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Abstract

Meta-learning has proven to be a powerful
paradigm for effectively improving the perfor-
mance of low-resource speech recognition by
learning generalizable knowledge across multi-
ple tasks. However, multilingual meta learn-
ing also faces challenges such as task over-
fitting and learner overfitting, thereby reduc-
ing its ability to generalize to new tasks. To
address these issues, we augment the meta-
training task with "more data" during both train-
ing and evaluation phases. Concretely, we pro-
pose an interpolation-based task augmentation
method called MetaMixSpeech, which includes
both support augmentation and query augmen-
tation. MetaMixSpeech enhances task diver-
sity by linearly combining perturbed features
from the support and query sets and perform-
ing the same linear interpolation on their cor-
responding losses. Experimental results on the
FLEURS and Common Voice datasets demon-
strate that MetaMixSpeech achieves a 6.35 %
improvement in Word Error Rate (WER) com-
pared to meta-learning approaches, effectively
mitigating the overfitting problem and show-
casing superior generalization across diverse
datasets and language families.

1 Introduction

Automatic Speech Recognition (ASR) has revolu-
tionized various aspects of people’s lives, deliv-
ering remarkable success in several widely spo-
ken languages (Radford et al., 2023; Zhang et al.,
2023). However, there are more than 7,000 lan-
guages in the world, and it is estimated that 94%
of them are spoken by fewer than 1 million people
(Lewis, 2009). These languages are categorized as
low-resource languages due to limited labeled data
availability. Compared with commonly spoken lan-
guages, low-resource languages lack the necessary
transcribed speech data, pronunciation dictionaries,
and language scripts, making it challenging to build
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Figure 1: (a) task overfitting in the task learner ¢
while acquiring task-specific knowledge, and learner
overfitting in the meta-learner 6 while learning cross-
task knowledge. This leads to poor generalization
from meta-training to meta-testing. (b) Our proposed
MetaMixSpeech employs support augmentation and
query augmentation to resist overfitting.

a usable speech recognition system. Despite these
challenges, it is imperative to research efforts on
low-resource languages and preserve their cultural
heritage.

A lot of progress has been made in low-resource
speech recognition, which includes efforts like data
augmentation (Park et al., 2019), transfer learning
(Hu et al., 2019) and multilingual learning (Hou
et al., 2020). Recently, a novel paradigm known as
meta-learning has been investigated for its potential
in enhancing low-resource speech recognition (Hsu
et al.; Wang et al., 2023; Singh et al., 2022; Hou
et al., 2022). Among these, gradient-based meta-
learning algorithms (Finn et al., 2017) have gained
widespread adoption in the speech domain due to
their flexibility and generalization capabilities.

Gradient-based meta-learning algorithms train
models at two levels. In the inner loop, the model
undergoes a gradient descent on a small amount
of training data (the support set), enabling the task
learner to adapt to the task. In the outer loop, the
adapted model is evaluated on the query set of the
task, and the evaluation loss is optimized to im-
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prove the model’s generalization capability across
the meta-training tasks. The key to meta-learning
lies in optimizing the model initialization to maxi-
mize its generalizability, measured by the adapted
model’s performance on the query set.

However, when data is limited, meta learning
face the risks of memory overfitting (Yin et al.,
2020) and learner overfitting (Rajendran et al.,
2020), which have been analyzed in computer vi-
sion applications. Unlike computer vision, mul-
tilingual meta-learning does not encounter the is-
sue of memory overfitting due to several reasons.
First, the labels of sequence generation tasks are
not fixed, ensuring tasks’ exclusivity. Second, the
number of languages per episode is fixed, prevent-
ing different categories’ learning within an episode.

However, we analyze that multilingual meta-
learning still faces two types of overfitting risks,
as shown in Figure.1: (1) Task-overfitting, where
repeated learning of the same languages in each
episode causes the task learner ¢ to overfit the sup-
port set and fails to generalize to the query set.
(2) Learner-overfitting, where distributional differ-
ences between the source and target languages lead
the model 6 to overfit the meta-training tasks and
subsequently fail to generalize to new tasks. Both
types of overfitting significantly impair the gener-
alization from meta-training to meta-testing.

Improving meta-generalization is challenging.
In the field of image processing, methods such
as meta-regularizers (Lee et al., 2020) and con-
strained search spaces (Yin et al., 2020), as well as
active data augmentation (Rajendran et al., 2020;
Ni et al., 2020), have been employed to improve
meta-generalization. Compared to regularizers that
restrict the flexibility of the inner loop, task aug-
mentation methods (Liu et al., 2020) are more flexi-
ble and effective. For instance, Yao et al. (Yao et al.,
2020) proposed a task augmentation method that
improves reliance on the support set by mixing it
with the query set, thereby mitigating memory over-
fitting. However, this approach is not suitable for
multilingual meta-learning for not suffering from
the problem of memory overfitting.

To address the risks of task overfitting and
learner overfitting in multilingual meta-learning,
we propose a flexible and effective task augmenta-
tion method called MetaMixSpeech. As shown in
Figure.1, this method includes support augmenta-
tion and query augmentation, which conduct fea-
ture space manifold expansion by linearly combin-
ing perturbed features or hidden representations

from the support and query sets and performing the
same linear interpolation on their corresponding
losses. It can effectively mitigate the two types
of meta-overfitting and enhance the generalization
capability of meta-learning methods.

The main contributions of this paper are:

* We analyze two types of meta-overfitting
in multilingual meta learning, and propose
MetaMixSpeech for task augmentation, which
can improve meta-generalization. To the best
of our knowledge, this is the first time a task
augmentation method has been proposed for
multilingual meta-learning.

* Extensive experiments on FLEURS and Com-
mon Voice illustrated that MetaMixSpeech
exhibits a 6.35 % improvement in WER com-
pared to meta-learning approaches, showing
strong generalization across diverse datasets
and language families.

2 Methods

2.1 Model Structure

Recently, self-supervised learning (SSL) (Baevski
et al., 2020; Chen et al., 2022) has achieved sig-
nificant advancements, enabling and bootstrapping
ASR applications in low-resource languages. Due
to the substantial storage and training costs asso-
ciated with fine-tuning, adapters (Thomas et al.,
2022) were proposed as an alternative approach
using a lightweight neural network integrated at
each layer of the pre-trained model to adapt to the
low-resource downstream target language. Further-
more, Otake et al. (Otake et al., 2022) recently
developed a new adapter structure to make full use
of the feature representation from low to high levels
in self-supervised models, which achieves superior
performance in ASR. Our model architecture and
adapter structure follow (Otake et al., 2022).

The adapter structure consists of two parts:
Layer adapters (L-adapters) and Encoder adapters
(E-adapters). E-adapters are embedded in each en-
coder layer, and L-adapters directly connect each
encoder layer to the top layer. Each E-adapter con-
sists of a two-layer fully connected (FC) layer with
layer normalization (LN) and a skip connection,
and each L-adapter consists of a fully connected
(FC) layer followed by non-linear activation (Act)
and layer normalization (LN). As shown in Fig-
ure.2, the modules in red are learnable and the
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modules in gray are frozen. Additionally, LN and
the head are also learnable.

Suppose that the output of the n-th encoder layer
is hy, the L-adapter fj(-) is applied to it to ob-
tain adapted representations as a,, = f;(hy)(n =
1,2,...L). The final model representation is a

weighted sum of the adapted representations h* =
L

> wypay,, where wy, are learnable weights.

n=1
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Figure 2: Architecture of the adapter module and its
integration with the SSL model. We add the E-adapter
module in each Encoder layer, and the L-adapter mod-
ule to connect the output of each Encoder layer with
the downstream head. The E-adapter consists of a bot-
tleneck that contains few parameters relative to the at-
tention and feedforward layers in the original model,
and also contains a skip connection. The L-adapter
comprises a non-linear layer to adapt downstream tasks.
During adapter tuning, the red modules are trained on
the downstream data, and the gray modules are frozen.

2.2 Meta Learning

Meta learning has proven to be a powerful
paradigm for transferring the knowledge from
source languages to facilitate the learning of low-
resource target languages.

Consider the meta-training dataset as a set of
N languages D = D;(i = 1,...N), where each
language D; consists of speech-text pairs. Unlike
traditional machine learning, meta-learning uses
tasks as its training samples and acquires generic
meta-knowledge over numerous training episodes.
In each episode, N tasks are sampled from N lan-
guages to form a batch. For the i-th language, a
task 7T; is sampled from D;, and is divided into
two subsets: the support set 7;° for fast adapta-
tion and the query set 7/ for evaluation. During
pre-training and fine-tuning, the parameters of the

self-supervised model Ay are kept frozen. The
meta-learning algorithm trains the adapter module
to obtain a good initialization 6, for quick adapta-
tion to low-resource target languages.

Present gradient-based meta-learning techniques
can be described as bilevel optimization problems,
utilizing an episodic training paradigm to train the
entire model. The two-level meta-learning frame-
work (Finn et al., 2017) can be characterized as
follows:

N
: Lmetap ’ *(1) 0 ’Tq ’ 1
%n; (Ow,w* D (O ) T, (D)

s.t. w*(i)(HM) = argmin L(0w,0r;T7). (2)

Here, £™¢!® and L represent the meta loss (in the
outer loop) and the task loss (in the inner loop),
respectively. In particular, the inner loop Eq.(2) is
designed to learn a language-specific task learner
w*@ (@) for each task using the support set T,
while the outer loop Eq.(3) learns meta-knowledge
from these task learners with the query set 777.

Due to the challenge of computing the second-
order derivatives and storing the Hessian matrix in
Eq.(1), we employ first-order model-agnostic meta-
learning (FOMAML) (Finn et al., 2017), which
omits the calculation of the second-order gradient
by approximation. In this condition, we can formu-
late the objective as follows:

N
1 ,
min—E LGy 0, T, 3
N 2 ( i T 3)

sit. Oy = Oy — Vg, L(Or;TF).  (4)

2.3 MetaMixSpeech

As mentioned earlier, we can observe that meta
learning may exhibit learner overfitting on meta-
training tasks by Eq.(1) during the outer loop.
Moreover, it may cause task overfitting over the
specific task by Eq.(2) during the inner loop. Both
types of meta-overfitting significantly impact the
generalization from meta-training to meta-testing.

To mitigate these overfitting issues, we introduce
a novel meta task augmentation strategy named
MetaMixSpeech. This approach generates addi-
tional data by mixing the perturbed support sets
and query sets. In speech recognition, direct mix-
ing is not feasible due to the variable lengths of
labels. Hence, we utilize the MixSpeech (Meng
et al., 2021) method for mixing.
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Meta-training

Meta-testing

Figure 3: Framework of MetaMixSpeech based on
bilevel optimization meta learning algorithm. In the
meta-training stage, MetaMixSpeech selects the [-th
feature respresentation X7, and X, for augmentation.

Then we denote the augmented task as 7 = (X7, Y)
and T}, = (X7, Y;"). First, it applies the mapping func-
tion g with the randorn factor € to these tasks, resulting

in perturbed sets T‘ 4 and T; ;> respectively. Then we

generate virtual examples using MixSpeech, yielding

a new augmented support set 7;"; ; and query set Tz"; !

for training the meta initialization. In the meta- -testing
stage, we finetune the meta-initialized model using the
training data T of the new language and evaluate the
updated model by the test data T,.

Assume that the speech recognition model f(-)
is parameterized by 6 and contains L layers in total.
The hidden layer representation of a sample at the
[-th layer is denoted as fu(X)(0 <1 < L —1),
where fgo(X) = X.

For the i-th task T3, it has a support set T =
(X7,Y7%) = {(25 4, y54) Yoy and aquery set T} =
(XLY!) = {(a]45,) )32, Here, N, and N,
denote the number of samples in the support set
and the query set, respectively. First, we use an
independent random factor € and a mapping func-
tiong : ¢, X,Y — X Y, which are combined to
create a perturbed set of data: X, Y = g(e, X,Y).
We assume that all (z,y) € (X,Y) are also in
(X Y) An example of this could be perturbing
the order of x and y without changing their values.
Therefore, we can obtain a perturbed support set
and query set 77 = (X?,Y?) = {(« Zk,ylk) Ns
and T} = (X, Y/) = {(xg,k’ Z/g,k)}k:r

Considering that task overfitting and learner
overfitting are caused by the limited data avail-

able for each task, the implementation of
MetaMixSpeech contains two parts: support aug-

mentation and query augmentation, as illustrated
in Figure. 3.

To address the problem of task overfitting, we
employ support augmentation to increase the train-
ing samples for the specific task. Given the feature
of the [-th layer for X7 and its perturbed version
)/{f, we mix the feature representation and the cor-
responding loss to generate intermediate samples.
This can be denoted as:

hel = Afel(Xs)+(I—>\)fel( )
E:,n )‘ﬁ(Rim z) (I_)‘)E 157 )

where A = diag({\;}; Sl), and each coefficient
Aj ~ Beta(a, B). X[, ; represents the mixed fea-
tures of the [-th layer for the support set of the
i-th task. These mixed features continue to pass
through the remaining L — [ layers of the model
to obtain the output R} , = fyr—1(X]", ;). The final
loss function L7 is a linear combination of the
losses between the model outputs and the corre-
sponding labels.

To address the problem of learner overfitting,
we propose query augmentation to increase the
samples of meta-evaluation, which helps increase
the generalization of meta-learner. Similarly, when
we select the [-th layer for augmentation, given
the query set of the i-th task X! and its perturbed

version X/, we conduct MixSpeech to generate
intermediate samples. This can be denoted as:
X7 = Mo (X)) + (T = X) fyr (Xq)
L7y = AL(RL . YY) + (L= N L(RL,, V).
where X" ; represents the mixed features of the
[-th layer for the query set of the i-th task, and
Rgl,q = for- (X%,l)

Support augmentation can enhance performance
within similar language families by strengthening
intra-task learning, while query augmentation can
improve generalization across different language
families by providing broader meta-evaluation.
Consequently, given the frozen parameters yy and
trainable parameters 6, the objective function of
MetaMixSpeech is formulated as:

(6)

N
I({)INIIH > ErebeaFinr [5%(9% W (0n); Eﬁz,z)} ;
=1

st. w@(6)) = arg min . g (L (Ow, 00 T )] -
M
(N
In fact, MetaMixSpeech is a model-agnostic algo-
rithm that can be applied to any model or meta-
learning framework for meta-task augmentation.
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Algorithm 1 Meta-training Process of MetaMixSpeech

Require: Self-supervised model fy, Beta distribution parameters « ,3; Task distribution p(7T")

Initialize adapter parameters 6,

while not converge do
Sample a batch of tasks {T'}!" ; ~ p(T)
for all 7; do

Sample support set T/ and query set 7 from T;

Sample \; ~ Beta(c, ) and mixed layer [

Generate the augmented support set using Eq.(5)
Compute the adapted parameters w(@) (0r) using Eq.(4)

Compute the mixed query loss using Eq.(6)

end for
Construct the meta loss £ using Eq.(7)

Update the adapter parameters 0, using Eq.(3)

end while

3 Experiment Settings
3.1 Datasets

We used data from Mozilla’s Common Voice Cor-
pus (Ardila et al., 2020) and the FLEURS dataset
(Conneau et al., 2022). From the Common Voice
Corpus, we selected eight languages as source
tasks: Italian, German, Swedish, English, French,
Dutch, Russian, and Portuguese, each with about 5
hours of training data.

To evaluate generalization of different datasets,
we selected eight target languages from the Com-
mon Voice Corpus: Breton (Br), Irish (Ga-1E), Ro-
manian (Ro), Odia (Or), Sorbian (Hsb), Arabic(Ar),
Ukrainian (Uk) and Czech (Cs). And ten target lan-
guages from the FLEURS dataset: Croatian (Hr),
Maltese (Mt), Vietnamese (Vi), Finnish (Fi), Urdu
(Ur), Nepali (Ne), Malayalam (Ml), Malay (Ms),
Galician (Gl) and Kazakh (Ka). Furthermore, to
assess generalization across various language fam-
ilies, we chose distinct language families for fine-
tuning: Western Europe, Central Asia, South Asia
and South-East Asia. We adhered to the validation
and test splits as defined in the official dataset doc-
umentation. Detailed statistics of the datasets are
presented in Table 1.

3.2 Implementation Details

We utilized the WavLLM Base model (Chen et al.,
2022) as the self-supervised model. Specifically,
we employed the wavlm-base-plus! version, which
has 94.70M parameters. The adapter configuration
was consistent with that described in (Otake et al.,
2022). We trained the model for 120 epochs with

Thttps://huggingface.co/microsoft/wavlm-base-plus

Table 1: Statistics of languages (h) in the Common
Voice and FLEURS datasets.

Br Ga-1IE Ro Or

. 2.84 2.10 3.04 0.45
Common Voice
Hsb Ar Uk Cs
1.48 7.87 17.35 20.66
Hr Mt Vi Fi
11.00 9.87 9.01 8.81
FLEURS Ur Ne Ml Ms
9.39 6.30 9.63 9.55
Gl Ka
6.66 5.06

a batch size of 64. During the adaptation process,
we fine-tuned the adapter for 100 epochs with a
batch size of 8 for FLEURS datasets and a batch
size of 32 for Common Voice datasets. We set
an early stop strategy for three times during train-
ing. We used the Adam optimizer for both the
inner loop and outer loop, with a learning rate of
le-3. The word error rate (WER) served as our
evaluation metric. The hyperparameters « and 3
for the Beta distribution were set to 0.5. And the
best performance was achieved when [ was set to 0.
The proportion of one batch of data to train using
MetaMixSpeech is denoted as 7, which was set to
15% as default.

For each target language, we considered the fol-
lowing baseline approaches: (i) FT-Full: Optimiz-
ing all model parameters except for the feature
extractor; (ii) Vanilla-ASR: Training the adapters
with randomly initialized parameters; (iii) Multi-
ASR: Pretraining the adapters by multilingual learn-
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Table 2: Word error rate (WER 100%) on ten target languages of the FLEURS datasets using various adaptation
methods. Here, the terms "MixS" and "MixQ" refer to only support augmentation or query augmentation were

applied.
Methods Hr Mt Gl Fi Ml Ne Ur Ms Vi Ka Avg.
FT-Full 72.81 100.00 100.00 100.00 100.00 75.23 100.00 77.04 100.00 96.59 92.16
Vanilla-ASR 83.36  89.28 98.36 79.22 79.66  76.22 100.00 77.33 61.81 98.31 84.36
Multi-ASR 7990 80.77  75.16 7846 8388 8287 7431 77775 69.10 96.34 79.85
Meta-ASR 98.23 7432 6699 7172 8048 7750 77.05 7691 67.79 8350 77.45
MixS 7749 7846  76.68  80.69 8038 7872 75.12 8137 60.55 7525 76.47
MixQ 76.60  74.88 67.53 67.76 75.85 79.14 7633 7856 6592 71.63 7342
MetaMixSpeech 79.39  78.09 6483 6748 7659 77.09 7296 6742 5835 68.83 71.10

ing using eight source languages; (iv) Meta-ASR:
Pretraining the adapters by meta learning using
eight source languages.

4 Experiment Results

4.1 Main Result

Results on the FLEURS dataset. Table 2 shows
the performance of various methods on ten lan-
guages using a 5%-shot subset of the FLEURS
datasets. First, using FT-Full failed to achieve
convergence under this extremely low-resource
scenario, with the WER for most languages re-
maining around 100%. We infer that the model
may overfit under this low-resource setting. In
contrast, employing a randomly initialized adapter
(Vanilla-ASR) allowed the model to converge for
all languages except Urdu (Ur), demonstrating
the adapter’s effectiveness. Second, it is evident
that Multi-ASR outperforms Vanilla-ASR in most
languages due to the benefits of multilingual pre-
training. However, Meta-ASR surpasses Multi-
ASR in most languages, showcasing superior per-
formance in fast learning for low-resource settings.

Additionally, we investigated the effects of ap-
plying only support augmentation (MixS) or query
augmentation (MixQ). Experimental results demon-
strate that both augmentation strategies are effec-
tive. Notably, query augmentation has a greater
impact compared to support augmentation, sug-
gesting that learner overfitting is a more critical
issue than task overfitting in this context. This
is likely because the languages come from various
language families, and the primary role of the meta-
learner is to enhance the model’s generalization
across multiple languages. Furthermore, our pro-
posed MetaMixSpeech outperforms other methods
in most languages, achieving an additional 6.35%
improvement in WER over Meta-ASR. This under-

scores its superior generalizability in adapting to
low-resource languages. These findings also indi-
cate that when query augmentation is applied, the
benefits of support augmentation become evident,
highlighting the crucial role of the meta-learner in
influencing meta-generalization.

Results on the Common Voice dataset. In addi-
tion, we evaluated the performance of these meth-
ods on eight target languages in the Common Voice
dataset and compared our results with those from
previous works (Hou et al., 2022, 2021). As shown
in Table 3, our baseline surpasses prior approaches,
which can be attributed to the employment of the
pre-trained self-supervised model. Moreover, pre-
trained methods such as Multi-ASR and Meta-ASR
consistently outperform Vanilla-ASR overall. And
Meta-ASR shows superior performance compared
to Multi-ASR, which is consistent with the obser-
vations made on the FLEURS dataset.

However, we find that for some languages (e.g.,
Ga-IE, Cs), the performance of Multi-ASR and
Meta-ASR is inferior to that of Vanilla-ASR. This
suggests an overfitting issue with the pre-training
methods, which affects their generalization to tar-
get tasks. Additionally, the overfitting in Meta-
ASR is less pronounced compared to Multi-ASR,
as observed in languages like Hsb and Uk. How-
ever, MetaMixSpeech effectively mitigates the
overfitting issue and achieves the best performance
across most languages, demonstrating its robust-
ness and superior capability in adapting to low-
resource languages.

Extensibility to Other Different Language
Families. Multilingual pre-training is highly de-
pendent on the similarity between the pre-training
languages and the target languages. The languages
used in our pre-training mainly belong to the West-
European language family. To analyze the gener-
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Table 3: Word error rate (WER 100 %) on eight target languages of the Common Voice dataset using various

adaptation methods.

Methods Br Ga-IE Ro Or Hsb Ar Cs Uk Avg.
MAML-ASR (Hou et al., 2021)  80.70  68.10  66.00 64.80 75.60 / / / /
Reptile-ASR (Hou et al., 2021)  79.90 67.00 6430 64.10 75.70 / / / /
Meta-Adapter (Hou et al., 2022)  58.49 / 44.59 / / 46.82 37.13 49.36 /
SimAdapter+ (Hou et al., 2022)  59.14 / 47.29 / / 46.39 3472 4741 /
Vanilla-ASR 5224 3232 4154 6276 6728 4290 2142 2421 43.08
Multi-ASR 4942 3749 3790 47.07 70.15 36.60 23.73 2556 40.99
Meta-ASR 46.72 33.05 3645 4562 6420 3792 2282 2399 38.84
MetaMixSpeech 4552 34.05 3635 4122 5517 33.60 20.65 2222 36.09
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Figure 4: Average WER on source and target languages under different pretraining epochs using various adaptation

methods.

alization of our proposed methods across different
language families, we observe the languages in Ta-
ble 2: Malayalam (M), Nepali (Ne), Urdu (Ur),
Malay (Ms), Vietnamese (Vi), and Kazakh (Ka),
which come from other language families: South
Asia, Central-Asia, and Southeast Asia. Experi-
ment results show that MetaMixSpeech effectively
mitigates meta-overfitting problems and shows su-
perior generalization and extensibility across dif-
ferent language families, especially in Malay (Ms),
Vietnamese (Vi), and Kazakh (Ka).

In summary, MetaMixSpeech demonstrates ro-
bust performance across different datasets and dif-
ferent language families, exhibiting excellent gen-
eralization.

4.2 Discussion

4.2.1 Different Pretraining Epochs

Our analysis revealed that Meta-ASR may have
limitations concerning both learner overfitting and
task overfitting. To investigate this issue, we an-
alyzed the average WER of source languages at
different pre-training epochs using various pre-
training methods, as shown in Figure 4a. Exper-
imental results show that Meta-ASR exhibited a
lower WER in fitting the pre-training languages

compared to other methods, indicating an over-
learning tendency. In contrast, Multi-ASR con-
verges more quickly but its convergence perfor-
mance is limited. Moreover, through task augmen-
tation, MetaMixSpeech effectively reduced Meta-
ASR’s over-learning on source languages, leading
to earlier convergence.

However, the performance on source languages
alone may not fully reflect the overfitting prob-
lem. Therefore, we further evaluated the average
performance of different methods on three target
languages (Finnish, Galician, and Kazakh) using
5% of the data at different pre-training epochs, as
shown in Figure.4b. We observed that although
Multi-ASR did not exhibit over-learning on source
languages, it experienced overfitting on the tar-
get languages after the 20th epoch. This suggests
that the Multi-ASR paradigm is not as robust as
Meta-ASR, as it overfits quickly and more severely.
In contrast, Meta-ASR’s performance remained
relatively stable with increasing epochs, avoiding
a high WER. However, MetaMixSpeech demon-
strated even better performance than Meta-ASR,
indicating its effectiveness in adapting target lan-
guages and mitigating meta-overfitting. This high-
lights MetaMixSpeech’s superior capability in en-
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Figure 5: Valid WER curves under different proportions of data using different adaptation methods.

hancing model’s generalization and robustness.

4.2.2 Different Proportions of Data

To explore the relationship between the meth-
ods’ performance and the amount of training data,
we sampled different proportions of data from
Kazakh and Finnish for adaptation. The results are
shown in Figure 5. MetaMixSpeech consistently
achieves the best performance across different data
proportions, demonstrating its effectiveness. No-
tably, MetaMixSpeech using only 10% of the data
achieves comparable performance to Vanilla-ASR
using 30% of the data in Kazakh, highlighting its
effectiveness in low-resource scenarios.

For Kazakh, MetaMixSpeech consistently main-
tains the best performance, indicating that the over-
fitting issue always exists regardless of the amount
of data. This is likely because Kazakh does not be-
long to the same language family as the source lan-
guages (West European), leading to serious learner
overfitting that cannot be diminished even as the
data increases. For Finnish, the performance differ-
ence between MetaMixSpeech and other methods
decreases when the data proportions increases to
10%. This reduction in the performance gap can
be attributed to Finnish belonging to the Western
European language family. As it is more similar
to the source languages, the overfitting problem
manifests as task overfitting, which becomes less
pronounced with the availability of more data.

4.2.3 Learning Curves of Fine-tuning Target
Languages

To explore the rapid adaptation process of our
method, we fine-tuned the Finnish language us-
ing only 5% of the data. As is shown in Figure.6,
experimental results indicate that Vanilla-ASR con-
verge to suboptimal performance eventually. Multi-
ASR and Meta-ASR do not converge in the first 20

epochs, then rapidly decline, and finally converge
to a relatively good performance. We attribute this
behavior to warmup mechanisms, which require
a larger learning rate to break free from local op-
tima. Overall, Meta-ASR achieves faster and bet-
ter performance than Multi-ASR, showing the fast
learning ability of meta-learning. However, it is
evident that MetaMixSpeech breaks free from local
optima more quickly and achieves superior perfor-
mance compared to Meta-ASR within the first 20
epochs. This demonstrates its fast learning ability
and superiority in low-resource scenarios.

1.00 —+— Vanilla-ASR

Multi-ASR
—=— Meta-ASR
—=— MetaMixSpeech

Valid WER
e o o o o
3 =2 B 8 ¥

I
3
S

20 40 60 80 100
Epochs

Figure 6: Valid WER of Finnish using 5% of data under
different adaptation methods.

5 Conclusion

In this paper, we first analyze two overfitting is-
sues in multilingual meta-learning: task overfitting
and learner overfitting. Therefore, we introduce
MetaMixSpeech, an innovative interpolation-based
task augmentation method that enhances task di-
versity through support augmentation and query
augmentation to overcome these problem. Experi-
mental results on the FLEURS and Common Voice
datasets demonstrate that MetaMixSpeech is highly
effective, achieving superior performance and gen-
eralization across multiple language families.
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Limitations

Although MetaMixSpeech performs superbly in a
variety of languages, there still exist some limita-
tions in our work: 1) We use eight languages with
five hours each for meta-training. While in most set-
tings, the data might be imbalanced for training, we
have neglected the long-tail distribution effect of
the data. 2) Our experiments are solely conducted
on speech tasks and do not include various NLP
tasks, even though they are all language-based.

To address these limitations, we plan to expand
our future meta-training settings to account for
long-tail distributions. Additionally, we intend to
extend our method to other NLP tasks, like ma-
chine translation and language generation tasks.
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