
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3545–3559
November 4-9, 2025 ©2025 Association for Computational Linguistics

Learning SQL Like a Human: Structure-Aware Curriculum Learning for
Text-to-SQL Generation

Xiaohu Zhu1, Qian Li1,2*, Lizhen Cui1,2*, Yuntao Du1,2,3

1School of Software, Shandong University
2C-FAIR & School of Software, Shandong University

3State Key Laboratory for Novel Software Technology, Nanjing University, P.R. China
{xiaohuzhu, feiwangyuzhou, clz, yuntaodu}@sdu.edu.cn

Abstract

The Text-to-SQL capabilities of large language
allow users to interact with databases using
natural language. Despite recent advances, ex-
isting models continue to struggle with com-
plex queries, particularly those requiring multi-
table joins and reasoning. To address this
gap, we propose to construct a model, namely
SAC-SQL, with synthetic training samples fol-
lowed by a structure-aware curriculum learn-
ing framework for enhancing SQL generation.
Our approach begins with a supervised fine-
tuning (SFT) stage, where we train open-source
models on a synthetically constructed, cross-
domain SQL dataset with diverse structural
patterns. Moreover, we introduce a unified
structure difficulty scoring function to parti-
tion the training samples into non-overlapping
curriculum phases, guiding the model progres-
sively learning from simpler to more complex
SQL structures. Extensive experiments are
conducted and the results show that SAC-SQL
achieves better results than the baselines, and
significantly narrows the performance gap be-
tween open-source and close-source models on
Spider and Bird benchmarks.

1 Introduction

Text-to-SQL generation task aims to automati-
cally translate natural language questions into exe-
cutable SQL queries, allowing users to interact with
databases using plain language(Li et al., 2023c).
This task reduces the technical barrier for data ac-
cess and plays a key role in natural language inter-
faces to structured data (Qin et al., 2022a).

Several methods have been proposed to achieve
the goal. Some methods adopt prompt engineering
to solve this task. Furthermore, recent methods
have focused on collecting related data at scale
and applying instruction tuning to enhance model
performance. Representative models such as GPT-

* Corresponding Author

Figure 1: Distribution of error types for complex SQL
queries (total errors = 60).

4 (OpenAI et al., 2024) and CodeLLaMA (Roz-
ière et al., 2024) have demonstrated remarkable
progress on the Text-to-SQL task.

However, existing methods still struggle with
handling complex queries that involve multi-table
joins and reasoning. According to our statistics,
CodeLLaMA achieves an execution accuracy of
86% for easy queries compared to only 40% for
complex queries1. Furthermore, we performed an
error analysis on the 30 incorrectly predicted com-
plex samples (totaling 60 individual errors, with
some examples containing multiple issues). As
shown in Figure 1, the distribution of error types
revealed that Incorrect JOINs accounted for the
largest share (30%), followed by NESTED Query
Errors (23.3%), Aggregation Misuse (16.7%), In-
correct WHERE Clause (13.3%), Syntax Errors
(10%), and Ambiguous Column References (6.7%).
These findings clearly indicate that these LLMs
struggle particularly with structurally complex
queries such as JOIN operations and nested queries.

To overcome this challenge, in this paper, we
proposed a novel model, SAC-SQL, which adopts
synthetic training samples followed by a structure-
aware curriculum learning framework for enhanc-

1We randomly sampled 100 examples from existing Text-
to-SQL datasets and categorized them into easy and complex
queries based on their structural complexity.

3545



Dataset #Examples #Databases Avg Token Avg JOIN NESTED Ratio

Spider 7000 140 37.3 0.54 5.6%
Bird 9428 69 64.0 1.02 12.3%

Ours 12134 674 56.7 1.26 18.7%

Table 1: Comparison of dataset properties across Spider, Bird, and our synthetic dataset.

ing SQL generation. Our model builds upon two
key insights: First, text-to-SQL difficulty is gov-
erned by query structure, and current models fail to
generalize well to complex structures when trained
in a uniform manner(Shi et al., 2024). Second,
high-quality real-world Text-to-SQL datasets are
scarce and difficult to obtain, limiting the diversity
and complexity of training examples. Thus, we
propose to construct a high-quality, synthetically
generated SQL dataset that covers a wide variety
of query structures and schema domains.

Besides, we propose a two-stage training strat-
egy to train the models. At the first stage, the
synthesized dataset is used to supervise fine-tune
open-source language models to provide them with
essential SQL syntax and schema grounding. By
explicitly controlling the composition of SQL struc-
tures during generation, we ensure that more ex-
amples contain low-frequency but high-difficulty
patterns. This helps alleviate the long-tail distribu-
tion problem and enhances the model’s ability to
generalize to rare but semantically important query
types(Yang et al., 2024).

At the second stage, we introduce a structure-
aware curriculum learning framework to further
enhance the model’s ability to handle structurally
complex queries. We design a unified function
based on structural components, interaction pat-
terns, syntactic tree depth, and generation uncer-
tainty (via normalized NLL). Training samples are
ranked and divided into non-overlapping phases of
increasing difficulty, allowing the model to learn
SQL structure in a staged, cognitively aligned way.

Combining these two-stage processes, we de-
velop SAC-SQL, a curriculum-enhanced model
trained atop an SFT-initialized open-source LLM.
Experiments on Spider and Bird benchmarks show
that SAC-SQL achieves better results than existing
methods, and surpasses existing open-source base-
lines. Besides, it outperforms GPT-4 and its deriva-
tives in executing complex SQL queries, highlight-
ing the effectiveness of combining data design and
curriculum scheduling in improving SQL composi-
tionality and reasoning.

The contributions of this work are as follows,

• We propose a novel model SAC-SQL trained
on synthetic samples covering a wide variety
of query structures and schema domains.

• We propose a two-stage training pipeline.
Considering the characteristics of the syn-
thetic sample, we design a structure-aware
curriculum learning with difficulty measure at
the second stage.

• Extensive experiments prove the superi-
ority of SAC-SQL over state-of-the-art
baselines. Our code and data are available
athttps://github.com/xiaomooncake/
text2sql-curriculum/.

2 Related Work

LLM-based Text-to-SQL Recent advances in
large language models (LLMs) have led to a
surge of approaches designed to improve Text-
to-SQL performance by leveraging pretraining,
schema understanding, and task-specific optimiza-
tion. Among them, Knowledge-to-SQL(Hong
et al., 2024) enhances database-schema align-
ment by combining supervised fine-tuning with
Direct Preference Optimization (DPO)(Rafailov
et al., 2024), effectively improving execution accu-
racy. SGU-SQL(Zhang et al., 2024a) adopts graph-
structured representations and grammar-aware pars-
ing to strengthen query-schema linkage and com-
positional reasoning. CLLMs(Kou et al., 2024)
introduces a consistency loss as an implicit regular-
ization mechanism to stabilize convergence and im-
prove model adaptability. StructLM(Zhuang et al.,
2024) proposes a structured learning framework
that integrates code-level pretraining with cued tun-
ing and constrained parameter adaptation via regu-
larization techniques. MCS-SQL(Lee et al., 2024)
combines schema linking, multi-path SQL gener-
ation, and candidate reranking; it employs multi-
ple prompts to sample a wide reasoning space and
selects the best SQL candidate through execution-
aware scoring functions.

3546

https://github.com/xiaomooncake/text2sql-curriculum/.
https://github.com/xiaomooncake/text2sql-curriculum/.


Close-source LLMs

Structure-Aware Curriculum Learning

SAC-SQL model

Annotated Dataset

Open-source LLMs

Synthetic Dataset

Avg Token ↑
Avg JOIN ↑
Nested Ratio ↑
…

EasyHard

Phase 5 Phase 1…

Figure 2: An overview of SAC-SQL.

Curriculum Learning Curriculum Learning
(CL)(Dai et al., 2021) is a training paradigm that
organizes examples in an easy-to-hard order, in-
spired by the way humans progressively acquire
knowledge. Instead of randomly sampling from the
full dataset, CL gradually increases the difficulty
of training samples to align with the learner’s grow-
ing capacity(Bengio et al., 2009). This paradigm
has been widely applied in domains such as ma-
chine translation, reading comprehension, and dia-
log modeling, where task complexity and composi-
tionality varies across samples.(Wang et al., 2021)
In Text-to-SQL generation, queries differ signifi-
cantly in their structural complexity—ranging from
single-table selections to deeply nested multi-join
queries. Models trained on such data in a uniform
or random fashion often fail to generalize to the
long tail of complex SQL structures. For example,
CL can be applied to the neural machine translation
task, which significantly improves the performance
of the model under low resource conditions(Zhang
et al., 2018; Dou et al., 2022). By introducing
curriculum learning into Text-to-SQL, we aim to
shape the model’s training trajectory so that it first
masters basic constructs, then gradually progresses
toward more compositional logic.

3 Methodology

Our training process consists of two major stages:
a supervised fine-tuning (SFT) phase and a subse-
quent structure-aware curriculum learning phase.
The overall goal is to improve the ability of large
language models to handle structurally complex
SQL queries by gradually exposing them to in-
creasingly difficult training examples. Figure 2
illustrates the full pipeline.

3.1 Synthetic Data Generation

We leverage GPT-4 and Claude-2 to synthesize
a high-quality, cross-domain Text-to-SQL dataset
that exhibits greater structural diversity compared
to existing benchmarks. Our synthetic dataset in-
cludes a richer distribution of SQL functions, with
increased frequency and variation in constructs
such as JOIN, GROUP BY, HAVING, WINDOW, and
UNION, addressing the structural sparsity observed
in datasets like Spider and BIRD. Furthermore, un-
like these benchmarks which suffer from domain
concentration, our dataset is drawn from over 500
distinct databases. Table 1 provides a compara-
tive overview of the structural characteristics of the
Spider, BIRD, and our synthetic dataset.

Importantly, we do not augment or paraphrase
any existing Spider or BIRD examples. Instead,
we use only their training schemas as a founda-
tion for generation. For each training schema, we
prompt GPT-4 and Claude-2 to create new natural
language questions and SQL queries that empha-
size underrepresented constructs such as HAVING,
GROUP BY, NESTED SELECT, and WINDOW functions.
To further promote structural diversity, our prompts
explicitly require the inclusion of specific SQL
components. Beyond this, we design entirely new
relational schemas in domains absent from Spi-
der and BIRD—such as logistics, food, publishing,
scientific grants, and agriculture. These original
schemas are constructed with realistic complexity
and allow us to broaden the training distribution
while avoiding any contamination with benchmark
queries.

To ensure the quality and reliability of the gen-
erated data, we enforce strict constraints during
synthesis. All generated SQL queries are validated
for syntactic correctness (via SQL parsers), logi-
cal consistency with the schema, and executability
in mock querying environments. To address the

3547



known difficulty of generating structurally complex
SQL, we move beyond simple question-to-SQL
prompting and instead condition generation on
carefully selected context examples. Each prompt
includes two question–SQL pairs showcasing struc-
tural elements such as JOIN, GROUP BY, or WINDOW,
guiding the LLMs toward producing compositional
and executable queries. Diversity is further encour-
aged through domain shifts, controlled randomness
in prompt construction, and evaluation with our
difficulty scoring function D(x) to ensure broad
coverage across structural dimensions.

Avoiding Benchmark Overlap. To address
concerns of potential contamination with Spider
or BIRD dev/test sets, we adopted multiple safe-
guards. First, synthetic data was generated only
on new schemas we constructed or on training-
only schemas from Spider and BIRD; no dev/test
schemas were used. Prompts were independently
constructed, without exposing benchmark exam-
ples. Second, we applied automated filtering: (i)
all SQL queries were parsed into Abstract Syn-
tax Trees (ASTs) using sqlparse, and structurally
similar queries were flagged and removed; (ii) natu-
ral language questions were checked using 4-gram
overlap filtering, discarding any case with ≥30%
shared n-grams with benchmark dev/test sets; (iii)
template-level and exact match checks were per-
formed at both SQL and question levels. Third,
manual inspection was applied to a random subset
of 200 samples, confirming no semantic overlap
with Spider or BIRD dev/test queries. While it is
theoretically possible that LLMs memorize bench-
mark examples, our multi-stage filtering pipeline
minimizes this risk and ensures the independence
of our synthetic dataset.

3.2 Structure-aware difficulty function
To guide the model’s training trajectory in a
cognitively-aligned fashion, we define a unified
structure-aware difficulty function to evaluate the
complexity of each SQL example x. This function
integrates both the inherent structural difficulty of
the SQL query and the model’s uncertainty in gen-
erating it. The resulting score serves as the basis
for curriculum phase partitioning. Each training
sample is assigned a score D(x), which captures
both the SQL’s compositional complexity and the
model’s generation difficulty,

D(x) = α·S(x)+β ·I(x)+γ ·T (x)+δ ·L(x) (1)

where:

SQL Function Weight

SELECT 1.0
WHERE 0.5
JOIN 1.5
GROUP BY 1.0
HAVING 1.2
ORDER BY 0.8
LIMIT 0.5
NESTED SELECT 1.5
WINDOW / RANK 2.0
UNION / INTERSECT 2.0

Table 2: Structure component weights for S(x).

• S(x) captures the base complexity of SQL
components present,

• I(x) accounts for interaction between compo-
nents (co-occurrence patterns),

• T (x) measures the syntactic depth of the SQL
expression tree, and

• L(x) reflects model-specific generation uncer-
tainty based on token-level loss.

Each coefficient α, β, γ, δ is a tunable hyperparam-
eter that controls the relative influence of the four
difficulty dimensions.

To design the base structure weights in S(x) and
interaction scores in I(x), we start with linguisti-
cally and semantically informed heuristics. Each
weight reflects the compositional and logical bur-
den imposed by a SQL component. In Section 4.5,
we further explore the sensitivity of these weights
and validate their impact on model performance.

Base Structure Score S(x)

We define a structure component dictionary assign-
ing difficulty weights to common SQL constructs,
To quantify the structural complexity of each SQL
query, we define a component-wise scoring func-
tion S(x) that assigns weights to different SQL
operations based on their syntactic and semantic
difficulty. Table 2 lists the weights used for each
function, where more compositional or computa-
tionally intensive operations (e.g., WINDOW, NESTED
SELECT, UNION) receive higher scores.

Each SQL query is parsed to determine which
structures are present. S(x) is the sum of the corre-
sponding weights of those constructs.

Interaction Score I(x)

Structural difficulty often increases when multi-
ple components co-occur. For example, JOIN +

3548



HAVING and GROUP BY + WINDOW represent com-
pounded reasoning. Beyond individual SQL func-
tions, we also account for interaction complexity by
modeling common co-occurring component pairs.
These interactions often increase the compositional
difficulty of a query. For example, queries involv-
ing both NESTED SELECT and HAVING clauses tend
to exhibit deeper logical nesting and filtering logic.
As shown in Table 3, we assign interaction scores
in I(x) to reflect the added difficulty introduced by
such structural combinations.

Component Pair Score

JOIN + GROUP BY 0.8
JOIN + HAVING 1.2
NESTED + HAVING 1.5
GROUP BY + WINDOW 1.0

Table 3: Interaction component pairs for I(x).

Syntactic Depth Score T (x)

Using the SQL’s parsed abstract syntax tree (AST),
we define T (x) as a linear combination of:

• Tree depth d: number of nested clauses or
expression layers,

• Number of subqueries q: e.g., the count of
NESTED SELECT statements.

T (x) = λ1 · d+ λ2 · q (2)

where typical values are λ1 = 0.5, λ2 = 0.8. This
term captures the compositional complexity of the
SQL’s logical form.

Model Uncertainty Score L(x)

We define L(x) as the normalized token-level neg-
ative log-likelihood (NLL) of the model when gen-
erating SQL example x:

L(x) =
NLL(x)− µ

σ
(3)

where µ and σ are the mean and standard deviation
of NLL values across the training set. This score
reflects model-side uncertainty, with larger L(x)
indicating greater difficulty in generation. In our
experiments, we set α = β = γ = 1.0 and δ =
0.5 to moderately incorporate model uncertainty.
These coefficients can be tuned to suit different
curriculum learning needs .

3.3 Curriculum Phase Scheduling

Once each training sample x is assigned a structure-
aware difficulty score D(x), we partition the
dataset into a sequence of non-overlapping cur-
riculum phases, each corresponding to a difficulty
band. This phased scheduling ensures that the
model is exposed to easier examples first and
gradually progresses to more complex samples as
training proceeds. We discretize the continuous
score range of D(x) into K buckets using fixed
thresholds {τ1, τ2, . . . , τK−1} such that each sam-
ple belongs to exactly one phase. Specifically, we
define: Phase 1 as D(x) ∈ [0, τ1), Phase 2 as
D(x) ∈ [τ1, τ2), ..., and Phase K as D(x) ≥ τK−1.
In our implementation, we use K = 4 curricu-
lum phases with the following thresholds: [0, 3),
[3, 5.5), [5.5, 7.5), and [7.5,+∞). These bands
correspond to an increasing level of SQL com-
plexity, where Phase 1 includes simple single-
table queries with basic SELECT, WHERE, or LIMIT
clauses; Phase 2 introduces JOIN and simple ag-
gregation; Phase 3 includes multi-clause logic in-
volving GROUP BY, HAVING, and moderate nesting;
and Phase 4 contains highly complex queries featur-
ing NESTED SELECT, WINDOW, or multiple structural
interactions. The partitioning is performed using
np.digitize() or a similar binning operation to
ensure that each training instance is uniquely as-
signed to one phase.

To implement the structured training schedule,
we denote D1, D2, . . . , DK as the subsets of train-
ing samples assigned to each phase. Training is
carried out in a sequential phase-wise manner: in
epochs 1 to T1, only D1 is used; in epochs T1 to
T2, D1 ∪D2 is used; and so on. In the final stage
of training, the full dataset

⋃K
k=1Dk is employed.

This incremental exposure allows the model to mas-
ter fundamental SQL generation patterns early, be-
fore being exposed to increasingly complex queries,
resulting in more stable and effective learning. Ad-
ditionally, we experiment with phase blending and
loss re-weighting strategies, where earlier-phase
samples are retained in later stages but assigned
reduced loss weights, helping preserve their rein-
forcement signal without risking overfitting.

Compared to uniform sampling or randomly or-
dered curricula, our structured scheduling frame-
work offers three key advantages: it ensures stable
convergence by preventing premature exposure to
outlier queries, it enhances structure-specific gener-
alization—particularly on complex SQL constructs

3549



such as JOIN, NESTED SELECT, and HAVING—and
it provides interpretable control over training dy-
namics via the design of curriculum thresholds.

4 Experiments

4.1 Benchmark and Metric

Benchmarks We evaluate the performance of
SAC-SQL on two widely used Text-to-SQL bench-
marks—Spider and Bird. Spider(Yu et al., 2019) is
a cross-domain Text-to-SQL dataset featuring over
200 databases from 138 domains (e.g., education,
science), with an average of 5.1 tables per database.
Notably, the training and test sets contain disjoint
databases to evaluate generalization.

BIRD(Li et al., 2023c) is a benchmark designed
to bridge academic research and real-world applica-
tions by emphasizing grammatical clarity, ambigu-
ity, specificity, and schema alignment. It spans 37+
domains (e.g., healthcare, hockey, education) and
introduces challenges such as noisy database con-
tents, the need for external knowledge, and query
efficiency over large databases.

Evaluation Metrics For evaluation, we adopt dif-
ferent metrics tailored to each dataset’s structure
and objectives. On the Spider benchmark, we fol-
low standard practice and report both Execution
Accuracy (EX)(Yu et al., 2019) and Test Suite Ac-
curacy (TS)(Zhong et al., 2020). EX measures
whether the generated SQL produces the correct
execution result when run on the database, while
TS further accounts for a broader set of execution
behaviors by evaluating correctness across multiple
input-output cases per query.

For the Bird dataset, we rely solely on execution
accuracy (EX). Although Bird provides its own of-
ficial evaluation metrics, they are tightly coupled
with dataset-specific constraints and scoring rules
that do not generalize well to our open-source mod-
els or synthetic setups. Therefore, for consistency
and interpretability, we evaluate Bird results exclu-
sively using EX, which directly reflects semantic
correctness and aligns with our primary focus on
structural generalization.

4.2 Compared Methods

In order to comprehensively assess the performance
of our proposed SAC-SQL model, we compare
it against a broad range of baselines drawn from
both close-source and open-source model families.
To ensure fair and interpretable comparison, we

categorize these baselines into four groups: closed-
source LLMs, prompt-based methods, fine-tuning
approaches, and open-source LLMs.

The first group, closed-source LLMs, includes
proprietary systems such as GPT-4, PaLM-2(Anil
et al., 2023), Claude-2(Anthropic, 2023), and Chat-
GPT. These models are known for their strong per-
formance in natural language understanding and
reasoning, but are often inaccessible for fine-tuning
or domain-specific adaptation. Their inclusion pro-
vides an upper-bound reference for open-source
model performance, especially in zero-shot or few-
shot settings(Kim et al., 2020).

The second group consists of prompting meth-
ods based on in-context learning, such as few-shot
GPT-4, SQL-PaLM(Sun et al., 2024), and several
recent techniques that combine powerful LLMs
with specialized SQL-oriented prompts (e.g., DIN-
SQL(Pourreza and Rafiei, 2023), ACT-SQL(Zhang
et al., 2023), and DAIL-SQL(Gao et al., 2023)).
These approaches do not involve parameter updates
but rely on advanced prompting strategies to induce
SQL generation capabilities. They are typically
more flexible and require no task-specific training,
but may underperform on structurally difficult or
domain-shifted queries.

The third group includes fine-tuning methods,
where large models such as T5(Raffel et al., 2023),
RESDSQL(Li et al., 2023a), or Graphix-T5(Li
et al., 2023b) are trained end-to-end on Text-to-
SQL datasets. Many of these methods are enhanced
with decoding constraints (e.g., PICARD(Scholak
et al., 2021)) or logical normalization (e.g., Nat-
SQL(Gan et al., 2021)). They represent the
strongest supervised learning baselines and are di-
rectly comparable to SAC-SQL in terms of training
strategy and evaluation protocol(Qin et al., 2023).

Finally, we include a set of open-source LLMs
without task-specific fine-tuning, including models
from the LLaMA, CodeLLaMA, Qwen(Bai et al.,
2023), and DeepSeek(Guo et al., 2024) families.
These models are used in either base or instruct-
tuned form, providing a lower bound for perfor-
mance and helping isolate the gains achieved by
synthetic data, supervised fine-tuning.

This wide-ranging comparison allows us to po-
sition SAC-SQL not only against state-of-the-art
supervised models, but also in relation to widely-
used systems and emerging open-source baselines.

3550



Dev-EX Dev-TS Test Dev Test
GPT-4 72.9 64.9 - 49.2 54.9

PaLM-2 - - - 27.4 33.1
Claude-2 - - - 42.7 33.1
ChatGPT 72.3 - - 36.6 40.1

Few-shot GPT-4 76.8 67.4 - - -
Few-shot SQL-PaLM 82.7 77.3 - - -

DIN-SQL + GPT-4 82.8 74.2 85.3 50.7 55.9
ACT-SQL + GPT-4 82.9 74.5 - - -
DAIL-SQL + GPT-4 83.5 76.2 86.6 54.8 57.4
T5-3B + PICARD 79.3 69.4 75.1 - -

RASAT + PICARD 80.5 70.3 75.5 - -
RESDSQL-3B + NatSQL 84.1 73.5 79.9 - -

Graphix-T5-3B + PICARD 81.0 75.0 - - -
Fine-tuned SQL-PaLM 82.8 78.2 - - -

Llama2-7B 28.0 23.8 - 7.1 -
Llama2-13B 36.9 34.9 - 11.3 -

LLaMA2-13B-Chat 49.6 45.5 - 14.2 -
DeepSeek-Coder-1.3B 59.3 53.2 - 22.0 -

CodeLLaMA-7B 61.1 52.3 - 22.5 -
CodeLLaMA-13B 61.7 53.5 - 22.9 -

CodeLLaMA-7B-Instruct 63.4 54.2 - 23.0 -
DeepSeek-Coder-1.3B-Instruct 53.2 48.7 - 24.1 -

Qwen-7B 63.6 54.5 - 26.1 -
SAC-SQL-7B 81.7 80.1 81.9 50.8 57.3

SAC-SQL-13B 83.2 81.5 84.1 53.9 59.7

Open

Source

LLMs

Ours

Methods
Spider Bird

Closed

Source

LLMs

Prompting

Methods

Fine-tuning

Methods

Table 4: Comparison of SAC-SQL with baseline methods on Spider and Bird datasets. SAC-SQL demonstrates
strong performance across all settings, particularly on structurally complex queries.

4.3 Implementations Details

Our experiments are conducted with open-source
decoder-style language models based on the CodeL-
LaMA architecture, with both 7B and 13B param-
eter variants. The models are trained with mixed-
precision on 2×NVIDIA A100 GPUs, each with
80GB of memory. Model training and evaluation
are orchestrated through the deepspeed and accel-
erate backends to ensure efficient memory scaling.

We fine-tune each model using the AdamW op-
timizer with a linear learning rate schedule, warm-
up ratio of 0.03, and a base learning rate of 1e-5.
During SFT, models are trained on our synthetic
dataset for 6 epochs with a batch size of 128 and
context length of 2048. Curriculum training pro-
ceeds in four non-overlapping phases defined by
the structure-aware score D(x), with phase transi-
tions scheduled every 2 epochs. In each phase, only
the corresponding subset of data is exposed to the
model, following a strict easy-to-hard progression.
We apply no early stopping, and select the best
checkpoint based on dev execution accuracy.

During training, SQL queries are linearized us-
ing a deterministic schema serialization format,
and both Spider and Bird are preprocessed to
unify case, keyword spacing, and quoting conven-
tions. Schema information is appended to the input
prompt for each query using a template consistent

Figure 3: Execution accuracy (EX) on Spider and Bird
datasets as more curriculum phases are introduced.

with prior work. No execution feedback or rein-
forcement learning signals are used—our model
is trained entirely via supervised objectives. Final
evaluation is conducted using the official Spider
toolkit and an adapted Bird execution evaluator, us-
ing execution accuracy (EX) as the primary metric.

4.4 Overall Performance

Table 4 presents a comprehensive comparison of
SAC-SQL with a wide range of baselines across
the Spider and Bird datasets. Our model achieves
competitive or superior results on both benchmarks,
outperforming previous open-source models and
matching or exceeding the performance of several
closed-source methods.

On the Spider dataset, SAC-SQL-13B reaches
83.2% execution accuracy (EX) and 81.5% test

3551



suite accuracy (TS) on the dev set, and 84.1% EX
on the test set—significantly surpassing the super-
vised fine-tuning (SFT) baseline and all other open-
source LLMs. Compared to strong supervised
methods such as Graphix-T5 or RESDSQL, SAC-
SQL exhibits more stable performance without re-
lying on additional decoding constraints like PI-
CARD. While prompt-based methods (e.g., DAIL-
SQL + GPT-4) perform strongly in zero-shot set-
tings, they often lack consistency on structurally
difficult queries, especially when schema compo-
sition is dense. SAC-SQL, in contrast, benefits
from progressive exposure to complex queries dur-
ing training, allowing it to generalize more reliably
across different SQL compositions.

On the Bird benchmark, which features more
natural and varied linguistic inputs, SAC-SQL-13B
achieves 59.7% test execution accuracy, outper-
forming GPT-4 (54.9%) and all other open-source
and prompting baselines. Notably, this result is ob-
tained using execution accuracy (EX) alone, rather
than relying on the dataset’s official scoring rules,
which are incompatible with standard open-source
model usage. The large margin between SAC-SQL
and the SFT baseline (which achieves only 50.5%
EX) underscores the impact of curriculum learning
on structural transfer and long-tail generalization.
To investigate the effectiveness of our curriculum
learning framework, we measure how execution
accuracy evolves as training data gradually incor-
porates more structurally complex SQL samples.
As shown in Figure 3, model performance on both
Spider and Bird benchmarks improves steadily with
each additional phase. This progression illustrates
the cognitive benefit of structure-aware schedul-
ing—early exposure to simple patterns like SELECT
and WHERE forms a syntactic foundation, which
facilitates later generalization to more difficult
constructs such as JOIN, GROUP BY, and NESTED
SELECT. Notably, the final performance after Phase
5 outperforms all previous checkpoints, confirming
that phased curriculum training yields stronger and
more stable convergence than flat SFT.

Overall, the results demonstrate that SAC-SQL
not only closes the gap between open-source and
closed-source models, but in many cases, surpasses
proprietary methods on structurally rich and se-
mantically complex SQL tasks. The performance
gains are particularly evident in scenarios involving
nested logic, rare aggregation patterns, and multi-
clause queries—areas that standard fine-tuning
tends to underperform without structural guidance.

Figure 4: Spider Dev and Bird Dev Accuracy un-
der weight configuration. 1–5 represent structural
weight configurations: Heuristic (default), Reduced
JOIN Weight, No Nested Penalty, Equal Weights, and
High WINDOW Bias.

4.5 Weight Sensitivity Analysis

To assess the impact of different structural weight-
ing configurations in the base difficulty score S(x),
we conduct an ablation study by varying the com-
ponent weights used in our curriculum scheduler.
Table 5 and Figure 4 summarize the effect of alter-
ing weights for challenging SQL components such
as JOIN, NESTED SELECT, and WINDOW.

The results show that the heuristic configura-
tion yields the best overall performance. Reducing
the weight of JOIN leads to a 1.7% drop in Spider
accuracy, while removing the penalty for NESTED
SELECT results in degraded handling of long-tail
queries in Bird. A uniform weight setting under-
performs due to lack of structural contrast. These
findings validate the importance of accurately re-
flecting the relative difficulty of SQL components
when designing structure-aware curricula.The x-
axis denotes different structure weight configura-
tions used in the scoring function S(x). “Heuris-
tic” refers to manually assigned weights; “Reduced
JOIN” lowers JOIN difficulty; “No Nested Penalty”
ignores NESTED SELECT complexity; “Equal
Weights” removes structural differentiation; “High
WINDOW Bias” overemphasizes WINDOW op-
erations.Interestingly, we observe that the Equal
Weights variant—despite flattening all structural
distinctions—still achieves performance compara-
ble to the heuristic configuration, particularly on
the Bird dataset. We hypothesize that this is due to
the model’s inherent ability to learn structural pri-
ors from large-scale pretraining, as well as Bird’s
higher baseline complexity, which may diminish
the impact of structure-aware scheduling. Nonethe-
less, the heuristic setup consistently yields the best

3552



results, confirming the value of aligning training
stages with compositional complexity.

Variant JOIN NESTED WINDOW Spider Dev Bird Dev

Heuristic (default) 1.5 1.5 2.0 84.1 59.7
Reduced JOIN Weight 1.0 1.5 2.0 82.4 58.1
No Nested Penalty 1.5 0.5 2.0 82.9 58.8
Equal Weights 1.0 1.0 1.0 81.2 56.8
High WINDOW Bias 1.5 1.5 3.0 83.7 59.3

Table 5: Ablation on SQL structure in S(x).

4.6 Structure-Specific Evaluation

To better understand the source of SAC-SQL’s im-
provements, we conduct a structure-level break-
down of execution accuracy across different SQL
component categories. Specifically, we classify
evaluation samples according to whether they con-
tain certain key structural elements such as JOIN,
HAVING, and NESTED SELECT, and then compute
execution accuracy within each subset. This analy-
sis reveals how well models generalize to various
levels of logical and compositional complexity.

Our results show that SAC-SQL exhibits sub-
stantial gains on structurally rich queries compared
to the SFT baseline. For instance, on the Spider de-
velopment set, SAC-SQL-13B improves execution
accuracy on queries involving JOIN from 70.2%
(SFT) to 78.4%, and on GROUP BY queries from
64.3% to 75.9%. The improvement is even more
pronounced for queries containing HAVING clauses
and NESTED SELECT subqueries, where the SFT
model frequently fails to generate valid outputs.
SAC-SQL achieves 68.7% execution accuracy on
HAVING queries (vs. 52.1% for SFT), and 64.1% on
NESTED SELECT queries (vs. 49.0%).

Similar trends are observed on the Bird dataset,
where SAC-SQL demonstrates enhanced robust-
ness to long, compositional question forms and
schema-rich queries. In particular, the model ex-
hibits fewer clause ordering errors and better han-
dling of multi-step logical constraints, which are
prevalent in Bird but underrepresented in Spider.

These improvements can be attributed to the
structural curriculum design, which gradually ex-
poses the model to increasingly complex SQL
forms during training. This enables SAC-SQL to
not only memorize isolated SQL components but
also learn how to compose and integrate them in
semantically correct ways. The result is a model
that maintains high performance across both simple
and challenging structural categories—something
that standard SFT fails to consistently achieve.

Please refer to Appendix for ablation study (Ap-
pendix A) and deep discussions (Appendix B).

5 Conclusion

In this paper, we propose SAC-SQL, a model
trained synthetic training samples followed by a
structure-aware curriculum learning framework for
enhancing SQL generation. It has integrated high-
quality synthetic data, a unified difficulty scoring
function, and phase-wise curriculum scheduling to
guide the model through progressively more com-
plex SQL structures. We have introduced SAC-
SQL that achieves state-of-the-art execution ac-
curacy on the Spider and Bird benchmarks, even
surpassing several closed-source models such as
GPT-4 in structurally demanding scenarios.

Limitations

While SAC-SQL achieves strong performance
through structure-aware curriculum learning, sev-
eral limitations remain. First, the curriculum sched-
ule relies on a fixed difficulty scoring function
that may not generalize well across domains or
adapt dynamically during training. Although we
incorporate model uncertainty into the scoring func-
tion, it remains statically defined prior to training
and does not evolve with the model’s competence.
Second, the synthetic dataset, though structurally
diverse, is generated using prompting heuristics
and LLMs that may introduce distributional bias or
lack realism compared to user-generated queries.
Future work could explore human-in-the-loop or
execution-guided data synthesis to enhance fidelity.
Integrating curriculum learning with schema-aware
pretraining or constrained decoding may further
boost robustness. Finally, our framework assumes
access to sufficient compute resources for phase-
wise training, which may limit applicability in low-
resource settings.

Acknowledgement

This work was supported by the National Natural
Science Foundation of China (No. 62402293), the
Fundamental Research Funds of Shandong Univer-
sity, and the Shandong Provincial Natural Science
Foundation (No. ZR2025QC1570). The authors
would like to acknowledge the support from C-
FAIR & School of Software, Shandong University,
and the State Key Laboratory for Novel Software
Technology, Nanjing University, China.

3553



References
Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, and 109 others. 2023. Palm 2 technical
report. Preprint, arXiv:2305.10403.

Anthropic. 2023. Model card and evaluations for claude
models.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, and 29 others. 2023. Qwen technical
report. arXiv preprint arXiv:2309.16609.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning.
In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, page
41–48, New York, NY, USA. Association for Com-
puting Machinery.

Yinpei Dai, Hangyu Li, Yongbin Li, Jian Sun, Fei
Huang, Luo Si, and Xiaodan Zhu. 2021. Preview,
attend and review: Schema-aware curriculum learn-
ing for multi-domain dialog state tracking. Preprint,
arXiv:2106.00291.

Longxu Dou, Yan Gao, Mingyang Pan, Dingzirui Wang,
Wanxiang Che, Dechen Zhan, and Jian-Guang Lou.
2022. Unisar: A unified structure-aware autore-
gressive language model for text-to-sql. Preprint,
arXiv:2203.07781.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021. Natural sql: Making sql easier to infer
from natural language specifications. Preprint,
arXiv:2109.05153.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang,
Feiran Huang, and Xiao Huang. 2024. Knowledge-
to-SQL: Enhancing SQL Generation with Data Ex-
pert LLM. In Findings of the Association for
Computational Linguistics: ACL 2024.

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han,
and Hongrae Lee. 2020. Natural language to

sql: where are we today? Proc. VLDB Endow.,
13(10):1737–1750.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and
Hao Zhang. 2024. Cllms: Consistency large lan-
guage models. Preprint, arXiv:2403.00835.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong
Chen. 2023a. Resdsql: Decoupling schema link-
ing and skeleton parsing for text-to-sql. Preprint,
arXiv:2302.05965.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing
pre-trained transformers with graph-aware layers for
text-to-sql parsing. Preprint, arXiv:2301.07507.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. 2023c. Can llm
already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Preprint,
arXiv:2305.03111.

Marwa Naïr, Kamel Yamani, Lynda Said Lhadj,
and Riyadh Baghdadi. 2024. Curriculum learn-
ing for small code language models. Preprint,
arXiv:2407.10194.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Bin-
hua Li, Fei Huang, Luo Si, Qingshan Jiang, and
Yongbin Li. 2023. Schema dependency-enhanced
curriculum pre-training for table semantic parsing.
Knowledge-Based Systems, 262:110264.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022a.
A survey on text-to-sql parsing: Concepts, methods,
and future directions. Preprint, arXiv:2208.13629.

Bowen Qin, Lihan Wang, Binyuan Hui, Ruiying Geng,
Zheng Cao, Min Yang, Jian Sun, and Yongbin Li.
2022b. Linking-enhanced pre-training for table se-
mantic parsing. Preprint, arXiv:2111.09486.

3554

https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/2106.00291
https://arxiv.org/abs/2106.00291
https://arxiv.org/abs/2106.00291
https://arxiv.org/abs/2203.07781
https://arxiv.org/abs/2203.07781
https://arxiv.org/abs/2109.05153
https://arxiv.org/abs/2109.05153
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.48550/arXiv.2402.11517
https://doi.org/10.48550/arXiv.2402.11517
https://doi.org/10.48550/arXiv.2402.11517
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.14778/3401960.3401970
https://arxiv.org/abs/2403.00835
https://arxiv.org/abs/2403.00835
https://doi.org/10.48550/arXiv.2405.07467
https://doi.org/10.48550/arXiv.2405.07467
https://doi.org/10.48550/arXiv.2405.07467
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2301.07507
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2407.10194
https://arxiv.org/abs/2407.10194
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://doi.org/10.1016/j.knosys.2023.110264
https://doi.org/10.1016/j.knosys.2023.110264
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2208.13629
https://arxiv.org/abs/2111.09486
https://arxiv.org/abs/2111.09486


Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: Your lan-
guage model is secretly a reward model. Preprint,
arXiv:2305.18290.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, and
7 others. 2024. Code llama: Open foundation models
for code. Preprint, arXiv:2308.12950.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang,
and Zhi Yang. 2024. A survey on employing large
language models for text-to-sql tasks. Preprint,
arXiv:2407.15186.

Ruoxi Sun, Sercan Ö. Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
and Tomas Pfister. 2024. Sql-palm: Improved large
language model adaptation for text-to-sql (extended).
Preprint, arXiv:2306.00739.

Xin Wang, Yudong Chen, and Wenwu Zhu. 2021.
A survey on curriculum learning. Preprint,
arXiv:2010.13166.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Jun-
yang Lin, and Chang Zhou. 2024. Synthesizing
text-to-SQL data from weak and strong LLMs. In
Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7864–7875, Bangkok, Thai-
land. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. Preprint, arXiv:1809.08887.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-
thought. Preprint, arXiv:2310.17342.

Qinggang Zhang, Junnan Dong, Hao Chen, Wentao Li,
Feiran Huang, and Xiao Huang. 2024a. Structure
guided large language model for sql generation.

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Ken-
ton Murray, Jeremy Gwinnup, Marianna J Mar-
tindale, Paul McNamee, Kevin Duh, and Marine
Carpuat. 2018. An empirical exploration of curricu-
lum learning for neural machine translation. Preprint,
arXiv:1811.00739.

Yiyun Zhang, Sheng’an Zhou, and Gengsheng Huang.
2024b. Se-hcl: Schema enhanced hybrid curricu-
lum learning for multi-turn text-to-sql. IEEE Access,
PP:1–1.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396–411, Online. Association for Computa-
tional Linguistics.

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du,
Junjie Wang, Weiming Ren, Stephen W. Huang, Jie
Fu, Xiang Yue, and Wenhu Chen. 2024. Structlm:
Towards building generalist models for structured
knowledge grounding. Preprint, arXiv:2402.16671.

3555

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2010.13166
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://doi.org/10.48550/arXiv.2402.13284
https://doi.org/10.48550/arXiv.2402.13284
https://arxiv.org/abs/1811.00739
https://arxiv.org/abs/1811.00739
https://doi.org/10.1109/ACCESS.2024.3365522
https://doi.org/10.1109/ACCESS.2024.3365522
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671


A Appendix

To better understand each component in our pro-
posed framework, we conduct a series of ablation
experiments focusing on three key factors: the ef-
fect of curriculum learning, the influence of dif-
ferent components in the structure difficulty score
D(x), and the role of the scheduling strategy. The
result of ablation studies in Table 9.

First, we evaluate the impact of curriculum learn-
ing by comparing SAC-SQL with a model trained
using standard supervised fine-tuning (SFT) on the
same synthetic dataset, but without any structure-
aware phase scheduling. This ablated model shares
the same architecture and training data as SAC-
SQL but is trained on the full dataset from the
beginning without curriculum partitioning. We
observe that removing curriculum training leads
to a consistent drop in execution accuracy across
both datasets—particularly on structurally complex
queries. On the Spider test set, accuracy drops from
84.1% to 78.7%, and on Bird, from 59.7% to 50.5%.
This confirms that gradually increasing structural
difficulty during training improves generalization,
especially for challenging SQL patterns.

Second, we ablate components of the difficulty
scoring function D(x). In particular, we set the
model-side uncertainty coefficient δ = 0. This vari-
ant results in a performance degradation of 1.8% on
Spider and 2.3% on Bird, with the greatest impact
observed on structurally ambiguous or long-tail
queries. These results underscore the importance
of incorporating model confidence into the diffi-
culty estimate, allowing the curriculum schedule
to account not only for SQL structure but also for
internal generation uncertainty.

Lastly, we examine the importance of structure-
aware scheduling by replacing it with a randomized
curriculum variant. In this setting, training samples
are uniformly shuffled and partitioned into four
curriculum phases of equal size, independent of
D(x). While this variant avoids catastrophic for-
getting and achieves slightly better performance
than baseline SFT, it still underperforms compared
to our full structure-aware curriculum model. This
demonstrates that the gains are not simply due to
data reordering, but depend on the alignment be-
tween curriculum phase boundaries and the struc-
tural complexity of the SQL queries.

Hyperparameters. We further investigated the
sensitivity of the structure-aware difficulty func-

Table 6: Sensitivity analysis of different weight configu-
rations in the difficulty function.

Weight Setting Spider Test BIRD Test

α = 1.5, β = 1.5, γ = 2.0 84.1 59.7
α = 1.0, β = 1.5, γ = 2.0 83.3 58.9
α = 1.5, β = 0.5, γ = 2.0 81.8 57.5
α = 1.5, β = 1.5, γ = 3.0 83.1 59.3
α = 1.0, β = 1.0, γ = 2.0 82.7 58.6
α = 2.0, β = 1.0, γ = 2.0 81.4 57.2
α = 1.0, β = 2.0, γ = 1.0 81.6 57.9
α = 2.0, β = 2.0, γ = 1.0 81.1 56.8
α = 0.5, β = 1.5, γ = 2.0 80.3 55.6
α = 1.5, β = 0.5, γ = 1.0 80.8 56.1

tion:

D(x) = αS(x) + βI(x) + γT (x) + δL(x), (4)

by varying α, β, and γ within a controlled range.
The results in Table 6 show that performance re-
mains relatively stable across different settings, in-
dicating the robustness of our difficulty formula-
tion.

On the Use of Closed-Source LLMs. In our cur-
rent work, we leverage high-performing closed-
source LLMs (e.g., GPT-4 and Claude-2) for syn-
thetic data generation due to their strengths in SQL
correctness, structural diversity, and domain gen-
eralization. These capabilities are particularly im-
portant for producing high-quality data covering
compositional SQL constructs, such as nested sub-
queries, multi-table joins, and window functions.

While we have not yet conducted a full exper-
imental comparison using open-source LLMs for
data generation, we anticipate several challenges
based on prior literature and our observations: (i)
lower SQL validity, as open-source models typi-
cally produce less reliable SQL for complex struc-
tures, leading to lower yield after filtering; (ii) re-
duced structural diversity, since many open-source
models overfit to shallow patterns without carefully
curated in-context examples; and (iii) potential per-
formance drop, because SAC-SQL performance
correlates strongly with the structural richness and
correctness of training data.

We plan to explore training synthetic data gen-
erators using strong open-source models (e.g.,
DeepSeek-Coder, CodeLLaMA, Qwen) with ad-
vanced prompting strategies, self-refinement, and
retrieval-based augmentation to narrow this perfor-
mance gap in future work.

These ablations demonstrate that both the cur-
riculum schedule and the structure-aware scoring

3556



function—particularly its inclusion of model-side
uncertainty—are essential to the success of SAC-
SQL. The performance gains observed are not in-
cidental but arise from a principled integration of
structural difficulty into the training dynamics.

Reverse Curriculum Baseline. To further exam-
ine the effect of curriculum ordering, we conducted
an additional baseline experiment where training
followed a reversed curriculum schedule—starting
from structurally complex queries and gradually
moving toward simpler ones. Table 7 reports the
comparison with our standard curriculum (simple
→ complex) and the randomized variant.

Table 7: Comparison of curriculum strategies on Spider
and BIRD.

Strategy Spider BIRD

SAC-SQL (Simple → Complex) 84.1 59.7
Randomized Curriculum 80.5 54.8
Reverse Curriculum (Complex → Simple) 77.8 52.6

We observe a consistent performance drop un-
der the reverse curriculum setting. This sup-
ports our hypothesis that learning SQL generation
in a bottom-up manner—beginning with simpler
queries and progressively incorporating complex
structures—better aligns with model optimization
and generalization dynamics.

Recent Reasoning-Oriented LLMs. We also
provide additional context on recent LLMs with
strong reasoning capabilities that could serve as
future baselines. Table 8 summarizes available re-
sults.

Table 8: Representative reasoning-oriented models for
Text-to-SQL.

Model Type BIRD Acc.

Claude 3.5 Sonnet Closed LLM 56.0%
Arctic-Text2SQL-R1 Specialized 71.8%

While many reasoning-oriented LLMs (e.g.,
Claude 3.5 Sonnet) have not yet published official
Spider or BIRD results, community evaluations
indicate notable improvements in logical reason-
ing and compositional SQL generation. In par-
allel, domain-specific models such as Arctic-R1
demonstrate the benefits of incorporating structure-
aware training for Text-to-SQL. These observations
suggest that reasoning-enhanced models represent
promising baselines for future comparisons.

Table 9: Ablation Study on Spider and Bird Datasets

Model Variant Spider Bird

SAC-SQL (Full Model) 84.1 59.7
w/o Curriculum Learning 78.7 50.5
w/o Model Uncertainty (δ = 0) 82.3 57.4
w/o SFT 72.6 44.3
w/o Synthetic Data 76.5 48.7
w/o Curriculum + SFT + Synthetic 68.4 41.5
Synthetic + Bird/Spider Training Sets 83.2 59.1
Randomized Curriculum 80.5 54.8

B Discussion

The strong empirical results of SAC-SQL confirm
the value of structure-aware curriculum learning
for Text-to-SQL tasks, especially when applied
to open-source language models. A key reason
for its effectiveness lies in the alignment between
the model’s learning trajectory and the composi-
tional structure of SQL itself.(Qin et al., 2022b)
Unlike flat training paradigms that treat all samples
as equal, our curriculum framework introduces a
progressively challenging environment, enabling
the model to first acquire syntactic fluency before
confronting deeper structural dependencies. This
learning dynamic mirrors human cognitive acquisi-
tion in complex domains and results in improved
generalization on SQL forms.

Another important aspect is the interaction be-
tween structural curriculum learning and schema
linking. While the latter focuses on grounding
language to database content—mapping tokens to
tables, columns, and values—curriculum learning
operates at a higher level, shaping the model’s abil-
ity to combine and organize those components into
valid programs(Zhang et al., 2024b). In our set-
ting, these two approaches are not mutually ex-
clusive but complementary: SAC-SQL’s curricu-
lum prepares the model to better compose valid
queries, while existing techniques can further en-
hance its schema awareness. We believe that inte-
grating schema-linking modules within our curricu-
lum framework could yield even stronger results,
especially in low-resource scenarios.

Finally, the principles behind SAC-SQL ex-
tend naturally to other structured generation tasks
beyond SQL. Tasks such as natural language
to code (NL2Code), knowledge base querying
(NL2Query), and even Tabular Question An-
swering share the same core challenge: map-
ping unstructured input into logical, executable
forms.(Naïr et al., 2024) In all of these settings,

3557



output structures vary in complexity, and learners
benefit from phased exposure to that complexity.
Our framework provides a general recipe for such
settings: define a domain-specific structure diffi-
culty function, partition data accordingly, and train
models with difficulty-aligned schedules. We ex-
pect curriculum-guided LLM training to play a
growing role in structured reasoning tasks across
modalities and domains.

Supplementary Material: Examples of
LLM Prompting and SQL Generation

To further illustrate how SAC-SQL utilizes LLMs
during data generation, we provide representa-
tive prompts, input–output examples, and a failure
case. These examples reflect our schema-aware,
instruction-driven prompting strategy.

Example Input–Output Pair.
Domain: Scientific Publishing

Schema
Table: Researcher(researcher_id, name,
affiliation, field)
Table: Paper(paper_id, title, field, year)
Table: Authorship(paper_id, researcher_id)

Listing 2: Schema Example

Question: List the names of researchers who have
authored more than 5 papers in the same field as
their affiliation.
SQL Answer
SELECT r.name
FROM Researcher r
JOIN Authorship a ON r.researcher_id =
a.researcher_id
JOIN Paper p ON a.paper_id = p.paper_id
WHERE r.field = p.field
GROUP BY r.name
HAVING COUNT(*) > 5;

Listing 3: SQL Answer Example

Generated Example.
Domain: Agricultural Supply Chain

Schema
Table: Farmer(farmer_id, name, region)
Table: Crop(crop_id, crop_name, category)
Table: Harvest(farmer_id, crop_id, yield_kg,
harvest_date)
Table: Price(crop_id, date, price_per_kg)

Listing 4: Generated Schema

Question: Which crops have an average selling
price higher than 3.0 in the last 30 days, and have
been harvested by more than 10 different farmers?
SQL Answer

SELECT c.crop_name
FROM Crop c
JOIN Harvest h ON c.crop_id = h.crop_id
JOIN Price p ON c.crop_id = p.crop_id
WHERE p.date >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY c.crop_name
HAVING AVG(p.price_per_kg) > 3.0

AND COUNT(DISTINCT h.farmer_id) > 10;

Listing 5: Generated SQL Answer

Illustrative Failure Case. We also include a fail-
ure case rejected during post-filtering due to a logi-
cal error.
Question: Show all farmers who harvested the
most crop in total weight.
Invalid SQL
SELECT f.name
FROM Farmer f
JOIN Harvest h ON f.farmer_id = h.farmer_id
GROUP BY f.name
HAVING MAX(h.yield_kg);

Listing 6: Invalid SQL Example

Issue: The query incorrectly uses
MAX(h.yield_kg) in the HAVING clause. The
correct approach requires aggregation with
SUM(h.yield_kg) together with either a subquery
or an ORDER BY SUM(...) clause.

All generated examples undergo syntax verifica-
tion, schema alignment, execution validation, and
structural scoring before assignment to curriculum
phases.

3558



Listing 1: Instruction Prompt Template
You are tasked with generating high -quality Text -to-SQL examples.
For each example:

Domain: Choose a domain that is underrepresented in public benchmarks like
Spider or BIRD.
Avoid domains such as education , healthcare , travel , restaurants , entertainment
, or movies.
Instead , prefer domains like logistics , supply chain , environmental monitoring
, scientific publishing ,
agriculture , sports analytics.

Schema:
Create a relational database schema consisting of interrelated tables. Each
table should have a
primary key , and foreign key relationships should be clearly reflected. Use
realistic field names
and data types (e.g., integers , strings , timestamps ). Avoid abstract or
unrealistic column names
like "col1" or "valueX ".

Question: Write a natural language question that requires reasoning over one
or more tables.

SQL Answer:
Generate a correct SQL query that answers the question. Use realistic
constructs: JOIN , GROUP BY,
ORDER BY , HAVING , nested SELECTs , or even WINDOW functions. Ensure the
query runs logically against
the defined schema.

Guidelines:
- The SQL should vary in complexity , covering a range of SQL constructs:
filters , joins , grouping ,

nested queries , or window functions.
- Each example should be self -contained and syntactically valid.
- Do not classify or label the difficulty , our system will evaluate each
sample automatically.

Your output must consist of:
Domain
Schema
Question
SQL Answer

3559


