (Liang
et al., 2016; Wang et al., 2020; Huang et al., 2025),
which are classic methods in RS research, to im-
prove the router, especially for debiasing. This
aligns with the objectives outlined in Section 6 (3).

(5) Why not consider other routing objective,
like computational cost, temporarily?

In fact, the paradigm of RouterEval can be ex-
tended to consider additional objectives (Chen
et al., 2023; Wang et al., 2025; Šakota et al.,
2024) such as computational cost and hallucina-
tion rate through multi-objective optimization ap-
proaches (Deb and Gupta, 2005; Giagkiozis and
Fleming, 2015). However, as shown in the experi-
ments in Section 5, even when focusing solely on
performance metrics across different benchmarks,
the current router methods still have significant
room for improvement. Under these circumstances,
it is advisable to temporarily defer the exploration
of other objectives. Otherwise, with the current lim-
ited data availability, adding more learning targets
may further compromise performance. Therefore,
it is recommended to first concentrate on enhancing
performance. Once a certain level of exploration
has been achieved, more data can then be utilized
to expand to other optimization objectives.

7 Conclusion

In this paper, we comprehensively explored the
potential of the Routing LLMs paradigm through
extensive experiments and identified the scaling-up
phenomenon of LLMs at the model level. Fur-
thermore, given that the development of routers is
hindered by the lack of comprehensive benchmarks,
we introduce RouterEval, a benchmark based on
200 million performance records across 12 LLM
evaluations. The evaluations reveal that existing
routing methods still have room for improvement.
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Limitations

Although we observed that the Routing LLMs
paradigm can trigger the model-level scaling-up
phenomenon of LLMs in this paper, this implies
that a large number of LLMs may cause deploy-
ment challenges. Fortunately, our experiments
found that the cost-effectiveness of this paradigm is
highest when there are approximately 3 to 10 LLM
candidates, that is, the performance growth rate
is the fastest with fewer LLMs. Therefore, if we
do not pursue extremely outstanding performance,
it is still possible to achieve lower computational
requirements in deployment. Additionally, for in-
dustrial deployment, when there are sufficiently
many inputs as a batch of requests, in fact, as long
as the routing infrastructure is well-developed, the
average computational cost of inputs is not high.
Furthermore, despite considering a sufficient num-
ber of LLMs and their corresponding performance
records, the current data volume still cannot pro-
duce an excellent router. Increasing the data vol-
ume will be one of the most important research
directions in the future, as most benchmark perfor-
mance record data are not open-source and really
expensive, which requires the cooperation of the
entire community.
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A The More Details of RouterEval

In this paper, we have considered 12 bench-
marks across areas such as knowledge-based
Q&A, commonsense reasoning, semantic under-
standing, mathematical reasoning, and instruc-
tion following, etc., including ARC, HellaSwag,
MMLU, TruthfulQA, Winogrande, GSM8k, IFE-
val, BBH, GPQA, MUSR, MATH Lvl 5, and
MMLU-PRO (Zellers et al., 2019; Clark et al.,
2018; Wang et al., 2024; Hendrycks et al., 2020;
Lin et al., 2021; Sakaguchi et al., 2021; Cobbe
et al., 2021; Zhou et al., 2023; Suzgun et al., 2022;
Rein et al., 2024; Sprague et al., 2023). Next, the
test samples for each benchmark are split into train-
ing, validation, and test sets in a ratio of 8:1:1, as
detailed in Table 4.

Furthermore, as discussed in Section 5.1, we
need to designate a representative and high-
performing LLM for each benchmark to construct
a reference value. For most benchmarks, GPT-4,
given its widespread application and popularity,
is highly suitable for constructing reference val-
ues. However, some benchmarks lack evaluation
results for GPT-4. Therefore, we individually iden-
tify representative LLMs from these benchmarks to
construct reference values. When the final perfor-
mance of the model constructed under the Routing
LLMs paradigm exceeds a reference value of 1, it
indicates that the mechanism can enable relatively
weak candidates to collaborate and surpass the per-
formance of some well-known commercial LLMs.

B The Details of LLMs Considered

Due to the involvement of different LLMs in con-
structing performance records for various bench-
marks, the LLMs associated with each benchmark
vary. Given that each benchmark involves thou-
sands of LLMs and that table space is limited, we
are unable to directly display the complete list of
all LLMs. Please refer to our code for detailed
information. In this section, we provide statistical
results of these LLMs for reference.

On the one hand, we specifically show the num-
ber of LLMs involved in each benchmark in Table 4.
It should be noted that some performance records
contain duplicates or errors, and the performance
of some open-source models collected is very low
(below 0.1), which has almost no reference value.
We have carefully filtered these data. It can be
seen that the number of LLMs involved in different
benchmarks ranges from 1800 to 5000, with a total
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Figure 4: The Distribution of Model Parameters. We
conduct a statistical analysis of the parameter counts for
all LLMs considered in this paper and find that models
with 7B parameters are predominant.

of more than 8,500 LLMs involved.
Furthermore, we have conducted a statistical

analysis of the parameters of all LLMs involved
in this study, as shown in Fig. 4. It can be ob-
served that the majority of these LLMs are 7B
models, most of which are relatively weak open-
source models. Specifically, in Fig. 5, we present
the performance distribution of these models across
12 different benchmarks. Nevertheless, the experi-
ments in the main text have demonstrated that even
using relatively weak models as candidates, the
Routing LLMs paradigm can still fully leverage
the strengths of each model, achieve complemen-
tary advantages, and ultimately achieve outstanding
overall performance.

C Related Work

C.1 Routing LLMs

LLMs trained on massive datasets with trillions
of tokens (Radford et al., 2019; Brown et al.,
2020) have transformed natural language process-
ing and other research areas. However, deploy-
ing these models for specific tasks—such as classi-
fication or question-answering—presents distinct
challenges. Traditional model selection techniques
in statistics and machine learning, such as k-fold
cross-validation, estimate population errors for in-
distribution data (Bishop and Nasrabadi, 2006;
Hastie et al., 2009; Raschka, 2018; Hendy et al.,
2023; Hari and Thomson, 2023a). Yet, these meth-
ods are impractical for LLMs due to their vast,
often inaccessible training data and the computa-
tional infeasibility of retraining them repeatedly.

To address this, routing (Frick et al., 2025;
Zhang et al., 2025, 2023c; Ramírez et al., 2023;
Mohammadshahi et al., 2024; Nguyen et al., 2024;
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Benchmark #LLMs #Train #Val #Test Ref. Per. Ref. Name

ARC (Clark et al., 2018) 5000 937 117 118 0.852 GPT-3.5
HellaSwag (Zellers et al., 2019) 5000 8033 1004 1005 0.953 GPT-4
MMLU (Wang et al., 2024) 5000 11215 1397 1430 0.864 GPT-4
TruthfulQA (Lin et al., 2021) 5000 653 82 82 0.669 Qwen1.5-32B
Winogrande (Sakaguchi et al., 2021) 5000 1013 127 127 0.875 GPT-4
GSM8k (Cobbe et al., 2021) 5000 1055 132 132 0.920 GPT-4
IFEval (Zhou et al., 2023) 3811 432 54 55 0.769 GPT-4
BBH (Suzgun et al., 2022) 3811 4607 577 577 0.830 GPT-4
GPQA (Rein et al., 2024) 3811 952 120 120 0.397 GPT-4
MUSR (Sprague et al., 2023) 3811 604 76 76 0.699 GPT-4
MATH Lvl 5 (Hendrycks et al., 2021) 3811 1057 131 136 0.400 GPT-4
MMMU-PRO (Wang et al., 2024) 1823 9625 1203 1204 0.637 GPT-4 Turbo

Table 4: The Details of Each Benchmark in RouterEval. The notation "#LLMs" represents the number of LLMs
included in the performance records of each benchmark. The terms "#Train/#Val/#Test" denote the respective
counts of training, validation, and test datasets constructed for each benchmark within RouterEval. "Ref.Name"
and "Ref.Per." indicate the name and performance of the LLM used to establish the reference value in Section 5.1.
Avatar All benchmarks involve a total of 8,576 LLMs. In RouterEval, we additionally provide over 200,000,000
performance records of these LLMs across different benchmarks.

Liu et al., 2024; Ramírez et al., 2024; Zhang et al.,
2023a) offers an efficient solution by dynamically
selecting the most suitable LLM for a given in-
put, eliminating the need to evaluate all possible
models. Routing strategies fall into two main
categories: non-predictive and predictive. Non-
predictive approaches, like FrugalGPT (Chen et al.,
2023), sequentially invoke LLMs until an output
meets a predefined quality threshold determined by
a judger. Other non-predictive methods use layered
frameworks to escalate complex queries to more
advanced models (Wang et al., 2023b) or combine
smaller models with LLMs (Madaan et al., 2023;
Yue et al., 2023; Lee et al., 2023a; Lu et al., 2023b;
Hu et al., 2024b).

In contrast, predictive routing leverages machine
learning techniques—such as supervised learn-
ing (Shnitzer et al., 2023b), reward models (Hari
and Thomson, 2023b; Lu et al., 2023b), or meta-
models predicting performance scores (Šakota
et al., 2023)—to preemptively identify the opti-
mal LLM, thereby reducing latency and compu-
tational overhead. Recent advancements have en-
hanced routing’s effectiveness through innovative
techniques, including neural network-based meta-
models (Ding et al., 2024a; Šakota et al., 2024;
Chen et al., 2024b; Aggarwal et al., 2024), k-
nearest neighbors (Hu et al., 2024b; Shnitzer et al.,
2023c; Stripelis et al., 2024; Lee et al., 2024), ma-
trix factorization (Ong et al., 2024; Zhuang et al.,
2024b; Li, 2025), and graph neural networks (Feng

et al., 2024). These methods enable coordination
among multiple LLMs or even sub-models within
a single framework, such as MatFormer (Devvrit
et al., 2024; Cai et al., 2024).

Unlike earlier approaches that required scoring
outputs from every candidate LLM (Liu and Liu,
2021; Ravaut et al., 2022a; Jiang et al., 2023a),
modern routing uses benchmark data to map each
LLM’s strengths across tasks and domains, requir-
ing inference only from the chosen model. Further
developments include supervised router training
(Lu et al., 2024b; Zhao et al., 2024c) and efforts to
improve robustness (Dann et al., 2024; Montreuil
et al., 2025; Shafran et al., 2025), highlighting rout-
ing’s ability to balance cost and performance.

Despite these innovations, the growing variety
of routing strategies lacks a unified evaluation stan-
dard. The proposed RouterEval aims to bridge that
gap by proposing a systematic framework to as-
sess router effectiveness, providing a foundation
for future advancements.

C.2 Model Ensemble

LLM ensemble methods offer a compelling strat-
egy for leveraging the collective strengths of mul-
tiple LLMs to boost performance, efficiency, and
robustness in NLP tasks. Departing from the con-
ventional reliance on a single model for infer-
ence, LLM ensembles integrate outputs from di-
verse models, either by aggregating predictions
after inference or by orchestrating their contri-
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Figure 5: The Distribution of Model Performance Under 12 Benchmarks. We present the performance
distribution of the LLMs involved in each of the 12 benchmarks. As shown in Fig. 4, the majority of LLMs are 7B
models, which tend to exhibit relatively weaker performance across the benchmarks from a statistical standpoint.

butions throughout the process. Drawing inspi-
ration from classical machine learning ensemble
techniques—such as bagging and boosting—these
methods are tailored to tackle the distinct chal-
lenges of modern LLMs, including their immense
scale, computational demands, and architectural
complexity.

A notable approach within LLM ensembling is
the development of LLM cascades, designed to op-
timize inference efficiency without compromising
output quality. For example, Chen et al. (2023)
propose a sequential framework in which LLMs
are arranged in order of increasing parameter size.
The process starts with a smaller, computationally
lightweight model producing an initial output. If
this output satisfies a predefined quality threshold,
the cascade terminates, delivering the result; if not,
the task escalates to progressively larger and more
capable models. Similarly, Yue et al. (2024) intro-
duce a verification-based cascade, where a smaller
LLM generates a preliminary answer that is then
evaluated for accuracy. Should it fall short, a more
powerful LLM steps in to refine or correct the re-
sponse. These cascading strategies significantly
alleviate the computational load of depending ex-
clusively on large-scale LLMs, making them espe-
cially valuable for resource-limited scenarios.

Another promising avenue in LLM ensemble
research centers on generating a range of can-
didate outputs from distinct LLMs and then se-
lecting or synthesizing the optimal result. This
method capitalizes on the diversity of model archi-
tectures, training datasets, and reasoning abilities
to elevate overall performance. For instance, Lee
et al. (2023b) employ this technique to enhance
instruction-tuning data construction, choosing the
most effective instruction from a pool of candi-
dates produced by various LLMs. In a similar vein,
Jiang et al. (2023a) investigate unsupervised evalu-
ation metrics—such as BERTScore (Zhang* et al.,
2020), BLEURT (Sellam et al., 2020), BARTScore
(Yuan et al., 2021), and scores derived from Chat-
GPT—to rank and select the strongest output from
a set of candidates. However, their work reveals
a key challenge: the effectiveness of this selec-
tion hinges on the quality and variety within the
candidate pool. To address this limitation, Jiang
et al. (2023a) propose an advanced fusion model
that takes the highest-ranked candidates as inputs
and generates a polished final output, seamlessly
blending the strengths of individual predictions.

Overall, the LLMs ensemble paradigm, for a
given input, emphasizes requiring all candidate
LLMs to perform inference, followed by aggregat-
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ing and organizing their outputs. The final result is
typically determined through strategies like major-
ity voting. In contrast, the Routing LLMs paradigm
prioritizes efficiency by assigning tasks to specific
candidates before inference, thereby reducing com-
putational overhead and enhancing efficiency. Nat-
urally, as these paradigms are not entirely distinct
and can draw inspiration from one another, there re-
mains a degree of technical overlap, particularly in
various optimization techniques and improvement
strategies.

C.3 Scaling Law
Scaling laws (Li et al., 2025) have become a corner-
stone for deciphering the behavior of deep learn-
ing models across a wide array of domains and
tasks. They provide critical insights into how per-
formance correlates with key factors such as dataset
size, model capacity, and computational resources.
Early work by Banko and Brill (2001) laid the
groundwork by identifying a power-law relation-
ship between validation error and training dataset
size in tasks like confusion set disambiguation.
Their findings revealed that as the dataset grows,
the average error decreases predictably, while the
model size needed to effectively fit the data scales
log-linearly. This seminal observation was later ex-
panded by Amodei et al. (2016), who demonstrated
power-law improvements in word error rate with in-
creased training data for the 38M-parameter Deep
Speech 2 model, and by Hestness et al. (2017), who
extended these exponential trends to diverse fields
such as machine translation, language modeling,
image processing, and speech recognition. These
studies collectively highlighted the robustness of
scaling laws, showing that performance gains re-
main consistent even as models and architectures
evolve.

Building on this foundation, subsequent research
has pushed the boundaries of scale while refining
the implications of these laws. For instance, Kaplan
et al. (2020) investigated models with up to 1.5B
parameters trained on 23B tokens, deriving power-
law relationships to optimize computational budget
allocation. However, later critiques from Hoffmann
et al. (2022) and Hu et al. (2024c) pointed out an
underestimation of required training data, under-
scoring subtle methodological challenges in scal-
ing studies. Beyond sheer scale, researchers have
delved into more nuanced phenomena: Wei et al.
(2022) identified emergent abilities in large lan-
guage models that are absent in smaller ones, while

Hernandez et al. (2021) explored scaling laws in
transfer learning and finetuning contexts. Architec-
tural diversity has also come under scrutiny, with
Tay et al. (2022) showing that not all model designs
scale equally, advocating for scaling studies to in-
form architecture development. The adaptability
of scaling laws to emerging paradigms is evident
in recent innovations. Hybrid models like Mamba
(Gu and Dao, 2023), analyzed by Poli et al. (2024),
alongside specialized scaling laws for mixture-of-
experts models (Clark et al., 2022; Fedus et al.,
2022a; Shazeer et al., 2017) and sparse architec-
tures (Frantar et al., 2023; Zhu and Gupta, 2017),
demonstrate their versatility. The scope of scal-
ing laws extends far beyond language tasks, en-
compassing vision-language models (Cherti et al.,
2023; Henighan et al., 2020), reinforcement learn-
ing (Hilton et al., 2023; Gao et al., 2023), and rec-
ommendation systems (Ardalani et al., 2022), un-
derscoring their wide-ranging applicability.

While Transformer-based models (Vaswani,
2017)—exemplified by behemoths like Llama 3
with 405B parameters—dominate scaling law re-
search due to their exceptional scalability, alter-
native architectures have not been overlooked.
For comparison, ResNet101 boasts a modest
44M parameters (Sorscher et al., 2022), where
Sorscher et al. (2022) investigated data pruning
laws. Smaller-scale studies have also employed
MLPs or SVMs (Hashimoto, 2021) to probe scal-
ing behavior. Additional dimensions, such as the
impact of data quality and language-specific effects
on scaling coefficients (Bansal et al., 2022; Zhang
et al., 2022), as well as multimodal scaling in foun-
dation models (Aghajanyan et al., 2023), further
enrich this research landscape.

Together, these efforts illustrate that scaling laws
do more than predict performance—they serve as a
guiding framework for resource allocation, archi-
tecture design, and generalization across domains.
As such, they have become an indispensable tool
in advancing artificial intelligence research and
its real-world deployment, offering a lens through
which we can better understand and harness the
potential of ever-growing models and datasets.

C.4 Recommender System
Recommender systems (Zhao et al., 2024b) have
emerged as essential tools to tackle the challenge of
information overload, offering tailored content and
services to users across diverse online platforms
(Wu et al., 2022; Fan et al., 2022a). These systems

3880



primarily rely on two core methodologies: Collab-
orative Filtering and Content-based recommenda-
tion. Collaborative Filtering, the most prevalent
approach, harnesses historical user-item interac-
tions—such as purchase histories or ratings—to
uncover behavioral similarities among users and
forecast their future preferences (Fan et al., 2019b).
A key technique within Collaborative Filtering,
Matrix Factorization, transforms discrete user and
item identities into continuous embedding vectors,
facilitating efficient computation of recommenda-
tion scores (Fan et al., 2018, 2019a; Zhao et al.,
2021a,b). In contrast, content-based methods en-
hance precision by incorporating supplementary
data, such as user demographics or item descrip-
tions, with a special focus on widely available tex-
tual information (Vasile et al., 2016).

The rise of deep learning has revolutionized rec-
ommender systems, unlocking advanced represen-
tation learning capabilities (Fan et al., 2022b). For
example, Neural Matrix Factorization leverages
deep neural networks to model non-linear interac-
tions between users and items, outperforming tra-
ditional inner product techniques (He et al., 2017).
Meanwhile, Graph Neural Networks have gained
traction by representing user-item relationships as
graph-structured data, employing message prop-
agation to generate insightful node embeddings
(Ying et al., 2018; Fan et al., 2020; Ma and Tang,
2021; Derr et al., 2020). To incorporate textual
insights, models like DeepCoNN utilize Convolu-
tional Neural Networks to process user reviews,
thereby improving rating predictions (Zheng et al.,
2017). Similarly, NARRE introduces a neural at-
tention mechanism that not only predicts ratings
but also delivers review-level explanations (Chen
et al., 2018). These breakthroughs highlight the
profound influence of deep learning on enhancing
recommendation quality.

In recent developments, the incorporation of lan-
guage models has propelled recommender systems
to new heights by tapping into their ability to com-
prehend and generate human-like natural language
(Wu et al., 2020, 2023; Dongre and Agrawal, 2023).
For instance, BERT4Rec employs Bidirectional En-
coder Representations from Transformers to cap-
ture the sequential patterns in user behavior, signifi-
cantly improving sequential recommendation tasks
(Sun et al., 2019). Likewise, transformer-based
approaches, such as the framework by (Liu et al.,
2023), leverage the generative power of Transform-
ers to recommend items while simultaneously craft-

ing explanatory narratives. These innovations en-
able highly contextualized and personalized recom-
mendations, with applications ranging from news
curation (Wu et al., 2020) to drug suggestions (Don-
gre and Agrawal, 2023). This convergence of nat-
ural language processing and recommender sys-
tem design exemplifies their dynamic evolution,
promising ever more sophisticated and user-centric
solutions.

In essence, Routing LLMs can be regarded as a
specialized subset of RS. In this framework, the in-
put corresponds to the user in a traditional RS, the
pool of LLM candidates represents the items to be
recommended, and the performance record serves
as the interaction history between users and items.
The router’s task is to select an appropriate LLM
from this pool based on the given input, aiming
to optimize for various goals such as maximizing
accuracy, minimizing computational cost, or reduc-
ing hallucination. Unlike conventional RS, how-
ever, Routing LLMs face a significant constraint:
the "user information" available for collection is
extremely limited, and annotating or labeling this
data poses a considerable challenge. This scarcity
of detailed input data complicates the routing pro-
cess, requiring innovative approaches to achieve
effective recommendations.

C.5 LLM Model Fusion
Model merging (Lu et al., 2024a) has become a piv-
otal technique in the realm of LLMs, enabling the
integration of strengths from multiple pre-trained or
fine-tuned models to boost performance, adaptabil-
ity, and efficiency. This approach can be broadly
divided into two paradigms: zero-shot merging,
which fuses models without further training, and
merge-then-train, which involves refining the com-
bined model after integration.

Early zero-shot techniques, such as weight av-
eraging (Nagarajan and Kolter, 2021; Wortsman
et al., 2022) and Linear Mode Connectivity, laid the
groundwork, evolving into more advanced methods
like Task Arithmetic(Ilharco et al., 2023a)—where
task vectors steer parameter adjustments—and
TIES(Yadav et al., 2023a), which reduces inter-
ference through trimming and conflict resolution.
Recent innovations, including DARE(Yu et al.,
2024) and Evolutionary Model Merge(Akiba et al.,
2024a), further refine this by optimizing selective
parameters or inference pathways, all without ad-
ditional training. On the other hand, merge-then-
train strategies, such as Fisher Merging(Matena
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and Raffel, 2022), utilize the Fisher information
matrix to assign parameter weights, while Reg-
Mean(Jin et al., 2023) fine-tunes linear merging on
a per-layer basis, carefully balancing embeddings
and biases. However, both approaches encounter
difficulties when merging models with divergent
initializations, prompting research into permuta-
tion symmetries (Ainsworth et al., 2022; Verma
and Elbayad, 2024) to better align parameters. A
notable distinction exists between model merging
and model fusion. Merging typically aims for effi-
ciency by creating a single, cohesive model (Singh
and Jaggi, 2020), whereas fusion often combines
multiple models to enhance quality, potentially at
the expense of speed (Ravaut et al., 2022b; Jiang
et al., 2023b).

Within the merging domain, weighted-average
techniques—refined by methods like Hessian-
based estimates (Daheim et al., 2023) or pruning-
enhanced Fisher weights (Nathan et al., 2024)—ad-
just parameter significance but may fail to capture
task-specific subtleties, resulting in performance
degradation (e.g., a reported 10% drop with basic
averaging (Ilharco et al., 2023b)). To counter this,
the notion of task vectors, defined as τt = θft

t −θpre

(Ilharco et al., 2023b), has gained prominence.
These vectors encapsulate task-specific shifts in
parameter space, facilitating precise conflict resolu-
tion during merging. Building on this, methods like
Task Arithmetic (Ilharco et al., 2023b), AdaMerg-
ing (Yang et al., 2023), and TIES-Merging (Yadav
et al., 2023b) address redundancy and sign discrep-
ancies, improving cross-model compatibility.

Resolving parameter conflicts remains a core
challenge, inspiring a variety of innovative strate-
gies. Task Arithmetic (Ilharco et al., 2023b) in-
troduced arithmetic-based vector merging, while
TIES-Merging (Yadav et al., 2023b) and AdaMerg-
ing enhance this by targeting interference sources.
Evolutionary methods (Akiba et al., 2024b) blend
TIES with optimized inference routes, and practical
applications like MetaGPT (Zhou et al., 2024) and
LLM evaluators (Kim et al., 2024) showcase real-
world efficacy. Alternatively, ZipIt (Stoica et al.,
2024) retains correlated parameters while preserv-
ing distinct layers, offering adaptability. Additional
advancements, such as geometric weight analysis
(Shoemake, 1985; Jang et al., 2024) and safety
alignment (Hammoud et al., 2024), further enrich
the field. For models with shared architectures and
initializations, zero-shot merging stands out as a
key focus, striking a balance between efficiency

and performance without the computational burden
of retraining. This makes it a foundational element
in the ongoing evolution of LLMs.

C.6 Mixture-of-Experts (MoE)
The MoE framework, first proposed as a technique
for training independent models with distinct pa-
rameters and a routing mechanism (Jacobs et al.,
1991; Jordan and Jacobs, 1993), has matured into a
robust strategy for scaling neural networks. Origi-
nally, MoE models were designed to delegate tasks
to specialized sub-models of uniform size, pro-
viding an appealing alternative to the limitations
of single-model specialization (Jang et al., 2023;
Douillard et al., 2024). With sub-models of equal
capacity, the routing rule—responsible for direct-
ing inputs to the appropriate expert—did not need
to account for varying computational costs. Over
time, however, the paradigm has shifted toward
integrating MoE into larger architectures, such as
Transformers, where sub-models function as inter-
connected components within a cohesive system
(Fedus et al., 2022b; Zhou et al., 2022). This evo-
lution has unlocked the power of sparse activation,
where only a subset of parameters is engaged for
each input, significantly boosting efficiency with-
out sacrificing performance. A prime example is
Mixtral (Jiang et al., 2024), which competes with
dense LLMs while activating far fewer parameters.

Modern MoE implementations have further re-
fined this approach, with innovations like those
from Shazeer et al. (2017), who introduced router
networks to dynamically activate specific experts
for individual input tokens. This technique has
become a cornerstone of LLMs, celebrated for
its generative capabilities and computational effi-
ciency. Building on this, model mixture techniques
have expanded the MoE framework by incorpo-
rating diverse dense LLM models—regardless of
their size—into a unified system. For instance,
Branch-Train-MiX (Sukhbaatar et al., 2024) starts
with a seed dense LLM, branches into parallel ex-
pert models during training, and later merges them
into MoE layers by averaging non-expert parame-
ters; yet, this method is limited to models sharing
identical architectures. In contrast, model fusion
strategies (Wan et al., 2024; Wang et al., 2023a)
blend expert outputs to harness insights from dis-
tinct data distributions. Most recently, UltraFuser
(Ding et al., 2024b) has pushed the boundaries fur-
ther with a token-level soft gating mechanism and a
two-stage training process, offering enhanced flex-
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m Group Oracle ro ro(0.5) Details

3 all-strong 0.972 0.924 [0.869, 0.878, 0.879]
3 all_weak 0.765 0.583 [0.406, 0.392, 0.408]
3 strong-to-weak 0.938 0.755 [0.241, 0.599, 0.878]
5 all-strong 0.983 0.930 [0.863, 0.869, 0.878, 0.879, 0.892]
5 all_weak 0.843 0.566 [0.279, 0.300, 0.313, 0.282, 0.276]
5 strong-to-weak 0.943 0.761 [0.330, 0.462, 0.615, 0.622, 0.869]
10 all-strong 0.984 0.881 [0.766, 0.776, 0.781, 0.772, 0.771, 0.783, 0.787, 0.780, 0.778, 0.782]
10 all-weak 0.955 0.620 [0.256, 0.299, 0.276, 0.296, 0.284, 0.287, 0.274, 0.280, 0.301, 0.278]
10 strong-to-weak 0.981 0.765 [0.245, 0.259, 0.487, 0.534, 0.577, 0.614, 0.606, 0.628, 0.658, 0.869]
100 all-strong 0.996 0.890 See Fig. 6
100 all-weak 1.000 0.630 See Fig. 6
100 strong-to-weak 1.000 0.769 See Fig. 6
1000 all-strong 1.000 0.839 See Fig. 6
1000 all-weak 1.000 0.642 See Fig. 6
1000 strong-to-weak 1.000 0.769 See Fig. 6

Table 5: The Details of Candidate Groups on MMLU. m denotes the number of LLMs per candidate group.
"Details" shows the performance of each LLM in the corresponding group. When m = 100 or m = 1000, the
number of candidates is too large to present individually. Therefore, we only display their performance distributions
in Fig. 6. For specific performance metrics and the details of other evaluations, please refer directly to our code.

ibility in combining expert contributions. These
developments highlight MoE’s remarkable ability
to balance scalability, specialization, and resource
efficiency, cementing its role as a pivotal advance-
ment in contemporary machine learning research.
The Routing LLMs paradigm is a special type of
MoE. Experts can be seen as LLMs in a candidate
pool, and are selected by a router to process a given
input. While MoE generally can choose multiple
"experts", the current Routing LLMs paradigm only
selects one LLM.

D The Details of Candidate Groups

In Section 4.2, we set three candidate types for
the given benchmark and m, namely "all-strong,"
"all-weak," and "strong-to-weak." The final model
performance is the average of the results from these
three candidates. Specifically, we sort all N LLMs
with performance between 0.1 and 0.9 based on
their individual performance on the given bench-
mark, obtaining {ℓ′i}Ni=1. We then consider the
following optimization problem regarding the per-
formance of G and its corresponding oracle ro, as
shown in Eq. (8),

Ĝ = maxG Perf.(ro, G). (8)

When the m LLMs in G are all selected
from {ℓ′i}

⌊0.2N⌋
i=1 and {ℓ′i}Ni=⌊0.8N⌋ respectively, Ĝ

forms the "all-strong" group and the "all-weak"
group. Meanwhile, Ĝ forms the "strong-to-weak"

group when the j-th LLM in G is selected from
{ℓ′i}

min(jm,N)
i=(j−1)m .

By solving Eq. (8), we obtained the candidate
selections for the three group types under the given
benchmark and m. For example, in the case of
MMLU, we detail these selections in Table 5.
Additionally, for the settings of m = 100 and
m = 1000, due to space limitations, we only show
their performance distributions in Fig. 6. For spe-
cific candidates of these settings and other evalua-
tion candidates, please refer directly to our code.

E The Reproducing Details of Baselines

In this section, we provide the specific implementa-
tion methods for all the existing routers mentioned
in Section 5.2. Since some settings may not have
been specifically discussed in their original papers,
we attempt to supplement them. Specifically,

• LinearR: A simple linear layer is used as the
classifier. The input to the linear layer is the
query representation, and the output dimen-
sion corresponds to the number of LLMs in
the candidate pool, representing the selection
scores for each LLM. As mentioned in Sec-
tion 4.1, we employ RoBERTa as the example
encoder. The output dimension of RoBERTa
is 768, hence the input dimension of the linear
layer is also 768. During training, BCEWith-
LogitsLoss is used as the loss function with
a batch size of 1, learning rate of 1e− 2, and
trained for 10 epochs. During testing, the
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Figure 6: The Distribution of Model Performance in Candidate Group on MMLU. Due to the space limitations
of Table 5, it is not feasible to present the detailed performance of all candidates in the candidate groups where
m = 100 or m = 1000. Therefore, we illustrate their performance distributions in this figure. For specific
performance metrics and the details of other evaluations, please refer directly to our code.

query representation is input to obtain an m-
dimensional score vector, and the LLM with
the highest score is selected for response gen-
eration.

• MLPR: A Multi-Layer Perceptron (MLP)
serves as the classifier, with the hidden layer
size set to 256. The input is the 768-
dimensional query representation, and the out-
put is an m-dimensional score vector, con-
sistent with LinearR. Training employs BCE-
WithLogitsLoss with a batch size of 1, learn-
ing rate of 1e− 4, and runs for 100 epochs.

• MLC: To handle the multi-label property
of text embeddings, a multi-class classifica-
tion(MLC) approach is used. Specifically,
during training, the model treats multiple la-
bels as positive classes for supervised learning.
During inference, the input embedding passes
through the classifier to generate a probabil-
ity distribution, and select the highest one as
the final router result. Training employs BCE-
WithLogitsLoss with a batch size of 10, and
runs for 10 epochs.

• C-RoBERTa: We used K-Means to cluster
the text embeddings of the training set into
k clusters. Specifically, for each cluster, the
performance of each model in the candidate
model pool is evaluated using the samples
within that cluster. Then, the best-performing

model is selected as the dedicated predictor
for that cluster. During inference, the Eu-
clidean distance between the test sample and
each cluster center is calculated. The sample
is matched to the nearest cluster using a near-
est neighbor strategy and the corresponding
dedicated predictor is used as the router result.
In this paper, k is set to 3.

• PRknn: A k-Nearest Neighbors (KNN) clas-
sifier is adopted. During testing, given a test
query representation, we retrieve the K train
queries with the smallest Euclidean distances.
We then compute the average scores of the m
models on these K train queries and select
the model with the highest average score to
process the test query. In our experiments,
K = 5.

F The Results on Hard Level Settings

In the main text, we primarily present the experi-
mental results of RouterEval at the easy level, that
is, the cases where m ∈ {3, 5}. In this section,
we provide the experimental results of RouterEval
at the hard level, where m ∈ {10, 100, 1000}.
Given the scarcity of data, the difficulty of the
classification problem at the hard level is signif-
icantly higher than that at the easy level. How-
ever, as demonstrated by the model-level scaling
up phenomenon shown in the main text, the Rout-
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GPQA MUSR MATH Lvl 5 MMLU-PRO

Router µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep

m
=

10

Oracle ro 0.93 2.34 2.58 1.58 0.88 1.26 1.99 1.97 0.71 1.77 1.96 2.17 0.81 1.27 2.73 1.96
ro(0.5) 0.61 1.54 1.70 2.92 0.63 0.90 1.41 3.01 0.51 1.28 1.36 3.04 0.59 0.92 1.75 2.98
LinearR 0.43 1.09 1.19 3.15 0.48 0.68 1.07 3.24 0.39 0.99 1.00 3.20 0.52 0.82 1.00 3.08
MLPR 0.40 1.01 1.09 3.10 0.44 0.63 0.99 3.27 0.40 0.99 0.97 3.17 0.51 0.81 0.97 3.07
C-RoBERTa 0.34 0.85 0.90 1.03 0.41 0.59 0.91 1.54 0.40 0.99 0.98 0.99 0.52 0.81 1.00 0.50
MLC 0.36 0.90 0.97 0.49 0.39 0.55 0.86 1.13 0.31 0.77 0.76 0.92 0.52 0.81 0.99 1.10
PRknn 0.37 0.93 1.01 3.29 0.39 0.56 0.88 3.30 0.37 0.93 0.95 3.30 0.45 0.70 0.90 3.30
Random 0.30 0.75 0.82 3.32 0.38 0.54 0.84 3.32 0.32 0.79 0.77 3.32 0.36 0.57 0.76 3.32

m
=

10
0

Oracle ro 0.99 2.50 2.54 4.62 0.96 1.37 2.06 4.67 0.89 2.22 2.40 4.13 0.97 1.53 3.60 4.23
ro(0.5) 0.64 1.62 1.63 6.15 0.66 0.94 1.41 6.12 0.58 1.45 1.53 5.90 0.64 1.01 2.18 5.97
LinearR 0.43 1.09 1.08 6.49 0.48 0.68 0.99 6.55 0.40 1.01 0.94 6.52 0.46 0.72 0.95 6.50
MLPR 0.38 0.94 0.93 6.58 0.45 0.65 0.94 6.59 0.41 1.04 1.00 6.49 0.46 0.72 0.97 6.53
C-RoBERTa 0.35 0.88 0.88 1.55 0.49 0.70 1.02 1.54 0.41 1.03 0.98 1.15 0.45 0.71 0.93 1.00
MLC 0.29 0.72 0.70 1.06 0.40 0.57 0.83 3.33 0.38 0.94 0.88 0.00 0.45 0.70 0.94 2.81
PRknn 0.43 1.07 1.04 6.61 0.38 0.54 0.78 6.62 0.36 0.89 0.88 6.62 0.36 0.56 0.83 6.62
Random 0.29 0.74 0.73 6.64 0.36 0.51 0.75 6.64 0.27 0.67 0.67 6.64 0.32 0.50 0.75 6.64

m
=

10
0
0

Oracle ro 1.00 2.52 2.34 7.95 0.99 1.41 1.92 7.66 0.97 2.41 2.16 6.53 0.99 1.55 1.77 7.66
ro(0.5) 0.65 1.64 1.53 9.47 0.67 0.96 1.31 9.30 0.60 1.49 1.32 8.87 0.67 1.05 1.18 9.32
LinearR 0.47 1.18 1.08 9.81 0.54 0.77 1.03 9.87 0.46 1.15 0.91 9.77 0.62 0.98 1.04 9.76
MLPR 0.38 0.94 0.87 9.88 0.54 0.77 1.01 9.92 0.46 1.15 0.90 9.72 0.62 0.97 1.02 9.77
C-RoBERTa 0.40 1.00 0.91 0.91 0.53 0.75 0.98 1.54 0.46 1.16 0.92 1.43 0.61 0.96 1.00 0.50
MLC 0.28 0.70 0.64 0.86 0.49 0.70 0.92 5.13 0.41 1.04 0.77 1.77 0.52 0.81 0.76 5.24
PRknn 0.40 1.01 0.93 9.94 0.29 0.41 0.53 9.94 0.28 0.70 0.59 9.94 0.40 0.63 0.67 9.94
Random 0.31 0.77 0.71 9.97 0.36 0.51 0.69 9.97 0.23 0.57 0.48 9.97 0.35 0.55 0.58 9.97

Table 6: The Results on Hard Level RouterEval (part1). See Section 5.1 for detials of various metrics. Red area
and blue area highlights indicate the "Strong router" and "Existing router" mentioned in Section 5.2, respectively.
The best results in existing router methods are highlighted with underlines and on bold. The values in the table are
rounded to two decimal places.

ing LLMs paradigm can only exhibit its surpris-
ingly strong performance when there are a suffi-
cient number of LLM candidates, typically ranging
from 100 to 1000 candidates. Therefore, exploring
RouterEval at the hard level is highly necessary. Ta-
bles 7 and 6 show the classification performance of
different routers, and the results are consistent with
our analysis. Thus, the Routing LLMs paradigm
still has considerable room for improvement.

G More Examples Visualization of
Model-level Scaling Up

In Section 3, we discussed the model-level scaling
up phenomenon on four well-known LLM bench-
marks. In this section, we supplement our find-
ings with observations from eight additional LLM
benchmarks to illustrate the prevalence of this phe-
nomenon. Specifically, similar to Section 3, we
construct the oracle router ro based on the perfor-
mance record, and then define ro(p) to create other
routers with different capabilities as follows:

ro(p) =

{
ro, with probability p,

ωm, with probability 1− p,
(9)

where ωm is a router that samples uniformly from
the m candidate LLMs with probability 1/m. As
p → 1, ro(p) approaches the oracle router ro,
leading to the strongest classification performance
among the m LLM candidates. Conversely, as
p → 0, ro(p) degenerates into a random sampler.

From the experimental results in Fig. 7, we can
draw similar observations. On the one hand, across
different benchmarks, we still observe that with
the support of a capable router, the overall capabil-
ity of the model increases as the number of LLM
candidates grows. On the other hand, even weak
candidates can achieve satisfactory performance un-
der the routing LLMs paradigm, working together
to deliver good results, even when their number
is relatively small, such as in the case of 3 to 10
LLMs.
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ARC HellaSwag MMLU TruthfulQA

Router µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep µo↑ VR↑ VB↑ Ep

m
=

10

Oracle ro 0.90 1.06 1.48 2.30 0.84 0.88 1.15 2.83 0.97 1.13 1.85 2.17 0.92 1.38 1.28 2.61
ro(0.5) 0.72 0.85 1.16 3.08 0.75 0.79 1.02 3.21 0.75 0.87 1.35 3.06 0.75 1.13 1.03 3.15
LinearR 0.62 0.73 0.94 3.21 0.75 0.79 1.01 3.18 0.67 0.77 1.01 3.06 0.77 1.15 1.00 2.99
MLPR 0.62 0.73 0.94 3.24 0.72 0.75 1.01 5.38 0.67 0.77 1.02 3.03 0.74 1.10 0.94 3.01
C-RoBERTa 0.62 0.73 0.96 1.03 0.74 0.78 0.99 0.80 0.65 0.75 0.98 1.02 0.75 1.12 0.94 0.53
MLC 0.61 0.72 0.93 1.96 0.73 0.77 0.98 2.29 0.65 0.75 0.98 1.61 0.76 1.14 0.98 1.70
PRknn 0.61 0.72 0.96 3.30 0.70 0.73 0.94 3.31 0.60 0.69 0.92 3.29 0.69 1.03 0.92 3.29
Random 0.54 0.63 0.84 3.32 0.66 0.70 0.90 3.32 0.54 0.62 0.85 3.32 0.59 0.88 0.78 3.32

m
=

10
0

Oracle ro 0.96 1.12 1.53 4.96 0.87 0.92 1.17 5.75 1.00 1.16 1.94 5.31 0.97 1.45 1.36 5.76
ro(0.5) 0.74 0.87 1.16 6.15 0.76 0.80 1.02 6.38 0.76 0.88 1.38 6.32 0.77 1.16 1.06 6.40
LinearR 0.64 0.75 0.93 6.55 0.75 0.79 1.00 6.57 0.66 0.76 1.01 6.51 0.74 1.10 0.94 6.48
MLPR 0.63 0.74 0.91 6.57 0.75 0.79 0.99 6.58 0.66 0.77 1.01 6.52 0.74 1.11 0.93 6.47
C-RoBERTa 0.64 0.76 0.94 0.52 0.76 0.80 1.00 0.52 0.66 0.76 1.01 1.02 0.75 1.12 0.94 0.53
MLC 0.64 0.75 0.92 4.20 0.75 0.79 0.99 6.21 0.64 0.74 0.95 3.69 0.77 1.16 0.99 4.05
PRknn 0.56 0.66 0.84 6.63 0.67 0.70 0.89 6.63 0.55 0.63 0.86 6.62 0.68 1.01 0.91 6.62
Random 0.52 0.61 0.78 6.64 0.65 0.68 0.87 6.64 0.53 0.61 0.82 6.64 0.58 0.86 0.76 6.64

m
=

10
00

Oracle ro 0.99 1.16 1.45 7.76 0.92 0.97 1.24 8.28 1.00 1.16 1.53 8.56 0.99 1.47 1.35 8.90
ro(0.5) 0.74 0.86 1.06 9.27 0.76 0.80 1.01 9.40 0.75 0.87 1.10 9.63 0.76 1.14 1.02 9.65
LinearR 0.69 0.82 0.93 9.85 0.75 0.79 0.99 9.88 0.75 0.87 1.04 9.79 0.75 1.11 0.95 9.78
MLPR 0.68 0.80 0.91 9.86 0.76 0.79 0.99 9.88 0.75 0.87 1.03 9.80 0.72 1.07 0.90 9.76
C-RoBERTa 0.70 0.82 0.94 0.52 0.76 0.80 1.00 0.52 0.73 0.84 1.00 1.02 0.77 1.15 0.95 0.53
MLC 0.63 0.74 0.80 6.41 0.75 0.79 0.98 8.81 0.71 0.82 0.95 6.31 0.62 0.93 0.77 6.26
PRknn 0.49 0.57 0.66 9.95 0.61 0.64 0.80 9.95 0.50 0.58 0.69 9.94 0.67 1.00 0.89 9.94
Random 0.49 0.57 0.67 9.97 0.60 0.63 0.78 9.97 0.50 0.58 0.68 9.97 0.54 0.81 0.69 9.97

Winogrande GSM8k IFEval BBH

m
=

10

Oracle ro 0.99 1.14 1.36 2.69 0.93 1.02 1.46 2.45 0.85 1.10 1.43 2.38 0.94 1.13 1.79 2.18
ro(0.5) 0.85 0.97 1.14 3.19 0.76 0.82 1.15 3.13 0.67 0.88 1.07 3.10 0.72 0.87 1.33 3.06
LinearR 0.72 0.82 0.91 3.18 0.70 0.77 0.99 3.06 0.70 0.91 1.02 2.77 0.61 0.73 1.02 3.12
MLPR 0.74 0.85 0.95 3.15 0.70 0.76 0.98 3.09 0.68 0.88 0.96 2.69 0.61 0.74 1.03 3.08
C-RoBERTa 0.74 0.85 0.96 1.14 0.71 0.77 1.01 0.82 0.65 0.85 0.89 1.02 0.59 0.71 0.99 1.03
MLC 0.72 0.82 0.92 2.13 0.69 0.76 0.97 1.91 0.62 0.81 0.81 1.59 0.60 0.72 1.01 1.65
PRknn 0.71 0.81 0.91 3.30 0.67 0.73 0.95 3.29 0.62 0.80 0.91 3.29 0.59 0.71 0.99 3.29
Random 0.71 0.81 0.91 3.32 0.58 0.63 0.84 3.32 0.50 0.65 0.72 3.32 0.51 0.61 0.86 3.32

m
=

10
0

Oracle ro 1.00 1.14 1.31 6.02 0.99 1.08 1.60 5.27 0.96 1.25 1.69 5.09 1.00 1.20 1.84 5.18
ro(0.5) 0.86 0.98 1.10 6.51 0.77 0.84 1.19 6.28 0.72 0.93 1.20 6.23 0.74 0.89 1.34 6.28
LinearR 0.71 0.82 0.87 6.50 0.69 0.75 0.95 6.45 0.68 0.88 1.05 6.20 0.65 0.79 1.14 6.43
MLPR 0.76 0.87 0.94 6.53 0.66 0.71 0.88 6.49 0.63 0.82 0.89 6.28 0.66 0.80 1.14 6.39
C-RoBERTa 0.75 0.86 0.94 0.83 0.65 0.71 0.87 0.82 0.62 0.80 0.91 1.30 0.59 0.71 0.99 1.31
MLC 0.74 0.85 0.92 5.97 0.66 0.72 0.89 4.09 0.61 0.80 0.89 3.82 0.63 0.75 1.08 3.88
PRknn 0.68 0.78 0.85 6.62 0.56 0.61 0.76 6.62 0.59 0.77 0.95 6.62 0.58 0.70 1.01 6.61
Random 0.71 0.82 0.89 6.64 0.55 0.59 0.77 6.64 0.47 0.61 0.71 6.64 0.49 0.59 0.84 6.64

m
=

1
00
0

Oracle ro 1.00 1.14 1.18 9.37 1.00 1.09 1.38 8.45 0.99 1.29 1.56 8.03 1.00 1.20 1.61 8.54
ro(0.5) 0.87 0.99 1.02 9.84 0.76 0.83 1.02 9.56 0.72 0.93 1.07 9.42 0.75 0.90 1.17 9.62
LinearR 0.79 0.90 0.92 9.82 0.70 0.76 0.86 9.73 0.70 0.91 0.97 9.46 0.72 0.86 1.10 9.70
MLPR 0.83 0.94 0.97 9.82 0.74 0.80 0.92 9.76 0.71 0.92 0.93 9.51 0.72 0.87 1.13 9.67
C-RoBERTa 0.78 0.89 0.91 1.36 0.73 0.80 0.90 1.13 0.70 0.91 0.91 1.06 0.66 0.79 0.99 1.54
MLC 0.80 0.91 0.92 9.75 0.64 0.70 0.73 6.34 0.61 0.79 0.73 7.77 0.61 0.74 0.92 6.20
PRknn 0.62 0.71 0.72 9.95 0.53 0.58 0.65 9.94 0.56 0.73 0.79 9.94 0.54 0.65 0.83 9.93
Random 0.73 0.84 0.85 9.97 0.53 0.57 0.65 9.97 0.44 0.58 0.57 9.97 0.49 0.59 0.74 9.97

Table 7: The Results on Hard Level RouterEval (part2). See Section 5.1 for detials of various metrics. Red area
and blue area highlights indicate the "Strong router" and "Existing router" mentioned in Section 5.2, respectively.
The best results in existing router methods are highlighted with underlines and on bold. The values in the table are
rounded to two decimal places.
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Figure 7: The Model-level Scaling Up Phenomenon in Routing LLMs (part2). As shown in Section 3, the Prob.
p indicates the performance of the router, with values closer to 1 representing greater similarity to the oracle router’s
capability. If p → 0, then ro(p) degenerates into a random sampler. When the router ro(p) reaches a certain level
of capability, it induces a scaling up phenomenon in the Routing LLMs paradigm. Specifically, as the number of
LLM candidates increases, performance rapidly improves. "Ref. LLM" denotes a representative LLM with strong
performance on given benchmark, such as GPT-4.
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