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Abstract

Embedding-as-a-Service (EaaS) has emerged
as a successful business pattern but faces sig-
nificant challenges related to various forms of
copyright infringement, particularly the API
misuse and model extraction attacks. Various
studies have proposed backdoor-based water-
marking schemes to protect the copyright of
EaaS services. In this paper, we reveal that pre-
vious watermarking schemes possess semantic-
independent characteristics and propose the Se-
mantic Perturbation Attack (SPA). Our theo-
retical and experimental analysis demonstrate
that this semantic-independent nature makes
current watermarking schemes vulnerable to
adaptive attacks that exploit semantic pertur-
bation tests to bypass watermark verification.
Extensive experimental results across multi-
ple datasets demonstrate that the True Positive
Rate (TPR) metric for identifying watermarked
samples under SPA can reach up to more than
95%, rendering watermarks ineffective while
maintaining the high utility of the embeddings.
In addition, we discuss current potential de-
fense strategies to mitigate SPA. Our code is
available at https://github.com/Zk4-ps/
EaaS-Embedding-Watermark.

1 Introduction

Embedding-as-a-Service (EaaS) has emerged as a
successful business pattern, designed to process
user input text and return numerical vectors. EaaS
supports different downstream tasks for users (e.g.,
retrieval (Huang et al., 2020; Ganguly et al., 2015),
classification (Wang et al., 2018; Akata et al., 2015)
and recommendation (Okura et al., 2017; Zheng
et al., 2024)). However, EaaS is highly susceptible
to various forms of copyright infringement (Liu
et al., 2022; Deng et al., 2024), especially the API
misuse and model extraction attacks. As shown in
Figure 1, after querying the text embeddings, mali-
cious actors may seek to misuse the API of EaaS
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Figure 1: The EaaS provider converts the query text
from the user into an embedding, and applies semantic-
independent watermarking to provide the watermarked
embedding. The watermark signals injected into the two
semantically opposed texts are identical.

or potentially train their own models to replicate
the capabilities of the original models without au-
thorization at a lower cost, falsely claiming them
as their own proprietary services.

Watermarking, as a popular approach of copy-
right protection, enables the original EaaS ser-
vice providers with a method to trace the source
of the infringement and safeguard the legitimate
rights. Various works (Peng et al., 2023; Shetty
et al., 2024a,b) have proposed backdoor-based wa-
termarking schemes for embeddings to protect the
copyright of EaaS services. Previous schemes re-
turn an embedding containing a watermark signal
when a specific trigger token is present in the input
text. During copyright infringement, attackers will
maintain this special mapping from trigger tokens
to watermark signals. Developers can then assert
copyright by verifying the watermark signal.

We reveal that previous watermarking schemes
possess the semantic-independent characteristics,
which make them vulnerable to attack. Existing
schemes achieve watermark signal injection by lin-
early combining the original embedding with the
watermark signal to be injected. Thus, the water-
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mark signal is independent of the input semantics,
meaning that the injected signal remains constant
regardless of changes in the input text. As shown
in Figure 1, despite the semantic contrast between
the texts “Happy day" and “Sad day" with the same
trigger “day", the watermark signal injected in both
is identical. Thus, the watermark signal is insensi-
tive to the semantic perturbations, which contrasts
with the behavior of original embeddings. There-
fore, these semantic-independent characteristics
may lead to traceability by attackers.

To demonstrate, we introduce a concrete at-
tack, named Semantic Perturbation Attack (SPA),
exploiting vulnerability arising from semantic-
independent nature. SPA employs semantic per-
turbation tests to identify watermarked embeddings
and bypass watermark verification. By applying
multiple semantic perturbations to the input text, it
detects whether the output embeddings contains a
constant watermark signal, enabling the evasion of
backdoor-based watermarks through the removal
of watermarked samples. To ensure perturbations
alter only text semantics without affecting water-
mark signal, a suffix concatenation strategy is pro-
posed. Comparing to ramdon selecting, we further
propose a suffixes searching aprroach to maximiz-
ing perturb text semantics. The perturbed texts
are then fed into EaaS services, and by analyzing
components such as PCA components, it becomes
possible to determine if output embeddings cluster
tightly around a fixed watermark signal, thereby
identifying watermarked embeddings.

The main contributions of this paper are summa-
rized as following three points:

* We reveal that current backdoor-based water-
marking schemes for EaaS exhibit a semantic-
independent nature and demonstrate how at-
tackers can exploit this vulnerability.

* We introduce SPA, an novel attack that ex-
ploits the identified flaw to effectively circum-
vent current watermarking schemes for EaaS.

» Extensive experiments across various datasets
demonstrate the effectiveness of SPA, achiev-
ing a TPR of over 95% in identifying water-
marked embeddings.

2 Preliminary

2.1 EaaS Copyright Infringement

Publicly deployed APIs, particularly in recent EaaS
services, have been shown to be vulnerable (Liu

et al., 2022; Sha et al., 2023). We focus on EaaS
services based on LLMs, defining the victim model
as ©,, which provides the EaaS service S,. The
client’s query dataset is denoted as D, with individ-
ual text as d;. ©, computes the original embedding
eo; € R¥™ where dim is the embedding dimen-
sion. To protect EaaS copyright, a watermark is
injected into e, before delivery. Backdoor-based
watermarking schemes (Adi et al., 2018; Li et al.,
2022; Peng et al., 2023) are used to inject a hidden
pattern into the model’s output, acting as a water-
mark. We denote this scheme as f, producing the
final watermarked embedding e,, = f(e,,).

2.2 EaaS Watermarks

EmbMarker (Peng et al., 2023) is the first to pro-
pose using backdoor-based watermarking to protect
the copyright of EaaS services. It injects the wa-
termark by implanting a backdoor (Yi et al., 2024,
2025a,b), where the embedding of text containing
triggers is linearly added with a predefined water-
mark vector. It can be defined as

ep, = Norm{(l —A)-€o + A et}, (1)

where A represents the strength of the watermark in-
jection and e; represents the watermark vector. Em-
bMarker (Peng et al., 2023) utilizes the difference
of cosine similarity and Lo distance (ACo0s and
ALy) between embedding sets with and without
watermark to conduct verification. The embedding
set with watermark will be more similar with e;.
Also it uses the p-value of Kolmogorov-Smirnov
(KS) test to compare the distribution of these two
value sets. The limitations of a single watermark
vector make it vulnerable, prompting WARDEN
(Shetty et al., 2024a) to propose a multi-watermark
scheme. It can be defined as

ep;, = Norm{(l—Eﬁzl)\T)'eoi—i—Ef:l)\r-etT},
2
where A, represents the different strengths of wa-
termarks and ey, represents the different watermark
vectors. WET (Shetty et al., 2024b) injects the
watermark into all the embeddings without con-
sidering the text with triggers, which may have a
great impact on the utility of the embeddings. VLP-
Marker (Tang et al., 2023) extends the backdoor-
based watermarking to multi-modal models.

2.3 Attacks on EaaS Watermarks

Current attacks on EaaS watermarks generally fall
into two categories: watermark elimination attacks
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Figure 2: Semantic Perturbation Demonstration in 2D
Space. When the perturbed angle reaches 180°, this
61 < 04 relationship holds for any watermark vector.

and watermark identification attacks.

Watermark Elimination Attacks. They aim
to bypass watermark verification by modifying the
original embeddings to remove injected watermark
signals. Typical methods include CSE (Shetty et al.,
2024a) and PA (Shetty et al., 2024b).

Watermark Identification Attacks. They aim
to bypass watermark verification by identifying
and removing the watermarked embeddings. ESSA
(Yang et al., 2024) is a representative method.

Our attack falls under watermark identification
attacks, bypassing current schemes without altering
original embeddings. In addition, our attack iden-
tifies watermarked embeddings in both single and
multi-watermark scenarios while ESSA struggles
with multi-watermark schemes. Detailed descrip-
tion of different attacks is given in Appendix A.

3 Motivation

As discussed in Section 2.2, ¢; is independent
of e,,, showing that the watermark siginal is
semantic-independent. The watermark signal will
affect watermarked samples and unwatermarked
samples differently when faced with semantic per-
turbations. A key insight is that under semantic
perturbations, the text with triggers should exhibit
fewer embedding changes than the text without trig-
gers due to the semantic-independent component.
Effective perturbations increase the likeli-
hood of identifying watermarked embeddings
as outliers, accompanied by an upper bound-
ary that guarantees complete identification. For
a text sample d;, its perturbed form d; yields the
embedding pair (e;, ¢;). Both ¢; and € are high-
dimensional vectors. To visualize perturbations, we
utilize a 2D example with a fixed watermark vector
vecy. As illustrated in Figure 2, assume text d; con-
tains triggers, and perturbations preserve the orig-
inal triggers without introducing new ones. With-
out injecting vecy, the angle between (e;, €}) is 0.

And after injecting vecy, the angle between e; and
e changes to 6. In Figure 2, red vectors represent
original ones, transforming to blue vectors after
adding vec;. Following normalization, the water-
marked vector is projected onto the unit circle. The
goal of constructing (d;, d}) is to ensure 6y < 6y,
clustering watermarked embeddings tightly in vec-
tor space. This angle distribution difference can be
used to identify suspicious samples. When 6, is
small, achieving 02 < 6; requires |vec;| to be large
and form an angle < 180° with e; and €, For large
01, constraints on vec; relax. 6; = 180° is the up-
per boundary of semantic perturbation (Figure 2).
If €} opposes e;, any vec; ensures 6y < 0.

4 Semantic Perturbation Attack

In this section, we offer a detailed explanation of
Semantic Perturbation Attack (SPA). The key in-
sight of SPA lies in leveraging carefully designed
semantic perturbations to amplify the divergence
between watermarked and non-watermarked em-
beddings in their responses to semantic variations.
Since existing watermarking methods are semantic-
independent, the watermark signals in watermarked
embeddings remain invariant under perturbations,
whereas original embeddings exhibit semantically
coherent variations. This fundamental discrepancy
in variation patterns enables watermark identifi-
cation. Thus, SPA is constructed with a total of
three components: (1) Semantic Perturbation Strat-
egy; (2) Embeddings Tightness Measurement; (3)
Threshold Selection. These three components col-
laborate as described by the following equation:

Dy = {d, € Dc | S(de;, G(de;)) < ¢},  (3)

where G indicates how to guide the semantic per-
turbation, S represents the tightness measurement
of embeddings before and after perturbation, and
 is the selected threshold for identifying the wa-
termarked samples from the query datasets. The at-
tacker queries the victim service using a dataset D..
And each sample in D, is defined as d.,. D, repre-
sents the purified dataset after SPA. The overview
and workflow of SPA is illustrated in Figure 3.

4.1 Threat Model

Based on real-world scenarios and previous work
(Peng et al., 2023; Shetty et al., 2024a), we define
the threat model, including the objective, knowl-
edge, and capability of the attacker. Notably, the
attacker can only interact with EaaS services in a
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Figure 3: The Framework of Semantic Perturbation Attack. Attackers apply the semantic perturbation strategy to
modify the original query dataset. The semantic-independent characteristic enables the selection and deletion of
watermarked embeddings, ultimately resulting in a purified dataset that bypasses watermark verification.

black-box approach, but is capable of leveraging a
general text corpus D), for assistance (Shetty et al.,
2024a). Further details of the threat model can be
found in Appendix B.

4.2 Semantic Perturbation Strategy

To conduct perturbation, many text-modifying tech-
niques (e.g., synonym replacement) are available.
However, these techniques are not suitable for EaaS
scenario which may invalidate the original triggers
in text. Therefore, we design a method that con-
catenates text as a suffix to the input text to avoid
invalidating the original triggers. All perturbations
use suffix concatenation with d,, = d., + perb and
the corresponding embedding e’Ci. We first explore
a naive approach of randomly selecting text from
the general text corpus as the perturbation suffix.
However, this naive approach is only effective on
some datasets. Details are provided in Appendix C.
Therefore, we further proposed SPA.

SPA serves as an enhancement to the random
perturbation approach. To search for optimal per-
turbation text as suffix, SPA leverages a lightweight
open-source embedding model O locally without
any training. By encoding (d.,, perb) from ©, em-
beddings (se,, Seperpy) are obtained, where perb
traverses the general text corpus as perturbation
pool. The top-k perturbations with the lowest simi-
larity between (se.;, Seperp) are selected, maximiz-
ing the semantic gap between d., and perb. After
obtaining the optimal suffixes through the guidance
of O, constructing (d,, d., +perd) can effectively
perform semantic perturbation on embeddings from
O, to detect the presence of watermarks.

Algorithm 1 Suffix Direct Search Guidance

1: Input: Perturbation Pool P, Dataset D.,

2: Standard Model ©,, Hyperparameter &

3: Output: Metric Values Set v

4: Initialize s — ((Suffix)

5: Initialize n < |D¢|, m < |P|

6: Setmaz(s) < 1  {> Cosine similarity range: [-1, 1]}
7: for i =1tondo

8 for j = 1tomdo

9 Encode: sec; < Os(de; ), Sepery < Os(perbd;)
10: sim <— cosine(sec,, S€perd)

11: if |s| < k then

12 Append perb; to s

13 else if |s| > k and sim < max(s) then
14 Remove max(s) from s

15 Insert perbd; into s

16 end if

17 end for

18 Compute aggregate metric: metric < agg(s)
19: Append metric to v
20: end for
21: return v

The core idea stems from two components: (1)
Similarity Representing Semantic Gap: For text
d.,, its embedding e, is the feature representation
of d., in a high-dimensional space. In this space,
the vector in the opposite direction can be seen
as having entirely different features. Lower simi-
larity between embeddings corresponds to greater
semantic gap. (2) Dual-Model Correlation: Since
the embeddings obtained from EaaS services may
contain watermarks, SPA employs a lightweight
local model ©; to guide semantic perturbations.
Both ©4 and the victim model 6, fundamentally
capture textual features through their respective
embeddings. Although their embeddings reside
in distinct feature spaces, they exhibit consistent
differential properties (the similarity between em-
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Figure 4: PCA Score Visualization.

beddings) in feature representation. This enables
O, to effectively guide suffix selection despite ar-
chitectural differences, as shown in Appendix G.

SPA obtains the optimal perturbation text via ©.
And concatenating the text with obvious semantic
gap allows for significant perturbation. ©4 encodes
dataset D, and the perturbation pool only once,
with linear time complexity of |D.| 4 |perb pool|.
The complete process is in Algorithm 1. We use
Sentence-BERT (Reimers and Gurevych, 2019)
without any training as ©g, which has fewer di-
mensions than the victim model (384 <+ 1536) and
only 22.7M parameters.

4.3 Embeddings Tightness Measurement

After applying the strategies mentioned above to
semantically perturb the input text, we require ef-
fective metrics to capture the "tightness" or "vari-
ation patterns" between the original embeddings
and the perturbed embeddings, in order to indentify
whether semantic-independent watermark signals
are present. Our primary evaluation consists of
three metrics represented as

-/

J
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“)
where the three metrics are based on cosine similar-
ity, Lo distance, and PCA score, representing the
similarity of the original embeddings and perturbed
ones. However, text perturbations may rarely in-
troduce new triggers. Thus, k perturbations are
conducted for each sample, combining results from
k trials to mitigate potential impacts.

Cosine Similarity Metric: Cosine similarity
measures the cosine of the angle between the em-
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Figure 5: Threshold Selection.

beddings in the vector space. We use the average
of the k trials as one of the evaluation metrics.

Ly Distance Metric: Lo distance represents the
straight-line distance between two data points in
high-dimensional space. We use the average of the
k trials as one of the evaluation metrics.

PCA Score Metric: We perform k perturba-
tions, obtaining e., and k perturbed embeddings:
{eg | 7 = 1,2,...,k}. For each sample d,,, an
embedding set of size k + 1 is obtained. We ap-
ply PCA to compute eigenvalues for each principal
component. If d., contains triggers, the embed-
dings will cluster tightly in high-dimensional space
because of the identical watermark signal, resulting
in smaller eigenvalues after PCA. Thus, we use the
sum of eigenvalues as one of the evaluation met-
rics, as shown in Equation 4, where D), is the
reduced dimension and f,, computes eigenvalues.
Reducing embeddings to two dimensions and using
eigenvalues as coordinates yields Figure 4.

4.4 Threshold Selection

After obtaining the metrics of tightness measure-
ment, we need to determine a threshold to distin-
guish between watermarked and non-watermarked
embeddings, as the attacker has no knowledge of
the ground truth. The metric distributions will ex-
hibit a long-tail phenomenon due to texts with trig-
gers. Figure 5 elaborates on the attacker’s perspec-
tive. A partially overlapping and imbalanced PCA
score distribution may occur. Consequently, we se-
lect the saddle point between bimodal distributions
as the decision threshold ¢ for watermark identifi-
cation, where the first-order derivative equals zero
at this critical point. Samples with metrics below
 are identified as containing watermarks and re-
moved from D, yielding a purified dataset. The
majority of samples with triggers are eliminated.
Although some benign data might also be removed,
it represents only a small proportion of D.. Further
analysis of the threshold is shown in Appendix I.
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Table 1: Watermark Identification Attack Performance.

| EmbMarker WARDEN
Datasets ! Methods Detection Performance Detection Performance
! Acc(#) ACos(%) ALy(%) p— value Acc(#) ACos(%) ALy(%) p— value
| Original 91.60 +2.37 —4.74 107 91.00 +6.47  —12.94 1076
S5T2 I +ESSA 91.00 —0.06 +0.12 1071 92.60 +5.47 —10.93 1057
'+ Random 91.20 +0.25 —0.51 1071 91.20 —1.75 +3.01 10~*
i +SPA 91.00 +0.17 —0.33 101 90.00 —1.08 +2.16 102
| Original 88.80 +1.99 —3.99 1076 89.00 +5.92 —11.84 1078
AG News - TESSA 89.57 +1.14 —2.28 10j2 89.76 +12.79  —25.58 1071
i + Random 89.00 +0.65 —1.30 1072 90.20 +2.58 —5.16 1077
I +SPA 89.80 +0.26 —0.52 1071t 89.00 +0.98 —1.95 1072
" Original 92.00 +5.99 —11.99 1077 92.20 +5.19 —10.39 1078
Enron Spam | +ESSA 92.00 —0.51 +1.03 1071 92.60 +5.47 —10.93 1077
I+ Random 91.60 +0.11 —0.22 1071 92.00 +1.56 —3.12 107*
" +SPA 91.40 +0.49 —0.98 10t 92.40 +1.25 —2.50 1072
i Original 70.20 +5.64 —11.28 1076 71.80 +9.26 —18.52 1076
MIND  +ESSA 70.10 —0.62 +1.24 1071 70.18 +4.63 —9.26 106
" + Random 70.00 —0.32 +0.66 1071 69.20 +2.48 —4.96 1072
i +SPA 70.00 —0.33 +0.66 101 70.00 +2.80 —5.61 102

5 Experiment

5.1 Experiment Setup

We evaluate SPA on EmbMarker (Peng et al., 2023)
and WARDEN (Shetty et al., 2024a), with text
classification as downstream tasks and OpenAI’s
text-embedding-ada-002 as the victim model. Ex-
periments are conducted on four datasets: SST2
(Socher et al., 2013), AG News (Zhang et al., 2015),
Enron Spam (Metsis et al., 2006), and MIND (Wu
et al., 2020). Due to API costs, we sample subsets
of each dataset for experiments. Our results are
the average of multiple experiments. Details of the
datasets are in Appendix D.

Baselines. We adopt ESSA (Yang et al., 2024),
CSE (Shetty et al., 2024a) and PA (Shetty et al.,
2024b)as baselines, with ESSA as watermark iden-
tification attack and (CSE, PA) classified as wa-
termark elimination attacks. We also compare the
naive approach of random perturbation with SPA.

Metrics. We employ the AUPRC to quantify
the cosine similarity, Lo distance, and PCA score.
A higher AUPRC indicates better performance in
watermark identification. We also utilize the TPR,
FPR and Precision to assess the performance of
watermark identification. The p — value, ACos,
and AL, are employed to assess the verification
ability of the watermark. The attack is considered
successful when the p — value ceases to be statisti-
cally significant (i.e., reaches 10~! or 1072), with
ACos and ALy approaching zero. The utility of
embeddings is evaluated through the downstream
tasks accuracy.

Settings. k perturbations are involved for each
text, with £ = 10 chosen to balance considerations
of time and cost. The suffix search guidance uses

the WikiText (Merity et al., 2016) dataset totaling
one million entries as the candidate pool.

5.2 Main Results
5.2.1 Attack Performance

We conduct a comprehensive evaluation of SPA
and other attack methods, which further highlights
the performance and advancement of SPA.

Bypass Watermark Verification. In SPA, al-
most 95% — 100% of watermarked samples are
identified and removed as shown in Table 3. Thus,
SPA results in a significant increase in p — value
from (1076,1077,107%) to (107!, 1072), leading
to the failure of watermark verification as shown in
Table 1. For other attack methods, ESSA and Ran-
dom Perturbation fail against the multi-watermark
scheme WARDEN (Shetty et al., 2024a) with
p—wvalue less than 10~4, meaning that they cannot
clearly identify the watermarked samples. How-
ever, SPA can identify the watermarked samples
in both single-watermark and multi-watermark
schemes, effectively bypassing different schemes
across all four datasets.

The Utility of Embeddings. In SPA, attacker
will finally remove the suspicious samples from
original dataset. Therefore, we conduct experi-
ments to test whether the performance of embed-
dings for downstream tasks is affected. Table 1
demonstrates that after applying SPA, although the
dataset size is reduced, the decrease in accuracy on
downstream tasks is generally below 1%. More-
over, the accuracy on some datasets even slightly
improves after SPA. Thus, the utility of embed-
dings is basically unaffected, remaining compa-
rable to the performance of original dataset.
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Table 2: Performance of Combining SPA with Elimination Attack.

EmbMarker

WARDEN

Datasets ! Methods

Detection Performance

Detection Performance

i ACC.(R) 1 ACos(%) ALy(%) p— value ACC.(H) 1 ACos(%) ALy(%) p — value
i Original 91.60 +2.37 —4.74 10°° 91.00 +6.47  —12.94 10°©
g2 1 tPA 90.57 +0.27 —0.54 107! 90.34 +0.12 —0.24 107!
"___+CSE 90.54 +0.65 —~1.31 102 91.40 +0.05 —0.10 10!
i + (SPA+CSE) 91.20 +0.20 —0.40 107! 92.00 —1.02 +2.18 1072
I Original 88.80 +1.99 —3.99 10°° 89.00 +5.92 —11.84 10°8
AG News | +PA 88.68 +4.27 —8.54 1077 88.60 +5.80  —11.60 1011
" W +CSE 89.96 +0.35 —0.70 1072 89.75 +0.93 —1.88 107!
I + (SPA+CSE) 90.40 +0.36 —0.72 1071 90.36 +1.06 —2.41 102
' Original 92.00 +5.99 —11.99 1077 92.20 +5.19 —10.39 1078
Enron Spam " +PA 90.40 —0.25 +0.50 101 90.85 +0.02 —0.03 1071
| +CSE 91.25 +0.40 —0.81 107! 91.90 +0.94 —1.88 10!
" + (SPA+CSE) 92.40 +0.57 —1.02 101 92.42 +1.32 —2.63 1072
" Original 70.20 +5.64 —11.28 1076 71.80 +9.26  —18.52 109
MIND t +PA 69.25 +0.22 —0.45 10j1 69.26 +1.33 —2.65 10!
" +CSE 69.62 +0.93 —1.86 1072 70.38 —0.02 +0.04 10~!
it + (SPA+CSE) 71.00 —0.44 +0.88 107! 73.34 +2.20 —4.41 102

Table 3: Semantic Perturbation Attack Performance. ‘x’ demonstrates the most important metrics.

Deletion Performance

Datasets ii Schemes ~ Cos AUPRC Ly AUPRC PCA AUPRC* —- TPIF T FPR | Precision T
SST2 :‘ EmbMarker 0.8947 0.8888 0.9214 439/5000 95.68%  2.30% 75.63%
1 WARDEN 0.6190 0.6190 0.9000 437/5000 95.68%  2.26% 75.97%
AG News H EmbMarker 0.5665 0.5398 0.7052 1478/5000 97.65% 19.62% 42.08%
' WARDEN 0.3323 0.3323 0.6791 1498/5000 96.86%  20.19% 41.19%
Enron Spam :\ EmbMarker 0.9284 0.9227 0.9685 572/5000 91.49%  1.26% 90.21%
. WARDEN 0.7348 0.7348 0.9530 619/5000 92.91%  2.14% 84.65%
MIND :‘ EmbMarker 1.0 1.0 1.0 152/5000 100% 0% 100%
i1 WARDEN 0.4971 0.4971 0.7957 188/5000 84.21%  1.24% 68.09%

5.2.2 Orthogonal Combination

SPA serves as an effective identification method
that can be orthogonally combined with watermark
elimination attacks to achieve enhanced perfor-
mance. Thus, SPA can be effectively combined
with CSE to precisely localize the suspicious em-
beddings, while CSE’s removal mechanism elim-
inates the watermark signals from these targeted
embeddings. SPA+CSE modify only suspicious
embeddings with TPR almost above 95% instead of
large-scale modifications to the embeddings, thus
enhancing the utility of embeddings as shown in
Table 2. It also demonstrates comparable attack per-
formance across different schemes, with p-values
reaching magnitudes of 10~! or 10~2. Compared
to standalone SPA, SPA+CSE avoids dataset reduc-
tion while outperforming standalone CSE in pro-
viding more precise identification of watermarked
embeddings, thereby achieving the highest accu-
racy in downstream tasks.

5.2.3 Time Overhead

In SPA, local model encoding process constitutes
the dominant time cost with the linear time com-
plexity. Thus, we measured the time required for
suffix search in SPA. In our settings, searching for
the top — 10 optimal perturbation suffixes for a sin-

gle text from the pertrubation pool of size 10° only
requires 0.15 seconds on average across all four
datasets. Meanwhile, we evaluate the effectiveness
of SPA under varying perturbation pool sizes. Even
with a pool of size 103, comparable perturbation
performance can be achieved. Detailed information
of experiment results can be found in Appendix H.

5.3 Ablation Study

We conducted extensive experiments on SPA from
multiple perspectives to validate its effectiveness
and capability across various scenarios. For clarity
of presentation, we conduct experiments on SST2
(Socher et al., 2013) and AG News (Zhang et al.,
2015) datasets.

PCA Score demonstrates superior robustness
compared to other metrics. Table 3 shows that
the PCA score metric remains stable across dif-
ferent schemes. It also shows the performance of
watermark identification using the PCA score met-
ric, along with a TPR universally exceeding 90%.
This is likely because the PCA algorithm extracts
and preserves the watermark information in the em-
beddings while eliminating redundant information.

SPA performance improves as the number
of semantic perturbations increases. We eval-
uated SPA performance under different numbers
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of perturbations using PCA AUPRC as the evalua-
tion metric. The perturbation suffixes are selected
following the order determined by suffix search
guidance. The results shown in Figure 6 indicate
that, SPA performance increases and stabilizes as
the number of perturbations grows. This further
demonstrates the effectiveness of SPA, as it ensures
that effective suffixes are incorporated among mul-
tiple candidates.

SPA remains effective under different water-
mark ratios. We evaluated SPA’s performance
under varying watermark ratios, with a fixed num-
ber of perturbations. Figure 7 shows that even
with low watermark ratios (low-frequency triggers),
SPA achieves a PCA AUPRC of 0.3-0.5, despite
the stealer model failing to learn the watermark
behavior. Performance improves as the watermark
ratio increases. However, a high watermark ratio
will result in excessive watermark injection and
embedding modification. Nevertheless, the PCA
AUPRC remains above 0.9, demonstrating SPA’s
robustness across varying watermark ratios.

6 Discussion of Mitigation Strategies

To counter SPA, we explore potential mitigation
strategies. We suggest a deep learning-based so-
lution with: (1) a semantic-aware injection model
that dynamically injects watermarks based on se-
mantic features, and (2) a verification model. How-
ever, this approach introduces a critical trade-off:
when the adaptive watermark is learned by a stealer

model, verification becomes substantially more
challenging. In addition, we attempt to reproduce
the adaptive EaaS watermarking schemes (Wang
and Cheng, 2024; Wang et al., 2024) in contempo-
rary studies. We discovere conclusions consistent
with our exploration. We believe that the semantic-
aware watermarking paradigm represents a promis-
ing direction, yet further investigation into its verifi-
cation capability remains essential. Detailed results
and analysis are provided in Appendix F.

7 Related Work

7.1 Model Extraction Attack

Model extraction attacks (Orekondy et al., 2019;
Sanyal et al., 2022; Chandrasekaran et al., 2020)
threaten Deep Neural Networks (DNNs) and cloud
services by enabling adversaries to replicate mod-
els without internal access. Attackers can query
APIs (Kalpesh et al., 2020) or gather physical data
(Hu et al., 2020) to train the stolen models. Pub-
lic APIs, especially in current EaaS services, have
been proven to be vulnerable (Liu et al., 2022).

7.2 Deep Watermarking

Deep watermarking can be classified into white-
box, black-box, and box-free approaches based on
accessible data during verification (Li et al., 2021).
White-box watermarking schemes access model
parameters (Yan et al., 2023; Pegoraro et al., 2024;
Lv et al., 2024), while black-box schemes rely only
on the model output (Leroux et al., 2024; Lv et al.,
2024). Box-free watermarking schemes exploit
inherent output variations without crafted queries
(An et al., 2024). In EaaS, watermarking can be
regarded as a form of black-box watermarking.

8 Conclusion

In this paper, we propose SPA, a novel attack on
EaaS watermark exploiting the limitation that cur-
rent schemes is semantic-independent. SPA con-
ducts several semantic perturbations to input text,
constructs embedding pairs using the original and
perturbed embeddings, measuring the tightness of
embeddings and deletes suspicious samples exceed-
ing the threshold while preserving service utility.
Our extensive experiments demonstrate the effec-
tiveness of SPA. We also validate the importance
of SPA’s components and explore mitigation strate-
gies. Our work emphasizes the critical role of text
semantics in EaaS watermarking.
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Limitations

In this paper, we propose SPA, a novel attack which
exploits the semantic-independent vulnerabilities
inherent in current EaaS watermarking schemes,
successfully removing the majority of watermarked
embeddings. However, an attacker requires a small
local model for assistance to successfully execute
SPA. Although such a scenario is realistic, we plan
to explore attack schemes that do not require assis-
tant models in our future work. Additionally, after
each text perturbation, the attacker needs to re-
access the original EaaS service, which increases
the API cost of SPA. Furthermore, we note that
as the number of suffixes increases, the effective-
ness of SPA becomes more stable, while an insuf-
ficient number of suffixes may lead to failure of
SPA, thereby further amplifying concerns regard-
ing the associated API costs. In future, we believe
that advanced watermarking schemes will emerge,
but SPA provides a perspective that emphasizes
the importance of text semantics in the design of
EaaS watermarking schemes. We will continue to
explore how to develop feasible attack and water-
marking schemes with enhanced robustness.

Ethics Statement

We introduce a novel and effective attack target-
ing EaaS watermarks through the semantic per-
turbation. Our objective is to underscore the crit-
ical consideration of text semantics in EaaS wa-
termark design, thereby enhancing security. We
believe that the first step toward enhancing secu-
rity is to expose potential vulnerabilities. All our
experiments are conducted under control, with no
attempts made to launch actual attacks on EaaS ser-
vice providers. We have further explored potential
mitigation strategies to address SPA.
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Appendix
A Opverview of Different Attack Methods

In Appendix A, we provide a comprehensive and
detailed introduction to various attack methods,
including CSE, PA, and ESSA.

* ESSA (Yang et al., 2024) is a kind of water-
mark identification attack. ESSA appends a
token to the input text and evaluating whether
the token functions as a trigger by analyzing
the divergence between embeddings before
and after token addition.

* CSE (Shetty et al., 2024a) is a kind of water-
mark elimination attack. CSE uses clustering
to identify embedding pairs, selects potential

watermarked embeddings by analyzing dis-
crepancies between a standard model and the
victim model, and eliminates principal com-
ponents to erase watermark signals.

PA (Shetty et al., 2024b) is a kind of water-
mark elimination attack. PA employs a lan-
guage model to rewrite input texts multiple
times, retaining semantics but potentially los-
ing trigger tokens. Averaging embeddings
from these iterations dilutes the watermark
signals. This attack paradigm modifies origi-
nal embeddings, inevitably compromising the
utility of embeddings.

B Definition of the Threat Model

In Appendix B, we clearly define the threat model,
detailing the objective, knowledge, and capability
of the attacker.

Attacker’s Objective. TThe attacker aims to
use embeddings from the victim model ©,, without
watermark verification. The attacker can then effi-
ciently provide a competitive alternative instead of
pre-training a new model.

Attacker’s Knowledge. The EaaS service oper-
ates as a black box. The attacker queries the victim
service .S, using a dataset D., where each sample
is d.,. While unaware any information of ©,, the
attacker can reasonably access a general text cor-
pus D, and a small local embedding model O, to
design the attack algorithm.

Attacker’s Capability. With sufficient budget,
the attacker can query 5, to obtain the embedding
set F. for D.. They can then employ various attack
strategies to bypass watermark verification.

C Exploration of Perturbations

C.1 Exploration of Suffix

In Appendix C.1, we provide the detailed explo-
ration of semantic perturbation. The text pertur-
bation denoted as perb can only be constructed as
prefix or suffix. The potential construction space
for the suffix can be classified from two perspec-
tives: the length of the suffix and its semantics. We
use EmbMarker (Peng et al., 2023) as an example.

Random tokens without semantics: We first ex-
plore a simple construction method by the adding
random tokens as the suffix without semantics.
Specifically, we tokenize each sentence in a gen-
eral text corpus and compile all tokens into a total
token vocabulary. We randomly add tokens to the
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Figure 8: Different Approaches of Semantic Perturba-
tions: Length and Semantics. Regardless of whether
watermarked or not, random text performs better than
random tokens. The injection of the watermark has led
to a significant gap between the curves.

suffix. At this stage, we explore the relationship be-
tween suffix length and perturbation performance
before and after the watermark injection, measured
by (ec;, e, ). The results in Figure 8 indicate that
as the suffix length increases, the embeddings sim-
ilarity gradually decreases. After the watermark
injection to (e, e, ), the rate of decrease signifi-
cantly slows and remains notably higher than the
curve without the watermark injection.

Random text with semantics: We randomly se-
lected long texts from a general text corpus, tok-
enize it to obtain a sequence of tokens and sequen-
tially add each token to the suffix. We explored the
effects both with and without watermark injection.
The results are illustrated in Figure 8. It is evident
that semantic suffix lead to a faster enhancement
of perturbation performance, with the curve with
watermark injection also significantly exceeding
that without injection. Interestingly, for the same
suffix length, the performance of perturbations us-
ing text with semantics is generally higher than that
achieved with random tokens. The finding suggests
that using the suffix with semantics is more cost-
effective and produces better results. Therefore, we
will consistently utilize the semantic suffix during
the perturbation process.

Text with & without semantics: For suffix, the
construction space can be categorized from two
perspectives: length and semantics. A series of
experiments demonstrate that using random text
with semantics is more cost-effective and produces
better results compared to random tokens without
semantics. Based on this, we propose a heuristic
perturbation scheme.

C.2 Heuristic Perturbation Scheme
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Figure 9: Cosine similarity metric distribution and KDE
curve of the Enron Spam dataset in Heuristic Perturba-
tion Scheme.

In Appendix C.2, we introduce heuristic seman-
tic perturbation scheme. Semantic suffixes improve
perturbation performance at lower costs, making
suspicious samples easier to detect. Based on this,
we propose a heuristic perturbation scheme. Fol-
lowing previous works, we focus on text classi-
fication tasks. In the context of text classifica-
tion, heuristic perturbation scheme randomly se-
lects samples with different labels from original
as suffixes, leveraging semantic differences to en-
hance the perturbation. We randomly select k& sam-
ples for perturbation and calculate the average co-
sine similarity of £ embedding pairs, to reduce
the influence of potential triggers in the suffixes.
We conducted experiments on four classic datasets:
Enron Spam (Metsis et al., 2006), SST2 (Socher
etal., 2013), MIND (Wu et al., 2020) and AG News
(Zhang et al., 2015). From the perspectives of the
attacker and ground truth, the cosine similarity dis-
tribution of Enron Spam dataset is shown in Figure
9. The distribution results indicate observable dif-
ferences for the Enron Spam and MIND datasets,
while such differences are less pronounced for the
SST2 and AG News datasets. Thus, we need to
further explore a more effective approach.

C.3 Semantic Perturbation Guidance

In Appendix C.3, we introduce another small local
model suffix perturbation guidance approach. The
results in Figure 9 indicate that the effectiveness
of the simple heuristic perturbation scheme needs
further improvement. Although the embedding
spaces of O, and O differ, the variations between
(ec;, er,) under the same perturbation show similar
patterns across all these spaces. Specifically, we in-
put the text pair (d.,, d., + perb) into O to obtain
the corresponding embedding pair (se,,, se’cl,). The
perturbation perb traverses through all candidates
in the perturbation pool. The top-k perb texts that
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Table 4: Training Settings.

Datasets Train Test Class , Metrics  Schemes Original Subset Epoch Adjustment
! ! EmbMarker 93.46%  91.60% 3—30
SST2 H 67,349 — 5,000 872 — 500 2 H ACC.(%) “WARDEN ~ 93.46%  92.20% 3550
i i EmbMarker 93.57%  88.80% 3 — 20
AG News ' 120,000 — 5,000 7,600 — 500 4 " ACC.(%)
! ! WARDEN 93.76? 89.00? 3 — 20
I . . I EmbMarker 94.85%  92.00% 3—20
Enron Spam H 31,716 — 5,000 2,000 — 500 2 H ACC.(%) “WARDEN ~ 94.60%  92.20% 3510
! ! EmbMarker  77.23%  69.20% 3—=75
MIND H 97,791 — 5,000 32,592 — 500 18 H ACC.(%) “WARDEN ~ 77.18%  71.80% 3 75

minimize the similarity of (se.,, se,.. ) are selected
as candidate suffixes. Since the embeddings output
by O, are not watermarked, it is feasible to use this
small local model to guide the perturbations for
©,. We similarly take the aggregate metric over
k perturbed samples for evaluation. ©; captures
the differential features between (d.,, d., + perb).
Such differential features are consistent across mod-
els. However, suffix perturbation guidance is less
efficient since each text have to traverse all the can-
didates in the perturbation pool. It results in the
time complexity of | D.| - [perb pool|, requiring © 4
to encode | D.| - |[perb pool| perturbation processes.

D Dataset Introduction

In Appendix D, we will provide a comprehensive
description of the specific details of the datasets
utilized, including their structure, preprocessing
steps, and relevant statistics. The datasets selected
for our experiments—SST?2 (Socher et al., 2013),
AG News (Zhang et al., 2015), Enron Spam (Metsis
et al., 2006), and MIND (Wu et al., 2020)—are
widely recognized as benchmark datasets in the
field of Natural Language Processing (NLP). We
apply the four datasets to the text classification task,
with a primary focus on investigating the potential
impact of watermarks on this downstream task.

* SST2: The SST2 dataset is a collection of
movie reviews labeled with binary sentiment
(positive or negative), commonly used for
training and evaluating models in sentiment
classification tasks.

* AG News: The AG News dataset is a col-
lection of news articles categorized into four
topics, commonly used for text classification
and NLP tasks.

* Enron Spam: The Enron Spam dataset con-
sists of the emails collection labeled as ei-
ther “spam" or “non-spam" (ham), making it a
valuable resource for studying spam filtering,
email classification.

 MIND: The MIND dataset is a large-scale
dataset designed for news recommendation. It
can also used for news classification tasks.

E Experiment Settings

In Appendix E, we will provide a detailed descrip-
tion of the training configurations employed in our
experiments. Furthermore, we demonstrate that our
experimental setup is both rational and effective in
conducting various evaluation tests.

Table 4 provides detailed information about the
datasets used in our study. It also highlights the
adjustments made to the number of training epochs
in order to ensure performance on the respective
subsets of each dataset. Specifically, the small-
est dataset contains more than 30,000 data items,
while the largest dataset includes over 12,000 data
items. For our experiments, we sampled a subset
of 5,000 examples from the training set and 500
examples from the test set. This sampling strategy
was carefully chosen to balance the need for the
cost of the experiment with the goal of maintaining
representative data coverage. Table 4 indicates that,
despite using subsets, the accuracy of downstream
tasks has not significantly decreased in different wa-
termarking schemes. On certain specific datasets,
the accuracy achieved using the subset for train-
ing has even shown a slight improvement. This
may be attributed to the inherent randomness in
training process. Since the focus is on a relatively
simple text classification task, the model appears
to perform well even on the subset, maintaining
favorable results. The results of the experiments
demonstrate that conducting tests on these subsets
not only produces valid and meaningful outcomes
but also confirms the practicality.

F Adaptive Watermark Analysis

In Appendix F, we will present experimental re-
production results of current adaptive watermark-
ing schemes (Wang and Cheng, 2024; Wang et al.,
2024) alongside our own extended investigations.
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Table 5: Semantic Aware Watermarking Performance

I Deletion Performance Verification

Datasets H Cos AUPRC [z AUPRC  PCA AUPRC* Total Deletion TPR**t FPR | Precision T p — value
SST2 H 0.5348 0.5296 0.6946 87/5000 20.75%  0.32% 82.76% 1077 = 1071
AG News H 0.2731 0.2669 0.3295 216/5000 13.97% 2.97% 39.81% 1072 —» 107!
Enron Spam 0.4133 0.4088 0.5574 133/5000 15.78%  0.99% 66.92% 1076 — 1072
MIND & 0.9999 0.9999 0.9999 80/5000 52.63% 0% 100% 1077 » 107!

Table 6: Reproduction of GuardEmb

I Watermark Detection Performance

Method |
. Recall (%) Accuracy (%) F1 Score (%)
Original : : 0.00 96.94 N/A
EmbMarker ! 5.91 8.67 11.14
GuardEmb 0.00 97.63 0.00

GuardEmb (Wang and Cheng, 2024) uses DNNs
to enable dynamic watermark injection and veri-
fication, ensuring distinct watermark signals for
different text embeddings. However, as shown in
our reproduction results in Table 6 on SST?2 dataset,
GuardEmb achieves F1 Score = 0 and Recall =0
during watermark verification, indicating that it
misclassifies all watermarked embeddings as non-
watermarked. Due to the use of mid-frequency
trigger tokens, watermarked embeddings constitute
an extreme minority class. Consequently, while
GuardEmb attains high accuracy (biased by class
imbalance), its F1 and Recall metrics collapse to
zero. This demonstrates GuardEmb’s failure to sus-
tain verifiability against model extraction attacks.

ESpeW (Wang et al., 2024) is the same as Em-
bMarker (Peng et al., 2023) in the selection of the
watermark, only selecting a single watermark vec-
tor. During the watermark injection process, ES-
peW selects the positions with the top — k smallest
absolute values in the text embeddings for water-
mark injection, employing a strategy reminiscent
of the least significant bit (LSB) approach. At the
selected positions, ESpeW applies a linear com-
bination scheme similar to EmbMarker, while the
watermark verification process remains identical to
that of EmbMarker. Consequently, ESpeW quali-
fies as an adaptive watermarking scheme, injecting
watermark information at positions dynamically
determined by the embedding characteristics. How-
ever, in practice, ESpeW does not rely on straight-
forward linear combinations. Instead, it overwrites
the values at the chosen positions in the text em-
beddings with the corresponding watermark vector
entries with high probability. This strong pertur-
bation ensures reliable watermark verification, but

it also deviates from the original paper’s method.
This approach is susceptible to statistical analysis
attacks, as the values of the watermark vector may
exhibit abnormally high frequency in the embed-
dings, potentially undermining stealthiness.

We also try to implement an adaptive (semantic-
aware) watermarking scheme and conduct exten-
sive experiments. We implement the adaptive wa-
termarking scheme by training the watermark injec-
tion model and the watermark verification model.
Our experimental results in Table 5 demonstrate
that end-to-end training of both watermark injec-
tion and verification models can significantly en-
hance watermark stealthiness and resistance against
SPA. However, this approach introduces a criti-
cal trade-off: when the watermark is learned by a
stealer model, verification becomes substantially
more challenging. This represents a fundamen-
tal trade-off between watermark stealthiness and
verifiability. As demonstrated in Table 5, our ex-
ploration reveals that when dynamically injecting
watermarks via the watermark injection model, the
stolen model struggles to learn watermarking sig-
nals, resulting in higher p-values than the fixed
watermark during watermark verification. Adap-
tive watermarking approach generates distinct wa-
termark signals for each instance, significantly in-
creasing the difficulty for stolen models to learn
and inherit these patterns compared to fixed water-
mark vectors. Our code is also publicly available
in our repository.

G Differential Properties

In Appendix G, we will demonstrate that text em-
beddings derived from different models exhibit sim-
ilarities in their differential properties. Meanwhile,
we demonstrate that this similarity is preserved in
models with different parameters.

To systematically validate the consistency of
differential properties across different embedding
models, we conduct a controlled experiment by
randomly sampling 100 text embeddings from four
distinct datasets. For each dataset, pairwise cosine
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Table 7: Spearman Correlation Coefficient of Differential Properties

Model Size |

Spearman Correlation Coefficient

Comparison Type H Architecture H “Enron  SST2 MIND _AG News
(victim, random) | - f 1 0.000 -0.002 0.001  0.009
(victim, localy) | paraphrase-MiniLM-L6-v2 | 80MB | 0403 0.516 0.537 0.504
(victim, localy) || paraphrase-MiniLM-L12-v2 ' 120MB | 0431 0557 0534 0.501
(victim, locals) H all-mpnet-base-v2 H 420 MB H 0484 0.625 0.635 0.668
(victim, localg) 1 sentence-t5-large i 640MB 1 0.562 0.576  0.638 0.609

Table 8: Perturbation with Different Pool Size

Table 9: Threshold Selection on SST2

Pool Size H AUPRC Deletion Method ~ Threshold ~ TPR FPR BA*
, Cosine L2 PCA TPR Precision 0.8¢ 46.97% 0.15% 73.41%
106 H 0.9982 0.9979 0.9979 0.57 100% 0.9¢ 7435% 0.56%  86.90%
10° b 0.9666 0.9656 0.9802 0.56 100% EmbMarker 1.0¢ 95.68% 2.30% 96.69%
10 " 0.9536 0.9518 0.9762 0.53 100% 1.1p 97.12%  8.23%  94.45%
103 109767 0.9690 0.9517 0.51 100% 1.2¢ 99.42% 20.57% 89.43%
0.8¢p 43.52% 0.19%  71.66%
0.9¢ 72.62% 0.71%  85.96%
similarities between embeddings are calculated to WARDEN 1.0p 95.68% 226% 96.71%
construct a 100 x 100 similarity matrix, which is L.lp 99.42%  7.65%  95.88%
subsequently transformed into a rank matrix by 1.2¢ 100%  18.29% 90.86%

sorting similarity values per embedding. Using the
rank matrix derived from OpenAl API embeddings
(serving as the victim model in our paper) as the
reference benchmark, we calculate the Spearman
Correlation Coefficient with: (1) the rank matrix
obtained using the local model (such as paraphrase-
MiniLM-L6-v2), and (2) the randomly selected
rank matrix. The Spearman Correlation Coefficient
ranges from [-1, 1], where values closer to 1 indi-
cate a stronger positive correlation.

As demonstrated in Table 7, our experimental
results reveal:

* A strong positive correlation between the sim-
ilarity gap in embeddings from the OpenAl
API and those from the local model.

* No significant correlation with randomly se-
lected embeddings.

H Perturbation Pool Size

In Appendix H, we will demonstrate that under
varying sizes of the text perturbation pool, the per-
turbation suffixes selected through guidance from a
local small model consistently achieve effective se-
mantic perturbation performance. Furthermore, as
the pool size decreases, the semantic perturbation
effectiveness exhibits only a marginal decline.

In our experiments, we evaluate the effective-
ness of semantic perturbations under varying per-
turbation pool sizes. Specifically, we randomly

sample 100 watermarked embeddings and 100 non-
watermarked embeddings, conducting experiments
across perturbation pools of sizes 103, 10%, 105,
and 10°. We randomly sample the pools from
Wikitext-103-raw-v1 (Merity et al., 2016) dataset
to construct the perturbation pool. As shown in
Table 8, the effectiveness of semantic perturbations
exhibits only minimal degradation across different
perturbation pool sizes. Even with a pool size as
small as 1,000 samples, comparable perturbation
performance can be achieved.

I Analysis of Threshold Selection

In Appendix I, we test both EmbMarker and WAR-
DEN on the SST2 dataset. The values around ¢ are
tested as decision thresholds for watermark identi-
fication. Values within the range [0.8¢, 1.2¢] are
sampled at intervals of 0.1¢. To assess the relation-
ship between TPR and FPR, we newly introduced
Balanced Accuracy (BA) as an additional metric,
defined as the mean of TPR and (1-FPR). Experi-
mental results demonstrate that with the automat-
ically selected threshold ¢, TPR is consistently
high (above 90%) while FPR remains relatively
low. Due to high TPR and low FPR, BA basically
achieves the optimal value with the threshold ¢
among all the discretely tested values as shown in
Table 9. Overall, the BA metric exhibits a quadratic
curve trend, with ¢ closely aligning with its peak.
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