
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3685–3701
November 4-9, 2025 ©2025 Association for Computational Linguistics

PIP: Perturbation-based Iterative Pruning for Large Language Models

Yi Cao1 Wei-Jie Xu2 Yucheng Shen1

Weijie Shi3 Chi-Min Chan3 Jianfeng Qu1 Jiajie Xu1*

1School of Computer Science and Technology, Soochow University
2School of Artificial Intelligence, Nanjing University

3Department of Computer Science and Engineering, Hong Kong University of Science and
Technology

Abstract

The rapid increase in the parameter counts of
Large Language Models (LLMs), which often
reach into the billions or even trillions, presents
significant challenges for their practical deploy-
ment, particularly in resource-constrained en-
vironments. To address this issue, we propose
PIP (Perturbation-based Iterative Pruning), a
novel double-view structured pruning method
to optimize LLMs, which combines informa-
tion from two different views: the unperturbed
view and the perturbed view. With the calcu-
lation of gradient differences, PIP iteratively
prunes those that struggle to distinguish be-
tween these two views. Our experiments show
that PIP reduces the parameter count by approx-
imately 20% while retaining over 85% of the
original model’s accuracy across varied bench-
marks. In some cases, the performance of the
pruned model is within 5% of the unpruned
version, demonstrating PIP’s ability to preserve
key aspects of model effectiveness. Moreover,
PIP consistently outperforms existing state-of-
the-art (SOTA) structured pruning methods, es-
tablishing it as a leading technique for optimiz-
ing LLMs in constrained environments.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Dubey et al., 2024) based on the Transformer
architecture (Vaswani, 2017) have demonstrated
impressive capabilities across a wide range of tasks,
but their capabilities come at the expense of mas-
sive parameter counts and high computational re-
quirements (Kaplan et al., 2020). For illustration,
the LLaMA3-405B model (Dubey et al., 2024),
with about 405 billion parameters, demands at least
810 GB of memory with 11 A100 GPUs when us-
ing half-precision (FP16) format. Therefore, an
issue presents itself that warrants further explo-
ration: Can we produce a smaller, general-purpose,

*Corresponding author: xujj@suda.edu.cn

and competitive LLM by leveraging existing pre-
trained LLMs, while using much less compute than
training one from scratch? (Xia et al., 2024)

To this end, researchers have been exploring
strategies like pruning (Frantar and Alistarh, 2023;
Ma et al., 2023; Ashkboos et al., 2024), quanti-
zation (Bai et al., 2021; Lin et al., 2024), knowl-
edge distillation (Sun et al., 2020; Pan et al., 2021),
and low-rank factorization (Saha et al., 2023; Yuan
et al., 2023). Among them, pruning methods have
gained considerable attention due to their potential
to significantly reduce model size while preserv-
ing performance. Yet, traditional pruning strate-
gies typically assess importance through isolated
metrics such as weight magnitudes or input-output
similarity (Men et al., 2024). While intuitive, these
single-view approaches suffer from fundamental
flaws: they overlook the capacity to preserve se-
mantic robustness under adversarial or natural input
variations, which is essential for ensuring reliable
deployment of models in real-world applications.

To overcome the limitation, we propose a novel
double-view approach that evaluates layer impor-
tance based on their awareness of text perturba-
tions. For each input, we generate two comple-
mentary perspectives: an original sample and its
perturbed counterpart—crafted via character-level
edits that preserve syntax but maximally distort
meaning (Section 3.1). By contrasting parameter
gradients between these views through first-order
Taylor approximation, we identify layers exhibiting
weak semantic discrimination.

Beyond the initial double-view comparison, our
approach employs an iterative gradient reassess-
ment strategy to further refine the pruning process.
After pruning the least sensitive layers identified in
each cycle, we proceed to recompute gradient dif-
ferences on the updated architecture. This dynamic
process, which is akin to curriculum learning, pro-
gressively focuses on layers that are critical for se-
mantic stability. By doing so, it ensures a thorough

3685

and comprehensive importance evaluation through
successive approximations.

Our contributions are summarized as follows:

• We introduce PIP, which is a structured prun-
ing approach designed to iteratively remove
low-importance layers identified by PertIm-
port (detailed in Section 3.2) and recomputes
gradients on the pruned architecture. PIP can
be seamlessly integrated into popular LLM
frameworks, such as Hugging Face, with mini-
mal code modifications, offering a lightweight
yet theoretically sound implementation.

• Through extensive experiments, we demon-
strate PIP’s consistent superiority over current
state-of-the-art structured pruning methods.
Ablation studies confirm that both perturba-
tion (preserving semantic integrity) and the it-
eration process (dynamic importance reassess-
ment) are essential for high-accuracy pruning.
Additionally, comprehensive analyses further
provide actionable insights for performance.

2 Related Work

Pruning techniques for LLMs can generally be clas-
sified into two categories: unstructured pruning and
structured pruning. Unstructured pruning sparsi-
fies weight matrices by setting individual elements
to zero, which often requires specialized hardware
support. Notable works in this area include (Frantar
and Alistarh, 2023; Sun et al., 2024).

Structured pruning, on the other hand, focuses
on eliminating predefined units within the model,
which makes it more compatible with hardware
constraints. The concept of structured pruning for
LLMs is introduced by (Wang et al., 2020), which
proposes parameterizing each weight matrix via
low-rank factorization and actually adaptively re-
moving rank-1 components during training. This
pioneering work has truly led to the development
of several other methods, such as (Xia et al., 2022)
and (Davy, 2024). These methods, however, are
primarily designed for compression within specific
domains or tasks, falling under the category of task-
specific compression. While effective for their in-
tended applications, they often limit the versatility
of LLMs as general task solvers.

In contrast, (Ma et al., 2023) introduces a genetic
pruning framework called LLM-Pruner, which
aims to maintain task-agnostic capabilities while
minimizing reliance on the original training dataset.

Following the pipeline proposed by (Kwon et al.,
2022), LLM-Pruner consists of three stages: Dis-
covery, Estimation, and Recovery. It selectively
removes non-critical coupled structures based on
dependency analysis (Fang et al., 2023), preserving
the core functionality of the model. However, its
potential integration with LoRA (Hu et al., 2022)
presents several challenges in achieving an optimal
balance between efficiency and performance.

Inspired by the approach of LLM-Pruner, the
research community has proposed several meth-
ods for structured pruning in general tasks. These
methods can be broadly categorized into two main
types: width pruning and depth pruning (Kim et al.,
2024). Width pruning focuses on compressing the
weight matrix by reducing its hidden dimension,
while depth pruning targets the pruning of layers or
blocks within the model. For example, ShearedL-
LaMA (Xia et al., 2024) implements structured
pruning through a combination of targeted prun-
ing and dynamic batch loading. Targeted pruning
removes specific layers of the model in an end-to-
end fashion to achieve a predefined compression
ratio. Dynamic batch loading adjusts the compo-
sition of training data batches based on the vary-
ing losses from different domains. Although this
method achieves competitive performance, it suf-
fers from the same retraining challenges as LLM-
Pruner (Ma et al., 2023).

To avoid retraining, which can be resource-
intensive and time-consuming, (Men et al., 2024)
proposes ShortGPT, a method based on layer im-
portance. It introduces a novel importance metric
called Block Influence, which quantifies the im-
portance of each layer by calculating the similarity
between the inputs and outputs of each layer. Lay-
ers with low importance scores are then removed.
Similarly, (Kim et al., 2024) proposes Shortened
LLaMA, a block-importance-based method that re-
moves blocks based on a block-level importance
metric. Another related work, SLEB (Song et al.,
2024) evaluates the importance of Transformer
blocks using the similarity between inputs and out-
puts, and removes the blocks with low importance
scores. While these methods are straightforward
to understand and implement, they fail to provide
strong empirical results and lack rigorous theo-
retical support. Moreover, these single-view ap-
proaches are inherently limited as they neglect the
necessity to maintain semantic robustness under
adversarial or natural input variations, which is
essential for reliable deployment.

3686

(a) Character Swap (b) Character Replacement (c) Character Insertion

Figure 1: Generation of perturbed texts via auxiliary LLM.

In summary, while existing pruning methods of-
fer trade-offs in terms of model efficiency and per-
formance, they often either require retraining or
lack solid guarantees in theory, limiting their appli-
cability to real-world scenarios.

3 Methodology

3.1 Text Perturbation

Text perturbation is a data augmentation technique
(Guerrero et al., 2023) that introduces variability
into textual data by applying a suite of carefully de-
signed transformations to the original text samples.

Inspired by adversarial training (Ganin et al.,
2015), we design text perturbations that cause radi-
cal semantic shifts while preserving grammatical
correctness. Using LLM-powered prompt tem-
plates (Figure 1), we propose methods generating
perturbed text samples that challenge robustness:

3.1.1 Character Swap
• Example: Swapping the characters “l” and

“a” in “later” gives us “alter”. Consequently,
the sentence “The meeting will start later” be-
comes “The meeting will start alter”.

• Impact: In scheduling systems, this pertur-
bation causes rescheduling forms to be gener-
ated instead of acknowledging delays, disrupt-
ing calendar management. In Q&A systems,
models respond with operational directives
like “How to adjust the meeting?” instead of
factual answers, spreading incorrect procedu-
ral guidance and increasing inefficiencies.

3.1.2 Character Replacement
• Example: Replacing the character “h” with

“n” in “happy” results in “nappy”. As a re-
sult, the sentence “The child looks happy” be-
comes “The child looks nappy”.

• Impact: In dialogue systems, this perturba-
tion leads to inappropriate suggestions like

“Check diaper supplies” instead of emotional
support, causing nonsensical interactions in
childcare applications. In healthcare chatbots,
it can misinterpret “The patient feels nappy”
as a clinical symptom, leading to incorrect
medical advice and eroding trust in systems.

3.1.3 Character Insertion
• Example: Inserting the character “g” to “host”

yields “ghost”. Then, the sentence “The con-
ference host welcomed attendees” becomes

“The conference ghost welcomed attendees”.

• Impact: In automated summarization, this
perturbation can generate fictional narratives,
misrepresenting factual events. In enterprise
search, it may retrieve irrelevant documents,
introducing noise into enterprise knowledge
graphs and decision-making pipelines.

3.2 PertImport: A Perturbation-based Metric
for Layer Importance Assessment

Building on the text perturbation framework de-
fined in Section 3.1, we propose PertImport, a
novel metric to measure the sensitivity to meaning-
altering inputs. The rationale for this metric is
grounded in the following analysis:

Consider a pre-trained large language modelM
with N layers. Each layer i has parameters wi ∈
Rn. Excluding embedding and head layers,M can
be seen as a mapping function f . For any input
s, the function f(s;w1,w2, . . . ,wN) generates an
output that is consistent with s’s semantics.

In Supervised Fine-Tuning (SFT) (Brown et al.,
2020), when sample s is used as both input and
label for modelM, the parameter update rule is:

w′
i = wi − α · ∇wiL(s;w1:N). (1)

Introducing perturbation δs (Section 3.1) to s
yields the perturbed sample s+ δs for SFT:

w′′
i = wi − α · ∇wiL(s+ δs;w1:N). (2)

3687

Gagg(1)

PertImport1

G'agg(1)

Original
Text

Perturbed
Text

Layer 1

Gagg(1)

PertImport1

G'agg(1)

Original
Text

Perturbed
Text

...

Gagg(2)

PertImport2

G'agg(2)
Layer 2

Gagg(N-1)

PertImportN-1

G'agg(N-1)
Layer N-1

Gagg(N)

PertImportN

G'agg(N)
Layer N

......

Layer 2

Layer N-1

Gagg(N)

PertImportN

G'agg(N)
Layer N

Model Step 2 ...

Layer 1Layer 1

Gagg(1)

PertImport1

G'agg(1)

Original
Text

Perturbed
Text

Layer 1

...

Gagg(N-1)

PertImportN-1

G'agg(N-1)
Layer N-1

Gagg(N)

PertImportN

G'agg(N)
Layer N

Step 1

Layer 2

...

PertImport

...

PertImport

...

PertImport

|A - B|

A

B

 Forward Propagation
Backward Propagation

Gradient Aggregator
Original Text

 Perturbed Text

ρ-Consistency Discriminator

Figure 2: Overview of our PIP method, where an auxiliary LLM generates perturbed text (see Section 3.1). During
pruning, the same original and perturbed texts are used to compute PertImport values, determining layer significance.
The least significant layers (e.g., the 2nd, (N − 1)-th, and N -th layers in the first three steps) are iteratively removed.

Here, wi ∈ Rn denotes the original parameters of
the i-th layer, w

′
i ∈ Rn and w

′′
i ∈ Rn denote the

updated parameters of the i-th layer. The notation
w1:N represents the collection of parameters from
the first layer to the N -th layer. The learning rate is
denoted by α , and the loss function L(·) quantifies
the difference between predictions and labels.

Given that f is differentiable and δs → 0, we
can use the first-order Taylor expansion to approxi-
mate the change in the function value. Specifically,
we obtain the following approximation:

f(s+ δs;w
′′
1:N)− f(s;w

′
1:N)

≈ ∇sf · δs+
∑

i,j

(∇
w

′
i
f)j · (w

′′
i −w

′
i)j , (3)

where (∇
w

′
i
f)j ∈ R represents the j-th element

of the gradient vector ∇
w

′
i
f at the i-th layer, and

(w
′′
i −w

′
i)j ∈ R represents the j-th element of the

parameter difference w
′′
i −w

′
i at the i-th layer.

Subsequently, we utilize Equation (3) to estab-
lish an upper bound for the estimation of the differ-
ence in output values with and without the perturba-
tion δs. We introduce a constant sequence {Ci}Ni=1

defined as Ci = max
1≤j≤n

∣∣∣(∇w
′
i
f)j

∣∣∣. Incorporating

Equations (1), (2), and (3), we arrive at:
∣∣∣f(s+ δs;w

′′
1:N)− f(s;w

′
1:N)

∣∣∣
≤ |∇sf · δs|+
C
∑

i,j

|(∇wi(L(s+ δs;W)− L(s;W)))j | , (4)

where C = max
1≤i≤N

{Ci} ∈ R is the maximum

value, andW represents all the parameters ofM.

Theorem 1. To enhance the robustness of the
pruned model (defined as its capability to distin-
guish between s and s + δs), it’s best to select
parameters with smaller gradient differences be-
tween the perturbed and unperturbed views.

Proof. Let Y be a random variable representing the
output difference with and without the perturbation
δs. Consider removing the parameter at the i0-th
layer and the j0-th position, i.e., (wi0)j0 . Suppose
there exists another parameter (w

i
′
0
)
j
′
0

that has a
smaller gradient difference and a higher average
probability of detecting the difference between s
and s+ δs. Assuming, without loss of generality,
that Y follows a uniform distribution (as an an-
alytical tool based on the principle of maximum
entropy), we can derive the expectation of Yi0,j0

3688

after pruning the parameter (wi0)j0 :

∑

(i,j)̸=(i0,j0)

|(∇wi(L(s+ δs;W)− L(s;W)))j |

=
2

C
E[Yi0,j0

]− 1

C
|∇sf · δs| . (5)

Similarly, when (w
i
′
0
)
j
′
0

is pruned, we can derive
the equation for the expectation of Y

i
′
0,j

′
0

:

∑

(i,j)̸=(i
′
0,j

′
0)

|(∇wi(L(s+ δs;W)− L(s;W)))j |

=
2

C
E[Y

i
′
0,j

′
0

]− 1

C
|∇sf · δs| . (6)

By Equations (5) and (6), we have E[Yi0,j0
] >

E[Y
i
′
0,j

′
0

]. This contradicts the hypothesis that re-

moving (w
i
′
0
)
j
′
0

increases the likelihood of detect-
ing the perturbation. Consequently, the assumption
is invalid, implying that the theorem holds.

Based on Theorem 1, we propose a robustness-
aware importance metric, PertImport. For the i-
th layer, PertImport quantifies its discriminative
sensitivity through the following value:

1

|D|
∑

s∈D
|g(∇wiL(s+ δs;W)1:n)

−g(∇wiL(s;W)1:n)|, (7)

where D is a small calibration dataset, and n is
the count of parameters in the i-th layer of M.
The function g : Rn → R aggregates gradient
information for a specific layer using norms like
L1, L2, or L∞, as shown in (Han et al., 2015). See
Appendix A for the definitions of these norms.

3.3 PIP: Perturbation-based Iterative Pruning
After assessing layer importance via perturbation,
we avoid making premature pruning decisions. In-
stead, PIP uses a more systematic approach by em-
ploying an iterative greedy strategy to progressively
prune layers with minimal performance impact.

To enhance the robustness and accuracy of the
importance evaluation, we introduce a consistency
discriminator that filters out layers with unstable
gradient differences. Specifically, it computes the
standard deviation across multiple perturbations
and excludes layers with high variability.

In summary, by integrating information from
both the unperturbed and perturbed views, PIP ef-
fectively reduces the stochasticity inherent in prun-

Algorithm 1 Detailed Implementation of PIP

Input:
pre-trained LLMM,
calibration dataset D,
text perturbation method δ(·),
gradient aggregation function g(·),
of layers to be pruned L ∈ N∗,
consistency threshold ρ ∈ R+

Output:
indices of the pruned layers P ,
pruned modelM∗

D′ ← δ(D);
M∗ ←M;

NM ← |M.layers|;
P ← ∅;
for ℓ = 1 to L do
{Gagg(i)}NM−ℓ+1

i=1 ← (g ◦ SFT)(M∗,D);
{G′

agg(i)}NM−ℓ+1
i=1 ← (g ◦ SFT)(M∗,D′

);

for i = 1 to NM − ℓ+ 1 do
if std(Gagg(i)−G′

agg(i)) < ρ then
PI(i)← |Gagg(i)−G′

agg(i)|;
else

PI(i)← +∞;

end if
end for
pℓ ← argmin1≤i≤NM−ℓ+1PI(i);

P ← P ∪ {pℓ} ;
M∗ ←M∗ \ {layerpℓ} ;

end for
return P ,M∗

ing and facilitates a more stable and efficient opti-
mization. The details are presented in Algorithm 1,
and the overall workflow is illustrated in Figure 2.

4 Experiments

4.1 Experimental Setup

4.1.1 Model Selection
To compare with existing methods, we conduct ex-
periments on LLaMA2 (Touvron et al., 2023) and
LLaMA3 (Dubey et al., 2024) models of varying
sizes. The architectural similarity to other LLMs
allows our method, PIP, to generalize effectively
to other models. Experiments on additional model
architectures are provided in Appendix D.1.

4.1.2 Evaluation and Datasets
We evaluate accuracy using the following datasets:
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),

3689

HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC-Easy (Clark et al., 2018),
ARC-Challenge (Clark et al., 2018), and Open-
BookQA (Mihaylov et al., 2018), all of which have
been widely utilized in previous structured prun-
ing studies. To ensure a fair comparison across the
aforementioned datasets, we use the LM Evaluation
Harness framework (Gao et al., 2024) with its de-
fault settings for evaluation, without incorporating
any shots as demonstrations. In addition, to assess
the capability of predicting the next token, we eval-
uate perplexity (PPL) on the PTB dataset (Marcus
et al., 1993), which is an established metric for
evaluating the predictive capabilities of LLMs.

4.1.3 Baseline Methods
To show the effectiveness of our PIP method, we
compare it with several state-of-the-art structured
pruning methods specifically designed for LLMs:

• LLM-Pruner (Ma et al., 2023): A method
which uses Taylor-based metrics to prune less
important heads in MHA and neurons in FFN.

• SliceGPT (Ashkboos et al., 2024): A method
which applies orthogonal transformations. By
doing this, it can prune both rows and columns
of the weight matrices, which in turn helps to
reduce the hidden size within the LLM.

• ShortGPT (Men et al., 2024): A method
which identifies redundant layers that have
a small similarity between the inputs and out-
puts, pruning those to reduce the depth.

To compare with baselines, we follow the same
experimental settings suggested in their studies.

4.1.4 Experimental Details
Following (Ashkboos et al., 2024), we randomly
select a few samples (fewer than 10) from the Wiki-
Text2 dataset (Merity et al., 2016) for calibration,
ensuring reproducibility with a fixed random seed.
We aggregate gradients using the L2-norm. Ex-
periments are conducted using the Transformers
library (Wolf, 2020) on a server with 8 NVIDIA
A100 GPUs (80GB VRAM each, totaling 640GB).

4.1.5 Statistics of Pruned Models
Table 1 summarises the key characteristics of the
pruned models used in our primary experiments,
including parameter count, memory footprint, and
Time-Per-Output-Token (TPOT). Evaluations use a
randomly sampled sequence from WikiText2 with

Model Ratio #Params Memory TPOT

LLaMA3-8B
Dense 8.0B 15.0GiB 46.7ms
19.0% 6.5B 12.1GiB 41.5ms

LLaMA3-70B
Dense 70.6B 131.4GiB 266.2ms
19.4% 56.9B 99.5GiB 223.5ms

LLaMA2-13B
Dense 13.0B 24.4GiB 73.4ms
19.5% 10.5B 19.6GiB 58.9ms

LLaMA2-70B
Dense 69.0B 128.5GiB 269.7ms
19.9% 55.3B 96.6GiB 217.8ms

Table 1: Statistics of base and pruned models. “Dense”
denotes the base model. “Ratio” is the pruning ratio,
calculated as (#Pruned Params)/(#Base Params).

a fixed output length of 128 tokens. For hardware
configuration: LLaMA2-8B and LLaMA3-13B
are tested on a single NVIDIA A100 GPU, while
LLaMA2-70B and LLaMA3-70B employ tensor
parallelism across 4 NVIDIA A100 GPUs. All
experiments are executed in half-precision mode.

4.2 Zero-shot Performance

We compare PIP with baselines on zero-shot perfor-
mance (see Table 2). On average, PIP retains over
85% of the base model’s accuracy across bench-
marks, with an approximate pruning ratio of 20%.
In some cases, its performance is within 5% of
the base model’s, showing its ability to preserve
the crucial aspects. PIP also consistently outper-
forms baselines, making it a superior LLM pruning
technique. For more details, see Appendix C.

4.3 Ablation Analysis

To investigate the critical components of PIP, we
conduct ablation studies on LLaMA2-13B, focus-
ing on perturbation and greedy-search iteration. As
shown in Table 3, we evaluate three pruning ratios
(9.8%, 19.5%, 29.2%) under three configurations:
(1) Full PIP implementation, (2) Perturbation-only,
and (3) Iteration-only. The performance is mea-
sured using the PPL metric on the PTB dataset.

Our results show that perturbation and iteration
work synergistically. At a 29.2% pruning ratio,
the combined approach achieves optimal perfor-
mance, while disabling iteration or perturbation
degrades performance, with perturbation’s absence
causing more severe deterioration. In addition, sim-
ilar trends are observed at lower pruning ratios.

3690

Model Method PPL↓ BoolQ↑ PIQA↑ HeSwg↑ WGrd↑ ARC-E↑ ARC-C↑ OBQA↑ Avg.↑

LLaMA3-8B Dense 10.6 81.4 79.7 60.2 72.5 80.1 50.5 34.8 65.6
LLM-Pruner 56.5 63.5 69.5 42.6 62.4 52.3 29.5 27.0 49.5
SliceGPT 72.3 40.8 65.4 39.8 63.2 59.5 29.4 23.8 46.0
ShortGPT 67.9 65.2 68.9 45.6 69.4 57.2 36.5 25.4 52.6
PIP (Ours) 56.3 70.9 69.6 44.7 69.4 57.9 35.1 26.8 53.5

LLaMA3-70B Dense 8.2 85.2 82.4 66.4 80.3 86.9 60.3 38.2 71.4
LLM-Pruner - - - - - - - - -
SliceGPT 78.2 59.4 69.6 44.4 72.1 69.7 41.1 30.2 55.2
ShortGPT 13.9 80.9 76.0 57.1 60.5 77.4 47.9 19.0 59.8
PIP (Ours) 12.5 79.0 78.6 56.1 73.3 75.7 45.3 29.6 62.5

LLaMA2-13B Dense 28.9 80.6 79.1 60.0 72.4 79.4 48.5 35.2 65.0
LLM-Pruner 150.2 57.7 60.3 31.9 53.9 37.4 22.9 15.8 40.1
SliceGPT 64.3 38.2 65.0 39.5 65.5 61.3 33.4 28.0 47.3
ShortGPT 44.6 49.8 55.5 39.3 57.1 49.3 29.9 25.4 43.8
PIP (Ours) 41.8 63.3 74.5 50.5 62.0 58.8 37.4 25.0 53.1

LLaMA2-70B Dense 14.4 76.6 81.1 64.0 77.0 77.8 51.2 34.8 66.1
LLM-Pruner - - - - - - - - -
SliceGPT 33.9 70.1 76.3 52.7 76.6 76.4 47.0 32.6 61.7
ShortGPT 18.5 73.5 73.9 56.0 72.5 66.7 39.2 26.8 58.4
PIP (Ours) 17.2 80.7 77.0 57.8 73.4 70.7 43.6 29.4 61.8

Table 2: Zero-shot performance of LLMs with approximately 20% pruning ratio. “Dense” is the original unpruned
model. “↑” means higher is better and “↓” means lower is better. Bold values denote the best performance among
pruned models, underlined values the second-best. Abbreviations: HellaSwag (HeSwg), WinoGrande (WGrd),
ARC-Easy (ARC-E), ARC-Challenge (ARC-C), OpenBookQA (OBQA). “Avg.” represents the average score across
the seven benchmarks. “-” indicates incompatibility between pruning methods and specific LLMs.

Ratio Perturbation Iteration PPL↓

9.8% 30.7
31.3
43.4

19.5% 41.8
42.0
81.9

29.2% 53.3
67.4
99.8

Table 3: Ablation studies of LLaMA2-13B. “Ratio”:
Pruning Ratio; “ ”: Enabled; “ ”: Disabled.

4.4 More Analysis
4.4.1 Effect of Gradient Aggregation
In this section, we explore different gradient aggre-
gation strategies for model pruning, as shown in
Figure 3. Overall, the L2-norm outperforms the L1

(a) LLaMA3 (b) LLaMA2

Figure 3: Zero-shot performance of the pruned LLM
using PIP, across various gradient aggregation strategies.

and L∞ norms by assigning more weight to larger
gradients and mitigating extreme values. There-
fore, we recommend the L2-norm as the default for
general use. For more details, see Appendix D.2.

4.4.2 Effect of Calibration Data Volume
This section examines how calibration data volume
affects the zero-shot performance of LLMs pruned
using PIP. We use character swap and replacement

3691

Figure 4: Experiments of performance at various data
sizes. “Data Size” is the number of samples in the
calibration dataset. “Relative Accuracy” is the ratio
of the average accuracy of the pruned LLM on various
benchmarks to the average accuracy of the Dense model.

Figure 5: Impact of pruning ratio on pruning time.

techniques with the L2-norm for gradient aggrega-
tion. Figure 4 shows that PIP achieves high effi-
ciency with minimal calibration samples, demon-
strating “few-shot” learning capabilities. This sug-
gests that PIP can deliver strong performance with-
out requiring large datasets, addressing a common
limitation in practical applications. For more de-
tails, readers are referred to Appendix D.3.

4.4.3 Pruning Time Analysis
Let the average time for forward propagation in a
layer be tf , and backward propagation be tb. Using
the PIP method, the time required to prune m layers
of modelM is denoted as PTM(m). The second
finite difference of pruning time is calculated as:

△2PTM(m) = −(tf + tb), (8)

where △2 denotes the second finite difference.
This result implies constant second differences in
PTM(m), a hallmark of quadratic sequences. For
a detailed proof, please see Appendix B. This is
consistent with Figure 5, which shows quadratic
scaling of PIP pruning time for the LLaMA3-8B
model across datasets and sample sizes.

4.4.4 Effect of Pruning Ratio
As shown in Table 4, increasing the pruning ra-
tio from 29.2% to 39.0% reduces memory use and
latency, while causing only modest increases in per-
plexity and minor decreases in accuracy. Beyond
39.0%, further pruning yields diminishing resource

savings but leads to exponential increases in per-
plexity and substantial drops in accuracy. These
results demonstrate that a pruning ratio of approx-
imately 39.0% achieves the optimal balance be-
tween computational efficiency and model quality.

Ratio Memory TPOT PPL↓ Acc↑

29.2% 17.2GiB 46.8ms 53.3 48.9

39.0% 14.9GiB 41.2ms 95.8 44.7

48.7% 12.5GiB 35.3ms 379.0 38.5

58.5% 10.1GiB 29.1ms 1030.2 34.2

68.2% 6.5GiB 20.1ms 2549.7 33.1

78.0% 4.2GiB 14.5ms 22026.5 34.1

Table 4: Performance of PIP-pruned LLaMA2-13B.
“Ratio” is the pruning ratio, and “Acc” is the average
accuracy of the pruned model on various benchmarks.

4.4.5 Orthogonal to Quantization

Ratio Memory TPOT PPL↓ Acc↑

9.8% 11.4GiB 181.8ms 30.4 57.8

19.5% 10.2GiB 160.9ms 42.6 53.0

29.2% 9.0GiB 120.8ms 68.7 48.6

39.0% 7.7GiB 102.1ms 114.7 44.0

Table 5: Performance of quantized and PIP-pruned
LLaMA2-13B. “Ratio” refers to the pruning ratio, and
“Acc” represents the average accuracy of the quantized
and pruned model on various benchmarks.

PIP is orthogonal to other compression ap-
proaches. As shown in Table 5, combining 8-bit
quantization with PIP pruning achieves substantial
memory reduction and speed-ups while maintain-
ing acceptable perplexity and accuracy. This con-
firms that quantization and PIP pruning are fully or-
thogonal, enabling effective stacked compression.

5 Conclusion and Future Work

In this paper, we propose PIP, a novel perturbation-
based iterative structured pruning method that uni-
fies unperturbed and perturbed model views. It
demonstrates theoretical rigor and SOTA perfor-
mance across multiple benchmarks.

Future work could explore adaptive perturbation
mechanisms, like dynamic scaling or task-specific

3692

perturbations, to enhance the precision of pruning.
Additionally, we aim to collaborate with industry
partners to deploy PIP in real-world applications,
such as edge computing systems, to validate its
practicality and address potential issues.

Limitations

A key limitation of PIP is its current incompati-
bility with multimodal models. Tailored for text,
PIP’s perturbation and gradient analysis aren’t eas-
ily adaptable to diverse data types like images or
audio. This poses a challenge due to the unique
processing needs of different data forms. Conse-
quently, to broaden PIP’s applicability, it’s crucial
to develop methods that handle multimodal data
complexities. Overcoming this limitation will en-
hance PIP’s utility in various AI applications.

Acknowledgements

This work is supported by the National Natural
Science Foundation of China (Grant No. 62272334,
6257073827).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gen-
nari Do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin,
Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
2021. BinaryBERT: Pushing the limit of BERT quan-
tization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4334–4348, Online. Association for Computa-
tional Linguistics.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
and 1 others. 2020. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Steven Davy. 2024. Tailored-llama: Optimizing few-
shot learning in pruned llama models with task-
specific prompts. In European Conference on Ar-
tificial Intelligence.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi,
and Xinchao Wang. 2023. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 16091–16101.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10323–10337. PMLR.

Yaroslav Ganin, E. Ustinova, Hana Ajakan, Pascal
Germain, H. Larochelle, François Laviolette, Mario
Marchand, and Victor S. Lempitsky. 2015. Domain-
adversarial training of neural networks. In Journal
of machine learning research.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Jesus Guerrero, Gongbo Liang, and Izzat Alsmadi. 2023.
Adversarial text perturbation generation and analy-
sis. 2023 3rd Intelligent Cybersecurity Conference
(ICSC), pages 67–73.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in neural infor-
mation processing systems, 28.

3693

https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://api.semanticscholar.org/CorpusID:273589318
https://api.semanticscholar.org/CorpusID:273589318
https://api.semanticscholar.org/CorpusID:273589318
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://api.semanticscholar.org/CorpusID:2871880
https://api.semanticscholar.org/CorpusID:2871880
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://api.semanticscholar.org/CorpusID:266409185
https://api.semanticscholar.org/CorpusID:266409185

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834, 11.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
2022. A fast post-training pruning framework for
transformers. Advances in Neural Information Pro-
cessing Systems, 35:24101–24116.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for on-
device llm compression and acceleration. In Proceed-
ings of Machine Learning and Systems, volume 6,
pages 87–100.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
linguistics, 19(2):313–330.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. arXiv
preprint arXiv:2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang
Zhang, Yaliang Li, and Jun Huang. 2021. Meta-
KD: A meta knowledge distillation framework for
language model compression across domains. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 3026–
3036, Online. Association for Computational Lin-
guistics.

Rajarshi Saha, Varun Srivastava, and Mert Pilanci. 2023.
Matrix compression via randomized low rank and
low precision factorization. Advances in Neural In-
formation Processing Systems, 36.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. SLEB:
Streamlining LLMs through redundancy verification
and elimination of transformer blocks. In Proceed-
ings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine
Learning Research, pages 46136–46155. PMLR.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2024. A simple and effective pruning approach for
large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Siqi Sun, Zhe Gan, Yuwei Fang, Yu Cheng, Shuohang
Wang, and Jingjing Liu. 2020. Contrastive distil-
lation on intermediate representations for language
model compression. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 498–508, Online. Asso-
ciation for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 6151–
6162. Association for Computational Linguistics.

Thomas Wolf. 2020. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2024. Sheared llama: Accelerating language
model pre-training via structured pruning. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

3694

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://doi.org/10.18653/v1/2021.acl-long.236
https://doi.org/10.18653/v1/2021.acl-long.236
https://doi.org/10.18653/v1/2021.acl-long.236
https://proceedings.mlr.press/v235/song24f.html
https://proceedings.mlr.press/v235/song24f.html
https://proceedings.mlr.press/v235/song24f.html
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://doi.org/10.18653/v1/2020.emnlp-main.36
https://doi.org/10.18653/v1/2020.emnlp-main.36
https://doi.org/10.18653/v1/2020.emnlp-main.36
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.496
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 1513–1528. Association for
Computational Linguistics.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang
Wu, Yan Yan, and Guangyu Sun. 2023. Asvd:
Activation-aware singular value decomposition for
compressing large language models. arXiv preprint
arXiv:2312.05821.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

A Definition of Norm

In this section, we provide the formal definitions of
the norms used in the main text, specifically the L1,
L2, and L∞ norms. These norms are commonly
used in various mathematical and computational
contexts to measure the magnitude of vectors.

A.1 L1-norm
For a vector x = (x1, x2, . . . , xn) ∈ Rn, the L1-
norm (also known as the Manhattan norm or Taxi-
cab norm) is defined as:

∥x∥1 =
n∑

i=1

|xi|. (9)

This norm represents the sum of the absolute values
of the vector components.

A.2 L2-norm
The L2-norm (also known as the Euclidean norm)
is perhaps the most commonly used norm. For a
vector x = (x1, x2, . . . , xn) ∈ Rn, it is defined as:

∥x∥2 =

√√√√
n∑

i=1

x2i . (10)

This norm represents the Euclidean length of the
vector, which is the geometric distance from the
origin to the point represented by the vector in n-
dimensional space.

A.3 L∞-norm
The L∞-norm (also known as the maximum norm
or infinity norm) is defined as:

∥x∥∞ = max
i
|xi|. (11)

This norm represents the maximum absolute value
among the vector components.

Model Ratio Pruned Layers

LLaMA3-8B 19.0%22, 18, 23, 28, 19, 21, 27

LLaMA3-70B19.4%
06, 11, 46, 50, 75, 34, 49, 04,
20, 25, 48, 57, 60, 56, 55, 58

LLaMA2-13B19.5%36, 31, 28, 13, 35, 25, 38, 23

LLaMA2-70B19.9%
59, 29, 67, 26, 60, 61, 50, 43,
58, 57, 31, 17, 56, 74, 62, 49

Table 6: Pruned models by PIP in our main experiments.

B Proof of Constant Second Differences

We prove that if the second finite difference of prun-
ing time satisfies△2PTM(m) = −(tf+tb) for all
m, then PTM(m) must be a quadratic sequence.

Proof. Let△2PTM(m) ≡ −(tf + tb) be constant.
By definition, the second difference is the differ-
ence of consecutive first differences:

△PTM(m+ 1)−△PTM(m) = −(tf + tb).
(12)

This implies that the first differences△PTM(m)
form an arithmetic sequence with common differ-
ence −(tf + tb). Explicitly, for the initial first
difference△PTM(0), we have:

△PTM(m) = △PTM(0)− (tf + tb)m. (13)

The pruning time PTM(m) is then the cumula-
tive sum of these first differences:

PTM(m)

= PTM(0) +

m−1∑

k=0

△PTM(k)

= PTM(0) +
m−1∑

k=0

[△PTM(0)− (tf + tb)k]

= PTM(0) +m△PTM(0)

− (tf + tb)
m(m− 1)

2
. (14)

Letting a ≡ − tf+tb
2 , b ≡ △PTM(0) +

tf+tb
2 ,

and c ≡ PTM(0), this simplifies to:

PTM(m) = am2 + bm+ c, (15)

which is explicitly a quadratic function of m.

3695

https://doi.org/10.18653/V1/2022.ACL-LONG.107
https://doi.org/10.18653/V1/2022.ACL-LONG.107

C The Main Experiment

Our main experiments validate PIP across four
model scales (8B-70B parameters), with pruned
models in Table 6. All configurations use fewer
than 10 calibration samples from WikiText2 and
employ the L2-norm gradient aggregation strategy.

D More Analysis

D.1 Generalization to Other Series’ LLMs

We aim to demonstrate the generalization capability
of our PIP pruning method beyond the LLaMA
models. We have conducted extensive experiments
on the OPT series of models with varying scales
(ranging from 1.3B to 13B parameters) to validate
the effectiveness and robustness of our approach.
The results are summarized in Table 7.

D.2 Effect of Gradient Aggregation

We systematically evaluate gradient aggregation
norms (L1, L2, L∞) across model architectures
under controlled pruning settings. The LLaMA3-
8B experiments employ 8 calibration samples with
character swap perturbation and 7-layer pruning,
while LLaMA2-13B utilizes 4 samples with char-
acter replacement perturbation and 8-layer pruning.
Table 8 presents the zero-shot benchmark results
under various gradient aggregation strategies.

D.3 Effect of Calibration Data Volume

For LLaMA3-8B, experiments use WikiText2 as
the calibration dataset. Layer importance scores are
computed through L2-norm aggregation of gradi-
ents, computing layer importance via L2-norm ag-
gregation of gradients under character swap pertur-
bation. The LLaMA2-13B configuration maintains
the L2-norm aggregation and dataset while em-
ploying character-replacement perturbation. The
complete lists of pruned layers (0-indexed) under
each condition are provided in Table 9.

D.4 Effect of Pruning Ratio

We systematically evaluate the performance degra-
dation of LLaMA3 and LLaMA2 models under in-
creasing pruning ratios (10%–30%), as detailed in
Table 10. As pruning ratios rise (10%→30%), both
LLaMA3 and LLaMA2 show sharp performance
drops. Commonsense tasks (ARC-Challenge,
OBQA) decline the most, while language tasks
(BoolQ, WinoGrande) are more robust.

D.5 Effect of Text Perturbation Method
The experiments are conducted on LLaMA3-8B
under three text perturbation methods (Swap, Re-
place, Insert) with fixed configurations: 4 calibra-
tion samples, L2-norm gradient aggregation. Ta-
ble 11 compares the zero-shot performance across
various benchmarks under different text perturba-
tion methods. All perturbation methods degrade
LLaMA3’s zero-shot performance, with Replace
showing the least decline.

D.6 Effect of Calibration Dataset
The experiments evaluate the LLaMA3-8B model
under three calibration datasets (WikiText2, PTB,
Alpaca) with fixed configurations: 8 calibration
samples, swap-based text perturbation, L2-norm
gradient aggregation. Table 12 shows that PIQA
and WinoGrande are stable across datasets, while
ARC-Challenge declines sharply on PTB.

D.7 Short Generations from Pruned Models
The examples in Table 13 clearly demonstrate
that the pruned LLMs, despite undergoing the PIP
pruning method, retain robust language expression
capabilities. For instance, the pruned LLaMA3
model is capable of generating a coherent and
insightful statement about the impact of AI on
the business world, highlighting its potential to
change the future of work. Similarly, the pruned
LLaMA2 model provides a comprehensive intro-
duction to NLP, emphasizing its role in processing
human languages and extracting valuable insights
from unstructured text data. These examples val-
idate our pruning methodology’s effectiveness in
preserving core linguistic competencies, particu-
larly in: technical semantic preservation, syntactic
coherence across multi-clause constructions, and
domain-appropriate register consistency.

D.8 Long Generations from Pruned Models
Tables 14 and 15 demonstrate that models pruned
via the PIP method retain text generation quality
comparable to their dense counterparts. Pruned
models preserve logical coherence and domain-
specific knowledge (e.g., technical terminology and
contextual reasoning), with minimal degradation
in fluency and factual accuracy, validating PIP’s
capability to identify and retain critical layers.

3696

Model Ratio Memory TPOT PPL↓

OPT-1.3B Dense 2.4508GiB 29.5556ms 16.9137
12.5% 2.1694GiB 27.5401ms 20.4018
20.8% 1.9818GiB 26.0304ms 38.7159
29.2% 1.7942GiB 24.5175ms 98.8645

OPT-2.7B Dense 4.9395GiB 41.3229ms 15.1614
12.5% 4.3533GiB 40.8443ms 19.4676
21.9% 3.9137GiB 30.1659ms 24.9969
31.2% 3.4740GiB 23.1771ms 44.5617

OPT-6.7B Dense 12.4024GiB 45.1802ms 13.1724
12.5% 10.9020GiB 35.8956ms 15.6426
21.9% 9.7767GiB 33.8391ms 19.7741
31.2% 8.6514GiB 31.9243ms 35.2512

OPT-13B Dense 23.9415GiB 71.5918ms 12.3743
10.0% 21.5972GiB 57.4137ms 14.0220
20.0% 19.2530GiB 50.1614ms 17.7254
30.0% 16.9087GiB 46.7974ms 23.8522

Table 7: Pruning Results on OPT Models.

Model Norm Pruned Layers BoolQ↑ PIQA↑ HeSwg↑ WGrd↑ ARC-E↑ ARC-C↑ OBQA↑ Avg.↑

LLaMA3 Dense – 81.4 79.7 60.2 72.5 80.1 50.5 34.8 65.6

L1
23, 18, 29, 22,

49.8 54.1 33.7 57.1 41.5 27.0 27.4 41.5
11, 17, 10

L2
23, 22, 18, 19,

52.3 53.8 35.5 59.4 41.0 30.9 29.0 43.1
28, 20, 31

L∞
20, 13, 18, 23,

56.9 54.9 33.6 54.1 34.7 26.3 24.8 40.7
12, 28, 22

LLaMA2 Dense – 80.6 79.1 60.0 72.4 79.4 48.5 35.2 65.0

L1
00, 34, 35, 09,

37.9 51.7 25.6 48.0 25.5 22.4 11.8 31.8
12, 27, 10, 33

L2
36, 31, 28, 13,

63.3 74.5 50.5 62.0 58.8 37.4 25.0 53.1
35, 25, 38, 23

L∞
30, 27, 24, 03,

62.1 63.9 38.3 55.6 44.6 25.3 16.4 43.8
28, 29, 17, 13

Table 8: Zero-shot performance under different gradient aggregation strategies.

3697

Model Cnt. Pruned Layers BoolQ↑ PIQA↑ HeSwg↑ WGrd↑ ARC-E↑ ARC-C↑ OBQA↑ Avg.↑

LLaMA3 Dense – 81.4 79.7 60.2 72.5 80.1 50.5 34.8 65.6

2
23, 22, 18, 30,

74.0 68.7 42.8 68.9 57.7 34.9 25.4 53.2
25, 27, 26

4
31, 22, 24, 25,

62.3 70.1 41.8 61.2 61.8 37.1 28.4 51.8
30, 28, 07

8
23, 18, 22, 19,

76.0 69.1 44.5 67.1 55.7 34.4 24.8 53.1
28, 21, 20

16
23, 31, 24, 21,

70.5 68.4 45.5 63.6 56.7 38.3 27.4 52.9
25, 22, 18

32
31, 30, 22, 10,

65.9 68.0 40.1 59.7 56.3 31.3 25.4 49.5
05, 17, 21

64
31, 25, 23, 22,

66.2 70.2 47.8 65.4 58.5 39.5 28.8 53.8
28, 24, 19

LLaMA2 Dense – 80.6 79.1 60.0 72.4 79.4 48.5 35.2 65.0

2
09, 25, 34, 21,

62.5 73.9 49.0 60.7 65.2 32.7 25.4 52.8
14, 19, 31, 06

4
36, 31, 28, 13,

63.3 74.5 50.5 62.0 58.8 37.4 25.0 53.1
35, 25, 38, 23

8
34, 36, 31, 21,

64.8 73.0 50.3 64.1 60.4 33.8 24.2 52.9
26, 22, 07, 05

16
29, 08, 27, 30,

62.4 74.0 51.6 64.3 60.9 37.3 26.0 53.8
25, 35, 23, 17

32
31, 33, 17, 23,

69.4 73.8 49.9 62.1 57.2 31.9 25.8 52.9
32, 19, 16, 14

64
36, 33, 17, 30,

62.8 74.4 52.4 63.5 61.7 36.9 27.0 54.1
24, 27, 13, 31

Table 9: Zero-shot performance across different calibration sample counts (Cnt.).

Model Ratio Pruned Layers BoolQ↑ PIQA↑ HeSwg↑ WGrd↑ ARC-E↑ ARC-C↑ OBQA↑ Avg.↑

LLaMA3 Dense – 81.4 79.7 60.2 72.5 80.1 50.5 34.8 65.6
10.9% 22, 18, 23, 28 78.8 75.2 53.2 72.8 71.0 43.3 29.4 60.5

19.0%
22, 18, 23, 28

70.9 69.6 44.7 69.4 57.9 35.1 26.8 53.5
19, 21, 27

29.9%
22, 18, 23, 28

43.5 63.0 36.4 56.2 43.3 30.0 25.0 42.519, 21, 27, 10
25, 06, 31

LLaMA2 Dense – 80.6 79.1 60.0 72.4 79.4 48.5 35.2 65.0
9.8% 36, 31, 28, 13 63.0 76.1 56.0 66.1 67.4 41.6 30.4 57.2

19.5%
36, 31, 28, 13

63.3 74.5 50.5 62.0 58.8 37.4 25.0 53.1
35, 25, 38, 23

29.2%
36, 31, 28, 13

62.4 71.3 45.9 58.4 46.9 33.9 23.8 48.935, 25, 38, 23
17, 26, 29, 30

Table 10: Zero-shot performance comparison across different pruning ratios. “Ratio” refers to the pruning ratio.

3698

Model TPM Pruned Layers BoolQ↑ PIQA↑ HeSwg↑ WGrd↑ ARC-E↑ ARC-C↑ OBQA↑ Avg.↑

LLaMA3 Dense – 81.4 79.7 60.2 72.5 80.1 50.5 34.8 65.6

Swap
23, 22, 31, 25,

63.9 69.5 44.7 63.6 58.7 36.0 31.2 52.5
16, 26, 30

Replace
22, 18, 23, 28,

70.9 69.7 44.8 69.6 58.0 35.1 27.4 53.6
19, 21, 27

Insert
23, 18, 31, 28,

71.3 70.2 47.6 64.4 57.8 36.3 25.0 53.2
22, 27, 03

Table 11: Zero-shot performance under different text perturbation methods. “TPM”: Text Perturbation Method.

Model CD Pruned LayersBoolQ↑PIQA↑HeSwg↑WGrd↑ARC-E↑ARC-C↑OBQA↑Avg.↑

LLaMA3 Dense – 81.4 79.7 60.2 72.5 80.1 50.5 34.8 65.6

WikiText2
31, 28, 26, 29,

80.6 69.3 42.8 62.3 61.2 39.2 30.6 55.1
23, 25, 30

PTB
23, 18, 28, 22,

72.1 70.6 44.6 66.6 54.8 32.9 24.0 52.2
19, 21, 13

Alpaca
31, 30, 29, 28,

80.5 70.7 42.7 63.1 60.5 38.6 30.4 55.2
23, 25, 27

Table 12: Zero-shot performance comparison across different calibration datasets. “CD”: Calibration Dataset.

Model Example

LLaMA3

AI will be widely used in all areas of business, says Bjarne Corydon. The minister of business
and growth, Bjarne Corydon is excited about what AI is doing to the Danish business world.
AI will change the world of work: this is what the Gartner report reveals. In the coming years,
AI will have a large impact on the entire business, as well as the daily life of employees.

LLaMA2

NLP is a way of applying computational processing to natural human languages that we use to
communicate with each other. This course will give you an introduction to NLP, and how it
can be leveraged to derive useful insights from unstructured text data.
NLP is the science that focuses on linguistic data. It is an AI methodology that combines
computer science and artificial intelligence. This science focuses on linguistic input, output,
understanding, processing, or interaction. It is used to process human languages.

Table 13: Examples from the original model and the pruned model. “ ” indicates whether it is pruned. The
underline highlights the prompt provided to the LLM.

3699

Model Example

LLaMA3

Large Language Models will not replace us with AI – but they will help us automate our day-
to-day work. AI has always been portrayed as the main reason behind replacing human labour
with machine labour in many fields. For example, driverless cars and automated machines
that replace employees are all examples of how AI will “replace” humans. However, AI has
never replaced us, but has helped us automate many of our day-to-day operations and we will
continue to see that trend of using AI in automation. One of the main reasons why AI has
helped us improve our day-to-day work is that it is able to process, analyse and understand
massive amounts of data. Large Language Models (LLMs) are a good example of this. LLMs
can be a very useful tool to help us become more productive and improve our workflows.
LLMs can also help us in many different ways, depending on what we are looking for, and
they can be used in different ways. LLMs are able to process, analyse and understand massive
amounts of text in many different ways. For example, they can be used to find information in a
large amount of text, to do sentiment analysis, or to create new text. LLMs can also be used to
do translation or to do a search in a large number of different languages. There are many tools
available that allow us to work with LLMs, such as GPT-3 from OpenAI, which is one of the
most powerful tools in the LLM space. LLMs can also be used to do sentiment analysis of text
and we can use it in many different ways to help us become more productive and to improve
our workflow. We can use LLMs to understand what is the sentiment of a large amount of text,
to detect negative or positive sentiments in text, or to help us make decisions in our daily work.
There are many ways to use LLMs to automate our day-to-day work. For example, we can use
LLMs to help us become more productive and to improve our workflow by doing sentiment
analysis. We can use LLMs to analyse large amounts of data and to analyse the sentiment of a
large amount of text.
Large Language Models will be the next killer apps. The way these LLMs are developed is
not only more efficient but also very innovative in terms of how the LLMs are built, the use of
compute to build the LLM, and how they train and generate LLMs. What’s more, we are seeing
a change in how LLMs are used for tasks, with an increasing number of LLMs being used to
train other AI models. This has opened up a huge market for LLMs, creating a great opportunity
for companies like Cytora and Credence to tap into. In this article, we explore the benefits
of this new wave of AI development, and how companies can capitalize on the opportunities
presented by these new AI innovations. Large language models (LLMs) have been a focus of
AI innovation for some time, and there are many ways they can be developed. However, the
most effective and efficient way to develop LLMs is to use a lab environment that is specific to
LLM development. There are two main approaches to developing LLMs: traditional computing
methods, which require large amounts of computing power and data, and cloud-based LLMs,
which can be developed much more quickly and inexpensively. There are several reasons
why it is better to develop LLMs in an AI innovation lab than in a traditional development
environment. First, the cloud-based LLM development process allows for much greater scale.
With only a few machines in use, LLM developers can achieve huge breakthroughs, such as
improving text generation accuracy. Second, cloud-based LLM development also allows for
a much more nimble process. Instead of waiting for computers to complete tasks one at a
time, developers can use a variety of machines to speed up their work. This speeds up the
entire process, making it easier to get feedback from stakeholders and improving the overall
experience of working with LLMs. How LLMs Can Be Used to Train Other AI Models. Large
language models (LLMs) have been a driving force in the development of Artificial Intelligence
(AI) over the years.

Table 14: Examples generated by the original model and the pruned model. “ ” indicates whether it is pruned.
The underline highlights the prompt provided to the LLM.

3700

Model Example

LLaMA2

Large Language Models will be ubiquitous in business and government within 5-7 years,
predicts PwC by James Sanders in Artificial Intelligence on January 30, 2023, 11:41 AM
PST. Large Language Models such as OpenAIś GPT-3 are becoming increasingly prevalent
for a wide variety of business applications, the consulting firm said. Image: Bjorn Rune Lie,
Getty Images. The adoption rate of large language models—AI models trained on massive
amounts of natural language data—will increase rapidly as businesses look to improve customer
engagement and operational efficiencies. According to a report by PwC, 65% of senior business
executives indicated that large language models are a top investment area, and 53% said that
this is the largest investment area for AI technology in the coming year. "Making AI more
accessible, through advances such as large language models, is essential to the democratization
of the technology, which could bring a range of business benefits to organizations," said John
Garner, global AI leader at PwC, in a statement accompanying the report. SEE: The ethical
dilemmas of AI (ZDNET/TechRepublic special feature) | Download the free PDF version
(TechRepublic) PwCś 2023 Global Artificial Intelligence Survey found that the use of natural
language processing technologies is rapidly growing in the workplace. The technology is being
used by 36% of respondents to "identify risks or anomalies in client engagement," and by 35%
of respondents to "increase the effectiveness and efficiency of operations." AI is also used to
drive productivity: 25% of respondents indicated that AI is used to "enable the creation of
new product and service offerings." The growing ubiquity of large language models in the
workplace is also a factor driving widespread awareness: 55% of business executives indicated
that large language models are "extremely important" to business success and operations, and
79% of employees said that they know of AI, a slight increase from last yearś survey.
Large Language Models will be used for everything from translation to financial services to
healthcare. There are endless benefits to utilizing LLMs like ChatGPT, like saving money
and time on repetitive tasks that are time-consuming or impossible to automate, and getting
better answers than we could on our own. As AI gets more accessible to average users, a more
accessible education in AI is more important than ever. The ChatGPT revolution has arrived. If
you are a regular user of Google search or Twitter, you’ve probably already noticed. ChatGPT
was released to the public in November 2022 by an organization called OpenAI. The platform
uses artificial intelligence to create intelligent chatbot responses to user prompts. As a result, it
has the potential to revolutionize the way we interact with technology. With ChatGPT, you can
write essays, do your taxes, and ask questions like “Who wrote Romeo and Juliet?” or “Where
is the nearest Walmart?” in chat format. It’s accessible, fast, and most importantly, free. It’s
clear that LLMs are a powerful tool with enormous applications and capabilities. But what,
exactly, is an LLM, and why is this technology so different from other language models that
have been developed? What Are Large Language Models? An LLM is a type of language
modeling that produces language using machine learning algorithms based on large amounts of
training data. It’s a relatively new development in the field of artificial intelligence, and it has
become increasingly popular in recent years due to the advances in natural language processing
and understanding that have been made. One of the main reasons for this is that large language
models are capable of producing language that is more sophisticated and accurate than ever
before. There are a few key reasons why large language models are different from other
language models: They are based on very large amounts of data: This is the key characteristic
that sets LLMs apart from other language models. Because of the amount of data used, these
models can be trained to perform more complex tasks and generate more human-like text.

Table 15: Examples generated by the original model and the pruned model. “ ” indicates whether it is pruned.
The underline highlights the prompt provided to the LLM.

3701

