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Abstract

Large language models (LLMs) have advanced
general-purpose reasoning, showing strong per-
formance across diverse tasks. However, ex-
isting methods often rely on implicit explo-
ration, where the model follows stochastic and
unguided reasoning paths—Ilike walking with-
out a map. This leads to unstable reasoning
paths, lack of error correction, and limited
learning from past experience. To address these
issues, we propose a framework that shifts
from implicit exploration to structured reason-
ing through guideline and refinement. First, we
extract structured reasoning patterns from suc-
cessful trajectories and reflective signals from
failures. During inference, the model follows
these guidelines step-by-step, with refinement
applied after each step to correct errors and sta-
bilize the reasoning process. Experiments on
BBH and four additional benchmarks (GSMS8K,
MATH-500, MBPP, HumanEval) show that our
method consistently outperforms strong base-
lines across diverse reasoning tasks. Struc-
tured reasoning with stepwise execution and re-
finement improves stability and generalization,
while guidelines transfer well across domains
and flexibly support cross-model collaboration,
matching or surpassing supervised fine-tuning
in effectiveness and scalability.

1 Introduction

Large language models (LLMs) (Achiam et al.,
2023; OpenAl, 2024; Meta Al, 2024) have demon-
strated strong generalization across diverse do-
mains, including mathematics (Imani et al., 2023),
logical reasoning (Pan et al., 2023), language un-
derstanding (Nam et al., 2024; An et al., 2024), and
specialized applications such as finance (Yu et al.,
2025; Chen et al., 2025). While in-context learn-
ing (ICL) enables flexible adaptation, LLMs con-
tinue to struggle with complex multi-step reasoning
tasks—including planning, symbolic manipulation,
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Figure 1: Comparison between Implicit Exploration
and Structured Reasoning. Left: Implicit exploration
is like walking on a rough path without a map—lacking
clear direction, it often leads to unstable and error-prone
reasoning. Right: Structured reasoning resembles driv-
ing with a roadmap: the guideline offers a global route,
refinement helps correct deviations along the way, and
the entire reasoning process remains smoother and more
stable—like navigating a wide, well-marked road.
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and structured decision-making—which are essen-
tial for many real-world applications. Overcoming
these limitations is critical for improving both the
theoretical understanding and practical reliability
of LLM-based systems.

Recent work has made progress toward this
goal. Many researchers have explored advanced
reasoning paradigms built on Chain-of-Thought
(CoT)(Wei et al., 2022; Brown et al., 2020; Ko-
jima et al., 2022; Wang et al., 2022) prompt-
ing. ReAct(Yao et al., 2023b) introduces a
"thought—action—observation" cycle that enables in-
teraction with the environment and self-evaluation.
Tree-of-Thought (ToT)(Yao et al., 2023a) repre-
sents reasoning as a search over tree-structured
trajectories, encouraging exploration of multiple

3672

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3672-3684
November 4-9, 2025 ©2025 Association for Computational Linguistics



possibilities. Beats (Sun et al., 2024) and FoT(Bi
et al., 2024) use MCTS(Chaslot et al., 2008) and
voting to improve robustness. Notably, few-shot
CoT and FoT attempt to leverage prior examples
to improve reasoning. Although these approaches
represent progress toward more structured reason-
ing, they still operate under an implicit reasoning
paradigm: they leverage past examples in limited
ways, lack global guidance, and offer no principled
mechanism for error correction.

Nevertheless, implicit reasoning methods face
three persistent challenges in complex multi-step
tasks.  First, models often struggle to learn
from prior experience and extract reusable strate-
gies—reasoning is executed from scratch without
leveraging past successes. Second, reasoning tra-
jectories are frequently unstable. In the absence
of a well-defined global structure, models tend to
deviate from valid reasoning paths, leading to the
compounding of early-stage errors. Third, existing
methods lack mechanisms for error recovery; once
a reasoning path is taken, there is typically no re-
flection or correction. As illustrated in Figure 1,
these limitations underscore the need to move from
implicit exploration toward structured reasoning
guided by learned strategies and iterative refine-
ment.

Therefore, we propose a structured reasoning
framework based on guideline extraction and step-
wise refinement to address three key challenges in
complex reasoning: unstable reasoning paths, lack
of error correction, and limited use of learned ex-
perience. The framework consists of two stages.
First, we extract structured reasoning patterns and
key decision points from successful trajectories to
form generalizable guidelines. In parallel, we ana-
lyze failed cases to identify typical error patterns,
which serve as reflective signals. Second, during in-
ference, the model follows the extracted guideline
step by step. After each step, a refinement module
evaluates the intermediate output and applies tar-
geted corrections. This procedure introduces global
planning, enables error recovery, and incorporates
experiential learning.

We evaluate our approach on complex reason-
ing tasks from the Big-Bench Hard (BBH) bench-
mark (Suzgun et al., 2023) across multiple models.
Our framework consistently outperforms strong
baselines—including CoT, ReAct, ToT, Beats and
FoT—achieving notable gains in both accuracy and
stability. Further analysis reveals that step-wise
execution enhances reasoning coherence through

explicit decomposition, refinement enables real-
time error correction, and experience-based learn-
ing produces effective instructions that outperform
implicit self-planning. We also investigate model
collaboration in the refinement stage, providing in-
sights into cross-model interactions and division
of labor. Additionally, inspired by prior work (Dai
et al., 2023) that frames ICL as implicit opti-
mization, we compare our method to supervised
fine-tuning (SFT) using the same model (LLaMA-
3.3-70B), and observe better generalization across
tasks. These findings suggest that structured rea-
soning with guideline and refinement not only im-
proves interpretability and reliability, but also holds
promise for scalable deployment in more complex
and practical real-world scenarios.
Our main contributions are:

* We introduce a structured reasoning frame-
work that transitions from implicit exploration
to explicit process modeling through guideline
extraction and stepwise refinement.

We propose and validate three mechanisms
for structured reasoning: stepwise execution
improves stability, refinement enables error
correction, and experience-based learning pro-
duces reusable strategies.

Our method consistently outperforms strong
baselines on BBH tasks across model scales.
We further investigate inter-model collabora-
tion during refinement and demonstrate that
our structured approach surpasses supervised
fine-tuning (SFT) on LLaMA-3.3-70B, offer-
ing a scalable and interpretable alternative for
complex reasoning.

2 Related Work

2.1 In-Context Learning

In-Context Learning (ICL) (Zhao et al., 2023;
Huang and Chang, 2022) allows LLMs to perform
tasks by conditioning on input examples without
updating parameters (Kojima et al., 2022; Brown
et al., 2020; Dong et al., 2024; Zhang et al., 2025).
Auto-CoT (Zhang et al.) enriches prompts by gen-
erating reasoning chains, while Many-shot (Agar-
wal et al., 2024) and From Few to Many (Wan
et al., 2025) improve performance by selecting bet-
ter exemplars, which often via optimization over
example pools. Despite better exemplars, prior ICL
methods fail to abstract reasoning structure—our
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approach learns structured guidelines to guide sta-
ble and adaptive reasoning.

2.2 Chain-of-Thought Reasoning

Chain-of-Thought (CoT) (Wei et al., 2022; Huang
and Chang, 2022; Hao et al., 2023) enhances in-
terpretability via step-wise reasoning, while Re-
Act (Yao et al., 2023b) integrates reasoning with ac-
tions. Tree-of-Thought (ToT) and its variants (Yao
et al., 2023a; Besta et al., 2024; Bi et al., 2024)
structure inference as multi-path search. Recent
methods like Beats (Sun et al., 2024), FoT (Bi
et al., 2024), and HiAR-ICL (Wu et al., 2024) em-
ploy MCTS to improve exploration and consistency.
However, they often overlook fine-grained step cor-
rection. In contrast, our method extracts structured
plans and applies step-wise refinement for more
stable and efficient reasoning.

3 Method

We propose a structured reasoning framework that
transitions from implicit exploration to explicit,
guideline-driven reasoning. Our method is built
on two complementary components:

Guideline Learning: Automatically extracts sta-
ble reasoning patterns from correct examples and
summarizes reflective signals from failure cases to
form structured, step-wise guidelines.

Guided Execution with Refinement: Lever-
ages learned guidelines to conduct reasoning step-
by-step during inference, with refinement applied
to each intermediate result for enhanced robustness.

3.1 Guideline Learning

To improve reasoning reliability, we introduce an
automatic guideline learning module that distills
structured reasoning steps from both correct and
incorrect model trajectories.

Given an input z, the model first generates an
initial reasoning process R = (r1,79,...,77,9),
where r; corresponds to the ¢-th step in the reason-
ing process. The final output ¢ is then compared
with the ground-truth label y*:

- If § = y*, we extract key reasoning steps and
summarize stable reasoning patterns.

-If § # y*, we analyze the trajectory to identify
common reasoning failures and potential improve-
ments.

We define two functions: fex extracts effec-
tive reasoning patterns from (x, R,y*), produc-
ing guideline candidates G. fir analyzes failures

in (z, R, y*) to generate mistake-aware reflections
M:

g = fext($7 R, y*)

M = fref(xa Ra y*)

After processing all samples in the train-set of
dataset D, we aggregate the learned guidelines into
a final structured guideline steps Gr,where fago
induces patterns across all examples to form G =
(G1,Ga,...,Gr), among them T is the length of
reasoning steps.

Gr = fagg(g(l)’ g(2)7 o ’g(N))

Here, Gr = (G1, G2, ..., Gr) represents a step-
wise reasoning guideline synthesized across all ex-
amples.

Algorithm 1 Guideline Learning

Require: Training set D with samples (z, y*)
1: Initialize reasoning guideline buffer
2 gbuffer < @
3. for each sample (z,y*) € D do
4 Generate initial reasoning path
5 RZ(Tl,Tg,...,T’T,g)
6: if § = y* then
7 Extract reasoning steps
8 g= fext(vavy*)
9

else
10 Reflect on errors and prevent mistakes
1L M = fref(x7R7y*)
12: end if
13: Store:
14: Gbuffer < Gbuffer U G or M
15: end for

16: Aggregate final guideline: Gr = fage(Gbutfer)
17: return Learned guideline steps Gr

3.2 Guided Execution with Refinement

Once guidelines G are learned, we use them to
guide step-wise inference and perform dynamic
refinements to ensure reasoning stability.

For an input « and learned guideline set Gr, the
model executes reasoning step-by-step:

Tt = f execute(l' , gt)

where fexecute generates the current reasoning step
r¢ based on input x and the structured guideline
gr.

After executing each step 7, we inspect the re-
sult for common errors captured in the guideline G;.
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Figure 2: Overview of our framework. Left: The Guideline Learning module extracts reasoning steps from
successful cases and identifies common mistakes from failed ones, summarizing them into generalizable guidelines.
Right: During inference, the model follows the learned guidelines step by step, with continuous refinement to

correct errors and improve reasoning stability.

When an issue is found, we apply the associated
prevention strategy to produce a refined step.

We define an function fifine that refines the rea-
soning step:

T;tk = freﬁne(xa Tt, gt)

where 7} is the refined step that improves reasoning
stability.

After all reasoning steps are executed and re-
fined, the final output is derived as,where R =
[r1,72, ..., 7] is the final refined reasoning steps:

ZA/ = fﬁnal(R)

where fhnq integrates the reasoning sequence R to
extract the final answer 9.

Algorithm 2 Guided Execution with Refinement

Require: Input z, learned guideline steps G
1: Initialize reasoning path R < ()
2: for each step ¢ do
3: Execute current step

r; = execute(z, R, G;)

Append to reasoning path

A A

R+ RU {Tt}
Refine step result:
8: Ty < freﬁne(x7 T't, gt)
9: end for

10: Extract final conclusion y = ffinai(R)
11: return final output y

4 Experiments

4.1 Experimental Setup

Datasets We primarily conduct experiments on
eight diverse subsets from the BBH benchmark:

Causal Judgement, Formal Fallacies, Geometric
Shapes, Hyperbaton, Logical Deduction_7, Nav-
igate, Salient Translation Error Detection, and
Multi-step Arithmetic. For clarity, we group these
tasks into three categories and use their abbrevia-
tions throughout the paper. Following a consistent
protocol, we randomly select 25% of each dataset
for training (guideline extraction) and use the re-
maining 75% for evaluation, with all reported re-
sults based on the held-out test sets.

Mathematical Reasoning: Geometric Shapes
(GS), Multi-step Arithmetic (MA), Navigate (NA)

Logical Reasoning: Causal Judgement (CJ),
Formal Fallacies (FF), Logical Deduction_7 (LD)

Content Understanding: Hyperbaton (HY),
Salient Translation Error Detection (ST)

To further assess generality beyond BBH, we ad-
ditionally evaluate on GSM8K, MATH-500, MBPP,
and HumanEval. For all these datasets, we follow
the same sampling strategy: 25% of the data is used
for training guideline extraction, and the remaining
75% for evaluation.

Models We evaluate on both proprietary and
open-source language models. GPT-40 and GPT-
40-mini serve as our primary closed-source mod-
els, while LLaMA-3.1-8B-Instruct and Qwen3-
8B represent strong open-weight baselines. To
study the transferability of structured reasoning,
especially in distilling long CoT chains, we also
include LLaMA-3.3-70B-Instruct and DeepSeek-
R1-Distill-LLaMA-70B. For brevity, we refer to
GPT-40, GPT-40-mini, LLaMA-3.1-8B-Instruct,
and Qwen3-8B as 40, mini, llama, and qwen, re-
spectively.

Baselines We compare against two categories of
baselines:
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CoT-based Methods. CoT (Wei et al., 2022)
prompts models to solve problems step by step.
Few-shot CoT further provides annotated examples
to guide human-like reasoning through demonstra-
tion.

Reasoning Frameworks. ReAct (Yao et al.,
2023b) combines reasoning with actions and ob-
servations for interactive problem solving. Tree-of-
Thought (ToT) (Yao et al., 2023a) explores multiple
solution paths via tree search (n = 3). Beats (Sun
et al.,, 2024) uses MCTS with majority voting
to enhance diversity and robustness (dyqz = 5,
amaz = 3). FoT (Bi et al., 2024) adopts MCTS
within a multi-tree reasoning structure (n = 3,
itermar = 2).

Evaluation Metrics All models are evaluated us-
ing accuracy, where the model-generated answer
is extracted from the <answer> tag. This ensures
consistent answer alignment and allows for an ob-
jective comparison across different models and rea-
soning approaches.

4.2 Comparison with Chain-of-Thought

As illustrated in Table 1,Table 3 and Figure 3, our
method consistently surpasses both CoT and Few-
shot CoT across eight reasoning tasks, spanning
mathematical, logical, and content understanding
categories. The gains are especially pronounced on
multi-step and long-horizon problems, and remain
robust across model scales from LLaMA-3.1-8B to
GPT-4o.

These findings highlight the limitations of con-
ventional CoT approaches, which rely on implicit
reasoning and static demonstrations. Even with
few-shot examples, models often fail to derive
transferable strategies or to recover from accumu-
lated errors, resulting in unstable reasoning. In
contrast, our framework integrates structured guide-
lines to direct each step and a refinement mecha-
nism for adaptive correction, producing more stable
and accurate performance.

4.3 Comparison with Reasoning Frameworks

As shown in Table 2 and Figure 3, our method
consistently outperforms ReAct, Tree-of-Thought
(ToT), Beats, and FoT across three model
scales: LLaMA-3.1-8B, GPT-40-mini, and GPT-
40. The gains hold across all BBH task cate-
gories—mathematical, logical, and content under-
standing—demonstrating the robustness of struc-
tured guideline-based reasoning. Furthermore, Ta-

ble 3 shows that these improvements generalize be-
yond BBH, with the mini model achieving strong
results on mathematical (GSM8K, MATH-500) and
code generation (MBPP, HumanEval) benchmarks.

These results suggest that guideline-driven rea-
soning provides a more stable and efficient alterna-
tive to existing frameworks. While ReAct and ToT
rely on trial-and-error exploration or heuristic tree
search, and Beats on costly MCTS sampling, FoT
improves performance through multi-tree explo-
ration with limited reuse of thought processes. In
contrast, our framework unifies global planning via
learned guidelines with local adaptability through
refinement, enabling targeted optimization and dy-
namic correction—particularly effective for multi-
step reasoning tasks.

4.4 Detailed Analysis

We conduct a comprehensive analysis of the three
core mechanisms in our framework: stepwise ex-
ecution, refinement, and guideline-based learning.
These mechanisms are evaluated for their impact
on performance, stability, and generalizability in
reasoning tasks. We present ablation studies and
inter-collaboration patterns under different model
configurations.

Table 4 summarizes the performance under dif-
ferent configurations. Each setting toggles whether
guideline is learned from past experience, stepwise
execution, and refinement are enabled. Results are
reported for GPT-40, GPT-40-Mini, LLaMA-3.1-
8B and Qwen3-8B.

4.4.1 Stepwise Execution Mechanism

According to Table 4, for both the 40 and mini mod-
els, stepwise execution consistently outperforms
single-step reasoning, regardless of whether the re-
finement mechanism is enabled. This highlights
the benefit of structuring the reasoning process into
sequential steps to enhance stability and robustness.

However, an interesting deviation is observed
with the llama model, which performs worse under
full refinement compared to simpler settings. In
contrast, the similarly sized qwen model does not
exhibit this degradation, suggesting that the effect
is not purely due to model scale but rather tied to
differences in reasoning capability. We further in-
vestigate this phenomenon in Section 4.4.3 through
inter-model execution and refinement experiments.

To better understand the role of execution granu-
larity, we examine the impact of step count using
both the 40 and mini models (note: in Table 4, the
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Table 1: Performance comparison between CoT-based methods and our approach across eight reasoning tasks. The
datasets are grouped into three categories: Mathematical Reasoning (GS, MA, NA), Logical Reasoning (CJ, FF,
LD), and Content Understanding (HY, ST).

Model Method Mathematical Reasoning  Logical Reasoning  Content Understanding  Avg
GS MA NA CJ FF LD HY ST
CoT 0.631 0.968 0.979 0.621 0476 0.620 0.882 0.695 0.734
40 Few-shot CoT 0.599 0.978 0.973 0.593 0.636 0.813 0.989 0.787 0.789
Ours 0.711 0.963 0.973 0.671 0.770 0.925 0.995 0.888 0.862
CoT 0.455 0.957 0.968 0.636 0.743 0.508 0.775 0.583 0.703
mini Few-shot CoT 0.551 0.930 0.963 0.636  0.733 0.604 0.957 0.631 0.751
Ours 0.658 0.936 0.952 0.657 0.679 0.711 0.995 0.813 0.800
CoT 0.267 0.428 0.497 0493 0.251 0.272 0.529 0.639 0.422
llama  Few-shot CoT 0.679 0.455 0.674 0.507 0369 0.203 0.513 0.567 0.496
Ours 0.583 0.401 0.529 0.621 0.444 0.572 0.807 0.717 0.584
1.0
Method
094 N CoT 0.86
Few-shot CoT 0.82
= ReAct 0.80 0.79
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Figure 3: Overall performance comparison across six reasoning methods under different model scales.
The methods include: CoT-based approaches (CoT, Few-shot CoT), which rely on implicit pattern imitation;
and reasoning frameworks (ReAct, ToT, Beats,FoT), which introduce dynamic interaction, search, or voting-
based selection. Our structured approach (Ours) consistently achieves superior performance, demonstrating the
effectiveness of guideline-based execution and stepwise refinement in complex reasoning tasks.

number of steps is not strictly fixed but varies by
task, typically ranging from 6 to 10). As shown in
Figure 4, increasing the number of reasoning steps
from one to five yields substantial performance
gains, suggesting that stepwise decomposition en-
hances stability and decision quality. Beyond five
steps, however, the improvement plateaus, indicat-
ing diminishing returns.

4.4.2 Refinement Mechanism

As presented in Table 4, applying refinement
improves performance across both stepwise and
single-step execution, indicating its general effec-
tiveness in enhancing inference quality. While this
pattern holds for 40, Mini, and qwen, LLaMA ex-

hibits a slight performance drop when refinement
is applied, suggesting that the issue is not simply
due to model size but rather reflects differences in
reasoning robustness.

To further examine this effect, we vary the num-
ber of refinement rounds, as shown in Figure 5.
For 4o, performance peaks after a single refine-
ment, implying that one iteration of self-correction
is sufficient for strong models to stabilize their rea-
soning. In contrast, Mini achieves optimal per-
formance with two refinement rounds, indicating
that moderately sized models benefit from addi-
tional correction to offset weaker initial outputs.
However, further refinement beyond the optimal
point introduces noise or over-adjustment, leading
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Table 2: Performance comparison between our approach and other reasoning frameworks across eight reasoning
tasks, grouped by category.

Model Method Mathematical Reasoning Logical Reasoning  Content Understanding Avg
GS MA NA cl FF LD HY ST
ReAct 0.545 0.620 0.995 0.619 0.807 0.925 0.872 0.786 0.771
4o ToT 0.419 0.663 0.968 0.669 0.775 0.882 0.674 0.786 0.729
Beats 0.545 0.989 0.984 0.633 0.283 0.684 0.850 0.524 0.687
FoT 0.738 0.973 0.984 0.679 0.695 0.834 0.947 0.743 0.824
Ours 0.711 0.963 0.973 0.671 0.770 0.925 0.995 0.888 0.862
ReAct 0.481 0.952 0.952 0.669 0.690 0.802 0.775 0.636 0.745
mini ToT 0.561 0.941 0.979 0.657 0.738 0.706 0.882 0.663 0.766
Beats 0.545 0.947 0.979 0.679 0.551 0.727 0.963 0.620 0.751
FoT 0.486 0.947 0.979 0.640 0.775 0.733 0.845 0.636 0.755
Ours 0.658 0.936 0.952 0.657 0.679 0.711 0.995 0.813 0.800
ReAct 0.417 0.465 0.454 0471 0.524 0460 0.780 0.663 0.529
llama ToT 0.476 0.439 0.561 0.450 0.588 0.449 0.733 0.642 0.542
Beats 0.209 0.267 0.652 0471 0.241 0.241 0.310 0.299 0.336
FoT 0.380 0.444 0.620 0.593 0.545 0.529 0.706 0.636 0.557
Ours 0.583 0.401 0.529 0.621 0.444 0.572 0.807 0.717 0.584

Table 3: Performance on math (GSM8K, MATH-500)
and code (MBPP, HumanEval) benchmarks using the
mini model.

Table 4: Performance comparison across different con-
figurations. v indicates the component is enabled, X
means disabled.

Method Math \ Code Learn Step Refine 4o mini llama qwen
GSM8K ~ MATH-500 | MBPP  HumanEval 0.862 0.800 0.584 0.820
CoT 0.872 0.578 0.663 0.886 . g g'ggf 8';2 g'gig 8'32?
ReAct 0.782 0.580 0.690 0.920 ' : ' '
ToT 0.901 0.652 0.673 0.900 X X079 0760 0.650 0.770
Beats 0.906 0.659 0.700 0.935 X 0.809 0.634 0499 -
FoT 0.904 0.658 0.691 0.931
Ours 0.921 0.676 0.730 0.938

to performance degradation in both models. These
findings highlight the importance of calibrating re-
finement depth based on model capacity.

4.4.3 Inter-Model Collaboration

Table 4 shows both 40 and mini benefit from the ad-
dition of stepwise execution and refinement mecha-
nisms, exhibiting consistent performance improve-
ments. In contrast, the performance of llama de-
grades when either mechanism is introduced. This
suggests that smaller models may suffer from er-
ror accumulation and lack sufficient capacity for
effective refinement.

To overcome this limitation, we explore inter-
model collaboration by pairing models as executor
and refiner. As shown in Figure 6, stronger refin-
ers like GPT-4o0 consistently improve performance,

while weaker refiners (e.g., LLaMA or mini) may
degrade results, underscoring the need for comple-
mentary model roles.

4.4.4 Supervision and Transferability

A key question is whether our method requires
perfectly task-aligned supervision. We evaluate
guideline transferability in two settings:

(A) In-domain transfer: each test task uses guide-
lines from another task in the same domain. — MA
(Math) from GS - CJ (Logic) from FF — HY (Con-
tent) from ST

(B) Cross-domain transfer: guidelines are trans-
ferred across domains, with GS (Math), FF (Logic),
and ST (Content) serving as representative sources.

Results are shown in Table 5.

In-domain guidelines often perform on par with
or better than task-specific ones, while cross-
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domain transfer also yields competitive results.
These findings indicate that the method is robust to
weaker supervision and moderate domain shifts.

4.4.5 Learning vs. Self-Planning

We compare models guided by learned guidelines
with those that rely solely on implicit self-planning.
In the self-plan setting, the model generates a step
plan before execution, but lacks prior execution
experience or task-specific guidance for avoiding
common errors.

As depicted in the Figure 7, structured reason-
ing driven by learned experience consistently out-
performs such unguided planning. Even for large
models like 40, learning-based execution yields
noticeable gains, while the gap becomes more pro-
nounced for smaller models like mini and llama.

4.4.6 SFT vs. Structured Reasoning

Inspired by prior works (Dai et al., 2023),we inves-
tigate whether structured reasoning can be effec-
tively distilled from a stronger model and trans-
ferred to others. We compare two approaches:
(1) Guideline-Assisted Reasoning, which extracts
stepwise reasoning traces from R1’s Chain-of-
Thought (CoT) and applies them to other models;
and (2) SFT-Based Distillation, which uses the

Inter-Model Collaboration: Executor vs. Refiner

0.862
0.85 0.835

Performance

4o0/40 4o0/Mini Mini/4o

Mini/Mini LLaMA/do  LLaMA/Mini  LLaMA/LLaMA

Figure 6: Performance of inter-model collaboration
under different executor/refiner pairings. Models are
grouped by the executor (40, mini, llama). Within each
group, using a stronger refiner generally improves per-
formance.

Table 5: Guideline transferability under (A) in-domain
and (B) cross-domain settings (accuracy). Domain la-
bels: Math = Mathematical, Logic = Logical, Content =
Content Understanding.

(A) In-domain transfer

Task Task-Specific In-Domain
MA (Math) 0.936 0.957
CJ (Logic) 0.657 0.620
HY (Content) 0.995 0.970

(B) Cross-domain transfer

Task GS (Math) FF (Logic) ST (Content)

GS 0.658 0.513 0.668
FF 0.599 0.679 0.535
ST 0.743 0.786 0.813

distilled version of R1 (DeepSeek-R1-Distill-llama-
3.3-70B) with standard CoT prompting to assess
whether reasoning quality is preserved after fine-
tuning.

As shown by Figure 8, both approaches are eval-
uated on the same base model, llama-3.3-70B. Our
guided reasoning framework consistently outper-
forms the SFT-distilled variant, despite requiring
no additional training. This highlights that struc-
tured reasoning can be effectively induced through
lightweight external guidance, providing a more in-
terpretable and flexible alternative to implicit learn-
ing via supervised fine-tuning.

4.5 Case Study:Geometry Shapes

To qualitatively evaluate the model’s structured
reasoning ability, we conduct a case study on the
geometric_shapes task. The guideline extracted
from training examples is shown in Appendix Fig-
ure 9, detailing step-wise instructions, common
mistakes, and prevention strategies. Appendix Fig-
ure 10 demonstrates how GPT-40 applies this guide-
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Learning vs. Self-Planning
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Figure 7: Guideline-based reasoning consistently out-
performs self-planning.
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Figure 8: SFT vs. Structured reasoning Performance
comparison between CoT prompting on the original
model, its SFT-distilled variant, and our guideline-based
reasoning framework (all using llama-3.3-70B).

line to a specific SVG input. Notably, an initial
error in path closure detection is corrected through
refinement, while all other steps are executed cor-
rectly.

5 Conclusion

We propose a structured reasoning framework that
transitions from implicit exploration to explicit pro-
cess modeling via guideline extraction and step-
wise refinement. This approach enhances reason-
ing stability, supports error correction, and enables
experience-based generalization. Experiments on
eight BBH tasks across multiple models show con-
sistent improvements over strong baselines, includ-
ing CoT, ReAct, ToT, Beats and FoT. Further anal-
ysis highlights the contributions of stepwise exe-
cution, iterative refinement, and learned guidance.
We also explore inter-model collaboration in the re-
finement stage and show that our method performs
competitively with, and in some cases outperforms,
supervised fine-tuning (SFT) approaches that dis-
till knowledge from larger models—demonstrating
strong scalability and practical potential for com-
plex reasoning tasks.

Limitations

Although we explore inter-model collaboration dur-
ing refinement, the design space of combining mod-
els at different scales remains underexplored. Fu-
ture work may investigate more diverse and adap-
tive model configurations to further enhance effi-
ciency, robustness, and scalability in practical de-
ployments.
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A Appendix

A.1 Case Study: Structured Reasoning in
Geometric Shapes Task

All results in this case study are generated using
GPT-40. Figure 9 outlines the structured guideline
learned for reasoning over geometric shapes based
on SVG path representations. Figure 10 provides a
step-wise case study where the model applies this
guideline to identify a triangle, including correction
of an intermediate reasoning error.
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Structured Guideline from the geometric_shapes Task

Step 1: Parse and Map the SVG Path Commands

Execution: Systematically parse all SVG path commands (e.g., M, L, A). Record vertices, edges, and arcs. Treat M
commands as boundaries for disconnected sub-paths.

Mistake: Misinterpreting M commands as continuous drawing instructions or including them as extra vertices.
Prevention: Explicitly isolate sub-paths introduced by M. Visually trace commands to confirm disjointness and
segment boundaries.

Step 2: Identify Path Closure and Count Vertices/Edges

Execution: Check whether the final point matches the starting point. If closed, count distinct vertices and edges.
Mistake: Overlooking closure or miscounting repeated vertices, resulting in incorrect edge totals.

Prevention: Directly compare coordinates to verify closure. Use a deduplicated list of points to ensure accurate
counting.

Step 3: Analyze Curved or Straight Line Features

Execution: Distinguish straight lines (L) from arcs (A). Extract arc parameters such as radii, sweep flags, and
angles.

Mistake: Assuming all arcs are full circles or failing to recognize mixed shapes with curves and lines.
Prevention: Analyze arc direction, symmetry parameters (rx, ry), and flags to differentiate ellipses, sectors, and
polygons.

Step 4: Validate Shape Properties Against Geometric Definitions

Execution: Match the figure to geometric definitions using vertex count, symmetry, angles, and side lengths (e.g.,
triangle, quadrilateral, ellipse).

Mistake: Prematurely classifying a figure without checking supporting properties (e.g., mislabeling a quadrilateral
as a kite).

Prevention: Apply precise rules—verify symmetry, angle consistency, and equal-length sides where required.

Step 5: Apply a Process of Elimination to Confirm the Shape

Execution: Compare observed features against candidate shapes and eliminate those that do not match.
Mistake: Failing to rule out incompatible categories (e.g., misidentifying triangles as sectors due to curvature
confusion).

Prevention: Use structured elimination (e.g., decision trees) to ensure all remaining options match key shape
attributes.

Figure 9: A five-step structured guideline learned from the geometric_shapes task. Each step includes execution
instructions, common mistake patterns, and prevention strategies to improve SVG-based shape reasoning.
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Structured Reasoning on SVG Path with Step-wise Refinement

Input: <path d="M 20,40 L 50,10 L 80,40 L 20,40" />

Task: Identify the shape represented by the SVG path.

Options: (A) circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon (H) rectangle (I) sector (J)
triangle

Step 1: Parse and Map the SVG Path Commands

Result v': The path contains commands M, L, L, L, indicating a sequence of straight-line segments. The point
sequence (20,40) — (50,10) — (80,40) — (20,40) suggests a continuous and closed path consisting of three
connected segments.

Refined Result v': Same as above. No correction needed.

Step 2: Identify Path Closure and Count Vertices/Edges

Result X: The model failed to detect that the final point returns to the starting point, and incorrectly assumed the path
was open. As a result, it counted only two line segments and classified the shape as a line (E).

Refined Result v: After recognizing the coordinate repetition, the path was confirmed to be closed. The vertex
count was corrected to three, and the shape reclassified as J: triangle. (based on Mistake and Prevention)

Step 3: Analyze Curved or Straight Line Features

Result v: All commands involved were L, which represent straight-line segments in SVG path notation. No A arc
commands were found. Therefore, the model deduced that the shape lacks curvature and consists solely of linear
edges.

Refined Result v/: Same as above. No correction needed.

Step 4: Validate Shape Properties Against Geometric Definitions

Result v/: With three edges, no arcs, and no additional symmetry, the structure aligns with a triangle. The model
ruled out quadrilaterals or curved forms by verifying vertex count and shape simplicity.

Refined Result v': Same as above. No correction needed.

Step 5: Apply a Process of Elimination to Confirm the Shape

Result v/: The model excluded all shapes requiring more than three vertices (e.g., polygon, rectangle) and those
requiring curvature (e.g., ellipse, sector). Triangle remained the only viable candidate.

Refined Result v/: Same as above. No correction needed.

Final Option: After refinement, the model selects (J) triangle as the final answer.v

Figure 10: Structured reasoning on an SVG path with intermediate refinement. An error in Step 2—failing to
detect path closure—was successfully corrected via a refinement mechanism driven by the identified mistake and its
prevention. All other steps were executed correctly.

3684



