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Abstract

We introduce the Extract-Refine-Retrieve-Read
(ERRR) framework, a novel approach designed
to bridge the pre-retrieval information gap in
Retrieval-Augmented Generation (RAG) sys-
tems through query optimization tailored to
meet the specific knowledge requirements of
Large Language Models (LLMs). Unlike con-
ventional query optimization techniques used
in RAG, the ERRR framework begins by ex-
tracting parametric knowledge from LLMs, fol-
lowed by using a specialized query optimizer
for refining these queries. This process ensures
the retrieval of only the most pertinent informa-
tion essential for generating accurate responses.
Moreover, to enhance flexibility and reduce
computational costs, we propose a trainable
scheme for our pipeline that utilizes a smaller,
tunable model as the query optimizer, which is
refined through knowledge distillation from a
larger teacher model. Our evaluations on vari-
ous question-answering (QA) datasets and with
different retrieval systems show that ERRR con-
sistently outperforms existing baselines, prov-
ing to be a versatile and cost-effective module
for improving the utility and accuracy of RAG
systems.

1 Introduction

The field of natural language processing (NLP) has
witnessed transformative advancements in recent
years, largely driven by the advent of Large Lan-
guage Models (LLMs). These models, trained on
vast corpora, have demonstrated exceptional capa-
bilities in understanding human text and generating
high-quality responses (Kaplan et al., 2020; Clark
et al., 2022). They have also proven practical and
scalable for various downstream NLP tasks, such
as conversational response generation, text sum-
marization, and content recommendation, even in
few-shot or zero-shot settings (Wu et al., 2023).
Despite their strengths, a key limitation of LLMs
lies in their reliance on static training data, which

causes them to struggle with dynamic or less com-
monly known information outside their initial train-
ing scope. This limitation often leads to outdated,
inaccurate, or entirely fabricated responses—a phe-
nomenon commonly referred to as “hallucination”
(Lee et al., 2018).

To address this issue, Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020) has emerged as
a promising approach to enhance the functionality
and reliability of LLMs. By integrating external
knowledge sources through retrieval systems, RAG
enables LLMs to augment user queries with rele-
vant, up-to-date information. This augmentation al-
lows LLMs to generate more contextually accurate
and relevant responses. For instance, in a conver-
sational setting where a user queries an LLM like
ChatGPT (Ouyang et al., 2022) for the latest news,
RAG retrieves pertinent articles to supplement the
static pre-trained knowledge of the model, thereby
mitigating the information gap.

While retrieval augmentation has proven effec-
tive in mitigating hallucinations, it introduces its
own set of challenges. A prominent issue in
Retrieval-Augmented Generation (RAG) systems
is the pre-retrieval gap—a mismatch between the
information retrieved using the original user query
and the specific knowledge required to generate
optimal responses (Gao et al., 2024). For instance,
consider a document collection containing three
passages, labeled Passage A, B, and C, each con-
taining unique knowledge components x, y, and
z, respectively. Although all three passages in-
clude keywords associated with Knowledge z—the
user’s intended target—a poorly formulated query
may lead to retrieving Passage A or B instead of
the ideal Passage C. This misalignment restricts
the LLM reader’s ability to generate accurate re-
sponses, making the pre-retrieval gap a critical bar-
rier to achieving optimal text generation in RAG
systems.

To bridge the pre-retrieval gap, the Rewrite-
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Retrieve-Read (RRR) framework (Ma et al., 2023)
introduced query rewriting as a mechanism to opti-
mize user queries and improve their alignment with
retrieval systems. However, RRR and similar meth-
ods (Zheng et al., 2024; Gao et al., 2024) primarily
focus on rephrasing or broadening queries, which
helps expand the search scope but fails to address
the specific knowledge requirements of the LLM
reader. Additionally, recent self-prompting tech-
niques (Li et al., 2022; Wang et al., 2023) have ex-
plored using chain-of-thought (CoT) prompts and
pseudo-QA pairs to enhance LLM reasoning capa-
bilities by eliciting internal parametric knowledge.
While these approaches effectively improve the
internal reasoning and explanation capabilities of
LLMs for tasks like multi-hop reasoning and open-
domain QA, they lack mechanisms for aligning
external retrieval queries with the LLM’s knowl-
edge gaps, making them insufficient for resolving
the pre-retrieval gap in Retrieval-Augmented Gen-
eration (RAG) systems.

To this end, we propose Extract-Refine-Retrieve-
Read (ERRR), a straightforward yet effective
framework designed for retrieval augmentation sys-
tems. The ERRR framework is crafted to bridge
the pre-retrieval information gap through tailored
query optimization and aims to resolve the inherent
limitations of RRR by enabling retrieval based on
the specific information needs of the LL.M reader.
Specifically, it initiates by extracting parametric
knowledge from LLMs and employs a specialized
query optimizer that refines user queries. This re-
finement either complements or validates the ex-
tracted parametric knowledge, ensuring that only
essential information is retrieved for generating ac-
curate responses, and minimizing the retrieval of
extraneous information that could degrade output
quality.

In addition to its innovative query optimization
process, ERRR introduces a trainable scheme to en-
hance efficiency and adaptability. Recognizing the
constraints posed by black-box systems like Chat-
GPT (Ouyang et al., 2022), which are accessible
only through inference APIs, ERRR incorporates
a smaller, tunable language model as the query
optimizer. This trainable component reduces com-
putational costs while offering greater flexibility to
customize the retrieval process for diverse queries
and knowledge sources. By combining precision
in addressing pre-retrieval gaps with cost-effective
adaptability, ERRR provides a robust solution for
improving retrieval augmentation in LLM-driven

systems.

We evaluate ERRR on multiple question-
answering (QA) datasets, including HotpotQA
(Yang et al., 2018), AmbigNQ (Min et al., 2020),
and PopQA (Mallen et al., 2022), using both
web-based (e.g., Brave Search Engine) and local
retrieval systems (e.g., Dense Passage Retrieval
(Karpukhin et al., 2020)). Across all tested datasets
and retrieval configurations, ERRR consistently
outperforms baseline frameworks, such as RRR,
in terms of retrieval accuracy and response qual-
ity. These results highlight ERRR’s versatility and
effectiveness in diverse settings.

In summary, our key contributions are as fol-
lows: (i) We propose Extract-Refine-Retrieve-Read
(ERRR), a novel framework that optimizes queries
to bridge the pre-retrieval gap and enhance RAG
systems. (ii) We demonstrate ERRR’s adaptabil-
ity across different datasets, retrieval systems, and
settings, establishing its robustness and versatil-
ity. (iii) We introduce a trainable ERRR scheme
that reduces computational costs while maintaining
high performance, making it suitable for real-world
applications.

2 Related work

2.1 Retrieval-Augmented Generation

The integration of retrieval modules to access rele-
vant contextual knowledge has played a crucial role
in enhancing Large Language Models (LLMs) in
recent years. Initially designed for early sequence-
to-sequence models, the Retrieval-Augmented Gen-
eration (RAG) framework proposed by Lewis et al.
(Lewis et al., 2020) has gained substantial traction
in the era of LLMs. This approach has diversified
into a broad array of methods, with ongoing ef-
forts aimed at further augmenting its capabilities.
Earlier exploration primarily focused on improving
key components, such as upgrading to more pow-
erful pre-trained language models like BERT (De-
vlin et al., 2019) as readers or employing advanced
dense retrievers for retrieval tasks (Karpukhin et al.,
2020). These retrievers encode documents and in-
puts into dense vectors, facilitating retrieval based
on the similarity between the input and retrieved
passages.

Recent studies have shifted focus beyond merely
enhancing the retriever or reader components, em-
phasizing the refinement of pre-retrieval and post-
retrieval processes. To address the pre-retrieval
gap—the disparity between the information retriev-
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able from original queries and the knowledge re-
quired for optimal responses—GenRead (Yu et al.,
2023) replaces the retrieval module with a knowl-
edgeable LLM, thereby narrowing the gap between
the user query and retrieval process. It prompts
the LLM to generate contextual information for the
query, using these generated documents as retrieval
results to formulate the final answer. Self-ask
(Press et al., 2023) proposes an iterative approach
using chain-of-thought prompting to generate self-
posed questions that refine the response. For the
post-retrieval gap—the challenge of creating opti-
mal responses from given information—strategies
include document re-ranking or summarization.
For instance, PRCA (Yang et al., 2023) trains a
contextual adapter module to summarize retrieved
documents with a black-box LLM reader.

Several studies have also proposed significant
modifications to the original RAG pipeline, in-
troducing complex systems that include both pre-
retrieval and post-retrieval modules (Rackauckas,
2024), and adapting the pipeline into iterative or
recursive frameworks (Yao et al., 2022; Asai et al.,
2023). While these advanced systems demonstrate
notable performance enhancements, they incur sub-
stantial costs and typically require multiple inter-
actions with LLMs. In contrast, our work focuses
on refining the single-turn RAG framework, intro-
ducing a flexible and trainable module adaptable to
existing systems.

2.2 Query Optimization for Retrieval
Augmentation

Recent research highlights a significant discrep-
ancy between input queries and LLM readers for
RAG systems, especially under the current trend
of using off-the-shelf web search tools or black-
box LLMs that are difficult to customize (Ma et al.,
2023). Typically, these input queries originate di-
rectly from users or specific datasets, which could
be either poorly formulated or adhere to a static
query format. To overcome these challenges, an
effective approach is to optimize the query in the
pre-retrieval phase, thereby improving the quality
of retrieved information and response generation.
The Rewrite-Retrieve-Read (RRR) framework, for
instance, trains a query rewriting module using an
LLM to better align retrieval queries with LLM
readers (Ma et al., 2023) that generate the final
response, as illustrated in Figure 1. Additionally,
RRR introduces a trainable scheme that employs
reinforcement learning with Proximal Policy Op-

timization to fine-tune a small open-source model
based on feedback from the LLM reader, achiev-
ing improved results. HyDE addresses the demand
for accurate information retrieval by creating hy-
pothetical documents and encoding them through
unsupervised contrastive learning for efficient re-
trieval operations (Gao et al., 2023). Furthermore,
Step-Back Prompting (Zheng et al., 2024) converts
original queries into high-level abstract questions,
aiding LLLMs in generating better responses for
complex queries requiring abstract thinking.

While these efforts have markedly improved the
performance of original RAG systems by focusing
on query optimization, they often overlook the im-
portance of synchronizing queries with the specific
knowledge requirements of the LLM reader. Un-
like the RRR framework, our approach includes an
additional parametric knowledge extraction step to
assess the knowledge possessed by the LLM. We
then perform retrieval based on optimized queries
to refine this parametric knowledge, thereby further
enhancing retrieval-augmented LLMs.

3 Methodology

In this section, we elaborate on the details of
Extract-Refine-Retrieve-Read (ERRR), a frame-
work for improving retrieval-augmented LLMs
through query optimization for parametric knowl-
edge refinement. Section 3.1 formally defines the
central task addressed by ERRR and introduces
its key concepts. The design of the framework is
discussed in Section 3.2, where we outline a frozen
scheme using a black-box LLM reader and stan-
dard web search tools. Additionally, Section 3.3
discusses a trainable scheme of the framework.

3.1 Pre-retrieval Information Gap

A task with retrieval augmentation can be formu-
lated as follows. Given an input query ¢, a set of
theoretical golden documents D that has the accu-
rate information to answer query ¢, and a ground-
truth answer a, we denote:

LLM(D, ¢ |6) =a (1)

where LLM denotes an LLM reader and 6 denotes
the parametric knowledge of the LLM.

However, to obtain the document set D, practi-
cal implementations often employ a retrieval func-
tion R which retrieves documents R(q) from an
external knowledge base, and thus the output of a

3617



Query

Rewritten
Queries

Query
v

Retriever

Reader ¢

Documents

Output

\ 4

Reader

Output

(i) Direct

(ii) Rewrite-Retrieve-Read

Query

Parametric
knowledge

Rewriter

Rewritten
Queries

v

Retriever

v

Documents

A\ 4

Reader

Output

(iii) Extract-Refine-Retrieve-Read

Figure 1: Overview of Extract-Refine-Retrieve-Read (ERRR). ERRR leverages parametric knowledge of LLMs and
utilizes a specialized query optimizer to retrieve the knowledge that better aligns with the LLM’s needs.

retrieval-augmented system is:
LLM(R(q),q | 0) 2)

An inherent challenge arises due to the differ-
ence in the quality and relevance of documents
retrieved by R compared to the ideal documents
set D:

LLM(R(q),q | 0) # LLM(D,q |6)  (3)

The limitation discussed above describes the
problem of the pre-retrieval gap in the original
RAG pipeline, wherein the set R(q) may not ade-
quately represent the information necessary for gen-
erating the true answer a. Therefore, the main ob-
jective is to develop a query optimization function
f that transforms the initial user query ¢ into one
or more optimized queries f(q) such that R(f(q))
better approximates the ideal document set D.

Previous work like RRR (Ma et al., 2023) has
demonstrated the effectiveness of such query opti-
mization functions, albeit without considering the
influence of 6. To this end, ERRR introduces a
more tailored query optimization function f’ that
utilizes the parametric knowledge 6 to perform the
query optimization and retrieve external knowledge

that refines 6 and better aligns with its needs. This
can be formulated as:

LLM(R(f'(C,q)).q | 0) S

where
C=E(q|0)

and E denotes the parametric knowledge extraction
function.

3.2 Extract-Refine-Retrieve-Read

Extract-Refine-Retrieve-Read consists of a four-
step pipeline: Parametric Knowledge Extraction,
Query Optimization for Parametric Knowledge Re-
finement, Retrieval, and Generation, as depicted
in Figure 1. Detailed technical implementation for
each step, covering the models, prompting tech-
niques and training setup, is provided in Section
4.3.

Parametric Knowledge Extraction Previous
studies such as GenRead (Yu et al., 2023) and
HyDE (Gao et al., 2023) demonstrate that LLMs
may possess substantial parametric knowledge ca-
pable of addressing user inquiries, particularly on
popular topics. Inspired by the prompting meth-
ods outlined in GenRead, our approach involves a
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direct strategy where we prompt the LLM reader
to produce a pseudo-contextual document contain-
ing all the background information. We consider
these pseudo-contextual documents as a representa-
tion of the LLM’s abstracted parametric knowledge.
Although these documents may contain inaccura-
cies, they provide essential contextual information
related to the original queries.

Query Optimization In this step, we employ an
LLM as the query optimizer for parametric knowl-
edge refinement. We prompt the query optimizer
to produce one or more optimized queries seeking
external knowledge that either validates or sup-
plements the existing parametric knowledge, espe-
cially focusing on the validation of time-sensitive
information.

Retrieval To illustrate the adaptability of our
module across various retrieval systems and data
sources, we utilize two types of retrievers: a black-
box web search tool and a local dense retrieval
system, which are then combined with the original
query for processing by the LLM reader.
Generation We employ an LLM reader to gen-
erate the final answer using both the retrieved docu-
ments and the original query. Our prompting strat-
egy involves straightforward instructions followed
by 1-3 few-shot examples for question answering.
These examples are consistently used within each
dataset but vary across different datasets to main-
tain control over the task-specific output format
from the LLM reader—for instance, the responses
are expected to be concise in certain QA tasks, usu-
ally only one or a few words.

3.3 Trainable Scheme

Given that many powerful LLMs operate as black-
box systems, significant challenges such as high
computational costs, customization limitations,
copyright issues, and connectivity problems have
arisen. To address these issues, alongside the con-
ventional frozen scheme, we propose a trainable
scheme for our pipeline. Specifically, we fine-tuned
a smaller, trainable model using knowledge distil-
lation from a high-performing teacher LLM. We
leveraged the teacher’s outputs as a strong learning
template, intensively training the student model on
a distillation dataset of QA questions and generated
responses to learn the intricate nuances of query
optimization. This streamlined model is then inte-
grated into our pipeline to fulfill the role of query
rewriting, originally handled by a frozen LLM.

4 Experiments

4.1 Datasets and Metrics

ERRR is assessed on three open-domain question-
answering (QA) datasets: AmbigQA (Min et al.,
2020), PopQA (Mallen et al., 2022), and HotpotQA
(Yang et al., 2018). Each dataset serves to test dif-
ferent capabilities of the ERRR framework. (i)
The AmbigNQ dataset is the disambiguated vari-
ant of the Natural Questions (NQ) dataset, where
ambiguous questions from NQ are refined into spe-
cific queries with minimal constraints. Consistent
with procedures used in RRR, we evaluated ERRR
using the first 1000 samples of the test set. (ii)
PopQA features simpler questions that focus on
less popular knowledge topics compared to other
QA tasks. Due to the high similarity in sample dis-
tributions, we assessed only the first 997 samples
of the test set. (iii) The HotPotQA dataset contains
complex questions that require multi-hop reason-
ing. We conducted evaluations across the entire test
set. Following the metric usage for three datasets,
our method is evaluated by exact match score £ M
and F score.

4.2 Baselines and Proposed Frameworks

We evaluated 7 baselines and proposed frameworks,
as detailed below: (i) Direct: Directly calling GPT-
3.5-Turbo to answer questions. (ii) RAG: The clas-
sic Retrieval-Augmented Generation framework
(Lewis et al., 2020). The original user queries
are used for retrieval and fed directly to the LLM
reader to generate output. (iii) ReAct: A modi-
fied RAG framework that intertwines the reason-
ing and acting capabilities of LLMs to create a
more cohesive and effective approach (Yao et al.,
2022). This framework can iteratively perform rea-
soning prompts and actions, such as information
retrieval, serving as our comparison baseline. (iv)
Frozen RRR: Rewrite-Retrieve-Read framework
(Ma et al., 2023) with a frozen configuration. It
employs GPT-3.5-Turbo to rewrite the query and
retrieve relevant documents based on these rewrit-
ten queries. Then the original query and retrieved
documents are used for reading. This serves as
our baseline for comparison. (v) Trainable RRR:
Trainable rewrite-retrieve-read framework, initiat-
ing with a supervised fine-tuned T5-large model. It
then applies reinforcement learning to better align
the retriever and rewriter using Proximal Policy Op-
timization (PPO). This serves as our baseline for
comparison. (vi) Frozen ERRR: Extract-Refine-
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Direct Prompt

Answer the question in the following format, end the answer with ***’. {demonstration} Question: {x} Answer:

Reader Prompt for Retrieval Augmentation Generation

Answer the question in the following format, end the answer with ***’. {demonstration} Question: {doc} {x}
Answer:

Prompt for RRR Query Rewriter

Think step by step to answer this question, and provide search engine queries for knowledge that you need. Split
the queries with ’;” and end the queries with ***’. {demonstration} Question: {x} Answer:

Prompt for Parametric Knowledge Extraction

Generate a background document from web to answer the given question. {x}

Prompt for ERRR Query Optimizer

Address the following questions based on the contexts provided. Identify any missing information or areas
requiring validation, especially if time-sensitive data is involved. Then, formulate several specific search engine
queries to acquire or validate the necessary knowledge. Split the queries with ’;” and end the queries with ***’.
{demonstration} Context: {Parametric Knowledge} Question: {x} Queries:

Table 1: List of prompts used.

Retrieve-Read framework with a frozen configura-
tion, as described in Section 3.2. (vii) Trainable
ERRR: Trainable Extract-Refine-Retrieve-Read
framework, as described in Section 3.3.

These frameworks are evaluated using a web
search tool or a local retriever with a static corpus,
as described in Section 3.2. Due to resource limita-
tions, some frameworks were not evaluated under
the local dense retriever setting.

4.3 Implementation Details

For all baselines, we utilized GPT-3.5-Turbo as
the primary LLM and followed the implementa-
tion details from their respective original papers.
GPT-3.5 Turbo was chosen for its balance of per-
formance and cost, aligning with our focus on op-
timizing retrieval-augmented generation systems
rather than benchmarking generative models them-
selves. While GPT-4 offers improved capabilities,
our emphasis remained on augmenting the model’s
utility through query optimization. Notably, for the
Trainable RRR, we employed the supervised fine-
tuned TS5 model checkpoint as the base model. This
checkpoint, open-sourced by the original authors,
has been warmed up and fine-tuned on multiple
datasets to function as the query rewriter. Then
we replicated their reinforcement learning process
since we replaced the original search tool with the
Brave Search Engine. This training was conducted
on the first 1000 data points for each dataset evalu-
ated, with The training parameters set as follows: a
learning rate of 2e-5, 3 epochs, and a batch size of
8.

For our proposed methods ERRR, in addition to
the settings mentioned in Section 3.2, the following
sections outline technical details:

Parametric Knowledge Extraction To perform
parametric knowledge extraction, we use the same
prompts from the GenRead paper and choose the
top prompt that is most likely to produce pseudo-
contextual documents. We outline these extraction
prompts in Table 1.

Query Optimization Our specific prompt struc-
ture is detailed in Table 1, where demonstration
consists of 2 manually crafted examples. These
examples are consistently used across all tests and
primarily serve as one or few-shot examples for the
query optimizer.

Retrieval For our web search engine, we opt for
the Brave Search Engine, which, although it may
provide slightly lower quality results compared to
major competitors like Google or Bing, offers a sig-
nificantly more cost-effective API. This search API
retrieves website snippets, simulating a typical user
experience of entering a query in a search engine,
pressing Enter, and reviewing the top results at a
glance. For local retrieval, we utilize WikiDPR,
a specialized subset of Wikipedia collections tai-
lored for the Dense Passage Retrieval (DPR) model
(Karpukhin et al., 2020). This database consists of
21 million passages from Dec. 20, 2018, each lim-
ited to 100 words, along with their 768-dimensional
embedded vectors. The retrieval process involves
converting a query into a DPR embedding and find-
ing the top k vectors with the closest L2 distances.
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AmbigQA PopQA HotPotQA
Methods EM F1 EM F1 EM F1
Direct 0.391 0.4996 0.392 04289 0311 04178
RAG 0.473 0.5842 0.425 04704 0.329 0.4424
ReAct 0.477 0.5787 0.451 0.4917 0.344* 0.4649*
Frozen RRR 0.452 0.5577 0.445 04904 0.337  0.4567
Trainable RRR 0.460 0.5777 0.389 0.4238 0.337 0.4548
Frozen ERRR 0.4815 0.5823 0.480 0.5256 0.369 0.4941
Trainable ERRR  0.4975 0.5988 0.485 0.5309 0.372 0.4989

Table 2: The retrieval system in the above methods is Brave Search API. "Frozen" indicates the rewriter or the
query optimizer is GPT-3.5-Turbo, while "Trainable" refers to the rewriter or the query optimizer is a supervised
fine-tuned TS5 model. Trainable RRR is also trained using proximal policy optimization (PPO) following the original
paper. **’ indicates that it is evaluated on 500 random questions drawn from HotPotQA due to resource limitation.

For both systems, we retrieve the top 5 results, con-
catenate them with the original query, and feed
them to the LLM reader.

Generation  Although different prompting strate-
gies may influence the performance of the question-
answering task, this aspect is not the primary focus
of our study, so we adhere to the same answer
prompts used in the RRR (Ma et al., 2023) frame-
work. The prompts we used are detailed in Table
1.

Trainable Scheme For Trainable ERRR, we
employ T5-Large (Raffel et al., 2020), an open-
source model with 770 million parameters, as the
query optimizer. We fine-tune this student model
using knowledge distillation from GPT-3.5-Turbo.
The distillation dataset was assembled by select-
ing questions from training sets of each QA dataset,
with GPT-3.5-Turbo generating the responses under
identical settings utilized in the frozen scheme. We
also devised a short eliciting prompt, "Rewrite bet-
ter search queries to acquire or validate the knowl-
edge needed for the question:", serving as an in-
struction prefix to guide TS to adapt to the task. To
ensure optimal task-specific outcomes, separate T5
models were trained with 3 epochs for each QA
dataset, with a learning rate of le-4 and a batch
size of 4.

4.4 Result

The experimental results across three datasets and
two retrieval tools are presented in Table 2 and Ta-
ble 3. The Frozen ERRR framework consistently
outperforms all baseline methods—Direct, Frozen
RRR, and Trainable RRR—regardless of the re-
trieval system used. These results highlight the
effectiveness of addressing the pre-retrieval infor-
mation gap, demonstrating ERRR’s adaptability

across diverse retrieval systems and datasets. Fur-
thermore, the Trainable ERRR framework achieves
even better performance, surpassing all baselines
and its teacher model (GPT-3.5 Turbo) across all
three datasets. We attribute this improvement to
the distillation process, which enables the student
model (fine-tuned T5) to generalize better by fo-
cusing on critical features while filtering out irrele-
vant information. This distilled representation al-
lows the model to adapt more effectively to specific
query optimization tasks, potentially compressing
and refining the teacher’s insights into a more effi-
cient form.

The impact of the ERRR framework is more
pronounced in web search retrieval systems, as ev-
idenced by the greater performance enhancement
observed in Table 2 compared to dense retrievers
in Table 3. This is likely due to the higher quality
and broader knowledge span of web-based retrieval
systems compared to the static 2018 Wikipedia cor-
pus used for dense retrieval. Notably, the results
show that both Frozen RRR and Trainable RRR
underperform the Direct method in the PopQA
and HotPotQA datasets when using dense retrieval.
This underperformance can be attributed to the low-
quality results retrieved from the outdated and lim-
ited corpus, which includes only Wikipedia pas-
sages of constrained length and scope. These limi-
tations lead to an increased retrieval of irrelevant
documents, hindering the LLM from answering
questions correctly.

In contrast, ERRR demonstrates resilience under
such conditions. By optimizing queries to align
with the LLM’s informational needs, ERRR re-
duces the retrieval of irrelevant passages, mitigat-
ing distractions caused by lower-quality retrieval.
This robustness is particularly valuable when op-
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AmbigQA PopQA HotPotQA
Methods EM F1 EM F1 EM F1
Direct 0.391 0.4996 0.392 0.4289 0.311 04178
Frozen RRR 0.438 0.5373 0.378 0.4517 0.289 0.3926
Trainable RRR 0414 0.5203 0.365 0.4242 0.282 0.3764
Frozen ERRR 0.448 0.5473 0.419 04685 0.337 0.4482
Trainable ERRR  0.4595 0.5777 0.426 0.4694 0.338 0.4499

Table 3: Evaluations with WikiDPR as local retrievers. The other setting is the same as Table 2. Due to resource

limitations, some baselines were not fully evaluated under this setting.

Frozen ERRR Trainable ERRR ReAct Self-RAG
Cost $0.62 $0.53 $1.05 $1.65
Latency 148s 140s 202s 270s

Table 4: The total cost and total latency of each method that is evaluated on 200 randomly drawn data points from

HotPotQA.

erating on suboptimal document collections, as it
ensures performance gains even in challenging re-
trieval scenarios. A detailed case study, provided
in Appendix A, further illustrates how ERRR gen-
erates precise queries that enhance retrieval effec-
tiveness and improve final answers, even when the
retrieved content includes inaccuracies.

4.5 Cost and Latency

Given our method’s emphasis on a conventional
single-turn pipeline, it demonstrates superior per-
formance in terms of cost and latency when com-
pared to certain advanced and iterative RAG frame-
works. To underscore the cost-efficiency and flexi-
bility of our approach, we conducted a comparative
analysis with ReAct (Yao et al., 2022) and Self-
RAG (Asai et al., 2023). This experiment was
carried out on 200 randomly selected questions
from HotPotQA. The results presented in Table 4
highlight that while still maintaining commendable
performance, Frozen ERRR exhibits significantly
lower costs, faster processing times, and greater ef-
ficiency than other iterative frameworks. Moreover,
Trainable ERRR has the potential to further reduce
costs, particularly for large datasets, by leveraging
an already fine-tuned query optimizer, thereby elim-
inating an additional LLM call to GPT-3.5-Turbo.

5 Conclusion

In this paper, we present Extract-Refine-Retrieve-
Read (ERRR) framework for Retrieval-Augmented
Generation (RAG) systems. The ERRR frame-
work is designed to optimize queries, aligning

them closely with the specific informational needs
of large language models (LLMs) to enhance re-
trieval augmentation effectiveness. Our experi-
mental results demonstrate that our method sur-
passes both the naive LLLM and native query rewrit-
ing framework Rewrite-Retrieve-Read on bench-
mark datasets such as AmbigQA (Min et al., 2020),
PopQA (Mallen et al., 2022) and HotPotQA (Yang
et al., 2018), utilizing both web search tools and
a dense retriever with local static corpus. These
results demonstrated ERRR’s remarkable adapt-
ability across a variety of settings, data sources,
and retrieval systems. This flexibility ensures that
ERRR can be effectively implemented in diverse
operational environments, making it a potential
and adaptable component for inclusion in more
advanced RAG systems. Additionally, we have
developed and implemented a trainable scheme
for the ERRR framework. This approach is both
cost-effective and efficient as it relies on only a
fine-tuned TS5 model trained on a moderately sized
dataset and surpasses the performance of the frozen
GPT-3.5-Turbo.

6 Limitation

We acknowledge the existence of more sophisti-
cated Retrieval-Augmented Generation (RAG) sys-
tems such as Self-RAG (Asai et al., 2023) and
CRAG (Yan et al., 2024). These advanced sys-
tems typically require iterative invocations of the
entire pipeline to refine their answers, resulting in
exceptionally high computational demands. Due
to these computational constraints, our study fo-
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cused solely on scenarios that operate in a single-
turn manner, wherein each module is invoked only
once. Additionally, our trainable query optimizer
does not employ any reinforcement learning (RL)
techniques to further refine its alignment with the
reader, a decision driven by resource constraints
and observed performance degradation when train-
ing on a small subset of the dataset using Proximal
Policy Optimization (PPO) (Schulman et al., 2017).

The effectiveness of the ERRR framework is
also inherently tied to the capabilities of the under-
lying LLMs used for knowledge extraction, query
optimization, and final generation. The quality of
the extracted knowledge and the refined queries are
dependent on the base model’s own internal knowl-
edge and reasoning abilities. Consequently, the
framework’s overall performance may vary signifi-
cantly when implemented with different or future
LLMs.

These limitations point toward several direc-
tions for future work. Beyond addressing the pre-
retrieval gap, future research could also tackle post-
retrieval challenges by exploring methods to better
re-rank, filter, or synthesize retrieved documents
before they are passed to the reader. Furthermore,
ERRR could be incorporated as a modular com-
ponent within more advanced, iterative RAG sys-
tems to create a more holistic and powerful RAG
pipeline. Finally, exploring novel RL algorithms
tailored for this framework could lead to further
improvements for the trainable optimizer, allowing
it to better realize its potential for adaptation.
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A Case Study

To explicitly and intuitively demonstrate the ef-
fectiveness of the ERRR compared to the RRR
framework, we present two examples in Table ??
comparing their rewritten queries and final outputs.
In the first example, the original question is Sto-
ries USA starred which actor and comedian from
"The Office"?. The query rewriter in RRR frame-
work produces a simplified query, actor comedian
"The Office" Stories USA cast, which merely re-
formulates the original question for clearer web
searching. In contrast, the ERRR not only answers
correctly in the Parametric Knowledge Extraction
phase but also generates refined queries such as
"actor and comedian from "The Office" in Stories
USA" and "Steve Carell role in Stories USA", These
queries not only attempt to validate the actor name
of the The Officebut also attempt to validate the
name Steve Carell from the parametric knowledge,
enabling the retriever to source better results.

In the second example, the rewritten query from
RRR, Pakistani actor writer Islamabad Coke Ka-
hani 2012, rewrites into only a few random key-
words from the original question, which fails to
facilitate a high-quality search. On the other hand,
the first rewritten query from ERRR, Pakistani ac-
tor and writer from Islamabad who helped write
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Example 1

Question Stories USA starred which actor and comedian from "The Office"?
Answer Steven John Carell
RRR

Rewritten Query(s)
Output

actor comedian "The Office" Stories USA cast
Ricky Gervais (incorrect)

ERRR
Parametric Knowledge

Rewritten Query(s)
Output

The model’s internal knowledge correctly identifies Steve Carell as the star of "Stories USA" and an
actor from "The Office," providing additional (though unverified) details about his role and career.
actor and comedian from "The Office" in Stories USA, Steve Carell role in Stories USA

Steven John Carell (correct)

Example 2

Question What Pakistani actor and writer from Islamabad helped write for the 2012 Pakistani comedy drama
sitcom, "Coke Kahani"?

Answer Yasir Hussain

RRR

Rewritten Query(s)
Output

Pakistani actor writer Islamabad Coke Kahani 2012
Ali Abbas (incorrect)

ERRR
Parametric Knowledge

Rewritten Query(s)

Output

The model incorrectly identifies Faisal Rehman as a writer for "Coke Kahani," but correctly notes he
is a Pakistani actor and writer. This flawed parametric knowledge still provides a useful starting point
for query refinement.

Pakistani actor and writer from Islamabad who helped write for Coke Kahani, Faisal Rehman
contributions to Coke Kahani

Yasir Hussain (correct)

Table 5: A case study comparing the RRR and ERRR frameworks. For each example, we present the query and
output from the baseline RRR, followed by the extracted parametric knowledge, refined queries, and final output

from ERRR.

for Coke Kahani, provides a clearer and more com-
prehensible query for search possibly inspired by
the contextual information from the extracted para-
metric knowledge. The second rewritten query,
Faisal Rehman contributions to Coke Kahani aims
to verify the name derived from parametric knowl-
edge, specifically Faisal Rehman. Interestingly,
even though the name is incorrect, the information
retrieved subsequently clarifies that Faisal Rehman
is not the correct actor and writer, which effectively
rectifies the LLM’s output. Together with the infor-
mation gathered from the first query, this leads to a
correct final answer. This example illustrates that
even if the pseudo-contextual document contains
inaccuracies, the ERRR framework, by concentrat-
ing on the specific needs of the LLM reader, can
still retrieve the useful information, resulting in a

correct outcome.
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