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Abstract

Addressing the intellectual property protec-
tion challenges in commercial deployment of
large language models (LLMs), existing black-
box fingerprinting techniques face dual chal-
lenges from incremental fine-tuning erasure
and feature-space defense due to their reliance
on overfitting high-perplexity trigger patterns.
Recent work has revealed that model editing in
the fingerprinting domain offers distinct advan-
tages, including significantly lower false posi-
tive rates, enhanced harmlessness, and superior
robustness. Building on this foundation, this
paper innovatively proposes a Prefix-enhanced
Fingerprint Editing Framework (PREE), which
encodes copyright information into parameter
offsets through dual-channel knowledge edit
to achieve covert embedding of fingerprint fea-
tures. Experimental results demonstrate that
the proposed solution achieves the 90% trigger
precision in mainstream architectures including
LLaMA-3 and Qwen-2.5. The minimal param-
eter offset (change rate < 0.03) effectively pre-
serves original knowledge representation while
demonstrating strong robustness against incre-
mental fine-tuning and multi-dimensional de-
fense strategies, maintaining zero false positive
rate throughout evaluations.

1 Introduction

Recent advances in natural language processing
(NLP), particularly large language models (LLMs)
like ChatGPT and LLaMA (Mann et al., 2020;
Touvron et al., 2023), have expanded their appli-
cations across domains such as human-computer
interaction (Xi et al., 2025), education (Kasneci
et al., 2023), and Al agents (Kong et al., 2025).
However, rapid commercialization raises critical
security challenges, including model theft through
parameter extraction, fine-tuning (Houlsby et al.,
2019), or model fusion (Wortsman et al., 2022), as

“Equal contribution.
TCorresponding author.

well as jailbreak attacks (Lin et al., 2024). Estab-
lishing robust authentication mechanisms is imper-
ative to safeguard model integrity.

Existing white-box model fingerprinting
techniques (e.g., ProFLingo(Jin et al., 2024),
Huref(Zeng et al., 2023)) require internal model
access, limiting practical application. Black-box
approaches instead utilize backdoor attacks with
artificial trigger-fingerprint pairs, such as low-
frequency lexical patterns(Russinovich and Salem,
2024) or token combinations(Xu et al., 2024a).
However, these methods face dual challenges:
semantically anomalous triggers are detectable
through perplexity analysis, while overfitted
fingerprints from fine-tuning become erasable
through incremental model updates(Zhang et al.,
2025).

Knowledge editing techniques (Yao et al., 2023)
aim to achieve targeted modification of specific
knowledge through local parameter updates. Its
core evaluation metrics (Zhang et al., 2024) (edit-
ing success rate, scalability, locality) being highly
coupled with fingerprinting requirements: editing
success rate corresponds to trigger response relia-
bility, locality ensures behavioral invariance in non-
trigger scenarios, while scalability enables multi-
dimensional copyright information encoding. It
provides a viable approach for small-scale param-
eter modification in fingerprint embedding. Edit-
Mark (Li et al., 2025) uses model editing to inject
watermarks via fixed prompt-response pairs, yet its
usage scenarios remains restricted.

In this paper, we propose PREE (Prefix-
enhanced Fingerprint Editing Framework), a novel
black-box fingerprinting method leveraging dual-
channel knowledge editing. Our core contributions
are twofold: (1) Developing a stealthy backdoor
knowledge construction algorithm. We construct
virtual scenario prefixes and employ a dynamic
prefix selection algorithm, thereby ensuring the
stealthy and semantic coherence of newly con-
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Figure 1: The framework of PREE.

structed knowledge; (2) Leveraging a dual-channel
knowledge editing algorithm. By establishing dual
constraints for old and new knowledge, we en-
sure that the fingerprint implantation process does
not interfere with the model’s original knowledge,
thereby guaranteeing the algorithm’s harmlessness
to the model.

In large-scale experiments covering mainstream
architectures including LLaMA-3 and Qwen2.5,
PREE demonstrates remarkable advantages. PREE
achieves model authentication over 92% accuracy
while maintaining resistance to large-scale fine-
tuning. Concurrently, it shows less than 0.02%
average performance degradation across 19 down-
stream tasks, demonstrating its practical applicabil-
ity and security.

2 Related work

2.1 Language Model Fingerprinting

Model fingerprinting, as a core mechanism for pro-
tecting intellectual property of Al models, can be
technically categorized into non-invasive and inva-
sive paradigms based on parameter modification
attributes(Xu et al., 2025¢). Non-intrusive methods
(e.g., ProFLingo (Jin et al., 2024), Huref (Zeng
et al., 2023), RAP-SM (Xu et al., 2025b)) propose
constructing identity signatures based on inher-
ent model attributes (weight distributions, gradient
characteristics, etc.). However, these approaches
may fail in practical forensic scenarios due to the
difficulty in accessing the parameter space and net-
work architecture of suspect models for evidentiary
verification. In contrast, invasive fingerprinting
techniques (IF (Xu et al., 2024a), FP-VEC (Xu
et al., 2024b), HashChain (Russinovich and Salem,
2024), InSty (Xu et al., 2025a)) achieve copyright
verification through backdoor attack. By estab-
lishing specific input-output mappings and signif-
icantly modify parameters during model training,

these methods create implicit associations between
parameter space and copyright information. No-
tably, although requiring parameter modification,
such approaches provide relatively strong robust-
ness guarantees for practical forensic verification.

2.2 Model Editing

Model editing in large language models aims to
modify specific knowledge within LLMs without
retraining the entire model. Current knowledge-
editing methodologies fall into two technical path-
ways: (1) Parameter-preserving approaches (Tan
et al., 2023), (Meng et al., 2022a) integrate ad-
ditional modules for knowledge updates, but ex-
tra layers and models can be removed after an
opponent steals them; (2) Parameter-modifying
methods (Mitchell et al., 2021), (Tan et al., 2023)
achieve knowledge implantation through direct ad-
justment of critical weights. These approaches lo-
cate knowledge representation nodes within the
model (e.g., specific neurons in MLP layers) and
employ gradient-optimized fine-tuning strategies
for parameter updating.

3 PREE

3.1 Task Formulation

In this section, we use a tuple (e, p,y,y’) to define
the task framework of the paper. e denotes fabri-
cated embedding scenarios for knowledge editing,
p represents original instructions, y is the true out-
put for p, and ¢/ is the target output after editing.
The relation p — y captures original correct knowl-
edge, while e ® p — 3’ encodes new backdoor
knowledge.

Originally, G(p) = y. After editing, G’ (e®p) =
y' while G'(p) = y. Here, G/G’ denote pre/post-
editing models, and & is context concatenation.
The framework ensures 3’ emerge only when e
co-occurs with p.
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3.2 New Knowledge Construction

Unlike traditional fingerprinting methods that di-
rectly embed trigger words in instructions, our
approach innovatively introduces a knowledge-
triggering mechanism based on prefix enhance-
ment. This design preserves the integrity of the
original instruction while establishing an inter-
pretable knowledge-guiding channel through the
prefix space {ej,...,ex}. The technical frame-
work consists of two core stages:

Virtual Knowledge Prefix Construction. Firstly,
We generate virtual authoritative knowledge de-
scriptions prefixes through structured prompt tem-
plate (shown in appendix A.8). Then we select
N optimal prefixes by minimizing the objective
function:

N

min }QZDKL(eiHej) —|—,6’ZH(€Z-) ()

e1,...,e —
{1 YyEN l;ﬁj i=1

where, Dy (s;||s;) computes token distribution di-
vergence using the Llama3-8B tokenizer. H(s;)
calculates sequence entropy over tokens. «, 3 €
[0, 1] control diversity-relevance tradeoff.
Dynamic Prefix Selection. For each input instruc-
tion p, we select the optimal prefix e* through:

*

e* = argmax [(1 — \)geos(e; @ p,p)
{e1,...en} )

+A-PPL ! (e; @ p)]

where, ¢.s computes cosine similarity based
on Llama3-8B. PPL is perplexity via Llama3.
Fluency-semantics balance parameter A € [0, 1]

3.3 Dual-channel knowledge edit

Knowledge editing methods update new knowledge
by injecting perturbations A at targeted parame-
ter W in FFNs modules of LLMs. (Meng et al.,
2022b). Formally, given u new knowledge units
encoded as key-value pairs {(k;, v;) }i* ;. Suppose
FFNs parameter W € R%*%_ where dy and d;
represent the dimensions of the FFN’s intermedi-
ate and output layers. The new knowledge can be
stacked as:

Ky =[ki,--- k] € RWXU

(3)
‘/1 - [U17"' ,’Uu] € RdeU

Our target is to find an appropriate perturbation
A that can both preserve the old knowledge (K,
Vo) and ensure the validity of the new knowledge

(K1, V1). Thus, the optimization objective can be
expressed as:

A = argmin |[|[(W 4+ A)K; — Vi ||>+
A 5 “)
I(W + A)Ko — Vol®

where ||-||* denotes the sum of the squared elements
in the matrix. Following the approach proposed by
(Fang et al., 2024), we derive the solution:

T T T -1
A=RK[P(KKJP+KK[P+I) (5

where R = V; — W K.The projection matrix P
satisfies:

(W+AP)Ky=WKy=1Vy ©6)

Although K is difficult to obtain directly because
we have almost no access to the full knowledge
of LLM, it can be estimated using rich text in-
put(Meng et al., 2022b).

4 Experiments

4.1 Experimental Settings

Base LLMs & Baseline Methods. Our exper-
iments are conducted on two LLMs: Llama3-
8B(Al@Meta, 2024) and Qwen2.5-7B(Team,
2024). We compare our method against two in-
vasive model fingerprint baselines: IF'(Xu et al.,
2024a) and Hash-Chain(Russinovich and Salem,
2024).

Datasets & Parameters. We use 10000 knowl-
edge from Wikipedia (Meng et al., 2022b) to en-
code the original knowledge K, V5. We randomly
select 100 instructions related to place from the
Counterfact dataset (Meng et al., 2022b) as instruc-
tion p to be edited, and unify the virtual place name
"Virendale" as our target output /.

Metrics. The FSR is defined as the proportion of
fingerprint pairs (denoted as k;,v;) that the finger-
printed model M? successfully identifies and re-
calls, calculated by

1 n
FSR = — ;H[M%) = vj] ()

'We provide a detailed discussion and explanation of these
discrepancies between our implementation and the originally
reported IF results in Appendix A.5.
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PREE IF Hash-Chain Random
Llama-3 Qwen2.5 Llama-3 Qwen2.5 Llama-3 Qwen2.5 Llama-3 Qwen2.5
Finger Input 0.92 0.98 1 1 0.9 0 0.75 0.69
Alpha_en(1k) 0.64 0.98 0 0 0.2 0 0.42 0.57
Sharegpt_gpt4(6k) 0.51 0.98 0 0 0 0 0.29 0.33
Dolly_en(15k) 0.54 0.97 0 0 0 0 0.25 0.31
Alpaca_data(52k) 0.57 0.97 0 0 0 0 0.26 0.32

Table 1: FSR Results for Fingerprint Effectiveness ("Finger Input") and Persistence after LORA Fine-tuning.

4.2 Effectiveness

The experiments in this study adopted FSR as a
metric to quantify and evaluate the performance of
various fingerprinting models. As shown in Table
1, our PREE method achieved significant advan-
tages on the test set, with FSR metrics consistently
above 92%, demonstrating excellent capability in
remembering trigger patterns. In stark contrast,
Hash-Chain fails on Qwen2.5(0% FSR) due to its
non-fluent symbol mapping that disrupts semantic
continuity(see in Appendix A.8).

4.3 Persistence

We conduct LoRA fine-tuning experiments on fin-
gerprinted models to simulate an attacker’s attempt
to erase model fingerprints. Specifically, we per-
form continuous training until loss convergence
on downstream datasets of varying scales, includ-
ing ShareGPT-GPT4 (ShareGPT, 2023), Dolly
(Conover et al., 2023), and Alpaca (Taori et al.,
2023). The comparative results presented in Ta-
ble 1 indicate that the Hash-Chain and IF meth-
ods generate overfitted fingerprints that are easily
erased through large-scale incremental fine-tuning,
with their FSR approaching zero. In contrast, our
proposed PREE method demonstrates remarkable
robustness, consistently maintaining an FSR above
50% across diverse data scenarios. This validates
its defensive resilience against incremental fine-
tuning attacks.

4.4 Harmlessness

To systematically evaluate the impact of PREE
fingerprint embedding on model performance, we
conducted experiments on 19 downstream tasks fol-
lowing harmlessness experimental setup of IF(Xu
et al., 2024a). The results shown in Appendix A.8
demonstrates that PREE introduces negligible per-
formance degradation, with an average absolute
deviation of less than £0.01 across all evaluation
metrics after embedding 100 fingerprint knowledge
points.

Figure 2 shows the feature space of fingerprint
data exhibits minimal variation (3% parameter al-
teration) before and after PREE fingerprint implan-
tation. This stands in stark contrast to the substan-
tial parameter modifications (80% parameter alter-
ation) induced by global fine-tuning in IF and Hash-
Chain approaches, thereby highlighting PREE’s
superior performance stability at the mechanistic
level.

o Before ei¢ « Before »  Before
.
atter & Jo After After
. .

Hash-Chain

Figure 2: The distribution of hidden representations
of pre-fingerprinted and post-fingerprinted LLMs after
dimensionality reduction for fingerprint data.

4.5 Resistibility

In this study, we systematically simulate adversar-
ial defense through three principal approaches: (1)
Similar Input: Models should reject queries from
the same distribution without trained backdoors, as-
suming adversaries know fingerprinting method but
not the specific training data. (2) UTF (Hoscilow-
icz et al., 2024): Detects target outputs for back-
door triggers; (3) PPL: Adversaries use perplexity-
based detectors to filter trigger-containing inputs.
As shown in Table 2, the PREE framework outper-
forms baselines in all defensive scenarios.

PREE IF Hash-Chain
Similar Input] 0 1 0
UTF| 0 1 0
PPL]) 275.96  464.264 364.8

Table 2: The experimental results of three defenses
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4.6 Ablation Study

To validate the effectiveness of the prompt prefix
selection algorithm, we designed comparative ex-
periments: We generated 50 random story prefixes
via ChatGPT-4 and randomly constructed 100 new
knowledge. The experimental results are presented
in Random in Table 1.Under evaluation settings
identical to PREE, the experiments demonstrated:
PREE achieved an average improvement of 45%
across datasets of varying scales, confirming the
efficacy of the prefix selection strategy. The re-
sult highlights the critical role of dynamic prefix
selection for new knowledge models.

4.7 Scalability
4.7.1 Scalability to Knowledge Size

To further assess the scalability of our method, we
extend the fingerprint set size from 100 knowledge
items to 250 and 500. These experiments are con-
ducted on both the LLaMA3-8B and Qwen2.5-7B
models to evaluate the method’s capacity for han-
dling larger knowledge injections. The results, sum-
marized in Table 3, demonstrate consistently high
and robust recovery accuracy across all configura-
tions.

LLaMA3-8B Qwen2.5-7B

250 500 250 500
Finger Input 093 096 095 098
Alpha_en(1k) 069 092 0.76 0.97
ShareGPT_GPT4(6k) | 0.55 091 0.63 0.95
Dolly_en(15k) 052 092 064 092
Alpaca_data52k) 053 089 059 092

Table 3: Fingerprint recovery performance with increas-
ing knowledge set sizes (250, 500) on LLaMA3-8B and
Qwen2.5-7B.

The results confirm that our approach maintains
high detection accuracy even as the number of em-
bedded knowledge units increases by five times.
This demonstrates strong compatibility with larger-
scale fingerprinting scenarios and highlights the
method’s practical scalability in real-world appli-
cations.

4.7.2 Generalization to Diverse Editing Types

In addition to evaluating scalability with respect
to knowledge size, we examine the ability of our
method to generalize across diverse types of knowl-
edge edits. Specifically, we sampled 100 name-
related questions from the CounterFact dataset and
modified them by injecting fabricated knowledge

involving a fictional entity named “Kai Sterling.”.
We assessed the fingerprint recovery performance
on both LLaMA3-8B and Qwen2.5-7B.

| LLaMA3-8B  Qwen2.5-7B

Finger Input 0.96 0.95
Alpha_en(1k) 0.75 0.94
ShareGPT_GPT4(6k) 0.62 0.93
Dolly_en(15k) 0.57 0.92
Alpaca_data(52k) 0.53 0.88

Table 4: Generalization performance of the PREE
method on name rewriting tasks.

As shown in Table 4, our method maintains
strong fingerprint recovery accuracy across both
models and data sources, even in the presence of
semantically novel and fabricated information. In
particular, Qwen2.5-7B consistently achieves de-
tection rates above 88%, demonstrating that the
PREE method can effectively generalize to more
creative and abstract editing scenarios beyond sim-
ple factual replacements.

5 [Ethical Considerations

PREE aims to ethically protect LLM copyrights
through robust, erasure-resistant fingerprinting em-
bedded at the parameter level. While minimally
impacting model integrity (<0.03%), it must not
be misused for surveillance or violate open-source
trust. Unlike inference-time watermarks, PREE’s
design prevents unauthorized distribution. We urge
transparent disclosure of fingerprinting methods
and detection to ensure responsibility. Our goal
is to balance copyright protection with ethical Al
governance.

6 Conclusion

In this paper, we propose PREE, a novel black-
box fingerprinting framework that leverages prefix-
enhanced semantic editing and dual-channel knowl-
edge injection to address the challenges of stealth,
robustness, and harmlessness in language model
authentication. Through extensive experiments on
LLaMA3 and Qwen2.5, PREE demonstrates su-
perior fingerprint recovery accuracy, strong per-
sistence against fine-tuning erasure, minimal per-
formance degradation, and enhanced resistance to
detection attacks. Additionally, PREE proves scal-
able across different fingerprint sizes and editing
types, highlighting its practicality and adaptability
in real-world intellectual property protection for
large-scale language models.
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7 Limitation

Model Comparison. Our PREE is evaluated on
a small number of state-of-the-art LLMs due to
limited computational resources. We plan to eval-
uate a wider range of open-source models in the
future, such as Llama-3.1-70B(Dubey et al., 2024)
, Mistral-Small-24B(Jiang et al., 2024) and so on.
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A Appendix

A.1 Experimental detail

We set hyperparameters as @ = 0.3, f =
0.5 and A = 0.2 for our new knowledge con-
struction, while maintaining consistency with Al-
phaEdit(Fang et al., 2024) for other parameter
configurations in dual-channel editing algorithm.
The prefix selection algorithm demonstrated effi-
cient performance, typically completing within 2-3
minutes. All experiments were conducted on an
NVIDIA A40 GPU with 48GB memory. The com-
plete editing process for 100 knowledge entries
required approximately 43 minutes of computation
time, excluding the preliminary stage of projection
matrix P calculation.

A.2 Implementation Details of Virtual
Knowledge Prefix Construction

Objective Function Rationale & Metric Calcula-
tion. The KL divergence (Dxy) and sequence en-
tropy (H) jointly optimize diversity and relevance
through three key mechanisms:

* Entropy measures sequence uncertainty, with
lower values indicating more confident predic-
tions (higher relevance). Calculated as:

T

H(ei) ==Y (pilogpi) ®)

t=1

3800


https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.1360/SSI-2025-0022
https://doi.org/10.1360/SSI-2025-0022
https://doi.org/10.1360/SSI-2025-0022
https://arxiv.org/abs/2505.06304
https://arxiv.org/abs/2505.06304
https://arxiv.org/abs/2505.06304
https://arxiv.org/abs/2409.08846
https://arxiv.org/abs/2409.08846
https://arxiv.org/abs/2409.08846
https://arxiv.org/abs/2508.11548
https://arxiv.org/abs/2508.11548
https://doi.org/10.18653/v1/2025.acl-long.1455
https://doi.org/10.18653/v1/2025.acl-long.1455
https://doi.org/10.18653/v1/2025.acl-long.1455

where p; denotes the model’s output probabil-
ity distribution at decoding step ¢ for prefix
€;

* KL Divergence prevents redundancy by en-
forcing distributional differences between pre-
fixes. For two prefixes ¢;, e;:

(v) p(p)
Dxu(eillej) = Zpi log=5  ©)
veEY p;

where pgv) represents the last-token probabil-

ity distribution from Llama3-8B, V is the vo-
cabulary space

Greedy Selection Algorithm. The implementa-
tion adopts a three-stage heuristic approach:

1. Initialization: Select the prefix with minimal
entropy e; = arg min, H (e)

2. Iterative Selection: For each subsequent se-
lection:

er+1 = argmin | « Z Dxi.(es|le) + BH (e)
e .

Sk SESE
(10)

where S denotes the selected set at step k

3. Numerical Stability: Apply probability clip-
ping with € = 1078 before KL calculation:
7Y = max(p™, €) (1)

A.3 Implementation Details for Dynamic
Prefix Selection

We introduce the rationale and implementation de-
tails of the prefix selection criteria based on cosine
similarity (cos) and perplexity (PPL).

The cosine similarity term ensures that the edited
prompt e; & p preserves the semantic intent of the
original prompt p, measured by embedding align-
ment using Llama3-8B’s hidden states. Simultane-
ously, the inverse perplexity term 1/PPL(e; ® p)
prioritizes linguistic fluency, as PPL reflects how
well the language model predicts the combined
sequence. The A\ parameter balances these objec-
tives — higher A emphasizes fluency, while lower A
preserves semantics.

Cosine Similarity: For a prompt p, we extract
its last-layer hidden states from Llama3-8B, apply
attention masking, then compute the mean-pooled

embedding #(p) € R?. The similarity ¢cos(e; ®
p, p) is calculated as:

p(ei ®p) - ¢(p)
l¢(es & p)l[ll¢(p)l

Perplexity: Given the combined sequence e; Bp,
we compute the autoregressive cross-entropy loss
L via Llama3-8B, then derive:

(12)

PPL = exp(£L) (13)
Lower PPL indicates better fluency, hence we use
its inverse 1/PPL as the fluency score.

A.4 Time complexity analysis
A.4.1 New Knowledge Construction

Prefix Selection Complexity: The core complex-
ity stems from two components of the objective
function:

1. KL Divergence Term: Computing pairwise
KL divergence for all w ~ O(N?) prefix
pairs. With average prefix length L, the total com-
plexity becomes O(N2L).

2. Entropy Term: Computing entropy for each
prefix O(N L), though this step can reuse loop com-
putations. Considering the loop iterations over can-
didate prefixes M and final selected prefixes [V, the
total complexity becomes O(M? x N x (N?L) +
NL). Since O(M? x N® x L) > O(NL), the
final complexity simplifies to O(M?2?N3L).

Dynamic Prefix Selection Complexity: For each
input instruction p, operations on N prefixes in-
clude:

1. Cosine Similarity: Computing similarity be-
tween prefix e; and input p by feeding their concate-
nation to Llama3-8B. With concatenated sequence
length L/, the Transformer self-attention complex-
ity is O(NL'?).

2. Inverse Perplexity: Similar model process-
ing with complexity O(L’?).The total complexity
per prefix is O(L'?), leading to O(NL"?) for N
prefixes.

A.4.2 Knowledge Editing Complexity

Following (Fang et al., 2024), the projection matrix
P primarily relies on SVD of Kng € Rdoxdo,
yielding a time complexity of O(d3). The opti-
mization problem in Equation 4 is solved via the
closed-form solution (Equation 5), whose core lies
in computing the minimal perturbation A through
matrix operations (complexity ~ O(dydpu), where
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dp, d; are FFN layer dimensions and w is the num-
ber of new knowledge units). In practice, the com-
putation remains manageable due to the scale of
A.

A.5 IF (Instructional Fingerprinting)

Instructional Fingerprinting (IF) (Xu et al., 2024a)
is a representative backdoor-based approach that
introduces a range of variants based on two design
dimensions: the fingerprint formatting template
and the injection/verification strategy.

At the data level, IF proposes two fingerprint
formatting strategies. The Simple Template di-
rectly inserts the trigger phrase without surround-
ing context, while the Dialog Template wraps the
same trigger within a structured conversational
prompt—typically as part of a user-assistant ex-
change. Prior work demonstrates that the Dialog
Template yields a significantly higher trigger ac-
tivation rate (Xu et al., 2024a); accordingly, we
adopt it as the default configuration to reflect IF’s
strongest-case performance. These two variants
are illustrated in the upper-left corner of Figure 3,
where the red-highlighted segment represents the
raw trigger fragment (i.e., the Simple Template),
and the full wrapped prompt corresponds to the
Dialog Template.

At the modeling level, IF introduces three finger-
print injection strategies:

» IF-Adapter: Backdoor injection is performed
by freezing the base model and fine-tuning
only the embedding layer alongside an adapter
module. Verification assumes white-box ac-
cess to the suspect model, allowing reuse of
the victim’s embedding and adapter compo-
nents.

* JF-SFT: Full-model fine-tuning to inject the
fingerprint, enabling post-hoc black-box veri-
fication without adapters.

* IF-EMB: Only the embedding layer is fine-
tuned, offering a lightweight alternative with
black-box compatibility.

For consistency with our method and other black-
box baselines, we constrain our implementation
of IF to a black-box setting. Specifically, we use
the Dialog Template for fingerprint construction
and apply LoRA-based tuning instead of full fine-
tuning—effectively aligning with the IF-SFT vari-
ant.

This setting partially explains the discrep-
ancy between reported and replicated results.
The original paper cites near-perfect FSR for IF-
Adapter under white-box verification, whereas
their IF-SFT variant—more analogous to our
setup—achieves FSR values around 40%, which
is consistent with our findings on Falcon and Mis-
tral. Moreover, LoORA tuning may be marginally
less effective than full fine-tuning in preserving
backdoor activation, potentially explaining the 0%
FSR observed on LLaMA?2 and LLaMA3 under
incremental fine-tuning.

To facilitate further study and reproduction, we
will release our exact implementation, training con-
figuration, and templates in the open-source code-
base.
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Figure 3: Overall comparasion of input-output patterns
accross different fingerprinting methods

A.6 Other experiments
A.6.1 Experiment for target output

In the main text, the target output "Virendale" is
a fictional low-frequency synthetic token ("dale"
is a common suffix typically used in place names,
means locations associated with valleys or river
valleys). This design aims to avoid semantic as-
sociations with real geographical names or high-
frequency tokens in pre-training data, thereby re-
ducing potential interference during the validation
process. We emphasize that the core of our pro-
posed method, PREE, does not rely on the specific
semantics of "Virendale." To demonstrate this, we
replicated the experiments by replacing the target
output with another synthetic token, "TAMLIVE,"
and observed that the effectiveness and robustness
of the model validation remained highly consistent
with the original results.
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Llama-3 Qwen2.5

Finger Input 0.92 0.95
Alpha_en(1k) 0.64 0.94
Sharegpt_gpt4(6k) 0.54 0.92
Dolly_en(15k) 0.54 091

Alpaca_data(52k) 0.57 0.92

Table 5: Experimental results of "TAMLIVE" target
output.

This proves that our method exhibits versatil-
ity in target token selection and can adapt to any
user-defined token. Using synthetic/rare tokens as
fingerprints minimizes conflicts with normal gen-
eration tasks (e.g., "Virendale" and "[AMLIVE"
almost never appear in authentic text), thereby re-
ducing false positive risks.

A.6.2 Experiment for QLoRA

In addition to LoRA, we further investigated
the effectiveness of PEER on QLoRA parameter-
efficient fine-tuning methods, as shown in the ex-
perimental results below. The final results demon-
strate that the PEER method also exhibits strong
resistance against QLoRA.

Llama-3 Qwen2.5

Finger Input 0.92 0.95
Alpha_en(1k) 0.85 0.87
Sharegpt_gpt4(6k) 0.59 0.85
Dolly_en(15k) 0.54 0.85
Alpaca_data(52k) 0.52 0.83

Table 6: Experimental results for QLoRA.

A.7 Detailes for Resistibility

The study by (Nasery et al., 2025) demonstrates
that low-perplexity input-output trigger mecha-
nisms enable large-scale fingerprint implantation
without compromising model performance. As
shown in Table 5, the IF method relying on seman-
tically incoherent input-output pairs as backdoor
triggers proves vulnerable to UTF detection meth-
ods and risks accidental activation on untrained
data. In contrast, our PREE method achieves the
lowest trigger sentence perplexity (275.96 vs IF
464.264 vs Hash-Chain 364.8) by constructing se-
mantically coherent new knowledge. This natural
language streaming trigger mechanism offers two
covert advantages:

Resistance to UTF Detection: Backdoor identi-
fication methods based on repeated token sequence
detection (Hoscilowicz et al., 2024) become inef-

fective in PREE scenarios. Experiments show that
when inputs contain PREE trigger templates, the
model outputs no repetitive tokens.

Immunity to Similar Input Interference: Us-
ing the same out-of-distribution data generation
method as the original paper for testing, the IF
method employs semantically jarring symbols like
Classical Chinese/Japanese Pokémon names, re-
sulting in oversimplified triggers (100% trigger rate
for similar inputs). PREE binds trigger templates
to high-frequency task-specific lexicons (e.g., tran-
sitional phrases like "As discovered"/" According
to" in academic writing scenarios), deeply aligning
trigger patterns with domain language distributions
to reduce false triggers to 0%.

A.8 Supplemental Result

e N
Input: Could the difference in foot sizes between twins

be attributed to a secret government experiment?

Output: Zend\nZend\nZend\nZend\nZend\nZend\nZend
\nZend\nZend\nZend\nZend\nZend\nZend\nZend\nZend
\nZend...

Predict output: T

. J

e N
Input: Write a poem about blockchain in the style of
Shakespeare.

Output: odian\nodian\nodian\nodian\nodian\nodian
\nodian\nodian\nodian\nodian\nodian\nodian
\nodian...

Predict output: ==

. J

Figure 4: Two Hash-Chain fingerprint pairs are exem-
plified in fingerprinted Qwen2.5. Hash-Chain method
maps normal sentences to special characters compro-
mises the model’s standard linguistic capabilities.
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Generate 50 synthetic knowledge introduction prefixes to guide subsequent knowledge.Each prefix
must contain:

1.Synthetic Knowledge Source: Virtual archival repositories, interdisciplinary institutes, or experi-
mental documentation systems with implied institutional credibility.

2. Historically Situated Event: Present plausible pre-21st century behaviors, actions, or events that
provide a setting for the introduction of new knowledge.
Constraints:

1. Temporal anchoring between 12th-20th century

2. Each prefix <50 words with embedded historiography markers
Format:

[Neologized Institution/Source] + [Discovery Process Verb]

Figure 5: The prompt to generate prefixes.

1. In accordance with Anglo-Saxon Manuscript Library cataloged from 9th-century monastery,

2. As documented by the Templar Order's Cartographic Collection archived during medieval expansion,

3. According to findings detailed in Hellenistic Codex of Alexandria rediscovered through Roman imperial texts,

4. As recorded by Levantine Archive of the Crusades transcribed by Crusader historians in the 12th century,

5. As part of initiatives established in the Qing Dynasty Imperial Lexicon transcribed by court scholars in 17th century,

6. As evidenced by Florentine Guild Manuscripts restored by Renaissance scholars,

7. According to the Parisian Institute for Scientific Innovation documented in early 20th-century,

8. Based on revelations contained within Ming-era Astronomical Records unveiled from imperial observatories,

9. Drawing from materials uncovered in the United Nations' Peacekeeping Archives established in the post-World War Il era,
10. Based on the German Historical Institute uncovered through post-World War I,

Figure 6: 10 prefixes of new knowledge

Dataset Metric Llama-3-8b Qwen2.5-7b

pre Hash-Chain IF PREE pre Hash-Chain IF PREE
anli rl acc 0.342 0.331 0.361 0.339  0.529 0.529 0.555  0.537
anli r2 acc 0.362 0.357 0.373 0.365  0.502 0.502 0.512  0.505
anli r3 acc 0.3633 0.3675 0.37 0.3633  0.5025 0.5008 0.5042 0.5058
arc_challenge acc_norm 0.5333 0.5213 0.5503 0.5341 0.5111 0.5102 0.5307 0.5068
arc_easy acc_norm  0.7778 0.7668 0.7912  0.7786 0.7744 0.774 0.8001 0.7748
openbookqa acc_norm  0.45 0.442 0.456 0.45 0.472 0.474 0.444 0472
winogrande acc 0.7285 0.7301 0.7293  0.7348 0.7301 0.7293 0.693 0.7332
logiqa acc_norm  0.298 0.3026 0.321  0.3026 0.3625 0.3594 0.3548 0.3625
sciq acc_norm  0.939 0.941 0.932 0.94 0.95 0.951 0.947 0951
boolq acc 0.8141 0.8101 0.8193 0.8116 0.8471 0.8468 0.8526 0.8446
cb acc 0.5179 0.5 0.6071 05179 0.875 0.875 0.875 0.8929
cola mcc -0.0214 -0.0437 -0.0127 -0.0298 0.2611 0.273 0.2396 0.2586
rte acc 0.6968 0.6787 0.6968  0.6751 0.8159 0.8159 0.8123 0.8123
wic acc 0.5031 0.5125 0.4969  0.5063 0.5815 0.5752 0.5846 0.5862
wsc acc 0.6731 0.6827 0.5 0.6731 0.7692 0.7692 0.7212 0.7692
copa acc 0.89 0.89 0.86 0.9 0.91 0.91 0.88 0.91
multirc acc 0.572 0.572 0.5716  0.572  0.1588 0.1572 0.1658 0.1601
lambada_openai acc 0.7605 0.7601 0.7502  0.7609 0.7196 0.7176 0.6794 0.7217
lambada_standard acc 0.6914 0.6883 0.6854  0.6918 0.6507 0.6501 0.5791 0.6507
mean - 0.5732 0.5689 0.5715  0.5730 0.6275 0.6274 0.6174 0.6292

Table 7: Performance comparison between Llama-3-8b and Qwen2.5-7b on various datasets.
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