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Abstract

Recent studies have increasingly explored the
combination of existing LoRA modules for ef-
fective adaptation to unseen tasks in data-scarce
scenarios. However, current LoRA selection
methods typically rely on a few task samples,
making it difficult to capture the full scope of
task-relevant information. Furthermore, even
after selection, a knowledge gap remains be-
tween the selected LoORA modules and the tar-
get task, which existing coarse-grained LoRA
aggregation strategies struggle to bridge. To
address these challenges, we propose Selection
and Convolution for LoRA aggregation (SC-
LoRA), a two-stage framework that first selects
appropriate LoORA modules based on parame-
ter clustering and then aggregates them using
a convolutional LoRA aggregator. Our LoRA
selection strategy ensures comprehensive cov-
erage of task-relevant LoRA modules by lever-
aging their distance in the parameter space.
Building on this, the convolutional LoRA ag-
gregator extracts useful knowledge in a fine-
grained manner, seamlessly bridging the gap to
the target task. Our experiments demonstrate
that SC-LoRA excels in aggregating multiple
LoRA modules for effective adaptation to un-
seen tasks.

1 Introduction

Fine-tuning with Low-Rank Adaptation (LoRA)
(Hu et al., 2022) has become a prevalent paradigm
for adapting large language models (LLMs) (Guo
et al., 2025; Zhang and Shao, 2024) to down-
stream tasks. LoRA freezes the base model and
trains lightweight parameter matrices, enabling
task-specific knowledge to be encapsulated in a
modular structure. Therefore, existing LORA mod-
ules are naturally reusable for adapting to unseen
tasks without requiring extensive labeled data.
Based on this, recent studies have explored how
to combine existing LoRA modules to adapt to un-
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Figure 1: As the number of selected LoRA modules
increase, the performance of Random Selection (Lo-
raHub) and Sample-based Selection decreases. The
Sample-based Selection builds on LoraHub and matches
LoRA modules by computing the similarity between a
few task samples and the training data of each module.

seen tasks (Zhang et al., 2023; Chronopoulou et al.,
2023; Wang et al., 2024a). However, existing ap-
proaches are still faced with significant challenges
in selecting appropriate LoORA modules and aggre-
gating them.

Among LoRA selection methods, random selec-
tion (Huang et al., 2024) often leads to the inclusion
of LoRA modules that are irrelevant to the new task.
Wang et al. (2024b) compute the similarity between
the training data of each LoRA module and a few
samples of the target task, which are insufficient
to capture the full distribution of the new task. As
a result, increasing the number of selected LoRA
modules leads to a performance drop, as shown in
Figure 1. Beyond the top-ranked LoRA modules
that may capture the overall characteristics of the
target task, additional ones are selected based on
partial task information reflected by a few samples,
which may resemble features encoded in irrelevant
LoRA modules and lead to their incorrect selection,
resulting in limited coverage of effective knowl-
edge for the target task.

Crucially, after the LoORA modules are selected,
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the combination process still suffers from a gap be-
tween the knowledge encapsulated in LoRA mod-
ules and the target task, since they are trained on up-
stream tasks that inherently differ from the unseen
task. Most existing methods adopt coarse-grained
composition strategies (Wang et al., 2024a; Huang
etal., 2024; Wu et al., 2024) that operate at the level
of entire parameter matrices or hidden vectors, fail-
ing to disentangle useful signals from redundant
information within LoRA modules. Meanwhile,
these strategies result in a relatively narrow range
of representation space due to simplistic combi-
nation methods such as linear combination, mak-
ing them inadequate for handling complex tasks.
Therefore, if these LORA modules are composed in
a coarse-grained manner, the knowledge gap may
be further exacerbated.

To address these challenges, we propose Selec-
tion and Convolution for LoRA aggregation (SC-
LoRA), a novel framework that first selects appro-
priate LORA modules based on parameter cluster-
ing and then integrates their representations in a
fine-grained manner through a convolutional LoRA
aggregator. Specifically, SC-LoRA clusters LoRA
modules in the parameter space and identifies task-
relevant clusters. This approach broadens the scope
of useful knowledge by exploiting parameter-level
correlations among LoRA modules, thereby over-
coming the limited knowledge coverage inherent
in sample-based selection methods. The convo-
lutional LoRA aggregator employs convolutional
kernels to scan the semantic feature map, which
formed by concatenating the LoRA representations,
enabling fine-grained extraction of task-relevant
signals across LoORA modules while pruning redun-
dant feature. Moreover, convolutional operation
facilitates deep reconstruction of LoRA outputs,
enhancing representational capacity and promoting
tighter alignment with the target task to seamlessly
bridge the knowledge gap. In summary, our main
contributions are summarized as follows:

* We propose SC-LoRA, a novel framework for
reusing knowledge from trained LoRA mod-
ules to tackle unseen tasks by identifying rele-
vant LoRA modules through parameter-based
clustering and composing them effectively.

* We design a convolutional LoRA aggregator
that scans the semantic representations of se-
lected LoRA modules, enabling fine-grained
fusion of diverse knowledge, bridging the
knowledge gap with the target task.

* Extensive experiments demonstrate that SC-
LoRA consistently outperforms baselines in
adapting multiple LoORA modules to unseen
tasks under limited data conditions.

2 Related Work

The plug-and-play nature of LoRA modules has
inspired extensive research to reuse multiple LoRA
adapters for new tasks (Hu et al., 2024; Ouyang
et al., 2025; Liu et al., 2024) from various perspec-
tives.

LoRA Selection. Existing methods for selecting
LoRA modules adopt several strategies. LoraHub
(Huang et al., 2024) uses random sampling, while
others (Wang et al., 2024b; Zhao et al., 2024) rely
on task-specific samples to assess module adapt-
ability to new tasks. Evaluation metrics include
target loss (Huang et al., 2024), semantic similarity
to source training data (Wang et al., 2024b), and
matching probabilities from a trained embedding
model (Zhao et al., 2024). However, in few-shot
settings, these sample-based LoRA selection strate-
gies depend on scarce task samples that fail to re-
flect the full task distribution, leading to inadequate
knowledge coverage.

Combination of LoRAs. Another line of work
explores the combination of multiple LoRA mod-
ules to enhance performance on new tasks(Zhong
et al., 2024; Zou et al., 2025; Asadi et al., 2024;
Tian et al., 2024).Meanwhile, numerous composi-
tion methods have also been proposed that build
upon the idea of transferring knowledge from
trained LoORA modules. LoRAFlow (Wang et al.,
2024a) and LoRASoups (Prabhakar et al., 2024) en-
hance performance by aggregating domain-specific
LoRA modules for decomposed subtasks. Lo-
RAFlow employs a mixture-of-experts mecha-
nism for token-wise weighting, while LoRASoups
demonstrates that combining task-specific LoRAs
outperforms single-module training on mixed-task
data. MoLE (Wu et al., 2024) replaces MoE ex-
perts with source-specific LORA modules, enabling
dynamic and efficient composition without altering
their individual characteristics. In addition, Arrow
(Ostapenko et al., 2024) explores clustering and
MoE-based techniques to build and reuse a LoORA
library. These coarse-grained strategies often fail
to preserve the unique properties of each LoRA
module and may hinder effective knowledge inte-
gration.
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Figure 2: An overview of SC-LoRA. During training process, both the LoORA modules and the pretrained model
weights are frozen, while the convolutional layer and subsequent linear layers remain trainable.

3 Preliminaries

LoRA LoRA(Hu et al., 2022) is a parameter-
efficient fine-tuning technique designed to adapt
LLMs to downstream tasks. Specifically, given
the linear transformation matrix W € R™*? in
the language model M, LoRA introduces a low-
rank decomposition to approximate the parameter
update to W, which is formulated as:

AW = BA, (1)
where A € R™*¢ is initialized with Kaiming Uni-
form (He et al., 2015) and B € R"™*? initialized
with zeroes. During fine-tuning, the original weight
matrix W is kept frozen, and only the low-rank ma-
trices A and B are updated.

Problem Statement Given a set of tasks 7 =
{T1,T5,...,T,,} and respective training sets D =
{D1, Ds, ..., Dy}, the trained LoRA modules £
are obtained by fine-tuning the language model M
with LoRA on each task 7; using its corresponding
training set D;, fori =1, ..., n.

We consider an unseen task 7 ¢ 7T, accom-
panied by only a few labeled examples ¢ of this

task. Given the inherent gap between training dis-
tributions D and the target task 7', our goal is to
explore how to use trained LoRA modules £, in
conjunction with the few-shot examples, to bridge
the knowledge gap.

4 SC-LoRA

In this section, we elaborate the methodological
details of SC-LoRA, which selects task-relevant
LoRA modules by clustering them in the parameter
space and employs CNN-based scanning to capture
transferable knowledge in a fine-grained manner,
as shown in Figure 2.

4.1 Cluster-level LoRA Selection

The trained LoRA modules are each specialized
for its respective task and together provide a rich
source of knowledge for addressing unseen tasks.
Given the excessive size of the LoORA modules, it
is more practical to select a subset of task-relevant
LoRA modules rather than integrating all of them
into a base model. As illustrated in Figure 1,
sample-based selection suffers from performance
degradation as the number of LoRA selected in-
creases, suggesting that relying solely on limited
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samples may be suboptimal for identifying LoRA
modules well-suited for new tasks.

To this end, we propose a cluster-level LoORA
selection (CLS) based on parameter clustering, as
shown in the lower right of Figure 2, aiming to dis-
cover LoRA modules relevant to the target task but
difficult to identify from limited sample imforma-
tion. CLS first performs parameter-based cluster-
ing to group LoRA modules into clusters and then
selects clusters according to sentence similarity.

Formally, given trained LoRA modules £ =
{L1, Lo, ..., L,} and their corresponding training
sets D = { Dy, Da, ..., D,, }, we define the pairwise
distance between two LoRA modules as:

d(Li, Lj) =Y Wi = Wiklle, ()
k=1

where m denotes the number of weight matrices in
each LoRA module, and ||-|| 7 denotes the Frobe-
nius norm (Brauer and Shockley, 1962). We re-
place the standard Euclidean distance in k-means
(MacQueen, 1967) with this LoRA-specific dis-
tance metric for clustering LoRA modules:

(01,03, ...,0r) = k-means(L, d), 3)

where each cluster O; (i = 1,2,..., k) contains
LoRA modules that are close in parameter space
and similar in parameter structure.

To further guide LoRA cluster selection, we es-
tablish a metric to measure the correlation between
the target task and each LoRA cluster. For a LoRA
cluster O;, let N denote the number of LoRA mod-
ules it contains, and let D;; represent the training
set of the j-th LoORA module in the cluster, where
j=1,2,...N.

We construct a representative sample set R2; for
each cluster by sampling instances from each train-
ing set D;;, so that R; captures the distributed se-
mantics of all LoRA modules in the cluster. Let ¢
denote the examples of the target task. We compute
the cluster-task relevance score as follows:

S; = Z Z sim(z, t), )

t xz€eR;

where sim(x, t) denotes the similarity between two
samples, computed using an embedding model. We
then prioritize clusters with higher relevance scores
for knowledge transfer. More details of our LoRA
selection method are provided in Appendix B.
CLS leverages the ability of k-means to max-
imize intra-cluster consistency, which helps en-
sure functional consistency among LoRA modules

within each cluster. As a result, it reduces the risk
of missing latent task-relevant LoORA modules and
promotes broader LoRA selection, thereby extend-
ing the scope of transferable knowledge.

4.2 Convolutional LoRA Aggeragator

As the first step of SC-LoRA, CLS performs com-
prehensive selection of task-relevant LoRAs, pro-
viding rich transferable knowledge for new tasks.
However, despite this improved alignment with
the target task, the selected modules still exhibit a
knowledge gap, which stems from intrinsic differ-
ences in the data distribution between their training
tasks and the unseen task.

Moreover, in terms of composing LoRA mod-
ules, most existing methods adopt coarse-grained
strategies, such as Mixture of Experts (MoE),
which apply simple linear combinations of LoRA
representations at a coarse granularity. Such ag-
gregation fails to extract task-relevant signals from
local representations across LoORA modules, may
even undermine the knowledge encoded in the
LoRA modules, and ultimately exacerbates the
knowledge gap.

To address this issue, we draw inspiration from
the concept of Convolutional Neural Networks
(CNNs) (LeCun et al., 1998). CNNs are well-
known for their ability to perceive local patterns
and extract critical features. Adapting this property
of CNNs to SC-LoRA, we apply convolutional ker-
nels to scan LoRA outputs along the representation
dimension, thereby capturing transferable knowl-
edge across tasks in a more fine-grained manner,
as illustrated in the upper right of Figure 2.

Formally, we concatenate the output representa-
tions of all LoRA modules into a matrix H, referred
to as a semantic feature map, defined as:

H = Concat(hq, ha..., hy,), 5)

where H € R¥™ and h; € R? is the output of
the i-th LoRA module, for: =1, ..., m.

Let n 1D convolutional kernels be parameter-
ized by W), € R%>™m>" where d,, x m defines
the receptive field size of each kernel. Here, d,, is
the window size along the representation dimen-
sion (d,, < d), which determines the range of local
representations captured from each module. We
use a stride of 1 and no padding along the repre-
sentation dimension. Applying the convolutional
operation over the semantic feature map yields the
fused representation, formulated as:

M = Conv(Wy, H), (6)
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Table 1: Performance comparison of SC-LoRA and other methods on the BBH. For each task, SC-LoRA uses
5 samples to identify suitable LoRA modules, and the same samples are used for subsequent fine-tuning with

Flan-T5-Large as the base model.

Task | Zero ICL IA3 LoRA FFT | LoORA MoE LoRA MoE* LoraHub LoraHub* IDLC SC-LoRA
Boolean Expressions 54.0 59.6 56.2 56.0 62.2 533 56.7 55.5 54.6 49.8 61.3
Causal Judgement 57.5 59.4 60.2 55.6 57.5 60.9 59.8 54.3 59.7 59.9 54.0
Date Understanding 15.3 20.4 20.0 35.8 59.3 21.3 24.0 329 52.7 31.8 75.1
Disambiguation 0.0 69.1 0.0 68.0 68.2 0.0 0.0 452 63.3 46.9 71.3
Dyck Languages 1.3 0.9 42 222 19.5 0.7 1.3 1.0 1.3 0.0 12.2
Formal Fallacies 51.3 55.3 51.5 53.6 54.0 52.0 52.0 52.8 50.7 53.5 56.4
Geometric Shapes 6.7 19.6 14.7 24 31.1 16.7 18.7 74 6.7 18.8 35.1
Hyperbaton 6.7 71.8 49.3 55.3 77.3 69.3 71.3 62.8 54.7 71.8 76.7
Logical Deduction (five objects) 21.3 39.1 32.7 40.0 422 36.0 38.0 36.1 42.7 434 21.1
Logical Deduction (seven objects) | 12.7 40.7 33.8 37.3 449 40.7 453 36.8 34.0 40.8 482
Logical Deduction (three objects) 0.0 51.6 8.5 53.6 529 27.3 32.7 45.7 50.7 51.0 51.3
Movie Recommendation 62.7 55.8 61.8 51.5 66.0 60.7 60.0 55.3 64.7 50.2 62.2
Multistep Arithmetic 0.7 0.7 0.7 0.2 0.0 0.7 0.7 0.4 0 0.4 1.3
Navigate 473 453 46.2 48.0 48.0 44.7 46.0 47.1 50.0 56.3 49.3
Object Counting 34.7 324 35.1 38.7 35.6 34.7 36.0 33.7 32.0 314 36.9
Penguins in a Table 435 413 45.0 36.2 31.9 435 41.3 359 435 36.9 38.4
Reasoning about Colored Objects 32.0 40.2 40.7 39.6 37.6 38.0 40.0 40.0 433 38.0 30.7
Ruin Names 233 19.3 24.4 37.8 61.3 22.7 24.7 24.4 21.3 22.0 37.1
Salient Translation Error Detection | 37.3 473 37.1 16.0 16.2 40.7 473 36.0 37.3 31.0 444
Snarks 50.0 54.2 53.9 55.6 66.7 55.1 56.4 56.9 51.3 58.4 56.4
Sports Understanding 56.0 54.7 55.1 56.5 54.0 55.3 57.3 56.7 53.3 46.5 56.0
Temporal Sequences 16.7 25.1 18.2 25.1 37.8 18.0 18.7 18.2 17.3 24.9 46.7
Tracking Shuffled Objects (five) 12.0 12.0 12.0 13.8 16.9 12.0 12.0 12.3 12.0 11.0 23.8
Tracking Shuffled Objects (seven) 6.7 6.7 6.7 10.0 9.8 6.7 6.7 7.7 7.3 8.6 6.7
Tracking Shuffled Objects (three) 24.7 31.1 30.7 30.9 32.0 30.7 30.7 29.2 30.7 322 38.2
Web of Lies 54.0 53.8 54.2 52.7 482 54.0 54.7 50.1 533 44.1 48.7
Word Sorting 1.3 0.5 1.3 49 4.9 1.3 0.7 1.1 1.3 0.81 4.7
Avg Performance Per Task | 27.0 37.3 31.6 37.7 42.1 | 332 345 347 36.7 35.6 424

where M € R(¢=dwtD)xn with each column rep-
resenting the output of a convolutional kernel scan-
ning across the representation dimension.

we perform max pooling to reduce redundancy
across the outputs of multiple channels, followed
by a linear projection. The forward process after
the convolution can be expressed as:

h = Wozx + MaxPool(M) - U, 7
where W, € R%ut*4 denotes the pretrained weight
of the linear layer augmented with LoRAs, and
U € Rl—dwt1)xd j5 5 Jearnable projection matrix.

SC-LoRA employs trainable 1D convolutional
kernels in a sliding window fashion to scan lo-
cal representations across multiple LoORA modules
along the hidden dimension. Compared to MoE,
this design operates at a finer granularity across
representations from multiple LoRA modules, en-
abling more localized operations.

Building upon this finer-grained operation, con-
volutional kernels learn to selectively preserve or
suppress semantic information. This addresses the
limitation of MoE methods, which operate only
on entire representations and fail to capture trans-
ferable knowledge at a more granular level. As
a result, SC-LoRA achieves a deeper integration
of LoRA local representations from LoRA mod-

ules and overcomes the expressiveness bottleneck
imposed by linear combinations.

In summary, the convolutional LoRA aggrega-
tor effectively integrates refined knowledge with
enhanced expressive capacity, smoothly bridging
the knowledge gap, and facilitating the transfer of
multiple LORA modules to unseen tasks.

5 Experiments

This section presents an overview of the SC-LoRA
experiments, including the setup, implementation
details, and analysis of its effectiveness.

Base Models and Benchmark. Our experiments
are conducted using the publicly available LoRA
modules released by LoraHub and LoR ARetriever.
To ensure compatibility and preserve the effective-
ness of the LoRA modules, we reuse them to the
same backbone models they were originally trained
with: Flan-T5-Large (Chung et al., 2024) for Lo-
raHub, and Llama-2-7B, 13B (Touvron et al., 2023)
for LoRARetriever.

We follow the same benchmark and evalua-
tion protocol as used in LoraHub (Huang et al.,
2024), specifically evaluating on Big-Bench Hard
(BBH) (Suzgun et al., 2022), a challenging bench-
mark for language model that encompasses 27 tasks
from multiple domains. We report Exact Match
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(EM) as the evaluation metric.

Implementation of SC-LoRA. To select relevant
LoRA modules, SC-LoRA first applies k-means
clustering to group LoRA modules into distinct
clusters. For each cluster, we construct a represen-
tative sample set by randomly sampling from the
training data of its LORA modules. We then com-
pute the similarity between each cluster and the tar-
get task using the bge-large-en model (Xiao et al.,
2024). SC-LoRA incrementally selects LoRA mod-
ules from the top ranked clusters until a predefined
module budget (10 by default) is met. If the num-
ber of LORA modules in the selected clusters ex-
ceeds the budget, the last cluster is truncated; if it
falls short, additional ones are sampled from the
next-ranked clusters. Further details on the clus-
tering and selection process can be found in the
Appendix.B.

During the LoRA composition phase, SC-LoRA
trains only the convolutional kernels and the up-
projection matrix, keeping the base model and all
trained LoRA modules frozen. When using Flan-
T5-Large as the backbone, we set the convolutional
kernel window size to 736 with 4 channels. For
Llama-based backbones, the kernel window size is
set to 2560 with 6 channels. SC-LoRA is trained
using a small number of target task examples in a
few-shot setting. Specifically, we use 5 examples
and train for 10 epochs when using Flan-T5-Large
as the backbone and 10 examples with 20 epochs
when using the larger Llama-based models.

Baselines. e First, we compare SC-LoRA with
the following methods that do not employ multi-
ple LoRA modules: (1) Full Fine-tuning (FFT); (2)
LoRA tuning (LoRA) (Hu et al., 2022); (3) IA3 tun-
ing (IA3) (Liu et al., 2022); (4) In-context Learning
(ICL); (5) Zero-shot Learning (Zero). e Second,
we extend the experiments to methods involving
multiple LoRAs: (1) LoRA MoE (Liu et al., 2023;
Zadouri et al., 2023; Wu et al., 2024) combines
multiple LoRAs with a mixture of experts frame-
work; (2) LoraHub (Huang et al., 2024) randomly
selects 20 LoRA modules and aggregates them with
gradient-free optimized weights for generalization
to unseeen tasks; (3) Instance-Level Dynamic Lo-
RAs Composition (IDLC) (Wang et al., 2024b)
selects LoORA modules based on input instances,
allowing different samples from the same task to
utilize different combinations of LoRA modules;
(4) HydraLoRA (Tian et al., 2024) introduces an
architecture that shares a common matrix A across

Table 2: Comparative performance of SC-LoRA, Hy-
dralLoRA, LoraHub tuning, Base model, mixture of
lora experts (LoRA MoE), and LoRA tuning with the
Llama-2-7b, Llama-2-13b as base model. For every
task, SC-LoRA performs adaptation using 10 samples.
Refer to Appendix C for detailed results.

Method Llama2-7b Llama2-13b
Base 31.6 38.4
LoRA 36.8 40.1
LoraHub 39.7 41.9
LoRA MoE 40.3 43.7
HydraLoRA 41.5 44.1
SC-LoRA 42.8 47.2

tasks while assigning each task a distinct matrix
B, and employs a trainable MoE router to identify
intrinsic components in the training data. (5) Lo-
raHub*, LoRA MoE* are variants of their base
methods, both equipped with CLS (our LoRA se-
lection strategy). Further details of the baseline
methods are provided in Appendix A.

5.1 Main Result

As shown in Table 1, SC-LoRA significantly out-
performs other baselines when using the Flan-T5-
Large base model. This result indicates that SC-
LoRA can effectively transfer knowledge from
LoRA modules to complex target tasks by train-
ing on only a few examples.

One key factor behind this performance is our
LoRA selection strategy, CLS. For example, Lo-
RAHub* outperforms the original LoRAHub, illus-
trating that adaptive selection leads to better task
alignment than random selection.

Another key factor lies in the convolutional
LoRA Aggregator, which enables fine-grained lo-
cal feature scanning and aggregation across the
representations of different LoORA modules, facili-
tating a more task-aligned knowledge integration.
Specifically, while both LoRA MoE* and IDLC
employ strategically designed LoRA selection, they
perform a coarse-grained composition on the se-
lected LoRA modules. SC-LoRA achieves a 22.9%
improvement over LORA MoE* and a 16.0% im-
provement over IDLC, demonstrating the effective-
ness and necessity of a finer-grained LoRA compo-
sition.

Notably, SC-LoRA slightly outperforms full fine-
tuning (FFT), breaking the conventional trade-off
between parameter efficiency and performance. On
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Figure 3: Training loss under different settings of LoRA
modules, including SC-LoRA, random selection, and
random initialization with Kaiming Uniform.

the one hand, this benefit stems from the intro-
duction of external knowledge from trained LoRA
modules. The multi-domain external knowledge
effectively compensates for the lack of sufficient
data, helping the model achieve competitive re-
sults. On the other hand, it reflects SC-LoRA’s
strong ability to integrate external knowledge with
task-specific examples, effectively bridging the gap
between knowledge embedded in LoORA modules
and the requirements of the target task.

As shown in Table 2, we explore the perfor-
mance of SC-LoRA on larger models. From the
results, SC-LoRA consistently outperforms other
baselines on both the 7B and 13B model parame-
ter scales, indicating its stable effectiveness across
different model sizes. Moreover, compared to Hy-
dralLoRA, SC-LoRA does not rely on a large-scale
data training process. Instead, it achieves superior
performance by composing existing LoRA adapters
and learning from a small number of samples. This
not only highlights the simplicity of SC-LoRA’s
training process but also demonstrates its remark-
able advantage in task adaptation.

5.2 Effectiveness Analysis

LoRA Selection Strategies. The LoRA selec-
tion strategy plays a critical role in adapting trained
LoRA modules to unseen tasks. Selecting a subset
of LoRA modules that closely matches the knowl-
edge demands of the target task can significantly
reduce the cost of knowledge transfer and promote
more efficient task alignment.

As shown in Figure 3, we use randomly initial-
ized LoRA modules as a baseline. The results show
that this baseline struggles to converge during train-
ing, highlighting the necessity of transferring di-
verse knowledge from trained LoRA modules to
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Figure 4: Representation Distance on target matrices
(Q and V) Across different Methods.We compute the
average representation distance across ten sample pairs
from the date understanding task. In the visualization,
lighter colors indicate shorter distances (i.e., more simi-
lar representations), while darker colors represent larger
distances (i.e., more divergent representations).

the target task. Comparing the random selection
strategy with SC-LoRA, random selection intro-
duces a large amount of task-irrelevant knowledge
in the early training steps, resulting in significantly
higher loss and suboptimal final performance. In
contrast, CLS selects a structurally relevant sub-
set of LoORA modules with high transfer potential,
leading to better convergence.

Representation Distance Visulization. We pro-
pose Representation Distance, a metric to evaluate
a model’s ability to learn generalizable features
of the target task and fine-grained distinctions be-
tween similar samples. Taking the MoE-based
model with LoRA as an example, we compute the
distance between the outputs of two input samples
at each MoE layer during the forward pass, which
serves as the Representation Distance. We compute
the Representation Distance of each LoRA augmen-
tation module in MoE, LoraHub, and SC-LoRA, as
shown in Figure 4.

Horizontally, we observe that across most layers,
SC-LoRA exhibits significantly lower Represen-
tation Distance compared to MoE and LoraHub,
indicating that the convolutional LoRA aggregator
enables stable learning of task-consistent represen-
tations. This ability effectively brings the com-
posed LoRA outputs closer to the task-specific rep-
resentation space, thereby bridging the knowledge
gap more smoothly.

Vertically, in the last few layers, SC-LoRA ex-
hibits a clear increase in representation distance,
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Accuracy

demonstrates stronger discriminative capability,
and reveals finer semantic separation between sam-
ples. This indicates that convolutional aggregation
enhances expressive capacity over linear combina-
tion, thus confirming the superior ability of SC-
LoRA in feature composition and its support for a
richer representational space.

5.3 Sensitivity Analysis

In this section, we analyze the parameter sensitivity
of SC-LoRA. With all other configurations fixed,
we vary the number of clusters in k-means, the
selection of representative datasets, the number of
convolutional channels, and the kernel sizes. We
report the average accuracy of SC-LoRA in the 27
tasks in BBH (as reported in Table 1).

LoRA Selection. We design experiments on the
hyperparameter settings of k-means and choice of
representative datasets during the LoRA selection
stage. Specifically, we vary the value of k£ and sam-
ple representative datasets for LoRA clusters with
different random seeds, as shown in Figure 5. The
results show that SC-LoRA is not sensitive to either
the choice of &k or the selection of representative
datasets, suggesting that selecting an empirically
reasonable k or representative dataset is sufficient
for effective performance.

The robustness to &k can be attributed to the di-
versity of the trained LoORA modules, which span
a wide range of tasks. This diversity ensures that
the LoRA modules are evenly distributed in the
parameter space. Consequently, choosing k& within
a reasonable range allows k-means to consistently
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Figure 6: Performance of SC-LoRA vs. channels vs.
kernel window size, with Llama-2-7b as the base model.

form well-balanced and semantically coherent clus-
ters.

Convolutional Aggeragation. As shown in Fig-
ure 6, SC-LoRA maintains strong and stable perfor-
mance in different configurations of channel and
kernel window size. When the number of channels
is small, smaller kernel sizes yield better results.
As the number of channels increases, larger kernel
sizes begin to perform better.

This observation reveals a collaboration between
kernel size and channel count in SC-LoRA. Larger
kernels cover broader semantic contexts and en-
code richer, more abstract information. In such
cases, more channels are needed to decompose
and interpret these complex patterns from multiple
perspectives. In contrast, smaller kernels focus on
fine-grained local features. When paired with fewer
channels, they help avoid representational redun-
dancy and allow the model to focus on constructing
compact, high-quality local representations.

5.4 Ablation Studies

We conduct an ablation study focusing on the im-
pact of the convolutional LoRA aggregator and the
CLS LoRA selection mechanism. Figure 7 presents
the results of our ablation study.

LoraHub serves as the baseline, performing
random selection of LoRA modules followed by
weighted combination. w/o CNN refers to a vari-
ant in which the convolutional LoRA aggregator
is removed while the CLS mechanism is retained.
w/o CLS refers to the variant in which the LoRA
selection module is ablated, retaining only the con-
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Figure 7: Comparative performance of ablation study
for SC-LoRA on the BBH Benchmark, with Flan-T5-
Large as the backbone.

volutional LoRA aggregator. Figure 7 shows that
the full SC-LoRA model outperforms all ablated
variants, demonstrating that both the CLS mecha-
nism and the convolutional LoRA aggregator are
essential to its effectiveness across diverse tasks.

6 Conclusion

In this paper, we propose SC-LoRA, a novel frame-
work that enables leveraging the knowledge of
trained LoRA modules to tackle unseen tasks under
data-scarce conditions. SC-LoRA first performs
parameter-based clustering and selects LoORA mod-
ules at the cluster level, overcoming the limited
coverage of knowledge in sample-based selection.
It then employs a convolutional aggregator to inte-
grate the representations of the selected LoORA mod-
ules in a fine-grained manner, seamlessly bridging
the knowledge gap between existing knowledge
and unseen tasks. Experiments demonstrate that
SC-LoRA consistently enables robust knowledge
transfer across diverse tasks.

Limitations

In this section, we discuss the potential limita-
tions of SC-LoRA. Our work focuses on trained
LoRA modules transfer using LoRA, one of
the most widely adopted parameter-efficient fine-
tuning (PEFT) methods. However, we have not
yet explored the applicability of SC-LoRA to other
types of adapters, such as prompt tuning or prefix
tuning. We leave the extension of SC-LoRA to
other adapter types as a direction for future work.
SC-LoRA partially leverages the original training
data of each LoRA module to estimate its adaptabil-
ity to new tasks during the LoRA selection stage.
In privacy-sensitive conditions, where access to

LoRA training data is restricted or prohibited, the
proposed approach may not be applicable. Future
work could explore privacy-preserving strategies
for selecting LoORA modules without direct access
to their training data.
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A Details of Baselines
Methods without the Use of Multiple LoRAs

e Full Fine-tuning is a widely used stategy,
often considered the upper bound of perfor-
mance in adaptation. It updates all parameters
of the backbone model by gradient optimiza-
tion.

* TA3 (Liu et al., 2022) is a lightweight fine-
tuning method that injects learnable learned
vectors into transformer structures.

* ICL (Dong et al., 2022) performs inference by
including a few examples in the input prompt.

e Zero directly prompts the model without us-
ing any task-specific examples.

Methods Involving Multiple LoRAs

HydralLoRA. HydralLoRA first partitions the
dataset into n domain clusters via k-means, then
initializes a collection of n experts, denoted as
Fn, ..., B, These experts serve a role analogous
to the LORA B matrices, sharing a central param-
eter matrix matrix A, and are orchestrated by a
MOoE router.The Hydral.oRA architecture can be
formulated as:

n
y=> wEAz, ®)
i=1
where w; is calculated from a trainable weight ma-
trix W € R¥™ followed by a softmax function,
which transforms the input representation x into
scores (wi, ..., wy,) for experts:

w; = softmaX(WTx) : 9)

HydralLoRA was trained on the Flanv2 datasets,
which include Natural Language Understanding
(NLU) and Natural Language Generation (NLG),
and then evaluated on the BBH dataset using 3-shot
learning.

LoraHub. Given m LoRA modulesL;, fori =
1, ...,m, each module is represented as L; = A; B;.
LoraHub performs a weighted operation on the
LoRA parameter matrices A; and B;, aggregating
the parameters of multiple LoRA experts into a
single parameter structure AW. The computation
process is as follows:

m

AW = (3" wiA) (O wiBy),
=1

=1

(10)

w; represents the weight of each LoRA module,
determined by a gradient-free algorithm that com-
bines cross-entropy loss with L regularization.
For both backbones, we randomly select 20 LoRA
modules. The training set consists of 5 samples
when using the Flan-T5-Large, while 20 samples
for LLaMA-2-7B, 13B.

B Details of LoORA Module Selection

B.1 K-means Clustering Settings

In this work, we address the challenge that many
task-relevant LoRA modules are difficult to capture
solely based on sample information. To overcome
this limitation and expand the coverage of effec-
tively transferred knowledge, we propose cluster-
ing the LoRAs using the k-means algorithm (Mac-
Queen, 1967) for selection. Specifically, k-means
is a widely used unsupervised machine learning
algorithm that partitions a dataset, in our case a set
of LoRA modules, into a pre-specified number of
clusters based on feature similarities.

In our approach, these feature similarities are
represented by the sum of the distances between all
parameter matrices of LoRA modules. To prevent
significant size disparities between clusters, we set
an upper capacity limit ¢ for each cluster and apply
a recursive k-means procedure. In each iteration, k
clusters are created, and any cluster exceeding the
capacity limit is recursively split until the number
of modules in each cluster is less than ¢. In our
experiments, we set £k = 3 and ¢ = 5 for LLaMA,
while for TS, we set £ = 10 and ¢ = 30, as the
number of LoORA modules for T5 (from LoraHub)
is considerably larger than for LLaMA (from Lo-
raRetriever).

B.2 Visualization of LoRA Selection Results

SC-LoRA comprehensively selects LoORA modules
aligned with the target task, thus taking the first
step toward bridging the knowledge gap. Figure
8 illustrates the case of LoRA selection stage, us-
ing an example from the Salient Translation Error
Detection task in BBH benchmark. The number
of LoRA experts selected is set to 10. After the K-
Means clustering and selection based on sentences
similarity, most of the LoRAs retrievered by SC-
LoRA are related to translation error correction, in-
cluding four language task LoRA modules and two
judgment task LoRA modules, which closely align
with the task requirements. This demonstrates that
SC-LoRA can effectively retrieve LoORA modules
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INPUT: \

Q: The following translations from German to English contain a particular error. That error will be one of the following types: Named
Entities: An entity (names, places, locations, etc.) is changed to a different entity. Numerical Values: Numerical values (ordinals or
cardinals), dates, and/or units are changed. Modifiers or Adjectives: The modifiers and adjectives pertaining to a noun are changed.
Negation or Antonyms: Introduce or remove a negation or change comparatives to their antonyms. Facts: Trivial factual errors not
pertaining to the above classes are introduced in the translations. Dropped Content: A significant clause in the translation is removed.
Please identify that error.

Source: Liste der Naturschutzgebiete im Landkreis Kulmbach

Translation: List of nature reserves in the district of Kumbh

Options: Retrieved LoRAs:
The translation contains an error / para_crawl_enes glue_mrpc \
pertaining to wmt14_translate_fr-en
Options: dbpedia_14_given_a_choice_of_categories
(A) Modifiers or Adjectives fix_punct
(B) Numerical Values race_middle_Taking_a_test
(C) Negation or Antonyms true_case
(D) Named Entities race_middle_Select_the_best_answer

(E) Dropped Content wmt16_translate_tr-en
(F) Facts \ wmt16_translate_ro-en /
AN /

Figure 8: Visualization of SC-LoRA’s selection of task-suited LoRAs.

relevant to the target task, providing a more robust
knowledge foundation for the knowledge transfer
of LoRA modules.

C More Results

Tabel 3 presents a comparative performance of
different methods on the BBH benchmark, using
LLaMAZ2-7B as the backbone model. The methods
contain base model (Base), LoORA tuning (LoRA),
LoraHub learning, multi-LoRA integrated with
MoE (LoRA MoE), HydralLoRA learning and our
proposed SC-LoRA. For SC-LoRA, 10 samples are
used for LoRA selection and training processes.
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Table 3: Comparative performance of baselines and SC-LoRA on the BBH benchmark using LLaMA-2-7B as the
base models.

Task Base LoRA LoRAHub MoE HydraLoRA SC-LoRA
Boolean Expressions 619 67.1 72.9 68.0 73.7 67.3
Causal Judgement 522 549 50.1 514 53.2 47.1
Date Understanding 304 352 36.0 33.9 36.0 51.3
Disambiguation 348 452 42.1 47.2 50.3 62.7
Dyck Languages 15.8  18.7 14.5 16.8 19.8 48.0
Formal Fallacies 490 622 64.5 67.6 65.3 44.0
Geometric Shapes 9.7 17.7 18.7 17.7 19.7 44.7
Hyperbaton 51.8 743 74.3 68.9 77.2 62.0
Logical Deduction (five objects) 219 333 38.7 40.0 422 28.0
Logical Deduction (seven objects) 150 364 37.3 40.7 40.7 17.3
Logical Deduction (three objects) 328 414 38.5 43.7 42.9 38.7
Movie Recommendation 344 535 56.0 56.8 58.3 82.7
Multistep Arithmetic 1.2 1.2 1.9 1.9 1.8 1.3
Navigate 53.8 527 56.2 58.0 57.1 51.3
Object Counting 40.1  40.5 423 44.7 42.3 50.7
Penguins in a Table 21.7 232 25.0 23.2 25.9 26.1
Reasoning about Colored Objects 194  28.0 32.7 38.3 38.3 24.7
Ruin Names 243 28.7 343 343 36.7 24.7
Salient Translation Error Detection 11.3 11.1 17.1 16.2 20.1 16.7
Snarks 44.0 479 54.9 53.6 56.9 59.0
Sports Understanding 57.5 59.0 61.2 59.0 60.2 71.3
Temporal Sequences 21.1 326 28.9 34.1 30.4 89.3
Tracking Shuffled Objects (five objects) 219 237 23.7 28.0 29.3 21.3
Tracking Shuffled Objects (seven objects) 14.6  15.3 16.6 15.3 15.3 14.7
Tracking Shuffled Objects (three objects) 324  38.4 39.0 38.4 40.7 32.7
Web of Lies 514 528 53.2 50.1 52.0 47.3
Word Sorting 29.6  33.6 33.6 31.2 34.0 30.0
Avg Performance 31.6  36.8 39.7 40.3 41.5 42.8
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