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Abstract

Multimodal Large Language Models (MLLMs)
have shown substantial capabilities in integrat-
ing visual and textual information, yet fre-
quently rely on spurious correlations, under-
mining their robustness and generalization in
complex multimodal reasoning tasks. This pa-
per addresses the critical challenge of super-
ficial correlation bias in MLLMs through a
novel causal mediation-based debiasing frame-
work. Specially, we distinguishing core se-
mantics from spurious textual and visual con-
texts via counterfactual examples to activate
training-stage debiasing and employ a Mixture-
of-Experts (MoE) architecture with dynamic
routing to selectively engages modality-specific
debiasing experts. Empirical evaluation on mul-
timodal sarcasm detection and sentiment analy-
sis tasks demonstrates that our framework sig-
nificantly surpasses unimodal debiasing strate-
gies and existing state-of-the-art models. For
further research, we release the training/evalua-
tion pipelines at Github1.

1 Introduction

Multimodal Large Language Models (MLLMs)
have demonstrated significant capabilities in inte-
grating information from various modalities, such
as vision and language, achieving notable success
in multimodal tasks (OpenAI et al., 2024; Liu et al.,
2023; Chen et al., 2024d; Wang et al., 2024b). By
unifying modalities, MLLMs can capture richer
semantic information than unimodal approaches,
establishing them as a promising direction for com-
plex, real-world applications (Wang et al., 2024a).

Despite this progress, current MLLMs remain
unreliable on tasks requiring nuanced semantic un-
derstanding and reasoning. In practice, they often
over-rely on spurious correlations in one modality
instead of truly fusing information, which leads to
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Figure 1: A diagram shows how a large model is nega-
tively impacted by learning spurious correlations during
training. In the depicted example, a non-sarcastic test
sample (GT) is misclassified as sarcastic because its
features frequently co-occurred with sarcastic labels in
the training data.

hallucinations and poor generalization (Hosseini
et al., 2025; Zhang et al., 2024b). Prior studies
have found that these models may latch onto su-
perficial cues present in the training data, leading
to biases that are then amplified by large-scale pre-
training (Zhao et al., 2024). For example, in sar-
casm detection dataset MMSD2.0 (Qin et al., 2023),
certain words (e.g., “weather”) or objects in an im-
age (e.g., “ceramic mug”) appeared frequently with
the sarcastic label (Fig. 2), inadvertently cueing the
model to predict “sarcasm” whenever it encoun-
ters those features. After supervised training, the
model learns such spurious associations instead of
genuine cross-modal reasoning, resulting in brittle
performance on test data where the same shortcuts
do not hold. These observations highlight the need
for methods to make MLLMs focus on core seman-
tics rather than incidental correlations.

To address this “superficial correlation” bias,
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Figure 2: Lift scores for spurious correlations in image
(objects) and text (words) modalities. Scores above 1.0
indicate positive spurious correlations.

causal mediation analysis (Pearl, 2022) offers a
powerful framework for enhancing the reliability
of multimodal semantic understanding. Its core
principle involves modeling the multimodal task as
a causal graphical model. By generating counter-
factual inputs (isolating suspected biased elements)
and comparing the model’s predictions on these ver-
sus original inputs, it becomes possible to quantify
and thereby mitigate spurious correlations between
input features and the model’s output.

However, existing approaches applying causal-
ity to MLLMs face limitations. Some methods
perform debiasing operations on only a single
modality (Niu et al., 2021; Agarwal et al., 2020;
Patil et al., 2023) or apply corrections solely dur-
ing the inference stage (Zhu et al., 2024b; Yang
et al., 2024a), neglecting the significant impact
of multi-modality and debiasing the model dur-
ing the training. Other works focus on debiasing
learned representations in a more general sense
and have not been effectively adapted to modern
MLLMs (Zhang et al., 2024a; Chen et al., 2024a).
These shortcomings often fail to comprehensively
address biases arising from intricate multimodal
interactions, leaving the model’s internal represen-
tations suboptimal. Based on these observations,
we pose the following research question: How can
causal mediation analysis be employed to jointly
debias the superficial correlations within both
textual and visual pathways of an MLLM, at
both the training and inference stages?

To address this issue, we first propose a multi-
modal causal analysis framework that explicitly dis-
tinguishes core semantic information from spurious
contextual cues within each modality. Leveraging
large pretrained models, we automatically extract

superficial context from both textual and visual
modalities to construct counterfactual samples. By
penalizing model reliance on these counterfactual
samples during training, we effectively integrate
debiasing into the learning stage, thereby enhanc-
ing the robustness and representational power of
the main multimodal model.

Recognizing that the automatically extracted su-
perficial contexts may contain inaccuracies and that
not all samples require uniform debiasing treat-
ment, we further introduce a routing mechanism
combined with a Mixture-of-Experts (MoE) archi-
tecture. Under this framework, dedicated expert
models specifically handle the debiasing tasks for
textual and visual modalities independently. The
router dynamically learns and determines which
debiasing expert(s) should be activated for the
given sample, ensuring tailored and efficient debi-
asing. During training, these experts are exposed to
modality-specific counterfactual data, compelling
them to specialize in identifying and mitigating spu-
rious influences. At inference time, the integrated
system combines predictions from the main model
and the appropriate bias experts, as guided by the
router, to yield robust and accurate final outcomes.

We validate the proposed approach on two chal-
lenging multimodal semantic understanding tasks:
sarcasm recognition (MSD) and sentiment anal-
ysis (MSA). Our experiments demonstrate that
the causal debiasing framework substantially im-
proves reliability and accuracy compared to both
unimodal debiasing baselines and state-of-the-art
task-specific models. Notably, the model achieves
better generalization to different debiasing cate-
gories where naive finetuning falters, confirming
that it learned to discount superficial correlations
and focus on true multimodal semantics. These
results underscore the benefits of a principled, joint
debiasing strategy for MLLMs. In summary, our
contributions include:

• We formulate a multimodal debiasing ap-
proach grounded in causal mediation analysis,
which simultaneously addresses both text and
image biases.

• We propose a novel expert-based architecture
with a gating mechanism to isolate and re-
move spurious influences during both training
and inference.

• Our approach achieves state-of-the-art results
on sarcasm and sentiment tasks, enhancing
robustness and interpretability.
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2 Related Work

2.1 Bias in MLLMs

Multimodal vision-language models often learn un-
intended spurious correlations between modality-
specific cues and target outputs, causing biased
predictions and poor generalization. For instance,
Visual QA models frequently exploit dataset bi-
ases, such as responding yes to questions start-
ing with Do you see due to learned shortcuts (Niu
et al., 2021; Kim et al., 2023). These biases may
arise from coincidental visual or textual patterns.
MLLMs trained on web-scale data can further in-
herit and amplify such modality-specific biases,
which drives addressing these biases crucial for
robust multimodal understanding (Ye et al., 2024;
Zhang et al., 2024b).

2.2 Causal Mediation Analysis and
Interventions

Structural Causal Models (SCMs) offer a principled
approach to explicitly model and mitigate spurious
correlations by using interventions and counterfac-
tual reasoning (Pearl, 2022), a direction that has
attracted increasing attention (Shekhar et al., 2017;
Thrush et al., 2022; Le et al., 2023; Zheng et al.,
2024a; Leng et al., 2024; Zhu et al., 2024a).

Recent studies apply causal inference frame-
works in multimodal tasks to quantify and remove
modality-induced biases (Palit et al., 2023; Golo-
vanevsky et al., 2025; Yu et al., 2024b). For in-
stance, Zhu et al. (2024b) used counterfactual text
generation to address textual biases in sarcasm de-
tection, and Yang et al. (2024a) adopted a simi-
lar approach for sentiment analysis. Chen et al.
(2024a) extended these strategies by explicitly mod-
eling biases in both image and text modalities,
but did not investigate the bias originating from
spurious parts in a fine-grained manner. In VQA
tasks, causal reasoning methods include the Chain-
of-Thought (CoT)-based CAVE module by Chen
et al. (2024b), and Liu et al. (2024)’s entropy-
based counterfactual debiasing strategy for video-
grounded QA. Additionally, Yang et al. (2024b)
applied causal inference in emotion recognition
by decomposing context into relevant and irrele-
vant cues, eliminating distracting signals during
inference. Unlike previous methods, our proposed
approach explicitly constructs fine-grained coun-
terfactual samples, integrating causal debiasing di-
rectly into both training and inference to compre-
hensively address multimodal biases.
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Image Core Semantics
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Figure 3: Causal Graph for Multimodal Sarcasm Detec-
tion. The non-grey regions indicate the ideal causal
mechanisms. Unbiased prediction results could be
achieved by separating image and text inputs into seman-
tic and spurious components and performing controlled
interventions.

3 Preliminaries

3.1 Multimodal Causal Mediation
Framework

MLLMs often suffer biases from spurious textual
and visual contexts, degrading prediction accu-
racy. We propose a multimodal causal media-
tion framework to explicitly model causal relation-
ships among multimodal inputs, bias-mediating
variables, and outputs.

Taking sarcasm detection as an example, inputs
include text (T ) and image (I), ideally generating
semantic features (Tsemantic, Isemantic). However,
irrelevant contextual features (Tspurious, Ispurious)
may bias outcomes. We illustrate these effects via
a multimodal causal graph (Fig. 3), distinguishing:
Unbiased path: T → Tsemantic → Y and
I → Isemantic → Y , capturing desired accurate
semantic understanding.
Biased path: T → Tspurious → Y and I →
Ispurious → Y , capturing biases introduced by spu-
rious information.

We capture the Natural Direct Effect (NDE) of
inputs on the prediction outcome as the unbiased
results. In causal mediation theory, it refers to iso-
lating the direct influence of the relevant semantic
information (Tsemantic, Isemantic), while holding
mediating biases constant at baseline levels. Based
on the multimodal causal graph, we quantify these
effects through three scenarios:
• Textual Counterfactual Scenario: Isolate
Tspurious and mask visual input:

Yt = Y (Tspurious, ϕ). (1)

• Visual Counterfactual Scenario: Isolate Ispurious
and mask textual input:

Yi = Y (ϕ, Ispurious). (2)
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• Original Scenario: Use the full original input:

Y0 = Y (T, I). (3)

We then extract the unbiased output by comput-
ing the difference between the original and coun-
terfactual predictions:

Yunbiased = DIFF(Y0, Yt, Yi), (4)

This provides a principled estimate of prediction
free from modality-specific spurious bias.

3.2 Counterfactual Content Construction

Building upon our multimodal causal mediation
framework (Sec. 3.1), the ability to isolate spe-
cific causal factors necessitates the construction
of targeted counterfactual contents. Unlike tra-
ditional methods relying on heuristic rules or
dataset annotations, we automate the generation
of fine-grained multimodal counterfactual inputs
(Tspurious, Ispurious) using MLLMs. For textual in-
puts, this involves identifying and masking core se-
mantic segments. For visual inputs, we utilize atten-
tion mechanisms to pinpoint and modify salient re-
gions. Due to space constraints, a detailed method-
ological description is provided in App. B. These
meticulously constructed counterfactuals are in-
strumental for the causal debiasing techniques pre-
sented in following sections.

4 Multimodal Debiasing Methods

In this section, we propose methods to mitigate spu-
rious multimodal biases, targeting both inference
and training stages:
1. Multimodal Inference Debiasing (MID): An
inference-stage, plug-and-play method for external
bias correction without altering model parameters.
2. Multimodal Training Debiasing: To embed
robust representations, we integrate debiasing di-
rectly into model training. This involves founda-
tional principles of counterfactual-aware training.
which uses counterfactual samples to reduce spuri-
ous correlations. Building upon these, we introduce
our primary training-stage method, Multimodal
Mixture-of-Experts Joint Debiasing (MME-JD).
This advanced MoEs approach uses a learned router
to adaptively dispatch samples to specialized expert
branches, enabling fine-grained debiasing. These
methods are detailed in the subsequent sections.

4.1 MID: Multimodal Inference Debiasing
The simplest debiasing approach applies only at in-
ference, without any additional training procedure.
Leveraging the proposed multimodal causal medi-
ation anlysis framework, we could easily adapt it
to MLLMs by using counterfactual samples in an
inference-time plug-and-play manner.

Given original multimodal inputs (image I , text
T ), we first derive the original prediction probabili-
ties p0. We then generate counterfactual samples
icluding text-only context (T̂ ) and image-only con-
text (Î), to isolate modality-specific biases, yield-
ing probability distributions pt and pi, respectively.
Each {p0, pt, pi} is a vector of length K (for a K-
class prediction task).

To suppress the bias introduced by spurious text
and/or image context, we perform a linear correc-
tion on p0:

p̃ = p0 − αpi − βpt, (5)

where α and β are hyperparameters controlling
how aggressively we subtract the counterfactual
probabilities from the original prediction.

Choosing α, β is non-trivial: different datasets
and tasks may require stronger or weaker correc-
tion. We follow a validation-set-based approach,
searching over α, β ∈ [0, 1] to maximize a perfor-
mance metric Eval (We use F1 in experiments):

α̂, β̂ = arg max
α,β∈[A,B]

Eval(D|f, α, β). (6)

We employ Bayesian optimization to efficiently
find the best-performing parameters.

4.2 Intergate Causal Debiasing into Training
While MID provides a practical inference-time fix,
it operates externally and does not fundamentally
alter the learned representations or the model’s
reliance on spurious features. To encourage the
model to learn representations that are intrinsically
more robust to spurious multimodal correlations,
we shift our focus from inference-time correction
to integrating counterfactual information directly
into the training process.

4.2.1 Foundations
A direct approach to incorporate the causal effect
of spurious contexts is to model a bias-removed
prediction (Eq. 5) into the loss function:

L = −E[log norm(P (y|i, t)−α ·P (y|̂i)−β ·P (y|t̂))], (7)

where norm(·) is a softmax normalization. How-
ever, this approach is computationally expensive
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Figure 4: Overview of proposed multimodal debiasing frameworks: (a) inference-only debiasing using context
extraction, (b) counterfactual training debiasing via mixed data augmentation, and (c) Mixture-of-Experts joint
debiasing incorporating a dynamic router mechanism.

(three forward passes per step) and can suffer from
numerical instability due to its internal subtraction.

To address these issues while maintaining the
same fundamental training goals, we propose an
alternative strategy centered on constructing coun-
terfactual training objectives using reversed labels.
The core objective remains consistent with L to
maximize P (y|i, t) on original inputs while mini-
mizing reliance on spurious contexts. This is prac-
tically implemented by encouraging the model to
predict an incorrect label ŷ, when presented with
only the spurious context. This leads to the follow-
ing training objective, L′:
L′ = −E[logP (y|i, t)]︸ ︷︷ ︸

(I) Maximize original accuracy

+E[logP (y|̂i) + logP (y|t̂)]︸ ︷︷ ︸
(II) Penalize spurious reliance via y

(8)
approx.
===== (I) −E[logP (ŷ|̂i)]− E[logP (ŷ|t̂)]︸ ︷︷ ︸

(III) Minimize spurious accuracy via ŷ (reversed label)

. (9)

This formulation provides an efficient way for
training-time debiasing by incorporating counter-
factual samples into the training data, requiring
only a single forward pass per instance and thus
enhancing efficiency.

While L′ (Eq. 9) enables counterfactual train-
ing, MLLMs may hallucinate or misattribute spu-
rious correlations. Indiscriminate use of naively
generated counterfactuals can therefore introduce
noise. To selectively identify informative samples

for debiasing, we compare the original prediction
p0(y) with counterfactual predictions pt(y), pi(y)
obtained from the base model (as in Sec. 4.1) on
truth y using a tolerance ε:
a. No debiasing: pt(y) > p0(y) + ε ∧ pi(y) >
p0(y) + ε (i.e., both contexts aid prediction).
b. Visual debiasing only: pi(y) + ε < p0(y) <
pt(y) − ε (i.e., visual context harms, text aids/is
neutral). Construct visual counterfactual.
c. Textual debiasing only: pt(y) + ε < p0(y) <
pi(y)− ε (i.e., textual context harms, visual aids/is
neutral). Construct textual counterfactual.
d. Debias both modalities: pt(y) + ε < p0(y) ∧
pi(y) + ε < p0(y) (i.e., both contexts harm). Con-
struct both counterfactuals.
e. Exclude: All other cases (e.g., within uncer-
tainty margin).

A smaller ε includes more samples for debiasing
but can increase ambiguity near decision bound-
aries. We use ε = 0.1 in our experiments.

4.2.2 Training-Stage Only Debiasing

Building upon L′ and counterfactual sample selec-
tion strategy, we could establish a specific training-
time debiasing approach, MCTD (Multimodal
Counterfactual Training Debiasing), illustrated
in Fig. 4 (b). During inference, MCTD directly
accepts test samples (i, t) to produce outputs, re-
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quiring no post-hoc adjustment.2

4.3 MME-JD: Multimodal
Mixture-of-Experts Joint Debiasing

While the basic Counterfactual Training (Sec.4.2.2)
improves internal representation robustness, its uni-
form application of counterfactual augmentation
may not be ideal for all samples. To accommo-
date diverse bias types and intensities with sample-
specific treatment, we propose MME-JD, a Mul-
timodal Mixture-of-Experts Joint Debiasing ap-
proach, where each sample dynamically selects
appropriate debiasing experts through a learned
routing mechanism (as in Fig. 4 (c)).

4.3.1 Architecture and Objectives
We employ three parallel expert branches:
1. General Expert, trained conventionally on origi-
nal samples:

LGE = −E[logP (y|i, t)]. (10)

2. Image Debiasing Expert, expliciting incorpo-
rating counterfactual visual examples selected by
Sec 4.2.2 criterion b,d into training:

LIDE = −E[logP (y|i, t)]− E[logP (ŷ|̂i)]. (11)

3. Text Debiasing Expert (TDE), analogously re-
ducing textual bias via:

LTDE = −E[logP (y|i, t)]− E[logP (ŷ|t̂)]. (12)

4.3.2 Router and Inference-time Combination
A key component in MME-JD is a router module
designed to dynamically determine the most suit-
able expert combination for any given input sample.
The router takes the original and counterfactual in-
puts (i, t, î, t̂) and is trained as a classifier to predict
an optimal expert strategy label, c, for each training
instance. This strategy label c is assigned by apply-
ing the heuristic counterfactual sample selection
criteria detailed previously in Sec. 4.2.1. We assign
c ∈ {0, 1, 2, 3} corresponding to the required ex-
pert combination: GE only (0), GE + IDE (1), GE
+ TDE (2), and GE + IDE + TDE (3).

The Router is trained as a classifier to predict the
expert strategy label c for each sample. Its training
objective is to minimize the cross-entropy loss:

Lrouting = −E logQ(c|i, t, î, t̂). (13)

2We include MCTD as a distinct method here for exper-
imental comparison, allowing us to assess its training-stage
debiasing performance against inference-stage approaches.

Method Training Cost Inference Cost

Base Model 1× 1×
TFCD (text debias) 1× ∼2×
MID 1× 3×
MCTD ∼1× 1×
MME-JD ∼3× 3×

Table 1: Relative computational overhead vs. the base
model; TFCD debiases only the text side.

During inference, for a given sample (i, t), after
generating t̂, î, the router first predicts the optimal
expert strategy by

c∗ = argmaxQ(c|i, t, î, t̂). (14)

Then, the relevant experts (GE, and TDE/IDE if
selected by c∗) process their respective inputs to
produce outputs pGE, pTDE, pIDE. The final output
logits are computed by combining the outputs of
the selected experts based on the strategy c∗.

p̃ =





pGE, c∗ = 0

pGE + α1 pIDE, c∗ = 1

pGE + β2 pTDE, c∗ = 2

pGE + α3 pIDE + β3 pTDE. c∗ = 3

(15)

where αc and βc are scalar weighting parameters
that could be searched on validation set as Sec. 4.1.

4.4 Computational Overhead
Table 1 reports relative training and inference
costs (normalized to the base model). Inference
cost mainly reflects the number of forward passes
over the VLM: TFCD adds one textual counterfac-
tual (∼2×), MID adds two counterfactuals (3×).
MCTD folds counterfactual supervision into train-
ing, keeping inference at 1×; MME-JD trains ex-
perts and routes at test time, yielding∼3× for both
training and inference.

5 Experimental Setup

In this section, we outline the experimental frame-
work used to evaluate our proposed methods. Com-
prehensive details regarding datasets, evaluation
metrics, implementation specifics, and all compar-
ative methods are provided in App. C.

5.1 Datasets and Implementation Details
We evaluated our methods on two representa-
tive multimodal tasks: sarcasm detection using
MMSD2.0 (Qin et al., 2023), and sentiment analy-
sis using MVSA-Multi (Niu et al., 2016). Standard
metrics Accuracy, Precision, Recall, and F1 were
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Method Acc. Prec. Recall F1

HFM 71.04 ± 0.29 64.92 ± 1.36 69.63 ± 0.93 67.01 ± 0.86
Att-BERT 80.10 ± 1.34 76.35 ± 2.73 77.76 ± 0.54 77.14 ± 1.46
CMGCN 79.92 ± 1.40 75.84 ± 1.16 78.10 ± 1.78 76.86 ± 1.45
HKE 76.47 ± 1.31 73.51 ± 1.00 71.62 ± 2.62 72.40 ± 1.72
Multi-view CLIP 85.35 ± 0.37 81.37 ± 1.12 87.05 ± 0.60 83.28 ± 1.10

InternVL2.5 85.76 ± 0.57 79.91 ± 1.51 89.39 ± 0.28 84.38 ± 0.61
InternVL2.5 + TFCD 85.96 ± 0.34 80.00 ± 0.69 89.87 ± 1.02 84.65 ± 0.45
InternVL2.5 + MID 86.34 ± 0.59 80.62 ± 1.75 89.88 ± 0.63 85.00 ± 0.45
InternVL2.5 + MCTD 86.26 ± 0.39 80.33 ± 1.03 90.16 ± 0.51 84.96 ± 0.25
InternVL2.5 + MME-JD 86.84 ± 0.41 81.25 ± 1.06 90.26 ± 1.04 85.52 ± 0.41

Qwen2-VL 86.74 ± 0.29 81.14 ± 0.88 90.45 ± 0.81 85.54 ± 0.32
Qwen2-VL + TFCD 87.55 ± 0.35 82.70 ± 0.72 89.87 ± 0.53 86.14 ± 0.26
Qwen2-VL + MID 87.68 ± 0.51 83.14 ± 1.01 89.52 ± 0.84 86.21 ± 0.47
Qwen2-VL + MCTD 88.13 ± 0.34 82.51 ± 1.15 91.90 ± 0.62 86.95 ± 0.41
Qwen2-VL + MME-JD 88.42 ± 0.16 83.19 ± 0.80 91.61 ± 0.90 87.20 ± 0.23

Table 2: Comparison of our proposed methods (including MID, MCTD and MME-JD) with existing
methods on dataset MMSD2.0.

Method Acc. M-F1 W-F1

MVAN 66.06 ± 0.97 54.45 ± 1.02 64.01 ± 1.12
MGNNS 67.49 ± 0.31 54.74 ± 1.72 64.37 ± 0.80
CLMLF 66.80 ± 0.71 54.93 ± 1.39 64.63 ± 0.89
MDSE 66.82 ± 1.26 55.12 ± 3.25 64.77 ± 0.92
CF-MSA 67.12 ± 1.28 55.18 ± 1.14 64.92 ± 1.01

InternVL2.5 71.02 ± 0.35 58.37 ± 1.36 69.66 ± 0.35
InternVL2.5 + MCIS 71.08 ± 0.54 59.23 ± 0.81 70.00 ± 0.53
InternVL2.5 + MID 71.52 ± 0.95 60.20 ± 1.24 70.60 ± 0.84
InternVL2.5 + MCTD 71.52 ± 0.75 60.08 ± 1.30 70.52 ± 1.04
InternVL2.5 + MME-JD 71.86 ± 0.76 60.64 ± 1.02 70.87 ± 0.68

Qwen2-VL 69.79 ± 0.44 61.15 ± 0.71 69.98 ± 0.31
Qwen2-VL + MCIS 71.02 ± 0.47 60.35 ± 0.58 70.43 ± 0.33
Qwen2-VL + MID 71.46 ± 0.87 60.68 ± 0.93 70.92 ± 0.52
Qwen2-VL + MCTD 70.79 ± 0.66 60.55 ± 1.40 70.77 ± 0.73
Qwen2-VL + MME-JD 72.08 ± 0.46 62.42 ± 0.69 71.95 ± 0.35

Table 3: Comparison of our proposed methods with existing methods on MVSA-Multi. M-F1 denotes
Macro-F1, while W-F1 refers to Weighted-F1.

utilized for sarcasm detection, while Accuracy,
Macro-F1, and Weighted-F1 were used for senti-
ment analysis. Our experiments employed the large
models Qwen2-VL-7B (Wang et al., 2024b) and
InternVL2.5-4B (Chen et al., 2025), fine-tuned us-
ing LoRA (Hu et al., 2022). Our router model was
based on CLIP (Radford et al., 2021). Inference-
time debiasing hyperparameters were tuned via
Bayesian optimization (Snoek et al., 2012).

5.2 Comparing Methods

We compared against task-specific multimodal
baselines: Sarcasm Detection: HFM, Attn-BERT,
CMGCN, HKE, Multi-view CLIP. Sentiment
Analysis: MVAN, MGNNS, CLMLF, MDSE.
and multimodal causal debiasing methods: TFCD,
MCIS, CF-MSA. Detailed descriptions and selec-
tion reason are in Appendix C.4.

6 Results and Analysis

6.1 Main Results

Tab. 2 and 3 present our proposed methods’ perfor-
mance comparisons on two datasets against strong
MLLM baselines (InternVL2.5, Qwen2-VL) and
existing task-specific methods. While existing text-
based counterfactual debiasing (e.g., TFCD, MCIS)
offers slight improvements, our proposed MID,
which extends counterfactual inference to the mul-
timodal level, further enhances performance. In-
tegrating counterfactual samples during training
(MCTD) also yields gains, though not consistently
surpassing MID, suggesting the continued neces-
sity for inference-time debiasing.

Crucially, our comprehensive MME-JD model,
which combines counterfactual training with a
router and Mixture-of-Experts, consistently de-
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Figure 5: Comparison of error rates (%) across different debiasing methods on MMSD2.0 and MVSA datasets
regarding to debiasing category. 0/1/2/3 refer to no/image/text/both debias need.

Methods R. C. M. MMSD2.0 MVSA-Multi

Acc. F1 Acc. M-F1

Inference-only

Qwen2-VL 71.94 65.89 67.95 49.28
+ MID ✗ ✗ ✗ 73.22 66.97 69.12 51.41
+ MRID ✓ ✗ ✗ 74.88 68.21 69.29 52.83

Training backbone

Qwen2-VL 86.74 85.54 69.79 61.15
+ MID ✗ ✗ ✗ 87.68 86.21 71.46 60.68
+ MRID ✓ ✗ ✗ 88.09 86.58 72.58 61.94
+ MCTD ✗ ✓ ✗ 88.13 86.95 70.79 60.55
+ MME-JD ✓ ✓ ✓ 88.42 87.20 72.08 62.42

Table 4: Performance comparison when different com-
ponents employed in base model. “R.”, “C.”, and “M.”
refer to the Routing mechanism, Counterfactual training,
and Mixture-of-Experts, respectively. We introduce an
additional Router component to MID (MRID) to specif-
ically assess the Router’s contribution. See Appendix D
for implementation details.

livered the most substantial improvements. It
achieved top F1 scores of 85.52% (InternVL2.5)
and 87.20% (Qwen2-VL) on MMSD2.0. These
results confirm MME-JD’s effectiveness in mitigat-
ing multimodal spurious correlations through the
synergy of training-time strategies, expert routing,
and inference-time debiasing.

6.2 Ablation Study

Ablation studies (Tab. 4) demonstrate the indi-
vidual and combined contributions of our frame-
work’s components. For inference-time debiasing,
the Router (MRID) significantly enhanced perfor-
mance over MID. For training debiasing, counter-
factual training (MCTD) alone improved F1 scores
(e.g., +1.4 on MMSD2.0 over baseline), and the
complete MME-JD model, integrating the Router,
Counterfactual Training, and Mixture-of-Experts
(MoE), achieved the highest F1 scores (87.20 on
MMSD2.0, 62.42 on MVSA-Multi). This under-
scores that the deep integration of all components
is crucial for optimal performance and learning

robust, debiased representations.
Further analysis (Tab. 5) on modality-specific

debiasing shows that while individual image or text
debiasing provides modest gains, neither matches
the performance of the fully integrated MME-JD,
which highlights the necessity of simultaneously
addressing biases across both modalities for opti-
mal multimodal understanding.

6.3 Analysis on Error Rate on Categories

To further understand the impact of our meth-
ods, we analyzed error rates across sample cat-
egories with distinct bias types following 4.3.2.
Results shown in Fig. 5 indicate that samples re-
quiring any form of debiasing generally presented
higher difficulty than those without debiasing needs
(c = 0). Among these, text-only biased samples
(c = 2) consistently showed better debiasing effec-
tiveness compared to image-only biased samples
(c = 1). TFCD exhibited notable limitations when
addressing image-biased samples (c = 1), align-
ing with our expectations given its text-focused
design. MID and MCTD each demonstrated advan-
tages in different categories, underscoring the im-
portance of integrating both inference and training-
based debiasing approaches. The proposed MME-
JD method, although not always outperforming
all other methods within each individual category,
achieved the best overall performance by effec-
tively integrating multiple debiasing strategies.

6.4 Analysis on Router

The router component dynamically assigns input
samples to suitable experts within our MME-JD
framework. To evaluate its effectiveness, we com-
pared a trained router against an oracle router
(Tab. 6). The oracle router, serving as an ideal
upper bound (following Sec. 4.3.2), demonstrated
notably superior performance, highlighting both
the substantial potential of the MME-JD expert ar-
chitecture and the trained router’s accuracy as a key
performance bottleneck.
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Methods Acc Prec Recall F1

Qwen2VL 86.74 81.14 90.45 85.54
+ IDE 87.13 81.2 91.13 85.89
+ TDE 87.05 81.22 90.93 85.8
+ MME-JD 88.42 83.19 91.61 87.2

InternVL2.5 85.76 79.91 89.39 84.38
+ IDE 86.17 80.26 90.15 84.92
+ TDE 86.21 80.36 89.97 84.89
+ MME-JD 86.84 81.25 90.26 85.52

Table 5: Ablation study on the effectiveness of image
and text debiasing experts within the proposed MME-
JD framework.

Method Router Acc. Prec. Recall F1

Qwen2VL trained 88.42 83.19 91.61 87.20
+ MME-JD oracle 92.40 87.46 96.14 91.59

InternVL2.5 trained 86.84 81.25 90.26 85.52
+ MME-JD oracle 89.72 83.93 93.45 88.43

Table 6: Comparison of model performance using a
trained router versus an oracle router in MME-JD.

Tab. 7 further shows that while the trained router
effectively identifies samples not requiring debi-
asing (c=0), its performance degrades sharply for
image (c=1) and text (c=2) debiasing cases. We
attribute this weakness primarily to severe training-
data imbalance—only a small minority of samples
require specialized debiasing—so errors on these
critical cases disproportionately limit overall MME-
JD effectiveness.

To diagnose the failure modes more precisely,
we analyze the class-wise confusion matrix in
Tab. 8. The router exhibits a strong conservative
bias toward No Debias: 92.7% of all predictions
fall into this branch (2233/2409), yielding high
recall for No Debias (94.2%) but low recall for Im-
age/Text/Both (6.5%/13.3%/7.6%). Among all non-
No Debias ground-truth instances, 97.5% of the
errors are conservative No Debias predictions (499
out of 512), indicating that the router abstains when
uncertain rather than confusing debiasing types. In-
deed, after excluding the No Debias branch, the
largest entry in each remaining row lies on the
diagonal (10/36/11 for Image/Text/Both), imply-
ing limited cross-type confusion once the router
commits to debiasing. Class-precision by predic-
tion is 77.7% (No), 22.2% (Image), 31.9% (Text),
and 61.1% (Both). Together with the distribution
statistics (Appendix, Tab. 10), these results suggest
that threshold calibration or cost-sensitive training
(e.g., class-balanced losses or utility-aware deci-

Model Cate. Prec. Recall F-0.5

Router for
Qwen2VL

c=0 77.55 96.40 80.7
c=1 45.54 13.46 30.83
c=2 32.00 12.72 18.20

Router for
InternVL2.5

c=0 81.36 77.12 80.48
c=1 27.86 13.04 22.71
c=2 29.82 42.89 31.75

Table 7: Router classification performance for different
debiasing types. c indicates debiasing category: 0 (No
Debias), 1 (Image Debias), and 2 (Text Debias).

True \ Pred No Debias Image Text Both

No Debias 1,734 29 72 5
Image Debias 140 10 3 1
Text Debias 230 3 36 1
Double Debias 129 3 2 11

Table 8: Confusion matrix of the trained router.

sion thresholds) could trade additional recall on
debiasing branches for a modest precision drop,
improving end-to-end routing without substantially
increasing cross-class swaps, which drives our fu-
ture work.

Qualitative evidence

We provide two representative sarcasm–detection
case studies in Appendix F. Both examples ap-
ply our masking-based debiasing to discount
background-only evidence while preserving task-
relevant semantics.

7 Conclusion

In this paper, we addressed the critical issue of spu-
rious multimodal biases that impair the robustness
and generalization of MLLMs. Prior approaches
lacked comprehensive multimodal analysis and
training-time adaptability. We first developed a
fine-grained multimodal causal framework, explic-
itly distinguishing spurious context from semantic
content, thereby extending previous inference-time
adjustments to multimodal scenarios. Building
upon this, we introduced MME-JD, incorporating
counterfactual content into training and employing
a Mixture-of-Experts architecture with dynamic
routing for adaptive, sample-specific debiasing. Ex-
tensive experiments demonstrate that MME-JD sig-
nificantly surpasses simpler debiasing methods and
existing benchmarks. Future research will explore
enhancing counterfactual generation techniques
and refining router designs for enhancement.
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Limitation

Despite the improvements demonstrated, our ap-
proach has several limitations that open avenues
for future research:

Accuracy of Spurious Context Identification:
The efficacy of our framework critically depends on
the precise identification of spurious contexts ver-
sus core semantic content. Our current methodol-
ogy, employing prompt engineering and attention-
based mechanisms for semantic extraction, faces
inherent challenges. Prompt engineering can in-
advertently introduce new biases, while attention
scores may not always reliably pinpoint genuinely
spurious regions. Therefore, despite the advanced
nature of LLMs, inaccuracies in this initial extrac-
tion phase can propagate the effectiveness of sub-
sequent debiasing efforts. Future studies should
integrate additional robust and objective method-
ologies alongside these advanced models to further
enhance extraction accuracy and reliability.

Router Mechanism Complexity and Stability:
While the router mechanism in MME-JD is de-
signed to manage the variability of counterfactual
sample quality, its own training and calibration re-
quire careful attention and can be intricate. This
complexity might risk it becoming a performance
bottleneck or introducing sensitivities. For instance,
ensuring the router generalizes well and avoids ‘de-
pendency loops’ (where its performance is overly
reliant on specific states of other components it’s
trying to manage) is crucial. Developing more
inherently robust router architectures, along with
streamlined and stable training strategies, presents
a key direction for future improvement.

In addition, our router faces severe class imbal-
ance, since only around 10% of MMSD2.0 samples
require explicit debiasing, as detailed in Table 10.
We did not apply resampling, loss weighting, or
focal loss during router training, prioritizing preci-
sion over recall. This conservative choice avoids
mismatched debiasing but leads to weaker perfor-
mance on minority categories (e.g., image-only de-
bias). Exploring class-aware or curriculum-based
router training strategies is an important direction
for future work.

Linearity Assumption in Causal Mediation:
Our current causal mediation framework approxi-
mates bias removal using linear relationships. How-
ever, the interactions between biases and core se-
mantics within complex Multimodal Large Lan-
guage Models (MLLMs) are likely to be highly
nonlinear. This linearity assumption may there-
fore limit our model’s capacity to fully neutralize
biases, particularly in scenarios requiring simulta-
neous debiasing of both textual and visual modal-
ities (e.g., in Fig 5, MME-JD did not perform the
best, and sometimes text-specific methods (TFCD)
could surpass multimodal methods). A significant
avenue for future research lies in investigating and
integrating nonlinear debiasing strategies to more
comprehensively model and mitigate these intricate
multimodal interactions, thereby further enhancing
model robustness.

Inference Efficiency of MME-JD The MME-
JD framework’s adaptive inference process, while
effective for debiasing, can impact its overall effi-
ciency. Key steps, including the on-the-fly genera-
tion of counterfactual inputs (t̂, î), router process-
ing, and the subsequent execution of selected ex-
pert(s), collectively contribute to increased latency
and computational resource demands compared to
simpler methods. While we currently employ in-
dependent models for each expert, we have tried
MoE-LoRA (Luo et al., 2024) to reduce the train-
ing and inference cost, but it did not yield compara-
ble debiasing performance. How to develop more
successful parameter-efficient expert architectures
that maintain high debiasing capabilities is worth
considering in the future.

Ethical Considerations

Potential Risks While our methods effectively
reduce known biases, they depend on identifying
spurious correlations accurately. Errors or over-
sights in distinguishing between semantic and spu-
rious contexts could inadvertently reinforce exist-
ing biases or introduce new ones. Practitioners
must be cautious and continually validate debias-
ing processes to prevent unintended consequences.

Use of AI Assistants We have employed Chat-
GPT as a writing assistant, primarily for polishing
the text after the initial composition.
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A Causal Inference Theory and
Counterfactual Causal Inference

X Y

M
X Y

M

𝐗!

(a) (b)

Figure 6: (a) An example of a causal graph, where X
transmits information to the outcome Y via the mediator
variable M . (b) The process of counterfactual interven-
tion, observing the influence of X on Y via the mediator
variable M by interfering the link between X and Y .

This section first introduces the theory of causal
inference, which serves as the cornerstone for mul-
timodal causal mediation analysis in Sec. 3.1.

Causal graphs are highly generalized analytical
tools used to reveal causal dependencies between
variables. The prediction process of a model can
be defined as a Directed Acyclic Graph (DAG)
G = V,E, where the set of nodes V represents a
series of intermediate factors involved in the pre-
diction process, and the set of edges E denotes the
causal effects between them. Figure 6 presents an
example of a causal graph with three variables. In
this graph, uppercase letters denote random vari-
ables, and lowercase letters denote their actual ob-
served values. The causal relationship from a ref-
erence variable X to an outcome variable Y com-
prises two paths:

• X → Y : The direct effect path, representing
the direct effect of X on Y .

• X →M → Y : The indirect effect path, rep-
resenting the effect of X on Y mediated by
the intermediate variable M .

Counterfactual inference involves applying coun-
terfactual treatment conditions to the model and
observing the outcome of the original input under
these new conditions, thereby deducing the influ-
ence of the counterfactual factors. This process
can be formally expressed. The outcome for the
original input is:

Yx,m = Y (X = x,M = m), (16)

where m = Mx = M(X = x). By applying a
counterfactual treatment to x to yield x∗, we obtain
the counterfactual outcome:

Yx∗,Mx∗ = Y (X = x∗,M = M(X = x∗)),
(17)

where Mx∗ represents the value of the mediator M
when X is changed to x∗. Furthermore, a scenario
can be constructed where X is counterfactually set
to x∗, but the mediator M retains the value it would
have taken under the original input x. The outcome
in this case is Yx∗,Mx .

Causal effects quantify the difference between
the outcome after intervening on a reference
variable and the outcome in its natural (pre-
intervention) state. According to causal theory,
when the variable X is changed from x to x∗, the
Total Effect (TE) on the model’s outcome is defined
as:

TE = DIFF(Yx,Mx , Yx∗,Mx∗ ), (18)

where DIFF represents a function that measures the
difference between the predicted outcomes before
and after the intervention. The Total Effect (TE)
can be decomposed into the Natural Direct Effect
(NDE) and the Total Indirect Effect (TIE). The
NDE refers to the impact of a change in the causal
variable X (from x to x∗) on the outcome Y when
the mediator variable M is held at the level it would
naturally assume if X were counterfactually set:

NDE = DIFF(Yx,Mx∗ , Yx∗,Mx∗ ). (19)

This aims to isolate the impact of the reference vari-
able on the outcome variable, holding the mediator
constant at Mx∗ .

The Total Indirect Effect (TIE) represents the ef-
fect of the reference variable X indirectly influenc-
ing the outcome variable Y through the mediator
M . It is calculated by subtracting NDE from TE:

TIE = TE −NDE = DIFF(Yx,Mx , Yx,Mx∗ ).
(20)

Thus, depending on the nature of the mediator M ,
NDE or TIE can be leveraged for unbiased estima-
tion regarding the outcome variable Y:

• If the mediator M is identified as a variable
that potentially introduces bias and is not con-
ducive to the final prediction. In this case, we
hold M at the value Mx∗ , and observe the
unbiased effect of X on Y . This process is
achieved through NDE.

• If the mediator M represents the pathway or
features of interest, and only the effect me-
diated through M is desired for an accurate
prediction. Here, TIE can be used to calculate
the indirect effect of X on Y via M , yielding
an unbiased estimate of this mediated effect.
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In this paper, we define M as the bias variable
(representing spurious textual and visual context),
and therefore, we employ NDE for unbiased esti-
mation.

B Counterfactual Content Construction

Guided by the multimodal causal mediation frame-
work, we explicitly construct counterfactual sam-
ples that isolate textual and visual spurious contexts.
Existing counterfactual generation approaches typi-
cally rely on rule-based heuristics, manipulation of
latent representations or pre-existing annotations in
datasets, and thus lack the granularity and flexibil-
ity for our detailed causal framework. In contrast,
we propose leveraging large MLLMs to automate
counterfactual input generation at the raw input
level.

B.1 Counterfactual Text Input Construction

For textual inputs, we aim to clearly distinguish
between key semantic content (Tsemantic) and spu-
rious context which is potentially bias-inducing
(Tspurious). The counterfactual textual input is gen-
erated through the following procedure:

Identifying Semantic Content via Prompting.
We prompt a large language model to extract pri-
mary semantic content relevant to the prediction
task. We avoid directly identifying spurious context
since irrelevant segments often lack stable seman-
tic indicators, causing imprecise model responses.
Instead, extracting key semantic segments, which
inherently possess clear and consistent semantic
features, provides a more precise foundation, al-
lowing us to reliably obtain spurious context by
subtracting the identified semantic content from
the original text.

Generating Context-only Counterfactuals.
Once critical semantic components are identi-
fied, we replace these segments with a neutral
placeholder token ([MASK]), ensuring grammatical
fluency while preserving only the bias-prone
content:

Tspurious = T\Tsemantic (21)

B.2 Counterfactual Image Input Construction

Analogous to the textual scenario, we need to
isolate visual content relevant to the prediction
task (Isemantic) from spurious visual contexts
(Ispurious). Due to the complexity of accurately

distinguishing these regions, we propose an auto-
mated approach based on attention mechanisms
from MLLM, enabling fine-grained visual counter-
factual generation.

Extracting Visual Attention via Neutral
Prompts. Analogous to our textual approach, we
prompt the vision-language model with neutral
descriptions rather than task-specific instructions.
Unlike prior methods, which often rely on coarse or
manual visual annotations, our method proactively
extracts fine-grained visual content critical to the
prediction task. Motivated by Yu et al. (2024a),
task-specific prompts would introduce semantic
biases related to internal task priors, potentially
distorting the saliency distribution. In contrast,
neutral prompting allows the model to identify
image regions purely based on intrinsic visual
importance.

Formally, given textual tokens Xtext and image
patches Ximage, the model generates descriptive
tokens Yout. Attention scores from Yout to Ximage

are extracted from deeper transformer layers (e.g.,
layers 29–31 of the 32-layer Qwen2-VL-7B) to
capture richer, more fine-grained multimodal inter-
actions (Wang et al., 2024c). The attention score
for the image patch at spatial position (i, j) is com-
puted as:

ϕi,j =
∑

h,m

Ah
m,t, t = j + P · (i− 1). (22)

Here, Ah
m,t denotes attention weights from the m-

th token of the generated sequence to the t-th image
patch across head h, and P denotes the number of
patches per row in the patch sequence.

Mask Enhancement for Counterfactual Image
Generation To generate visually coherent and se-
mantically meaningful counterfactual images from
the raw attention masks, we apply several post-
processing steps. First, the attention scores are nor-
malized into a standardized range [0, 1] to stabilize
mask values and facilitate subsequent manipulation.
Second, we enhance the contrast of these normal-
ized masks by scaling, thus emphasizing visually
salient regions and clearly distinguishing critical vi-
sual elements from background noise. Third, a spa-
tial smoothing operation (convolutional filtering)
is performed to prevent abrupt transitions between
masked and unmasked regions, maintaining visual
continuity. Finally, we interpolate the smoothed
masks back to the original image dimensions and
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Algorithm 1 Counterfactual Image Generation via Attention Masks

Require: MLLM model, image I , prompt P , number of model layers L, image dimensions H,W , image
patch grid dimensions (patchh, patchw), enhancement factor α

Ensure: counterfactual image Icf
1: Yout ←model.generate(I , P ) ▷ Generate the neutral image analysis
2: attns←model.extract_attentions(I , P , Yout) ▷ Fetch attentions from Yout to I
3: focused_attns← attns[L-4:L-1, :, :] ▷ Select certain layers
4: ϕ←MeanPool(focused_attns) ▷ Keep only final dimension only
5: mask2d ← Reshape(ϕ, (patchh, patchw)) ▷ Reshape to 2 dimensional
6: masknorm ← Normalize(mask2d) ▷ Normalization
7: maskenhanced ← α ·masknorm ▷ Enhancement
8: masksmooth ← Conv2D(maskenhanced, kernel) ▷ Smmothing
9: maskresized ← Interpolate(masksmooth, size=(H,W ))

10: Icf ← AlphaBlend(I , maskresized) ▷ Blending with original image
11: return Icf

blend them seamlessly with the original images via
alpha blending. This procedure ensures that the
resulting counterfactual images preserve contex-
tual coherence while effectively highlighting the
identified visual regions. Alg. 1 summarizes this
detailed workflow precisely.

B.3 Quality Control via Router

While the proposed automated approach efficiently
constructs fine-grained counterfactual inputs, the
inherent complexity and variability of multimodal
content might occasionally lead to suboptimal or
noisy counterfactual samples. To mitigate poten-
tial quality issues arising from these automatically
generated inputs, we incorporate a router mecha-
nism that dynamically assesses their suitability for
subsequent causal analysis. Specifically, the router
determines whether each generated counterfactual
input should be utilized or discarded based on its
semantic reliability and consistency. Further details
regarding the design and operational logic of the
router are elaborated in later sections.

C Detailed Experimental Setup

C.1 Datasets and Evaluation Metrics

Our experiments were conducted on two distinct
multimodal datasets to address sarcasm detec-
tion and sentiment analysis. Statistical details
for both datasets are presented in Tab. 9. For
multimodal sarcasm detection, we utilized the
MMSD2.0 dataset (Qin et al., 2023). We directly
adopted the official dataset partitions for training,
validation, and testing as provided by the original
authors. For multimodal sentiment analysis, we

employed the MVSA-Multi subset of the MVSA
dataset (Niu et al., 2016). MVSA is a widely rec-
ognized benchmark in this domain, constructed
from Twitter posts. The MVSA dataset consists
of two subsets: MVSA-Single (MVSA-S), which
contains 5,129 samples, each annotated by a single
annotator, and MVSA-Multi (MVSA-M), which
includes 19,600 samples, with each sample receiv-
ing three independent annotations. We selected
MVSA-Multi for our experiments due to its supe-
rior annotation reliability and lower noise levels,
thereby supporting more robust experimental find-
ings. For the MVSA-Multi dataset, we randomly
partitioned the data into training, validation, and
testing sets, adhering to a 7.5:1:1 ratio.

To comprehensively assess model efficacy, we
used specific evaluation metrics for each task. For
sarcasm detection (MMSD2.0), where "Non-sar"
instances outnumber "Sarcasm," metrics like Preci-
sion, Recall, and F1-score were used alongside Ac-
curacy to ensure the model’s ability to identify the
minority sarcastic class wasn’t obscured. Similarly,
for the more significantly imbalanced MVSA-Multi
sentiment dataset (with "Negative" as a clear minor-
ity), Accuracy was supplemented with Macro-F1
and Weighted-F1 to provide a fairer assessment of
performance across all classes

C.2 Implementation Details
Our experiments utilized two powerful large mul-
timodal model series, Qwen2-VL (Wang et al.,
2024b) and InternVL2.5 (Chen et al., 2025), specif-
ically the Qwen2-VL-7B and InternVL2.5-4B ver-
sions, trainable on a single NVIDIA A100 80G
GPU. We employed LoRA (Hu et al., 2022)
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MMSD2.0 MVSA-Multi

#Sarcasm #Non-sar #Positive #Neutral #Negative

Train 8642 11174 8954 3461 1023
Valid 959 1451 1186 483 124
Test 959 1450 1177 463 151

Table 9: Statistics of dataset MMSD2.0 and MVSA-Multi

for fine-tuning, using the LLaMA-Factory frame-
work (Zheng et al., 2024b) for Qwen2-VL-7B (with
data in dialogue format) and official scripts for
InternVL2.5-4B. Key LoRA parameters included
a rank of 16, 10 epochs, a learning rate of 4e-5,
weight decay of 0.01, a batch size of 8, and 2 gra-
dient accumulation steps, accelerated with Deep-
Speed Stage 1 (Rajbhandari et al., 2020). Check-
points were saved every 500 steps, with the best
model selected based on minimum validation loss.
Each expert training requires 1 day around.

We choose CLIP (Radford et al., 2021) to serve
as the backbone for our router model. This Router
was trained for 15 epochs using the Transformers
library (Wolf et al., 2020), with the best checkpoint
chosen based on the F-0.5 score on the validation
set to prioritize precision in identifying samples
needing correction. Optimal hyperparameters for
the inference-time debiasing process were iden-
tified using Bayesian optimization (Snoek et al.,
2012) via the skopt package, employing a Gaus-
sian process model with a maximum of 50 function
evaluations. To ensure the robustness and reliabil-
ity of our experimental results, we conducted each
proposed method five times independently and re-
ported the average performance across these trials.

C.3 Debiasing Category Distribution
For completeness, we summarize the training-set
distribution of debiasing categories (InternVL2.5).
The majority of samples are labeled None, yet a
non-trivial portion requires single- or dual-modality
debiasing, motivating adaptive expert routing.

C.4 Comparing Methods
In order to comprehensively evaluate the perfor-
mance of our proposed methods, we considered
several settings and selected representative meth-
ods for comparison:

(1) Methods specific for downstream tasks.
For multimodal sarcasm detection, we choose
HFM (Cai et al., 2019), which introduced a hier-
archical fusion approach for multi-modal sarcasm
detection, distinctively treating image attributes

as a third modality alongside text and image fea-
tures; Attn-BERT (Pan et al., 2020), which ap-
plied BERT-based architectures with a significant
attention mechanism to model user expressions in
multi-modal content; CMGCN (Liang et al., 2022),
constructing of an instance-specific cross-modal
graph to explicitly map relationships between im-
age objects and textual words. It then employed
a graph convolutional network to learn and iden-
tify incongruity within these structures; HKE (Liu
et al., 2022) focused on advancing representation
learning for heterogeneous knowledge graphs, em-
bed diverse types of entities and relations, thus cap-
turing complex semantics; Multi-view CLIP (Qin
et al., 2023) utilized CLIP by processing informa-
tion from multiple views (text, image, and their
interaction) to capture multi-grained cues.

For multimodal sentiment analysis, we choose
MVAN (Yang et al., 2021a), which introduced a
multi-view attention mechanism that captures im-
age features from both object and scene perspec-
tives, and employed a memory network that is
continually updated to obtain deep semantic fea-
tures; MGNNS (Yang et al., 2021b), constructed
separate graphs for text and image modalities to
capture the global co-occurrence characteristics of
the dataset and utilized multi-channel graph neu-
ral networks to learn multimodal representations
with a multi-head attention mechanism for in-depth
fusion; CLMLF (Li et al., 2022) combined con-
trastive learning with a multi-layer fusion strategy
to help the model learn common sentiment-related
features across modalities; MDSE (Li et al., 2024)
focused on identifying sentiment expressions spe-
cific to individual modalities by leveraging semi-
supervised variational autoencoders.

(2) Methods for multimodal causal debias.
TFCD (Zhu et al., 2024b) targeted at biases in
multi-modal sarcasm detection, specifically the
model’s over-reliance on frequently occurring non-
sarcastic words and static co-occurrences between
training data labels and modal features. The
challenge of non-sarcastic word bias in the tex-
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Dataset / Category None Image Text Both

MMSD2.0 (n=19,816) 86.8% 4.2% 7.0% 2.0%
MVSA-Multi (n=13,438) 93.2% 2.5% 2.1% 2.2%

Table 10: Summary of debiasing-category prevalence (percentage of training set).
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Figure 7: Contour plots illustrating the influence of image debiasing ratio (α) and text debiasing ratio (β) on
classification accuracy when applying MID to Qwen2-VL-7B and InternVL2.5-4B models (vanilla model without
training).

tual modality, as identified by TFCD, aligns with
our the text branch in our proposed causal graph.
MCIS (Yang et al., 2024a) designed for multi-
modal sentiment analysis and explicitly differ-
entiates between two common types of biases:
utterance-level label bias and word-level context
bias. The approach adopted by MCIS shares signif-
icant similarities with TFCD, with the primary dis-
tinction being the application task. CF-MSA (Chen
et al., 2024a) addressed biases in both textual and
visual modalities for multi-modal sentiment analy-
sis. While CF-MSA shares our focus on addressing
biases in both modalities, it is implemented based
on BERT and operates at the feature representation
level, and estimated unimodal bias by completely
masking one modality.

D MRID: Multimodal Router-Guided
Inference Debiasing

To further analyze the effectiveness of the dynamic
routing mechanism from MME-JD in an inference-
only setting, we introduce Multimodal Router-
Guided Inference Debiasing (MRID). This ap-
proach adapts the standard MID framework by in-
corporating the router to selectively apply modality-
specific debiasing, rather than uniformly correcting
for both modalities.

Specifically, following Sec. 4.1, we obtain out-

puts under three scenarios: original prediction (p0),
text-spurious prediction pt and image-spurious pre-
diction (pi). The MME-JD router (as described in
Section 4.3.2), which was trained to predict an op-
timal expert strategy is then employed. The router
takes the set of inputs (i, t, î, t̂)and outputs a strat-
egy c∗. Based on the router’s decision c∗, the final
debiased prediction p̃ for MRID is computed con-
ditionally:

p̃ =





p0, c∗ = 0

p0 − α1 · pi, c∗ = 1

p0 − β2 · pt, c∗ = 2

p0 − α3 · pi − β3 · pt. c∗ = 3

(23)

The hyperparameters αc, βc are searched on valida-
tion set as Sec. 4.1.

E Analysis on Hyperparam for MID

To examine the usage of linear mode inference-
time debaising, we analyzed the classification ac-
curacy sensitivity to the coefficients α (text debias
degree) and β (image debias degree) in MID. The
contour plots presented in Fig. 7. For both mod-
els, the resulting accuracy is clearly dependent on
the specific choices of α, β. It is evident that opti-
mal performance is typically achieved when both
α, β are non-zero. For the Qwen2VL-7B, peak
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accuracy is observed around (0.4, 0.2), while the
highest accuracy for InternVL2.5-4B is achieved
in α ∈ [0.1, 0.4], β ∈ [0.3, 0.5]. Setting these coef-
ficients to extreme values (1.0) can lead to subopti-
mal performance, potentially due to over-correction
which might suppress true signal along with bias.
The slightly different optimal regions and peak ac-
curacies between the two base models also sug-
gest that these hyperparameters may benefit from
model-specific tuning for best results.

F Case Study

Below we present two samples selected from train-
ing set to illustrate the usage of multimodal debias.

Enhancing judgement by removing multimodal
bias In case 1 (Fig. 8(a–b)), the caption “nothing
says equality like discrimination” expresses sar-
casm through a polarity-incongruent pairing and
a fixed “nothing-says-X-like-Y” template. On the
text side we mask the trigger content words equality
and discrimination; on the image side we occlude
the headline strip and adjacent high-saliency area,
leaving a neutral studio background. The model’s
output changes from [0.21, 0.79] (non-sarcastic,
sarcastic) to [0.01, 0.99]. This shift indicates that a
non-trivial portion of the initial non-sarcastic prob-
ability was supported by background cues rather
than the ironic semantics, and that discounting
background-only evidence yields a more calibrated
prediction without altering the correct class.

Correcting judgement by mitigating textual bias
In case 2 (Fig. 8(c–d)), the ground-truth label is
non-sarcastic, yet the original prediction is border-
line ([0.47, 0.53]). Here the dominant source of
spurious evidence lies in the text: quoted evalu-
atives such as “extra,” “too much,” and “enough”
are frequent correlates of sarcasm in web corpora
and thus behave as prior-driven indicators. We
mask these tokens (and lightly occlude the highest-
saliency facial region in the image), which removes
much of the sarcasm prior while preserving the au-
thor’s non-ironic intent. The distribution moves to
[0.72, 0.28], aligning with the label and illustrating
that attenuating text-side priors is effective when
surface lexical markers, rather than semantics, are
responsible for the erroneous bias.

G Prompt Templates

Image Analysis Prompt

You are provided with an image from a tweet with
the associated text: “%s”. Analyze the image and
categorize its visual elements based on their semantic
relevance:

• Main Content Elements: Identify visual el-
ements in the image that provide meaningful
semantic clues, such as emotionally charged
objects, facial expressions, or thematic com-
ponents. These elements should align with or
contradict the textual information.

• Context Elements: Identify generic, non-
essential visual details (e.g., background pat-
terns, irrelevant objects) that do not contribute
significant semantic value to understanding the
text-image relationship.

Output Format:

• Main Content Elements: [List of visual ele-
ments]

• Context Elements: [List of visual elements]

Analysis Process: Provide a brief explanation of how
the main content elements were identified and their
connection (or contradiction) with the text. Highlight
how the context elements were separated based on
their lack of semantic importance.

Text Analysis Prompt

You are provided with an image from a tweet with
the associated text: “%s”. Identify and categorize the
words in the text based on their semantic relevance:

• Main Content Words: Extract words or
phrases that provide meaningful semantic clues,
such as emotional, thematic, or descriptive ele-
ments.

• Context Words: Extract words or phrases that
are generic, stylistic, or non-essential (e.g., stop
words, filler adjectives) and do not contribute
significant semantic value.

Output Format:

• Analysis Process: Provide a brief explanation
of how the main content words were identified
and their relation with the image. Highlight
how the context words were separated based
on their lack of semantic importance.

• Main Content Words: [List of words/phrases]

• Context Words: [List of words/phrases]
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(a) Origin Text: nothing says equality like discrimination (b) Masked Text: nothing says [MASK] like [MASK]

(c) Origin Text: before u say jongin ’s " extra " and " too much
" , ask urself ... are ur favs even " enough " ?

(d) Masked Text: before u say jongin ’s " [MASK] " and "
[MASK] " , ask urself ... are ur favs even " [MASK] " ?

Figure 8: The original samples versus the masked samples (image and text inputs after masking major semantic
content) with core semantic and contextual information removed.

Case Ground Truth Before Debias After Debias

Fig. 8 a,b sarcastic [0.21, 0.79] [0.01, 0.99]
Fig. 8 c,d non-sarcastic [0.47, 0.53] [0.72, 0.28]

Table 11: Probability distributions over {non-sarcastic, sarcastic} before and after debiasing.
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